初二数学知识点总结
数学初二知识点总结归纳
数学初二知识点总结归纳初二数学知识点总结归纳一、有理数与整式1. 有理数的概念与性质2. 有理数的加减乘除及其性质3. 绝对值与有理数大小关系4. 有理数的科学计数法5. 计算器使用方法6. 整数的概念和性质二、代数式与整式1. 代数式的概念、含义及运算法则2. 代数式的等值关系和计算3. 整式的概念与性质4. 整式的加减乘除及其性质5. 因式分解与公因式提取6. 分式、分式的加减乘除7. 分式方程三、平面图形的认识1. 点、线、面的认识2. 点的坐标系3. 直线与角四、图形的性质1. 直角、直线、角度的意义2. 平行线与相交线3. 四边形的性质4. 三角形的性质5. 圆的概念与性质五、相似1. 相似的概念和判定2. 相似三角形的性质3. 相似三角形的应用六、比例与实际问题1. 比例的概念与性质2. 比例与相似的关系3. 平均数与几何平均数七、数据的搜集和整理1. 调查、统计与实际问题2. 统计图的绘制与分析八、选修内容初二数学的选修内容主要包括:1. 平面向量与坐标2. 多边形的面积3. 空间图形的认识4. 立体图形的计算5. 数据的分析与应用6. 几何体的展开与折叠7. 根式的运算及其应用此外,还需要掌握一些常用的计算方法和数学问题的解决思路,如:1. 常用的数学运算法则和计算技巧2. 数学问题的解决思路和方法3. 数学模型的建立和应用4. 数学问题中的一些常用定理、公式和推理方法的运用5. 数学与实际问题的联系和应用初二数学知识点总结归纳完毕。
以上列举的知识点是初中数学课程的主要内容,通过学习这些知识点,可以打好数学基础,为进一步的学习打下良好的基础。
八年级数学重点知识点(全)
初二数学知识点因式分解1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化•2 •因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法” •3 •公因式的确定:系数的最大公约数•相同因式的最低次幕.注意公式:a+b=b+a a-b=-(b-a) (a-by=(b-a f; (a-b3=-(b-a j.4 .因式分解的公式:(1) 平方差公式:a i2-b2= (a+ b (a- b);(2) 完全平方公式:a2+2ab+b=(a+b2,a2-2ab+b=(a-b2.5 •因式分解的注意事项:(1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;(4)因式分解的最后结果要求每一个因式的首项符号为正;(5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式.6•因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5) 配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.7 .完全平方式:能化为(m+n) 2的多项式叫完全平方式;对于二次三项式x2+px+q,有“ l+px+q是完全2平方式P q”.2分式A A1 .分式:一般地,用A、B表示两个整式,A* B就可以表示为一的形式,如果B中含有字母,式子一叫B B做分式.整式2. 有理式:整式与分式统称有理式;即 有理式 八亠.分式3. 对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为 零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义•4. 分式的基本性质与应用:(1) 若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变; (2) 注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;测 分子 分子 分子 分子 即分母 分母 分母 分母(3) 繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单•5. 分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先 因式分解•求化为最简分式•9•负整指数计算法则:正整指数的运算法则都可用于负整指数计算;n公式:-b公式: (-1) -2=1, (-1)-社-1.10•分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式, 叫做分式的通分;注意:分式的通分前要先确定最简公分母. 11 •最简公分母的确定:系数的最小公倍数•相同因式的最高次幕•a b a b a c ad be ad be12.同分母与异分母的分式加减法法则:;6. 最简分式:一个分式的分子与分母没有公因式, 这个分式叫做最简分式;注意:分式计算的最后结果要7.分式的乘除法法则:c ac a ed bd ' b d d ad c ben8.分式的乘方:—bn a n. (n 为正整数).b(1)公式:a °=1(a#o ). a -n=2 (aT); ab n a n b m, , • mn ?abac c c bd bd bd bd13. 含有字母系数的一元一次方程:在方程ax+b=O(¥O)中,x是未知数,a和b是用字母表示的已知数,对x 来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程. 注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数.14. 公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程•特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.15. 分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.16. 分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.17. 分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.18. 分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序.数的开方1.平方根的定义:若*=a那么x叫a的平方根,(即a的平方根是x);注意:(1) a叫x的平方数,(2)已知x求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算.2 .平方根的性质:(1) 正数的平方根是一对相反数;(2) 0的平方根还是0;(3) 负数没有平方根.3. 平方根的表示方法:a 的平方根表示为.a 和a .注意: a 可以看作是一个数,也可以认为是一个数 开二次方的运算•4. 算术平方根:正数a 的正的平方根叫a 的算术平方根,表示为.a •注意:0的算术平方根还是0.5.三个重要非负数: a F >0 ,|a| >0 , a >0注意:非负数之和为0,说明它们都是0.6.两个重要公式: (1)a 2 a ;(a>0)7. 立方根的定义:若x 3=a |^么x 叫a 的立方根,(即a 的立方根是x ).注意:(1) a 叫x 的立方数;(2) a 的立方根表示为3,'a ;即把a 开三次方. 8. 立方根的性质:(1) 正数的立方根是一个正数; (2) 0的立方根还是0; (3) 负数的立方根是一个负数. 9.立方根的特性:3 a Va .10•无理数:无限不循环小数叫做无理数.注意: 11.实数:有理数和无理数统称实数.14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位; (2)要求记忆:21.414 . 3 1.732 .52.236 .a (a 0) a (a 0)和开方开不尽的数是无理数.有理数 正有理数12.实数的分类: (1)实数负有理数无理数正无理数负无理数13.数轴的性质: 数轴上的点与实数一- 一对应. 有限小数与无限循环小数 正实数(2)实数0 负实数无限不循环小数三角形几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)5•等腰三角形的定义: 几何表达式举例:有两条边相等的三角形叫做等腰三角形(如图)6•等边三角形的定义:有三条边相等的三角形叫做等边三角形(如图)7•三角形的内角和定理及推论:(1 )三角形的内角和180°;(如图)(2)直角三角形的两个锐角互余;(如图)(3)三角形的一个外角等于和它不相邻的两个内角的和;(如图)探(4)三角形的一个外角大于任何一个和它不相邻的内角.D&直角三角形的定义:有一个角是直角的三角形叫直角三角形(如图)(1) ••• A ABC是等腰三角形••• AB = AC(2) T AB = AC•A ABC是等腰三角形几何表达式举例:(1) v A ABC是等边三角形•AB=BC=AC(2) T AB=BC=AC•A ABC是等边三角形几何表达式举例:(1) •••/ A+Z B+Z C=180(2) •••/ C=90• Z A+Z B=90°(3) T Z ACD Z A+Z B(4) T Z ACD >Z A几何表达式举例:(1) T Z C=90• A ABC是直角三角形(2) T A ABC是直角三角形•Z C=909•等腰直角三角形的定义:两条直角边相等的直角三角形叫等腰直角三角形•(如图) A\B几何表达式举例:⑴•/ ZC=90 CA=CB••• A ABC是等腰直角三角形(2) •/ A ABC是等腰直角三角形•••/C=90 CA=CB10.全等三角形的性质:(1)全等三角形的对应边相等;(如图)(2)全等三角形的对应角相等.(如图)11•全等三角形的判定:“SAS “ASA “AAS “SSS “HL'.(如图)(1) (2)B EF几何表达式举例:(1) •/ A AB3A EFG• AB = EF .........(2) •/ A ABC^A EFG•••/A=/E .................几何表达式举例:(1) •/ AB = EF•/ Z B=Z F又••• BC = FG•A ABC^A EFG⑵ .......................(3)在Rt A ABC和Rt A EFG中•/ AB=EF又••• AC = EG•Rt A ABC^ Rt A EFG12•角平分线的性质定理及逆定理: 几何表达式举例:(1) 在角平分线上的点到角的两边距离相等;(如图)(2) 到角的两边距离相等的点在角平分线 上(如图)几何表达式举例:(1) •/ EF 垂直平分AB• EFL AB OA=OB (2) •/ EF L AB OA=OB• EF 是AB 的垂直平分线(1) 线段垂直平分线上的点和这条线段的 两个端点的距离相等;(如图)(2) 和一条线段的两个端点的距离相等的 点,在这条线段的垂直平分线上•(如图)14.线段垂直平分线的性质定理及逆定理: 几何表达式举例:(1):0C 平分/AOB 又•/ CDL OA CE 10B ••• CD = CE (2) •/ CDLOA CE10B 又 v CD = CE• 0C 是角平分线 13•线段垂直平分线的定义: 垂直于一条线段且平分这条线段的直线, 叫做这条线段的垂直平分线.(如图)(1) •/ MN 是线段AB 的垂直平分线• PA = PB (2) •/ PA = PB•••点P 在线段AB 的垂直平分线上15•等腰三角形的性质定理及推论:几何表达式举例:N17.关于轴对称的定理(1)关于某条直线对称的两个图形是全 等形;(如图)(1) 等腰三角形的两个底角相等;(即等边对等角)(如图) (2) 等腰三角形的“顶角平分线、底边中线、底边上的高”三线合一; (如图) (3) 等边三角形的各角都相等,并且都是60° .(如图) (1) 16•等腰三角形的判定定理及推论: (1)如果一个三角形有两个角都相等,那么这两个角所对边也相等;(即 等角对等边)(如图) (2)三个角都相等的三角形是等边三角形;(如图) (3) 有一个角等于60°的等腰三角形是等边三角形;(如图) (4) 在直角三角形中,如果有一个角等于30°,那么它所对的直角边 是斜边的一半.(如图) ⑴•/ AB = AC(2) •/ AB = AC 又T /BADNCAD • BD = CD AD 丄 BC(3) •/ A ABC 是等边三角形• Z A=Z B=Z C =60几何表达式举例: (1) vZ B=Z C• AB = AC(2) •/ /A=/B=/C• A ABC 是等边三角形⑶•/ ZA=60°又••• AB = AC• A ABC 是等边三角形⑷•••/C=90 / B=30°• AC =1AB2几何表达式举例:(1) •/ A ABG A EGF 关于MN 轴M几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)—一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.二常识:1三角形中,第三边长的判断:另两边之差V第三边V另两边之和•2•三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段.3.如图,三角形中,有一个重要的面积等式,即:若CD丄AB, BE1CA则CD- AB=B E CA.4 •三角形能否成立的条件是:最长边V另两边之和.5•直角三角形能否成立的条件是:最长边的平方等于另两边的平方和.6 .分别含30°、45°、60°的直角三角形是特殊的直角三角形.7 .如图,双垂图形中,有两个重要的性质,即:(1)AC- CB=CD AB ; (2)Z 仁/ B , Z2=Z A .8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.9•全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边.10.等边三角形是特殊的等腰三角形.11•几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明.12.符合“AAA' “SSA条件的三角形不能判定全等.13•几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.14•几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.15.会用尺规完成“SAS、“ASA'、“AAS、“SSS、“HL'、“等腰三角形”、“等边三角形”、“等腰直角三角形” 的作图.16•作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图.探18.几何重要图形和辅助线:(1)选取和作辅助线的原则:①构造特殊图形,使可用的定理增加;②一举多得;③聚合题目中的分散条件,转移线段,转移角;④作辅助线必须符合几何基本作图•(3)已知三角形中线(若AD是BC的中线)⑷已知等腰三角形ABC中,AB=AC①作等腰三角形ABC底边的中线AD (顶角的平分线或底边的高)构造全②作等腰三角形ABC一边的平行线DE构造新的等腰三角形•①过D点作DE// AC交AB于E,构造中位线;② 延长AD到E,使DE=AD连结CE构造全等,转移线段和角;③•/ AD是中线••• S A ABD= Si ADC(等底等高的三角形等面积)E。
初二数学必考知识点归纳最新
初二数学必考知识点归纳最新
一、代数基本知识
1.代数式的定义与性质
2.方程与不等式的概念
3.一元一次方程的解法(如去分式法、加减消去法等等)
4.二元一次方程的解法(如联立消元法、代入法等等)
5.等式的基本性质
6.二次根式的化简方法
二、平面几何基础
1.基本图形的面积计算(如矩形、三角形、梯形等等)
2.基本图形的周长计算(如矩形、三角形、梯形等等)
3.计算线段的长度
4.平行线与垂线的性质
5.相似三角形的判定与性质
6.图形的旋转与对称性
7.圆的相关概念与性质
三、立体几何基础
1.空间图形的投影
2.空间图形的计算
3.空间直角坐标系的使用
4.空间向量的计算(如加减、数量积、等等)
5.空间中的平面与直线
6.空间图形的重心与质心
四、三角函数的基本概念
1.角度的概念与弧度制的转换
2.正弦、余弦、正切等三角函数的定义
3.各种三角函数的性质
4.三角函数的图像与周期性
五、统计学的基本知识
1.数据的采集与整理
2.数据的中心与散布度量(如平均数、中位数、众数、标准差等等)
3.数据的分布形式(如正态分布、偏态分布等等)
4.数据的统计推断(如置信区间、假设检验等等)
六、概率的基本概念
1.随机事件、试验与样本空间
2.概率的定义与性质
3.条件概率的定义及其应用
4.独立事件的概念与性质
以上是初二数学必考知识点的归纳总结,希望对初中学生们的学习有所帮助。
初二数学知识点归纳
初二数学知识点归纳1. 数的运算- 有理数的加、减、乘、除运算法则- 绝对值的概念和运算- 相反数的概念和运算- 乘方和开方的运算法则2. 代数基础- 代数式的书写规则- 代数式的加减运算- 代数式的乘除运算- 分式的加减乘除运算3. 一元一次方程- 一元一次方程的定义- 一元一次方程的解法- 一元一次方程的应用4. 二元一次方程组- 二元一次方程组的定义- 二元一次方程组的解法(加减消元法和代入消元法) - 二元一次方程组的应用5. 不等式- 不等式的概念- 不等式的解法- 一元一次不等式组的解法- 不等式的应用6. 几何图形- 点、线、面的基本性质- 平面图形的分类- 几何图形的对称性7. 三角形- 三角形的分类- 三角形的内角和定理- 三角形的外角性质- 三角形的边长关系8. 四边形- 四边形的分类- 平行四边形的性质- 矩形、菱形、正方形的性质9. 圆- 圆的基本概念- 圆的周长和面积计算- 圆的切线性质- 圆与圆的位置关系10. 空间几何- 空间几何体的认识- 空间几何体的表面积和体积计算 - 空间几何体的组合与分解11. 函数初步- 函数的概念- 一次函数的图像和性质- 正比例函数和反比例函数12. 概率初步- 概率的基本概念- 简单事件的概率计算- 概率在实际问题中的应用以上是初二数学的主要知识点归纳,涵盖了数的运算、代数基础、方程与不等式、几何图形、空间几何、函数和概率等重要领域,为进一步学习数学打下坚实的基础。
初二数学知识点全总结
初二数学知识点全总结一、整数1. 整数的概念和表示法2. 整数的加减法3. 整数的乘除法4. 整数的乘方和开方5. 整数的大小比较和大小关系的判断6. 整数的运算性质和规律二、分数1. 分数的概念和表示法2. 分数的加减法3. 分数的乘除法4. 分数的约分和商的混合数表示法5. 分数的运算性质和规律6. 分数的大小比较和大小关系的判断三、小数1. 小数的概念和表示法2. 小数的加减法3. 小数的乘除法4. 小数与分数的相互转换5. 小数的运算性质和规律6. 小数的大小比较和大小关系的判断四、代数式与方程式1. 代数式的概念和表示法2. 代数式的加减法和乘法3. 代数式的乘方和乘方的运算规则4. 代数式的化简和展开5. 一元一次方程和一元一次方程的解法6. 代数式和方程式在实际问题中的应用五、平面图形1. 点、线、面的概念和性质2. 直线、射线、线段的概念和性质3. 角的概念和性质4. 三角形、四边形、多边形的概念和性质5. 圆的概念和性质6. 平面图形的周长和面积计算六、几何变换1. 平移、旋转、翻转的概念和性质2. 平移、旋转、翻转的操作方法和计算规则3. 平面图形在几何变换中的变化规律4. 几何变换在实际问题中的应用七、统计与概率1. 数据的搜集、整理、分析和表示2. 数据的统计量和图表的绘制3. 概率的概念和性质4. 事件的概念和性质5. 概率计算和事件发生的可能性判断以上是初二数学的主要知识点总结,其中包括整数、分数、小数、代数式与方程式、平面图形、几何变换、统计与概率等方面的内容。
掌握这些知识点对于学好初二数学非常重要,希望对你有所帮助。
初二数学知识点全总结梳理
初二数学知识点全总结梳理一、代数与方程式1. 整数的加减乘除2. 分数的加减乘除3. 同底数幂的乘法与除法4. 多项式的加减乘除5. 一元一次方程的解法6. 一元一次方程组的解法7. 二元一次方程组的解法8. 四则运算法则9. 开方法则(开方、乘方)10. 分式方程的解法二、几何1. 点、线、面、立体图形的性质2. 直线、射线和线段的性质3. 角的基本概念4. 直角、锐角和钝角的概念5. 平行线与垂直线的判定6. 三角形的分类(等腰、等边、直角等)7. 三角形的性质(面积、高、中线等)8. 同位角与内错角的性质9. 图形的相似与全等10. 空间中的位置与方向三、函数1. 函数的概念及性质2. 函数的图像与表示3. 一次函数与二次函数4. 反比例函数与比例函数5. 常用函数的性质与图像6. 函数的求值与求解四、概率1. 事件与概率的概念2. 随机事件的组合与求概率3. 统计与频率分布4. 概率的计算与应用五、数与数量关系1. 整数与有理数的性质2. 分数与小数的转换3. 比例与比例的应用4. 百分数与百分数的应用5. 近似数与误差的估算六、数与代数1. 数字运算与计算2. 运算法则与运算律3. 数量与代数式的关系4. 代数式的展开与因式分解5. 符号与数学运算的关系七、图形与变换1. 图形的分类与性质2. 图形的平移、旋转、翻转与对称3. 图形的相似与全等4. 图形的计算与应用八、应用题1. 实际问题的数学化及求解2. 理解题、烦恼题的求解3. 推算与循环推理问题的解决以上是初二数学知识点的全面总结梳理,希望对你有所帮助。
如需详细了解每个知识点的具体内容,可以选择相应的知识点进行深入学习。
初二数学知识点总结
初二数学知识点总结
初二数学知识点总结
一、代数部分:
1. 一元一次方程及其应用
2. 二元一次方程组及其应用
3. 整式的加、减、乘、除
4. 因式分解
5. 分式的乘、除及其化简
6. 比例及类比
7. 百分数
二、几何部分:
1. 角及其种类
2. 直线、射线、线段的基本概念
3. 平面图形的基本概念及性质
4. 正多边形及其外接圆、内切圆
5. 三角形基本定理及其证明
6. 相似性质
7. 圆的性质及应用
8. 空间图形的基本概念及计算
三、数据部分:
1. 统计图
2. 平均数及其计算
3. 中位数及其计算
4. 众数及其计算
5. 极差及其计算
四、函数部分:
1. 函数的概念、定义域、值域
2. 一次函数及其图象
3. 二次函数及其图象
4. 反比例函数及其图象
5. 常用函数及其图象
以上是初二数学知识点的大致内容,详细内容请参考教材。
掌握这些知识点,可以较好地应对初二数学的学习。
其它需要注意的地方:
1. 学习初二数学要注重思维的拓展及应用能力的培养,要注重数学实验和模型建立,要注重借助计算机工具进行数学探究。
2. 学习初二数学要注重基础知识的巩固,要注重对数学常识的熟悉,要注重应用解决实际问题。
3. 学习初二数学要注重思维能力的培养,要注重培养学生的思维能力和创新能力,要注重实用性,让学生学会运用数学解决实际问题。
4. 学习初二数学要注重方法的掌握,要注重学会灵活运用各种方法解决问题,要注重发掘学生潜力和培养数学兴趣。
初二数学全部知识点
初二数学全部知识点一、整数1. 整数的概念2. 整数的绝对值3. 整数的比较大小及大小关系4. 整数的加法与减法5. 整数的乘法与除法二、分数1. 分数的概念2. 分数的简化与化简3. 分数的大小比较及大小关系4. 分数的加法与减法5. 分数的乘法与除法6. 分数的乘方三、小数1. 小数的概念2. 小数的读法与写法3. 小数的大小比较及大小关系4. 小数的加法与减法5. 小数的乘法与除法四、比例与比例应用1. 比例的概念2. 倍数、百分数3. 比例的简化4. 比例的转化5. 各种比例的应用五、代数式1. 代数式的概念2. 代数式的常见运算3. 代数式的化简与展开4. 代数式的四则运算5. 代数式的等式与方程六、方程1. 方程的概念2. 等式与方程3. 一元一次方程4. 一元二次方程5. 一元一次方程组七、函数1. 函数的概念2. 函数的图象3. 函数的初等函数4. 一次函数5. 二次函数八、几何基础1. 几何公理与定理2. 平面图形的基本概念3. 线段、射线、直线4. 平行线、垂线与角度5. 多边形的基本概念九、三角形1. 三角形的分类2. 三角形的周长与面积3. 直角三角形三边关系4. 正弦、余弦、正切及其应用5. 各种三角形的性质十、圆1. 圆的基本概念2. 圆的周长与面积3. 切线的性质4. 圆弧、扇形与坐标系5. 同心圆与交叉角十一、空间几何与立体图形1. 空间直线、射线、线段2. 平面与空间直角坐标系3. 空间锥、圆锥、圆柱、球等图形的基本概念4. 空间几何不等式5. 空间图形的表面积与体积以上是初二数学全部知识点。
初二数学知识点总结
初二数学知识点总结一、实数1. 有理数与无理数- 有理数的定义:可以表示为两个整数的比的数。
- 无理数的定义:不能表示为两个整数的比的数,如√2、π。
2. 绝对值- 绝对值的定义:一个数距离0的距离。
- 绝对值的性质:|a| ≥ 0,|a| = |-a|。
3. 实数的运算- 加法、减法、乘法、除法、乘方、开方。
4. 根式- 算术平方根:√a(a ≥ 0)。
- 立方根:∛a。
二、代数表达式1. 单项式- 单项式的定义:数字与字母的乘积。
- 系数与指数。
2. 多项式- 多项式的定义:若干个单项式的和。
- 多项式的加减法、乘法。
3. 代数式的简化- 合并同类项。
- 分配律、结合律、交换律。
三、方程与不等式1. 一元一次方程- 方程的解、根。
- 解一元一次方程。
2. 二元一次方程- 二元一次方程组。
- 代入法、消元法。
3. 不等式- 不等式的定义与性质。
- 解一元一次不等式。
4. 绝对值不等式- 绝对值不等式的解法。
四、几何1. 平面几何- 点、线、面的基本性质。
- 角的概念与分类。
- 三角形、四边形的性质与计算。
2. 圆的基本性质- 圆的定义与性质。
- 圆周角、圆心角、弦、弧的关系。
3. 相似形- 相似三角形的判定与性质。
- 相似多边形。
4. 几何图形的计算- 面积、体积的计算公式。
- 应用题的解题方法。
五、概率与统计1. 概率的基本概念- 随机事件、概率的定义。
- 等可能事件的概率计算。
2. 统计初步- 数据的收集与整理。
- 频数与频率。
- 统计图表的绘制与解读。
六、函数1. 函数的概念- 函数的定义、表示方法。
- 函数的图像。
2. 一次函数与反比例函数- 一次函数的图像与性质。
- 反比例函数的图像与性质。
3. 函数的应用- 函数在实际问题中的应用。
- 解决问题的策略。
七、数列1. 数列的概念- 数列的定义、通项公式。
- 等差数列与等比数列。
2. 数列的求和- 等差数列与等比数列的求和公式。
初二数学知识点归纳
初二数学知识点归纳一、集合及表示方法1. 集合:具有某种共同性质的事物的总体称为集合。
2. 元素:集合中的每个个体称为元素。
3. 表示方法:列举法、描述法、图示法。
二、集合的运算1. 交集:A∩B表示同时属于A和B的元素组成的集合。
2. 并集:A∪B表示属于A或属于B的元素组成的集合。
3. 差集:A-B表示属于A但不属于B的元素组成的集合。
4. 互补集:在某个全集中,除了集合A之外的其余元素组成的集合称为集合A的互补集。
三、分数1. 分数的定义:以分数线分为分子和分母两部分,表示分子等于几份分母所分成的总份数。
2. 分数的化简:若分子和分母都能够同时除以同一个数,则可以进行化简。
3. 分数的运算:(1)分数的加减:先通分,再按照分子的和(差)除以分母的和得到结果。
(2)分数的乘除:分别对分子、分母进行乘(除)法,得到结果后可进行约分。
四、代数式1. 代数式:由数和字母及运算符号组成的符号组合称为代数式。
2. 项、系数和次数:代数式中的加数或减数称为项,项中字母的系数称为系数,字母中的指数称为次数。
3. 简单化代数式:将代数式中所有相同的项合并成一个项,将同类项中的系数相加或相减,得到一个新的简化的代数式。
4. 去括号:符号“()”表示优先进行,去括号就是先把括号内的代数式化简,再根据括号外的运算符合并成一个代数式。
五、一次方程1. 方程:含有未知数和已知数,且建立了等式关系的式子称为方程。
2. 一次方程:未知数的最高次数为1的方程称为一次方程。
3. 解一次方程:用逆运算,使得某个未知数的系数变成1,其他项系数变为0,得到未知数的值。
六、平面几何1. 点、线、面、角:点是没有大小、形状的,只有位置;将无限多个点连成的不断延长的一条线叫做直线;两条直线交于一点并围成一块区域叫做面;两条直线的交叉部分叫做角度。
2. 垂线:与另一条线或一平面垂直的线叫做垂线。
3. 平行线:在同一个平面内,没有交点并且朝向相同的直线叫做平行线。
初二数学基础知识点归纳总结
初二数学基础知识点归纳总结一、数的概念和运算1. 自然数、整数、有理数、实数的定义和性质。
2. 数的分类:质数、合数、真数、奇数、偶数等。
3. 数的运算:加法、减法、乘法、除法、平方等。
4. 大数计算方法。
二、代数式与方程1. 代数式的概念和性质。
2. 代数式的运算:加法、减法、乘法、除法、分配律等。
3. 方程的概念和性质。
4. 一元一次方程及其解法。
5. 一元二次方程及其解法。
三、数轴和坐标系1. 数轴的概念和性质。
2. 数轴上的点与有理数的对应关系。
3. 数轴上的加法、减法、乘法、除法等运算。
4. 坐标系的概念和性质。
5. 平面直角坐标系的表示和性质。
四、平面图形的认识1. 点、线、面的概念和性质。
2. 线段、射线、直线的概念和性质。
3. 角的概念和性质。
4. 三角形、四边形、多边形的概念和性质。
五、相似与全等1. 相似的概念和性质。
2. 相似三角形的判定和性质。
3. 相似三角形的比例定理和重要定理。
4. 全等的概念和性质。
5. 全等三角形的判定和性质。
六、统计与概率1. 数据的分类和整理。
2. 统计频数表、频率表、频率直方图、条形统计图等的制作和分析。
3. 概率的概念和性质。
4. 概率的计算方法。
七、平行与垂直1. 平行线的概念和性质。
2. 平行线与横线、竖线之间的关系。
3. 平行线的证明方法。
4. 垂直线的概念和性质。
5. 垂直线的证明方法。
八、数与式1. 数的乘方及其性质。
2. 代数式的因式分解和分式的化简。
3. 含有乘方的代数式的展开和化简。
4. 一次幂、零次幂的定义和运算。
九、算式1. 算式的概念和性质。
2. 算式的加法、减法、乘法和除法运算。
3. 算式的顺序运算。
4. 算式的解法和推理。
十、三角函数与图形的坐标变换1. 三角函数的定义和性质。
2. 正弦定理和余弦定理。
3. 直角三角形的性质和解法。
4. 图形的坐标变换。
以上是初二数学基础知识点的简要总结,希望对你有所帮助。
如果你还有其他关于初二数学的问题,可以继续提问。
初二数学知识点全总结
初二数学知识点全总结一、代数1. 数字与式子- 正整数、负整数、分数、小数与百分数的相互转化与运算- 代数式的简化与加减乘除- 代数式的展开与因式分解- 一元一次方程的解法- 一元一次方程与实际问题的模型应用2. 直线与线性方程- 线性方程与可视化的关系- 解线性方程的图象解法- 两个方程联立的解法- 实际问题中的线性方程组与解法- 含有两个未知数的一元一次方程组与解法3. 平方根与二次根式- 正数的平方根与二次根式的意义- 二次根式的运算与化简- 二次根式的乘法公式与分式- 德国数学家费马定理的推广与应用4. 整式的加减与乘法- 整式的加减运算- 整式的乘法运算- 含参系数的整式乘法与因式分解- 解决实际问题中的有参系数整式5. 分式- 分子、分母互质的分式- 分式的乘法与除法- 分式的混合运算与简便法- 分式线性方程的解法与实际应用6. 一元二次方程- 一元二次方程与根的关系- 一元二次方程的因式分解与求解- 一元二次方程与实际问题的模型应用7. 平面直角坐标系- 平面直角坐标系的引入与性质- 点、线、圆在平面直角坐标系中的位置关系- 相关系数、线性回归与实际问题的应用- 平面图形的平移、旋转、翻折等变换8. 一次函数- 一次函数的基本概念与性质- 一次函数的图象与函数图象的性质- 一次函数与线性方程、函数的应用9. 指数与幂- 正数的指数、指数运算法则- 指数函数与对数函数的简单性质- 指数与幂在实际问题中的应用二、几何1. 几何基本概念- 点、线、面等基本概念与特征- 角的概念与分类- 相交、垂直、平行线段与线条角的判定2. 三角形- 三角形的分类与性质- 三角形在平面上的位置关系与判定- 三角形的内角和定理与外角性质- 等腰三角形、直角三角形的判定与性质- 三角形的相似性质与判定- 三角形应用题与实际问题解决3. 四边形- 矩形、平行四边形、菱形与正方形的性质- 梯形与平行四边形的判定与性质- 有关四边形的运算与分类4. 内接与外切- 圆内接四边形的性质与判定- 圆的内接与外接、内切与外切的判定条件5. 平面镜像与旋转- 平面镜像的性质与构造- 旋转的构造、旋转中心与旋转角度6. 三视图与投影- 物体的三视图的构造与识图- 投影的基本概念与性质- 平行投影与中心投影的区别与应用7. 圆- 圆的定义与性质- 圆上的点与圆上线段的关系- 切线定理与弦切角定理- 圆应用题与实际问题解决三、数据与统计1. 统计资料与标度- 数据的查数、统数、分组与绘图- 高度与代表数的含义- 平均值与间隔值的概念与计算2. 数据的描写- 数据的分散程度与极差、方差、标准差的计算- 数据的集中程度与四分位数、中位数的概念与计算3. 概率与事件- 实验与样本空间的概念- 事件与概率的概念- 事件的概率计算与应用。
初二数学知识点归纳(全)
初二数学知识点归纳(全)初二数学知识点归纳如下:一、三角形1. 三角形的定义:由三条线段首尾顺次相接所组成的图形。
2. 三角形的分类:按边长关系:等边三角形、等腰三角形、不等边三角形。
按角关系:锐角三角形、直角三角形、钝角三角形。
3. 三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边。
4. 三角形的内角和:180度。
5. 三角形的内接圆与外接圆:内接圆:圆心到三角形各顶点的距离相等。
外接圆:圆心到三角形各边的距离相等。
6. 正弦定理:在任意三角形中,任意一边的边长与其对应的角的正弦值之比是一个常数,即a/sinA = b/sinB = c/sinC。
7. 余弦定理:在任意三角形中,任意一边的平方等于其他两边的平方和减去这两边与夹角余弦的乘积的两倍,即c^2 = a^2 + b^2 - 2ab*cosC。
二、全等三角形1. 全等三角形的定义:两个三角形在形状和大小方面完全相同,即它们的对应边长相等,对应角度相等。
2. 全等三角形的判定方法:SAS(边角边):两边的长度分别相等,并且这两边夹的角也分别相等。
ASA(角边角):两角分别相等,并且其中一个角的对边也分别相等。
SSS(边边边):三边的长度分别相等。
HL(高-腰-腰):直角三角形的斜边和一条直角边分别相等。
三、轴对称与中心对称1. 轴对称:存在一条直线,图形关于这条直线对称。
2. 中心对称:存在一个点C,图形关于点C对称。
3. 轴对称的性质:如果两个图形关于某条直线对称,那么这条直线就是它们的对称轴。
对称轴上的点到两个对称图形的距离相等。
4. 中心对称的性质:如果两个图形关于某一点对称,那么这个点就是它们的对称中心。
对称中心到两个对称图形的距离相等。
四、四边形1. 四边形的定义:由四条线段首尾顺次相接所组成的图形。
2. 四边形的分类:按对角线关系:平行四边形、矩形、菱形、正方形。
按边长关系:梯形、等腰梯形。
3. 平行四边形的性质:对边平行且相等。
初二数学必考的知识点总结
初二数学必考的知识点总结一、代数1. 代数表达式代数表达式是由数字、字母和运算符号组成的表达式。
常见的代数表达式包括单项式、多项式和分式等。
2. 一元一次方程一元一次方程是指只含有一个未知数的一次方程,一般形式为ax+b=c,其中a、b、c为已知数,x为未知数。
3. 一元一次不等式一元一次不等式是指只含有一个未知数的一次不等式,一般形式为ax+b>c或ax+b<c,其中a、b、c为已知数,x为未知数。
4. 因式分解因式分解是将一个多项式分解成几个不可再分解的乘积的过程。
常见的因式分解包括提公因式法、两项和平方差公式、分组公式和公式法等。
5. 方程的解法方程的解法包括整式方程和分式方程的求解,常见的解法包括配方法、换元法、变形法和凑平方法等。
6. 平方根和平方根式平方根是指一个数的平方等于该数的非负数根,常用符号表示为√,平方根的性质包括非负、互为相反数、分配律和开方运算等。
7. 分式的加减乘除分式的加减乘除是指对分式进行运算的过程,常用的方法包括通分、约分、乘法法和倒数法等。
8. 二元一次方程组二元一次方程组是指含有两个未知数的一次方程组,一般形式为{ax+by=c{dx+ey=f其中a、b、c、d、e、f为已知数,x和y为未知数。
9. 初中代数学习技巧代数学习技巧包括掌握代数表达式、方程和不等式的基本概念和解题方法,培养代数思维和逻辑推理能力,加强基础知识的巩固和扩展,注重实际问题的转化和应用,提高解决问题的能力和素质。
二、几何1. 几何图形的认识几何图形是指由点、线、面组成的空间图形,常见的几何图形包括点、线、角、三角形、四边形、多边形、圆、球面、直线和平面等。
2. 几何图形的性质几何图形的性质包括点的图象、线的性质、角的性质、三角形的分类、四边形的分类、多边形的分类、圆的性质、球面的性质、直线的性质和平面的性质等。
3. 相似三角形相似三角形是指两个三角形的对应角相等,对应边成比例,常见的相似三角形包括AAA 相似定理、AA相似定理和SAS相似定理等。
初二数学知识点归纳
单元知识点预计课时备注初二上册第全十等一三章角形一、全等三角形1、全等三角形的定义2、全等三角形的性质3、全等三角形的判定4、证明两个三角形全等的基本思路二、角的平分线1、角的平分线的性质2、角的平分线的判定及推论轴第十二对章称一、轴对称图形1、轴对称图形和轴对称的定义2、轴对称图形和轴对称的区别与联系3、轴对称的性质二、线段的垂直平分线定义、性质、判定三、用坐标表示轴对称四、等腰三角形1、性质2、判定五、等边三角形1、等边三角形性质、判定2、直角三角形的性质第实十三章数1、实数的概念及分类2、实数的倒数、相反数和绝对值3、平方根、算数平方根和立方根4、科学记数法和近似数5、实数大小的比较6、实数的运算一第次十一、函数1、变量、常量2、函数的概念3、函数中自变量取值范围的求法4、函数图象定义5、用描点法画函数的图象的一般步骤四函章数6、函数的三种表示形式二、正比例函数1、正比例函数的概念2、正比例函数的图像与性质三、求函数解析式的方法四、一次函数与二元一次方程组整式第的十乘五除章与因式分解1、同底数幂的乘法2、幂的乘方与积的乘方3、同底数幂的除法4、整式的乘法单项式乘以单项式单项式乘以多项式5、乘法公式平方差公式完全平方公式6、整式的除法单项式除以单项式多项式除以单项式7、因式分解定义常用方法初二下册第分十六章式1、分式的定义2、分式的基本性质3、分式的通分和约分4、分式的运算5、分式方程定义、解题步骤6、科学记数法第反十比七例章函数1、反比例函数的概念2、反比例函数的图像3、反比例函数的性质4、反比例函数解析式的确定5、反比例函数中反比例系数的几何意义第勾十股1、勾股定理及其逆定理2、直角三角形的性质3、摄影定理八定章理4、直角三角形的判定5、命题、定理、证明6、三角形中的中位线四第十九边章形一、平行四边形1、定义2、性质3、判定4、面积二、矩形1、定义2、性质3、判定4、面积三、菱形1、定义2、性质3、判定4、面积四、正方形1、定义2、性质3、判定4、面积五、梯形1、梯形、直角梯形与等腰梯形的定义2、等腰梯形的性质与判定3、面积第数二据十的章分析1、解统计学的几个基本概念2、平均数、加权平均数3、众数与中位数4、极差5、方差与标准差6、数据的收集与整理的步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学知识点总结函数的定义,函数的定义域、值域、表达式,函数的图像2 一次函数和正比例函数,及其表达式、增减性、图像3 从函数的观点看方程、方程组和不等式如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。
形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。
形如y=kx+b(k,b 是常数,k≠0)的函数,叫做一次函数。
正比例函数是一种特殊的一次函数。
当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
一、、常量、变量在一个变化过程中,数值发生变化的量叫做变量,数值始终不变的量叫做常量。
二、函数的概念函数的定义:一般的,在一个变化过程中如有两个变量x与y,并且对于x的每一个确定值,y都有唯一确定的值与其对应,那么就说x是自变量,y是x的函数、三、函数中自变量取值范围的求法(1)用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)用奇次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。
四、函数图象的定义一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象。
五、用描点法画函数的图象的一般步骤1、列表:表中给出一些自变量的值及其对应的函数值。
注意:列表时自变量由小到大,相差一样,有时需对称。
2、描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
3、连线:按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来。
六、函数有三种表示形式(1)列表法(2)图像法(3)解析式法七、正比例函数与一次函数的概念:一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数,其中k叫做比例系数。
一般地,形如y=kx+b (k,b为常数,且k≠0)的函数叫做一次函数。
、当b =0 时,y=kx+b 即为 y=kx,所以正比例函数是一次函数的特例、。
八、正比例函数的图象与性质图象:正比例函数y= kx (k 是常数,k≠0)的图象是经过原点的一条直线,称之为直线y= kx 。
性质:当k>0时,直线y= kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y= kx经过二,四象限,从左向右下降,即随着 x的增大y反而减小。
九、求函数解析式的方法:待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。
1、一次函数与一元一次方程:从“数”的角度看x为何值时函数y= ax+b的值为0、2、求ax+b=0(a, b是常数,a≠0)的解,从“形”的角度看,求直线y= ax+b与 x 轴交点的横坐标3、一次函数与一元一次不等式:解不等式ax+b>0(a,b是常数,a≠0)、从“数”的角度看,x为何值时函数y= ax+b的值大于0。
4、解不等式ax+b>0(a,b是常数,a≠0)、从“形”的角度看,求直线y= ax+b在 x 轴上方的部分(射线)所对应的的横坐标的取值范围。
、一次函数与正比例函数的图象与性质一次函数概念如果y=kx+b(k、b是常数,k≠0),那么y叫x 的一次函数,当b=0时,一次函数y=kx(k≠0)也叫正比例函数。
图像一条直线性质k>0时,y随x的增大(或减小)而增大(或减小);k<0时,y随x的增大(或减小)而减小(或增大)、直线y=kx+b(k≠0)的位置与k、b符号之间的关系、(1)k>0,b>0图像经过一、二、三象限;(2)k>0,b<0图像经过一、三、四象限;(3)k>0,b=0 图像经过一、三象限;(4)k<0,b>0图像经过一、二、四象限;(5)k<0,b<0图像经过二、三、四象限;(6)k<0,b=0图像经过二、四象限。
一次函数表达式的确定求一次函数y=kx+b(k、b是常数,k≠0)时,需要由两个点来确定;求正比例函数y=kx (k≠0)时,只需一个点即可、。
一、一次函数与二元一次方程组解方程组从“数”的角度看,自变量(x)为何值时两个函数的值相等并求出这个函数值。
解方程组从“形”的角度看,确定两直线交点的坐标。
、第二章数据的描述1 了解几种常见的统计图表:条形图、扇形图、折线图、复合条形图、直方图。
条形图特点:(1)能够显示出每组中的具体数据;(2)易于比较数据间的差别。
扇形图的特点:(1)用扇形的面积来表示部分在总体中所占的百分比;(2)易于显示每组数据相对与总数的大小。
折线图的特点;描述数据的变化趋势。
直方图的特点:(1)能够显示各组频数分布的情况;(2)易于显示各组之间频数的差别。
求出各个小组两个端点的平均数,这些平均数称为组中值。
2 会用各种统计图表示出一些实际的问题。
第三章全等三角形一、全等三角形能够完全重合的两个图形叫做全等形。
1、定义能够完全重合的两个三角形叫做全等三角形。
理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。
2、全等三角形有哪些性质(1)全等三角形的对应边相等、对应角相等。
理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。
(2)全等三角形的周长相等、面积相等。
(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、全等三角形的判定边边边(SSS):三边对应相等的两个三角形全等边角边(SAS)::两边和它们的夹角对应相等两个三角形全等角边角(ASA):两角和它们的夹边对应相等的两个三角形全等角角边(AAS)::两角和其中一角的对边对应相等的两个三角形全等斜边直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等4、证明两个三角形全等的基本思路二、角的平分线:从一个角的顶点得出一条射线把这个角分成两个相等的角,称这条射线为这个角的平分线。
1、性质:角的平分线上的点到角的两边的距离相等,到角的两边距离相等的点在角的平分线上。
2、判定:角的内部到角的两边的距离相等的点在角的平分线上。
三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2 表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如“公共角” 、“公共边”、“对顶角”;(5)截长补短法证三角形全等。
第四章轴对称1 轴对称图形和关于直线对称的两个图形2 轴对称的性质轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;如两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;线段垂直平分线上的点到线段两个端点的距离相等;到线段两个端点距离相等的点在这条线段的垂直平分线上。
3 用坐标表示轴对称点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y)、。
4 等腰三角形等腰三角形的两个底角相等;(等边对等角)等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)理解:已知等腰三角形的一线就可以推知另两线。
一个三角形的两个相等的角所对的边也相等。
(等角对等边)等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。
(等角对等边)5 等边三角形的性质和判定性质:等边三角形的三个内角都相等,都等于60度;判定:三个角都相等的三角形是等边三角形;有一个角是60度的等腰三角形是等边三角形;推论:1、直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半。
2、在三角形中,大角对大边,大边对大角。
3、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
由一个平面图形得到它的轴对称图形叫做轴对称变换。
6 轴对称图形1、把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
这时我们也说这个图形关于这条直线(成轴)对称。
2、把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。
这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
3、轴对称图形和轴对称的区别与联系4、轴对称与轴对称图形的性质① 关于某直线对称的两个图形是全等形。
② 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③ 轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④ 如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
⑤ 两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
7 线段的垂直平分线定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。
性质:线段垂直平分线上的点与这条线段的两个端点的距离相等。
判定:与一条线段两个端点距离相等的点,在线段的垂直平分线上。
8 用坐标表示轴对称小结1、在平面直角坐标系中①关于x轴对称的点横坐标相等,纵坐标互为相反数;②关于y轴对称的点横坐标互为相反数,纵坐标相等;③关于原点对称的点横坐标和纵坐标互为相反数;④与X轴或Y轴平行的直线的两个点横(纵)坐标的关系;⑤关于与直线X=C或Y=C对称的坐标2、点(x, y)关于x轴对称的点的坐标为(x,x, y)3、三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等。
第五章整式1 整式定义、同类项及其合并2 整式的加减3 整式的乘法(1)同底数幂的乘法(2)幂的乘方(3)积的乘方(4)整式的乘法4 乘法公式(1)平方差公式(2)完全平方公式5 整式的除法(1)同底数幂的除法(2)整式的除法6 因式分解(1)提共因式法(2)公式法(3)字相乘法1、式子是数或字母的积的式子叫做单项式。
单独的一个数或字母也是单项式。
单项式中的数字因数叫做这个单项式的系数。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2、几个单项式的和叫做多项式。
每个单项式叫多项式的项),其中,不含字母的叫做常数项。
多项式里次数最高的项的次数,就是这个多项式的次数。
3、单项式和多项式统称整式。