2021年全国高考理科数学试题及答案-全国

合集下载

2021年高考理科数学全国1卷(word版,含答案)

2021年高考理科数学全国1卷(word版,含答案)

2021年高考理科数学全国1卷1.【ID:4002604】若,则()A.B.C.D.【答案】D【解析】解:,则.故选D.2.【ID:4002605】设集合,,且,则()A.B.C.D.【答案】B【解析】解:易求得:,,则由,得,解得.故选B.3.【ID:4002606】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.B.C.D.【答案】C【解析】解:如图所示,设正四棱锥的底面边长为,斜高,则,两边同时除以,得:,解得:,故选C.4.【ID:4002607】已知为抛物线:上一点,点到的焦点的距离为,到轴的距离为,则()A.B.C.D.【答案】C【解析】解:由题意知,,则.故选C.5.【ID:4002608】某校一个课外学习小组为研究某作物种子的发芽率和温度(单位:)的关系,在个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:由此散点图,在至之间,下面四个回归方程类型中最适宜作为发芽率和温度的回归方程类型的是()A.B.C.D.【答案】D【解析】解:由图易知曲线特征:非线性,上凸,故选D.6.【ID:4002609】函数的图象在点处的切线方程为()A.B.C.D.【答案】B【解析】解:,则切线斜率,又,则切线方程为.故选B.7.【ID:4002610】设函数在的图象大致如下图,则的最小正周期为()A.B.C.D.【答案】C【解析】解:由图可估算,则.故选C.由图可知:,由单调性知:,解得,又由图知,则,当且仅当时满足题意,此时,故最小正周期.8.【ID:4002611】的展开式中的系数为()A.B.C.D.【答案】C【解析】解:,要得到项,则应取项,则其系数为.故选C.9.【ID:4002612】已知,且,则()A.B.C.D.【答案】A【解析】解:由,得,解得:或(舍),又,则.故选A.10.【ID:4002613】已知,,为球的球面上的三个点,为的外接圆.若的面积为,,则球的表面积为()A.B.C.D.【答案】A【解析】解:由条件易得:,由,则,则,所以球的表面积为.故选A.11.【ID:4002614】已知:,直线:,为上的动点.过点作的切线,,切点为,,当最小时,直线的方程为()A.B.C.D.【答案】D【解析】解::,则,如图所示,由圆的切线性质,易知:,则,所以最小时,最短,即最短,此时,易求得:,则直线:,整理,得:.故选D.12.【ID:4002615】若,则()A.B.C.D.【答案】B【解析】根据题意,有,若,则,不符合题意,因此.13.【ID:4002616】若,满足约束条件,则的最大值为________.【答案】1【解析】解:作不等式组满足的平面区域如图所示:易得:,,,因为区域为封闭图形,分别将点的坐标代入,得最大值为.14.【ID:4002617】设,为单位向量,且,则________.【答案】【解析】解:因为,,则,则.15.【ID:4002618】已知为双曲线:的右焦点,为的右顶点,为上的点,且垂直于轴.若的斜率为,则的离心率为________.【答案】2【解析】解:如图所示,,,则由题意得:,解得:,(舍),所以的离心率为.16.【ID:4002619】如图所示,在三棱锥的平面展开图中,,,,,,则________.【答案】【解析】在中,;在中,,由展开图的生成方式可得,在中,由余弦定理可得,于是,因此在中,由余弦定理可得.17. 设是公比不为的等比数列,为,的等差中项.(1)【ID:4002620】求的公比.【答案】【解析】解:设数列的公比为,则,,即,解得或(舍去),的公比为.(2)【ID:4002621】若,求数列的前项和.【答案】【解析】解:记为的前项和.由及题设可得,.所以,.可得.所以.18. 如图所示,为圆锥的顶点,是圆锥底面的圆心,为底面直径,.是底面的内接正三角形,为上一点,.(1)【ID:4002622】证明:平面.【答案】见解析【解析】方法:以为原点,所在直线为轴,建立如图所示的空间直角坐标系,则有,,,,,.,,,则,,,平面.方法:设,由题设可得,,,.因此,从而.又,故.所以平面.(2)【ID:4002623】求二面角的余弦值.【答案】【解析】由知,,,平面的一个法向量为,设平面的一个法向量为,则,即,解得,,二面角的余弦值为.19. 甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰:当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为.(1)【ID:4002624】求甲连胜四场的概率.【答案】【解析】解:.(2)【ID:4002625】求需要进行第五场比赛的概率.【答案】【解析】(甲连胜场)(乙连胜场)(丙连胜场).(3)【ID:4002626】求丙最终获胜的概率.【答案】【解析】丙最终获胜,有两种情况,丙连胜或输一场.(丙连胜),丙输一场,则共进行场,丙可以在①第场输,、场胜;②第、场胜,场输;③第、、场胜,第场输,(丙第场输,,场胜);(丙第,场胜,第场输);(丙第,,场胜,第场输),(丙胜).20. 已知,分别为椭圆:的左、右顶点.为的上顶点,,为直线上的动点,与的另一交点为,与的另一交点为.(1)【ID:4002627】求的方程.【答案】【解析】由题意知,,,故,,,故椭圆的方程为.(2)【ID:4002628】证明:直线过定点.【答案】见解析【解析】方法:设,,故:,,故:,联立,,同理可得,,①当时,:,②当时,,:,③当且时,,:,令,故直线恒过定点.方法:设,,.若,设直线的方程为,由题意可知.因为直线的方程为,所以.直线的方程为,所以.可得.又,故,可得,即.①将代入得.所以,.代入①式得.解得(舍去),.故直线的方程为,即直线过定点.若,则直线的方程为,过点.综上,直线过定点.21. 已知函数.(1)【ID:4002629】当时,讨论的单调性.【答案】当时,函数单调递减;当时,函数单调递增.【解析】当时,,其导函数,又函数为单调递增函数,且,于是当时,函数单调递减;当时,函数单调递增.(2)【ID:4002630】当时,,求的取值范围.【答案】【解析】方法:根据题意,当时,不等式显然成立;当时,有,记右侧函数为,则其导函数,设,则其导函数,当时,函数单调递减,而,于是.因此函数在上单调递增,在上单调递减,在处取得极大值,也为最大值.因此实数的取值范围是,即.方法:等价于.设函数,则.(i)若,即,则当时,.所以在上单调递增,而,故当时,,不合题意.(ii)若,即,则当时,;当时,.所以在,上单调递减,在上单调递增.又,所以当且仅当,即.所以当时,.(iii)若,即,则.由于,故由(ii)可得.故当,.综上,的取值范围是.22. 在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)【ID:4002631】当时,是什么曲线?【答案】为以坐标原点为圆心,半径为的圆.【解析】解:,的参数方程为,则的普通方程为:,是以坐标原点为圆心,半径为的圆.(2)【ID:4002632】当时,求与的公共点的直角坐标.【答案】【解析】解:当时,:,消去参数,得的直角坐标方程为:,的直角坐标方程为:,联立得,其中,,,解得,与的公共点的直角坐标为.23. 已知函数.(1)【ID:4002633】画出的图象.【答案】见解析【解析】解:如图所示,.(2)【ID:4002634】求不等式的解集.【答案】【解析】解:方法:由题意知,结合图象有,当时,不等式恒成立,故舍去;当,即时,不等式恒成立;当时,由,得,,解得,综上,.方法:函数的图象向左平移个单位长度后得到函数的图象.的图象与的图象的交点坐标为.由图象可知当且仅当时,的图象在的图象上方.故不等式的解集为.。

2021年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2021年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2021年普通高等学校招生全国统一考试(全国乙卷)数学(理)一、选择题1.设2()3()46z z z z i ++-=+,则z =()A.12i -B.12i +C.1i +D.1i -答案:C 解析:设z a bi =+,则z a bi =-,2()3()4646z z z z a bi i ++-=+=+,所以1a =,1b =,所以1z i =+.2.已知集合{|21,}S s s n n Z ==+∈,{|41,}T t t n n Z ==+∈,则S T = ()A.∅B.SC.TD.Z 答案:C 解析:21s n =+,n Z ∈;当2n k =,k Z ∈时,{|41,}S s s k k Z ==+∈;当21n k =+,k Z ∈时,{|43,}S s s k k Z ==+∈.所以T S Ü,S T T = .故选C.3.已知命题:p x R ∃∈﹐sin 1x <;命题||:,1x q x R e∈∀≥,则下列命题中为真命题的是()A.p q∧B.p q ⌝∧C.p q∧⌝D.()p q ⌝∨答案:A 解析:根据正弦函数的值域sin [1,1]x ∈-,故x R ∃∈,sin 1x <,p 为真命题,而函数||x y y e ==为偶函数,且0x ≥时,||1x y e =≥,故x R ∀∈,||1x y e =≥恒成立.,则q 也为真命题,所以p q ∧为真,选A.4.设函数1()1xf x x-=+,则下列函数中为奇函数的是()A.1()1f x --B.1()1f x -+C.1()1f x +-D.1()1f x ++答案:B 解析:12()111x f x x x -==-+++,()f x 向右平移一个单位,向上平移一个单位得到2()g x x=为奇函数.5.在正方体1111ABCD ABC D -中,P 为11BD 的中点,则直线PB 与1A D 所成的角为()A.2πB.3πC.4πD.6π答案:D 解析:如图,1P B C ∠为直线PB 与1A D 所成角的平面角.易知11AB C ∆为正三角形,又P 为11AC 中点,所以16PBC π∠=.6.将5名北京冬奥会志愿者分配到花样滑冰,短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种答案:C 解析:所求分配方案数为2454240C A =.7.把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin()4y x π=-的图像,则)(f x =()A.7sin()212x π-B.sin()212x π+C.7sin(212x π-D.sin(212x π+答案:B解析:逆向:231sin()sin(sin() 412212 y x y x y xππππ=-−−−→=+−−−−−−−→=+左移横坐标变为原来的倍.故选B.8.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为()A.7 9B.23 32C.9 32D.2 9答案:B解析:由题意记(0,1)x∈,(1,2)y∈,题目即求74x y+>的概率,绘图如下所示.故113311123224411132 ABCDAM ANSPS==⨯-⋅-⨯⨯==⨯阴正.9.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作.其中第一题是测量海岛的高.如图,点,,E H G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”.GC与EH的差称为“表目距的差”,则海岛的高AB =()A.⨯+表高表距表高表目距的差B.⨯-表高表距表高表目距的差C.⨯+表高表距表距表目距的差D.⨯-表高表距表距表目距的差答案:A 解析:连接DF 交AB 于M ,则AB AM BM =+.记BDM α∠=,BFM β∠=,则tan tan MB MBMF MD DF βα-=-=.而tan FG GC β=,tan EDEHα=.所以11(()tan tan tan tan MB MB GC EH GC EH MB MB MB FG ED ED βαβα--=-=⋅-=⋅.故ED DF MB GC EH ⋅⨯==-表高表距表目距的差,所以高AB ⨯=+表高表距表高表目距的差.10.设0a ≠,若x a =为函数2()()()f x a x a x b =--的极大值点,则A.a b <B.a b >C.2ab a <D.2ab a >答案:D 解析:若0a >,其图像如图(1),此时,0a b <<;若0a <,时图像如图(2),此时,0b a <<.综上,2ab a <.11.设B 是椭圆C :22221(0)x y a b a b +=>>的上顶点,若C 上的任意一点P 都满足,2PB b ≤,则C 的离心率的取值范围是()A.[)2B.1[,1)2C.2D.1(0,2答案:C 解析:由题意,点(0,)B b ,设00(,)P x y ,则2222200002221(1)x y y x a a b b +=⇒=-,故22222222222000000022()(122y c PB x y b a y by b y by a b b b =+-=-+-+=--++,0[,]y b b ∈-.由题意,当0y b =-时,2PB 最大,则32b b c -≤-,22b c ≥,222a c c -≥,2c c a =≤,2(0,2c ∈.12.设2ln1.01a =,ln1.02b =,1c -,则()A.a b c <<B.b c a <<C.b a c <<D.c a b <<答案:B 解析:设()ln(1)1f x x =+,则(0.02)b c f -=,易得1()1f x x '==+当0x ≥时,1x +=≥()0f x '≤.所以()f x 在[0,)+∞上单调递减,所以(0.02)(0)0f f <=,故b c <.再设()2ln(1)1g x x =++,则(0.01)a c g -=,易得2()21g x x '==+当02x ≤<时,1x ≥=+,所以()g x '在[0.2)上0≥.故()g x 在[0.2)上单调递增,所以(0.01)(0)0g g >=,故a c >.综上,a c b >>.二、填空题13.已知双曲线C :221(0)x y m m-=>的一条渐近线为0my +=,则C 的焦距为.答案:4解析:易知双曲线渐近线方程为by x a=±,由题意得2a m =,21b =,且一条渐近线方程为y x m=-,则有0m =(舍去),3m =,故焦距为24c =.14.已知向量(1,3)a = ,(3,4)b = ,若()a b b λ-⊥,则λ=.答案:35解析:由题意得()0a b b λ-⋅= ,即15250λ-=,解得35λ=.15.记ABC ∆的内角A ,B,C 的对边分别为a ,b ,c ,面积为,60B =︒,223a c ac +=,则b =.答案:解析:1sin24ABC S ac B ac ∆===4ac =,由余弦定理,222328b a c ac ac ac ac =+-=-==,所以b =.16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为(写出符合要求的一组答案即可).答案:②⑤或③④解析:由高度可知,侧视图只能为②或③.侧视图为②,如图(1),平面PAC ⊥平面ABC ,PA PC ==,BA BC =,2AC =,俯视图为⑤.俯视图为③,如图(2),PA ⊥平面ABC ,1PA =,AC AB =,2BC =,俯视图为④.三、解答题17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y,样本方差分别己为21s 和22S .(1)求x ,y,21s ,22s :(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果2212210s s y x +-≥,否则不认为有显著提高)。

2021年全国高考理科数学(全国一卷)试题及答案

2021年全国高考理科数学(全国一卷)试题及答案

2021年全国普通高等学校招生全国统一考试〔全国一卷〕理科数学一、选择题:〔此题有12小题,每题5分,共60分。

〕 1、设z=,那么∣z ∣=〔 〕B. C.1 D.2、集合A={x|x 2-x-2>0},那么A =〔 〕A 、{x|-1<x<2}B 、{x|-1≤x ≤2}C 、{x|x<-1}∪{x|x>2}D 、{x|x ≤-1}∪{x|x ≥2}3、某地区经过一年的新农村建立,农村的经济收入增加了一倍,实现翻番,为更好地理解该地区农村的经济收入变化情况,统计了该地区新农村建立前后农村的经济收入构成比例,得到如下饼图:那么下面结论中不正确的选项是〔 〕A. 新农村建立后,种植收入减少B. 新农村建立后,其他收入增加了一倍以上 建立前经济收入构成比例建立后经济收入构成比例D.新农村建立后,养殖收入与第三产业收入的总和超过了经济收入的一半4、记Sn 为等差数列{an}的前n项和,假设3S3= S2+ S4,a1=2,那么a5=〔〕A、-12B、-10C、10D、125、设函数f〔x〕=x³+〔a-1〕x²+ax .假设f〔x〕为奇函数,那么曲线y= f〔x〕在点〔0,0〕处的切线方程为〔〕A.y= -2xB.y= -xC.y=2xD.y=x6、在∆ABC中,AD为BC边上的中线,E为AD的中点,那么=〔〕A. -B. -C. +D. +7、某圆柱的高为2,底面周长为16,其三视图如右图。

圆柱外表上的点M在正视图上的对应点为A,圆柱外表上的点N在左视图上的对应点为B,那么在此圆柱侧面上,从M到N的途径中,最短途径的长度为〔〕A. 2B. 2C. 3D. 28.设抛物线C:y²=4x的焦点为F,过点〔-2,0〕且斜率为的直线与C交于M,N两点,那么·=( )9.函数f〔x〕= g〔x〕=f〔x〕+x+a,假设g〔x〕存在2个零点,那么a的取值范围是( )A. [-1,0〕B. [0,+∞〕C. [-1,+∞〕D. [1,+∞〕10.下列图来自古希腊数学家希波克拉底所研究的几何图形。

高考全国卷数学理科试题及答案详解

高考全国卷数学理科试题及答案详解

2021年普通高等学校招生全国统一考试数学(全国新课标卷II)第一卷一、选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的. 1.(2021课标全国Ⅱ,理1)集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},那么M ∩N =( ).A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}2.(2021课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,那么z =( ).A .-1+iB .-1-IC .1+iD .1-i3.(2021课标全国Ⅱ,理3)等比数列{a n }的前n 项与为S n .S 3=a 2+10a 1,a 5=9,那么a 1=( ).A .13B .13-C .19D .19-4.(2021课标全国Ⅱ,理4)m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l α,l β,那么( ).A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.(2021课标全国Ⅱ,理5)(1+ax )(1+x )5的展开式中x 2的系数为5,那么a =( ).A .-4B .-3C .-2D .-16.(2021课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N =10,那么输出的S =( ).A .1111+2310+++B .1111+2!3!10!+++C .1111+2311+++ D .1111+2!3!11!+++7.(2021课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,那么得到的正视图可以为( ).8.(2021课标全国Ⅱ,理8)设a =log 36,b =log 510,c =log 714,那么( ).A .c >b >aB .b >c >aC .a >c >bD .a >b >c 9.(2021课标全国Ⅱ,理9)a >0,x ,y 满足约束条件1,3,3.x x y y a x ≥⎧⎪+≤⎨⎪≥(-)⎩假设z =2x+y 的最小值为1,那么a =( ).A .14B .12 C .1 D .210.(2021课标全国Ⅱ,理10)函数f (x )=x 3+ax 2+bx +c ,以下结论中错误的选项是( ).A .∃x0∈R ,f(x0)=0B .函数y =f(x)的图像是中心对称图形C .假设x0是f(x)的极小值点,那么f(x)在区间(-∞,x0)单调递减D .假设x0是f(x)的极值点,那么f′(x0)=011.(2021课标全国Ⅱ,理11)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5,假设以MF 为直径的圆过点(0,2),那么C 的方程为( ).A .y2=4x 或y2=8xB .y2=2x 或y2=8xC .y2=4x 或y2=16xD .y2=2x 或y2=16x12.(2021课标全国Ⅱ,理12)点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两局部,那么b 的取值范围是( ).A .(0,1) B.112⎛⎫ ⎪ ⎪⎝⎭ C.113⎛⎤- ⎥ ⎝⎦ D .11,32⎡⎫⎪⎢⎣⎭ 第二卷本卷包括必考题与选考题两局部,第13题~第21题为必考题,每个试题考生都必须做答。

2021高考全国卷I 理数(含答案)

2021高考全国卷I 理数(含答案)

2021年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合}242{60{}M x x N x x x =-<<=--<,,则=A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32 log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=在的图像大致为.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π68.如图是求的程序框图,图中空白框中应填入2sin cos ++x xx xA .A =12A+ B .A =12A+C .A =112A+D .A =112A+9.记为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 1022||F B ,|A 11①f ③f A 12E ,F 分别是A13n S14.记S n 为等比数列{a n }的前n 项和.若214613a a a ==,,则S 5=____________.15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________.16.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB=,120FB F B ⋅=,则C 的离心率为____________.三、解答题:共70分。

2021年全国统一高考数学试卷(理科)(乙卷)-含解析

2021年全国统一高考数学试卷(理科)(乙卷)-含解析

2021年全国统一高考数学试卷(理科)(乙卷)一、单选题(本大题共12小题,共60.0分)1.设2(z+z−)+3(z−z−)=4+6i,则z=()A. 1−2iB. 1+2iC. 1+iD. 1−i2.已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A. ⌀B. SC. TD. Z3.已知命题p:∃x∈R,sinx<1;命题q:∀x∈R,e|x|≥1,则下列命题中为真命题的是()A. p∧qB. ¬p∧qC. p∧¬qD. ¬(p∨q)4.设函数f(x)=1−x1+x,则下列函数中为奇函数的是()A. f(x−1)−1B. f(x−1)+1C. f(x+1)−1D. f(x+1)+15.在正方体ABCD−A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A. π2B. π3C. π4D. π66.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A. 60种B. 120种C. 240种D. 480种7.把函数y=f(x)图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y=sin(x−π4)的图像,则f(x)=()A. sin(x2−7π12) B. sin(x2+π12) C. sin(2x−7π12) D. sin(2x+π12)8.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为()A. 79B. 2332C. 932D. 299.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作,其中第一题是测量海岛的高.如图,点E,H,G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”,GC与EH的差称为“表目距的差”,则海岛的高AB=()A. B.C. D.10.设a≠0,若x=a为函数f(x)=a(x−a)2(x−b)的极大值点,则()A. a<bB. a>bC. ab<a2D. ab>a211.设B是椭圆C:x2a2+y2b2=1(a>b>0)的上顶点,若C上的任意一点P都满足|PB|≤2b,则C的离心率的取值范围是()A. [√22,1) B. [12,1) C. (0,√22] D. (0,12]12.设a=2ln1.01,b=ln1.02,c=√1.04−1,则()A. a<b<cB. b<c<aC. b<a<cD. c<a<b二、单空题(本大题共4小题,共20.0分)13.已知双曲线C:x2m−y2=1(m>0)的一条渐近线为√3x+my=0,则C的焦距为.14.已知向量a⃗=(1,3),b⃗ =(3,4),若(a⃗−λb⃗ )⊥b⃗ ,则λ=______ .15.记△ABC的内角A,B,C的对边分别为a,b,c,面积为√3,B=60°,a2+c2=3ac,则b=______ .16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为______ (写出符合要求的一组答案即可).三、解答题(本大题共7小题,共82.0分)17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x−和y−,样本方差分别记为s12和s22.(1)求x−,y−,s12,s22;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y−−x−≥,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不2√s12+s2210认为有显著提高).18.如图,四棱锥P−ABCD的底面是矩形,PD⊥底面ABCD,PD=DC=1,M为BC中点,且PB⊥AM.(1)求BC;(2)求二面角A−PM−B的正弦值.19.记S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知2Sn +1b n=2.(1)证明:数列{b n}是等差数列;(2)求{a n}的通项公式.20.己知函数f(x)=ln(a−x),已知x=0是函数y=xf(x)的极值点.(1)求a;(2)设函数g(x)=x+f(x)xf(x).证明:g(x)<1.21.已知抛物线C:x2=2py(p>0)的焦点为F,且F与圆M:x2+(y+4)2=1上点的距离的最小值为4.(1)求p;(2)若点P在M上,PA,PB为C的两条切线,A,B是切点,求△PAB面积的最大值.22.在直角坐标系xOy中,⊙C的圆心为C(2,1),半径为1.(1)写出⊙C的一个参数方程;(2)过点F(4,1)作⊙C的两条切线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.23.已知函数f(x)=|x−a|+|x+3|.(1)当a=1时,求不等式f(x)≥6的解集;(2)若f(x)>−a,求a的取值范围.答案和解析1.【答案】C【解析】解:设z =a +bi ,a ,b 是实数, 则z −=a −bi ,则由2(z +z −)+3(z −z −)=4+6i , 得2×2a +3×2bi =4+6i , 得4a +6bi =4+6i , 得{4a =46b =6,得a =1,b =1, 即z =1+i , 故选:C .利用待定系数法设出z =a +bi ,a ,b 是实数,根据条件建立方程进行求解即可. 本题主要考查复数的基本运算,利用待定系数法建立方程是解决本题的关键,是基础题.2.【答案】C【解析】 【分析】本题考查集合的包含关系,以及交集运算,属于基础题.首先判断集合T 中任意元素都是集合S 的元素,从而得出集合T 是集合S 的子集,然后即可求它们的交集.解:因为当n ∈Z 时,集合T 中任意元素t =4n +1=2·(2n )+1∈S 所以T ⊊S ,于是S ∩T =T . 故选:C .3.【答案】A【解析】解:对于命题p :∃x ∈R ,sinx <1,当x =0时,sinx =0<1,故命题p 为真命题,¬p 为假命题; 对于命题q :∀x ∈R ,e |x|≥1,因为|x|≥0,又函数y =e x 为单调递增函数,故e |x|≥e 0=1, 故命题q 为真命题,¬q 为假命题,所以p∧q为真命题,¬p∧q为假命题,p∧¬q为假命题,¬(p∨q)为假命题,故选:A.先分别判断命题p和命题q的真假,然后由简单的复合命题的真假判断法则进行判断,即可得到答案.本题考查了命题真假的判断,解题的关键是掌握全称命题和存在性命题真假的判断方法,考查了逻辑推理能力,属于基础题.4.【答案】B【解析】解:因为f(x)=1−x1+x =−(x+1)+21+x=−1+2x+1,所以函数f(x)的对称中心为(−1,−1),所以将函数f(x)向右平移一个单位,向上平移一个单位,得到函数y=f(x−1)+1,该函数的对称中心为(0,0),故函数y=f(x−1)+1为奇函数.故选:B.先根据函数f(x)的解析式,得到f(x)的对称中心,然后通过图象变换,使得变换后的函数图象的对称中心为(0,0),从而得到答案.本题考查了函数奇偶性和函数的图象变换,解题的关键是确定f(x)的对称中心,考查了逻辑推理能力,属于基础题.5.【答案】D【解析】【分析】由AD1//BC1,得∠PBC1是直线PB与AD1所成的角(或所成角的补角),由此利用余弦定理,求出直线PB与AD1所成的角.本题考查异面直线所成角和余弦定理,考查运算求解能力,是基础题.【解答】解:∵AD1//BC1,∴∠PBC1是直线PB与AD1所成的角(或所成角的补角),设正方体ABCD−A1B1C1D1的棱长为2,则PB1=PC1=12√22+22=√2,BC1=√22+22=2√2,BP=√22+(√2)2=√6,∴cos∠PBC1=PB2+BC12−PC122×PB×BC1=2×√6×2√2=√32,∴∠PBC1=π6,∴直线PB与AD1所成的角为π6.故选:D.6.【答案】C【解析】解:5名志愿者选2个1组,有C52种方法,然后4组进行全排列,有A44种,共有C52A44=240种,故选:C.5分先选2人一组,然后4组全排列即可.本题主要考查排列组合的应用,利用先分组后排列的方法是解决本题的关键,是基础题.7.【答案】B【解析】解:∵把函数y=f(x)图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y=sin(x−π4)的图像,∴把函数y=sin(x−π4)的图像,向左平移π3个单位长度,得到y=sin(x+π3−π4)=sin(x+π12)的图像;再把图像上所有点的横坐标变为原来的2倍,纵坐标不变,可得f(x)=sin(12x+π12)的图像.故选:B.由题意利用函数y=Asin(ωx+φ)的图像变换规律,得出结论.本题主要考查函数y=Asin(ωx+φ)的图像变换规律,属基础题.8.【答案】B【解析】解:由题意可得可行域:{0<x <11<y <2x +y >74,可得三角形的面积=12×34×34=932, 1−932=2332.故选:B .由题意可得可行域:{0<x <11<y <2x +y >74,可得三角形的面积,结合几何概型即可得出结论.本题考查了线性规划知识、三角形的面积、几何概型、对立事件的概率计算公式,考查了推理能力与计算能力,属于基础题.9.【答案】A【解析】解:DEAB =EHAH ,FGBA =CGCA ,故EHAH =CGCA ,即EHAE+EH =CGAE+EG+GC , 解得:AE =EH⋅EGCG−EH ,AH =AE +EH , 故:AB =DE⋅AH EH =DE(AE+EH)EH=DE⋅EGCG−EH +DE .故选:A .根据相似三角形的性质、比例的性质、直角三角形的边角关系即可得出.本题考查了相似三角形的性质、比例的性质、直角三角形的边角关系,考查了推理能力与计算能力,属于基础题.10.【答案】D【解析】 【分析】本题考查利用导数研究函数的极值、极值点,考查一元二次不等式的解法,考查分类讨论思想,属于较难题.根据a ≠0,且x =a 为函数f (x )=a (x −a )2(x −b )的极大值点,利用导数来判断a ,b 该满足的条件,为此需要判断函数在x =a 左右的单调性,本题需要分a =b ,a >0并且a<b,a>0,并且a>b,a<0,并且a<b,a<0,并且a>b共5种情况讨论,由此可以推出:a>0并且a<b或a<0并且a>b,然后可判断选项的正确性.【解答】解:因为a≠0,(Ⅰ)所以当a=b时,函数f(x)=a(x−a)3在(−∞,+∞)单调,无极值,不合条件;(Ⅱ)当a≠b时,因为f′(x)=3a(x−a)(x−a+2b3),所以,①若a>0并且a<b时,a<a+2b3,由f′(x)>0,得:x<a或x>a+2b3,由f′(x)<0,得:a<x<a+2b3,所以这时f(x)在(−∞,a)上单调递增,在(a,a+2b3)上单调递减,x=a是函数f(x)的极大值点,符合条件;②若a>0,并且a>b时,a>a+2b3,由f′(x)>0,得:x<a+2b3或x>a,由f′(x)<0,得:a+2b3<x<a,所以这时f(x)在(a+2b3,a)上单调递减,在(a,+∞)上单调递增,x=a是函数f(x)的极小值点,不符合条件;③若a<0,并且a<b时,a<a+2b3,由f′(x)>0,得:a<x<a+2b3,由f′(x)<0,得:x<a或x>a+2b3,这时f(x)在(−∞,a)上单调递减,在(a,a+2b3)上单调递增,x=a是函数f(x)的极小值点,不符合条件;④若a<0,并且a>b时,a>a+2b3,由f′(x)>0,得:a+2b3<x<a,由f′(x)<0,得:x<a+2b3或x>a,,所以这时f(x)在(a+2b3,a)上单调递增,在(a,+∞)上单调递增,x=a是函数f(x)的极大值点,符合条件;因此,若x=a为函数f(x)=a(x−a)2(x−b)的极大值点,则a,b必须满足条件:a>0并且a<b或a<0并且a>b.由此可见,A,B均错误;又总有ab−a2=a(b−a)>0成立,所以C错误,D正确.故选D.11.【答案】C【解析】【分析】本题重点考查椭圆的性质,属于一般题.设P(acosθ,bsinθ)(θ∈[0,2π),求得a2b2⩽1+21−sinθ,利用正弦函数的性质求得a2b2≤2,进而可求离心率的范围.【解答】解:设P(acosθ,bsinθ)(θ∈[0,2π)由题意,得B(0,b),则|PB|=√a2cos2θ+b2(sinθ−1)2≤2b∴a2cos2θ+b2(sinθ−1)2⩽4b2,当cosθ=0时,不等式成立;当cosθ≠0时,∴a2b2⩽3−sin2θ+2sinθcos2θ=−(sinθ−3)(sinθ+1)(1−sinθ)(1+sinθ)=3−sinθ1−sinθ=1+21−sinθ,而1+21−sinθ≥2,∴a2b2≤2,∴e=ca =√1−b2a2⩽√22,又0<e<1故椭圆离心率的取值范围是(0,√22]故选:C.12.【答案】B【解析】解:∵a=2ln1.01=ln1.0201,b=ln1.02,∴a>b,令f(x)=2ln(1+x)−(√1+4 x−1),0<x<1,令√1+4 x=t,则1<t<√5∴x= t2−14,∴g(t)=2ln(t2+34)−t+1=2ln(t2+3)−t+1−2ln4,∴g′(t)=4tt2+3−1=4t−t2−3t2+3=−(t−1)(t−3)t2+3>0,∴g(t)在(1,√5)上单调递增,∴g(t)>g(1)=2ln4−1+2ln4=0,∴f(x)>0,∴a>c,同理令ℎ(x)=ln(1+2x)−(√1+4 x−1),再令√1+4 x=t,则1<t<√5∴x= t2−14,∴φ(t)=ln(t2+12)−t+1=ln(t2+1)−t+1−ln2,∴φ′(t)=2tt2+1−1=−(t−1)2t2+1<0,∴φ(t)在(1,√5)上单调递减,∴φ(t)<φ(1)=ln2−1+1−ln2=0,∴ℎ(x)<0,∴c>b,∴a>c>b.故选:B.构造函数f(x)=2ln(1+x)−(√1+4 x−1),0<x<1,ℎ(x)=ln(1+2x)−(√1+4 x−1),利用导数和函数的单调性即可判断.本题考查了不等式的大小比较,导数和函数的单调性和最值的关系,考查了转化思想,属于难题.13.【答案】4【解析】【分析】本题考查双曲线的几何性质,涉及双曲线的渐近线方程的分析,属于基础题.根据题意,由双曲线的性质可得√3=√m,解可得m的值,即可得双曲线的标准方程,据此计算c的值,即可得答案.【解答】解:根据题意,双曲线C:x2m−y2=1(m>0)的一条渐近线为√3x+my=0,则有√3=√m,解可得m=3,则双曲线的方程为x23−y2=1,则c=√3+1=2,其焦距2c=4;故答案为:4.14.【答案】35【解析】解:因为向量a⃗=(1,3),b⃗ =(3,4),则a⃗−λb⃗ =(1−3λ,3−4λ),又(a⃗−λb⃗ )⊥b⃗ ,所以(a⃗−λb⃗ )⋅b⃗ =3(1−3λ)+4(3−4λ)=15−25λ=0,解得λ=35.故答案为:35.利用向量的坐标运算求得a⃗−λb⃗ =(1−3λ,3−4λ),再由(a⃗−λb⃗ )⊥b⃗ ,可得(a⃗−λb⃗ )⋅b⃗ =0,即可求解λ的值.本题主要考查数量积的坐标运算,向量垂直的充要条件,考查方程思想与运算求解能力,属于基础题.15.【答案】2√2【解析】解:∵△ABC的内角A,B,C的对边分别为a,b,c,面积为√3,B=60°,a2+c2=3ac,∴12acsinB=√3⇒12ac×√32=√3⇒ac=4⇒a2+c2=12,又cosB=a2+c2−b22ac ⇒12=12−b28⇒b=2√2,(负值舍)故答案为:2√2.由题意和三角形的面积公式以及余弦定理得关于b的方程,解方程可得.本题考查三角形的面积公式以及余弦定理的应用,属基础题.16.【答案】②⑤或③④【解析】解:观察正视图,推出正视图的长为2和高1,②③图形的高也为1,即可能为该三棱锥的侧视图,④⑤图形的长为2,即可能为该三棱锥的俯视图,当②为侧视图时,结合侧视图中的直线,可以确定该三棱锥的俯视图为⑤,当③为侧视图时,结合侧视图虚线,虚线所在的位置有立体图形的轮廓线,可以确定该三棱锥的俯视图为④.故答案为:②⑤或③④.通过观察已知条件正视图,确定该正视图的长和高,结合长、高、以及侧视图视图中的实线、虚线来确定俯视图图形.该题考查了三棱锥的三视图,需要学生掌握三视图中各个图形边长的等量关系,以及对于三视图中特殊线条能够还原到原立体图形中,需要较强空间想象,属于中等题.17.【答案】解:(1)由题中的数据可得,x−=110×(9.8+10.3+10.0+10.2+9.9+9.8+10.0+10.1+10.2+9.7)=10,y−=110×(10.1+10.4+10.1+10.0+10.1+10.3+10.6+10.5+10.4+10.5=10.3,s12=110×[(9.8−10)2+(10.3−10)2+(10−10)2+(10.2−10)2+(9.9−10)2 +(9.8−10)2+(10−10)2+(10.1−10)2+(10.2−10)2+(9.7−10)2]=0.036;s22=110×[(10.1−10.3)2+(10.4−10.3)2+(10.1−10.3)2+(10.0−10.3)2+(10.1−10.3)2+(10.3−10.3)2+(10.6−10.3)2+(10.5−10.3)2+(10.4−10.3)2+(10.5−10.3)2]=0.04;(2)y−−x−=10.3−10=0.3,2√s12+s2210=2√0.036+0.0410=2√0.0076≈0.174,所以y−−x−>2√s12+s2210,故新设备生产产品的该项指标的均值较旧设备有显著提高.【解析】本题考查了样本特征数的计算,解题的关键是掌握平均数与方差的计算公式,考查了运算能力,属于基础题.(1)利用平均数和方差的计算公式进行计算即可;(2)比较y−−x−与2√s12+s2210的大小,即可判断得到答案.18.【答案】解:(1)连结BD,因为PD⊥底面ABCD,且AM⊂平面ABCD,则AM ⊥PD ,又AM ⊥PB ,PB ∩PD =P ,PB ,PD ⊂平面PBD , 所以AM ⊥平面PBD ,又BD ⊂平面PBD ,则AM ⊥BD , 所以∠ABD +∠DAM =90°,又∠DAM +∠MAB =90°, 则有∠ADB =∠MAB ,所以Rt △DAB∽Rt △ABM , 则ADAB =BABM ,所以12BC 2=1,解得BC =√2;(2)因为DA ,DC ,DP 两两垂直,故以点D 为坐标原点建立空间直角坐标系如图所示, 则A(√2,0,0),B(√2,1,0),M(√22,1,0),P(0,0,1),所以AP⃗⃗⃗⃗⃗ =(−√2,0,1),AM ⃗⃗⃗⃗⃗⃗ =(−√22,1,0),BM ⃗⃗⃗⃗⃗⃗ =(−√22,0,0),BP ⃗⃗⃗⃗⃗ =(−√2,−1,1), 设平面AMP 的法向量为n⃗ =(x,y,z), 则有{n ⃗ ⋅AP ⃗⃗⃗⃗⃗ =0n ⃗ ⋅AM ⃗⃗⃗⃗⃗⃗ =0,即{−√2x +z =0−√22x +y =0, 令x =√2,则y =1,z =2,故n ⃗ =(√2,1,2), 设平面BMP 的法向量为m⃗⃗⃗ =(p,q,r), 则有{m ⃗⃗⃗ ⋅BM ⃗⃗⃗⃗⃗⃗ =0m ⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =0,即{−√22p =0−√2p −q +r =0, 令q =1,则r =1,故m ⃗⃗⃗ =(0,1,1), 所以|cos <n ⃗ ,m ⃗⃗⃗ >|=|n ⃗⃗ ⋅m ⃗⃗⃗ ||n ⃗⃗ ||m ⃗⃗⃗ |=3√7×√2=3√1414, 设二面角A −PM −B 的平面角为α,则sinα=√1−cos 2α=√1−cos 2<n ⃗ ,m ⃗⃗⃗ >=√1−(3√1414)2=√7014,所以二面角A −PM −B 的正弦值为√7014.【解析】(1)连结BD ,利用线面垂直的性质定理证明AM ⊥PD ,从而可以证明AM ⊥平面PBD ,得到AM ⊥BD ,证明Rt △DAB∽Rt △ABM ,即可得到BC 的长度; (2)建立合适的空间直角坐标系,求出所需点的坐标和向量的坐标,然后利用待定系数法求出平面的法向量,由向量的夹角公式以及同角三角函数关系求解即可.本题考查了空间中线段长度求解以及二面角的求解,在求解有关空间角问题的时候,一般会建立合适的空间直角坐标系,将空间角问题转化为空间向量问题进行研究,属于中档题.19.【答案】解:(1)证明:当n =1时,b 1=S 1,由2b 1+1b 1=1,解得b 1=32,当n ≥2时,b nbn−1=S n ,代入2S n+1b n=2,消去S n ,可得2 b n−1b n+1b n=2,所以b b −b n−1=12,所以{b n }是以32为首项,12为公差的等差数列. (2)由题意,得a 1=S 1=b 1=32, 由(1),可得b n =32+(n −1)×12=n+22,由2S n+1b n=2,可得S n =n+2n+1,当n ≥2时,a n =S n −S n−1= n+2n+1−n+1n=−1n(n+1),显然a 1不满足该式,所以a n ={32,n =1−1n(n+1),n ≥2.【解析】(1)由题意当n =1时,b 1=S 1,代入已知等式可得b 1的值,当n ≥2时,将b nb n−1=S n ,代入2S n+1b n=2,可得b b −b n−1=12,进一步得到数列{b n }是等差数列;(2)由a 1=S 1=b 1=32,可得b n =n+22,代入已知等式可得S n =n+2n+1,当n ≥2时,a n =S n −S n−1=−1n(n+1),进一步得到数列{a n }的通项公式.本题考查了等差数列的概念,性质和通项公式,考查了方程思想,是基础题.20.【答案】(1)解:由题意,f(x)的定义域为(−∞,a),令g(x)=xf(x),则g(x)=xln(a −x),x ∈(−∞,a), 则g′(x)=ln(a −x)+x ⋅−1a−x =ln(a −x)+−xa−x ,因为x =0是函数y =xf(x)的极值点,则有g′(x)=0,即lna =0,所以a =1, 当a =1时,g′(x)=ln(1−x)+−x1−x =ln(1−x)+−11−x +1,且g′(0)=0, 因为g′′(x)=−11−x +−1(1−x)2=x−2(1−x)2<0, 则g′(x)在(−∞,1)上单调递减, 所以当x ∈(−∞,a)时,g′(x)>0, 当x ∈(0,1)时,g′(x)<0,所以a=1时,x=0时函数y=xf(x)的一个极大值.综上所述,a=1;(2)证明:由(1)可知,xf(x)=xln(1−x),要证x+f(x)xf(x)<1,即需证明x+ln(1−x)xln(1−x)<1,因为当x∈(−∞,0)时,xln(1−x)<0,当x∈(0,1)时,xln(1−x)<0,所以需证明x+ln(1−x)>xln(1−x),即x+(1−x)ln(1−x)>0,令ℎ(x)=x+(1−x)ln(1−x),则ℎ′(x)=(1−x)⋅−11−x+1−ln(1−x),所以ℎ′(0)=0,当x∈(−∞,0)时,ℎ′(x)<0,当x∈(0,1)时,ℎ′(x)>0,所以x=0为ℎ(x)的极小值点,所以ℎ(x)>ℎ(0)=0,即x+ln(1−x)>xln(1−x),故x+ln(1−x)xln(1−x)<1,所以x+f(x)xf(x)<1.【解析】(1)确定函数f(x)的定义域,令g(x)=xf(x),由极值的定义得到g′(x)=0,求出a的值,然后进行证明,即可得到a的值;(2)将问题转化为证明x+ln(1−x)xln(1−x)<1,进一步转化为证明x+ln(1−x)>xln(1−x),令ℎ(x)=x+(1−x)ln(1−x),利用导数研究ℎ(x)的单调性,证明ℎ(x)>ℎ(0),即可证明.本题考查了导数的综合应用,主要考查了利用导数研究函数的极值问题,利用导数证明不等式问题,此类问题经常构造函数,转化为证明函数的取值范围问题,考查了逻辑推理能力与化简运算能力,属于难题.21.【答案】解:(1)点F(0,p2)到圆M上的点的距离的最小值为|FM|−1=p2+4−1=4,解得p=2;(2)由(1)知,抛物线的方程为x2=4y,即y=14x2,则y′=12x,设切点A(x1,y1),B(x2,y2),则易得l PA :y =x 12x −x 124,l PB :y =x 22x −x 224,从而得到P(x 1+x 22,x 1x 24),设l AB :y =kx +b ,联立抛物线方程,消去y 并整理可得x 2−4kx −4b =0, ∴Δ=16k 2+16b >0,即k 2+b >0,且x 1+x 2=4k ,x 1x 2=−4b , ∴P(2k,−b),∵|AB|=√1+k 2⋅√(x 1+x 2)2−4x 1x 2=√1+k 2⋅√16k 2+16b , 点P 到直线AB 的距离d =2√k 2+1,∴S △PAB =12|AB|d =4(k 2+b)32①,又点P(2k,−b)在圆M :x 2+(y +4)2=1上, 故k 2=1−(b−4)24,代入①得,S △PAB =4(−b 2+12b−154)32,而y p =−b ∈[−5,−3],∴当b =5时,(S △PAB )max =20√5.【解析】本题考查圆锥曲线的综合运用,考查直线与抛物线的位置关系,考查运算求解能力,属于拔高题.(1)由点F 到圆M 上的点最小值为4建立关于p 的方程,解出即可;(2)对y =14x 2求导,由导数的几何意义可得出直线PA 及PB 的方程,进而得到点P 的坐标,再将AB 的方程与抛物线方程联立,可得P(2k,−b),|AB|以及点P 到直线AB 的距离,进而表示出△PAB 的面积,再求出其最小值即可.22.【答案】解:(1)⊙C 的圆心为C(2,1),半径为1,则⊙C 的标准方程为(x −2)2+(y −1)2=1, ⊙C 的一个参数方程为{x =2+cosθy =1+sinθ(θ为参数).(2)由题意可知两条切线方程斜率存在,设切线方程为y −1=k(x −4),即kx −y −4k +1=0, 圆心C(2,1)到切线的距离d =√k 2+1=1,解得k =±√33,所以切线方程为y =±√33(x −4)+1,因为x =ρcosθ,y =ρsinθ,所以这两条切线的极坐标方程为ρsinθ=±√33(ρcosθ−4)+1.【解析】(1)求出⊙C的标准方程,即可求得⊙C的参数方程;(2)求出直角坐标系中的切线方程,再由x=ρcosθ,y=ρsinθ即可求解这两条切线的极坐标方程.本题主要考查圆的参数方程,普通方程与极坐标方程的转化,考查运算求解能力,属于基础题.23.【答案】解:(1)当a=1时,f(x)=|x−1|+|x+3|={−2x−2,x≤−3 4,−3<x<12x+2,x≥1,∵f(x)≥6,∴{x≤−3−2x−2≥6或{−3<x<1 4≥6或{x≥12x+2≥6,∴x≤−4或x≥2,∴不等式的解集为(−∞,−4]∪[2,+∞).(2)f(x)=|x−a|+|x+3|≥|x−a−x−3|=|a+3|,若f(x)>−a,则|a+3|>−a,两边平方可得a2+6a+9>a2,解得a>−32,即a的取值范围是(−32,+∞).【解析】(1)将a=1代入f(x)中,根据f(x)≥6,利用零点分段法解不等式即可;(2)利用绝对值三角不等式可得f(x)≥|a+3|,然后根据f(x)>−a,得到|a+3|>−a,求出a的取值范围.本题主要考查绝对值不等式的解法,考查运算求解能力,属于基础题.。

2021年全国高考乙卷数学(理)试题(含答案解析)

2021年全国高考乙卷数学(理)试题(含答案解析)
故选:C.
【点睛】
本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排思想求解.
7.B
【分析】
解法一:从函数 的图象出发,按照已知的变换顺序,逐次变换,得到 ,即得 ,再利用换元思想求得 的解析表达式;
解法二:从函数 出发,逆向实施各步变换,利用平移伸缩变换法则得到 的解析表达式.
三、解答题
17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:
旧设备
9.8
10.3
10.0
10.2
9.9
9.8
10.0
10.1
10.2
9.7
新设备
10.1
10.4
10.1
10.0
10.1
10.3
10.6
A.60种B.120种C.240种D.480种
7.把函数 图像上所有点的横坐标缩短到原来的 倍,纵坐标不变,再把所得曲线向右平移 个单位长度,得到函数 的图像,则 ()
A. B.
C. D.
8.在区间 与 中各随机取1个数,则两数之和大于 的概率为()
A. B. C. D.
9.魏晋时刘徽撰写的《海岛算经》是关测量的数学著作,其中第一题是测海岛的高.如图,点 , , 在水平线 上, 和 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”, 称为“表距”, 和 都称为“表目距”, 与 的差称为“表目距的差”则海岛的高 ()
【分析】
由正弦函数的有界性确定命题 的真假性,由指数函数的知识确定命题 的真假性,由此确定正确选项.
【详解】
由于 ,所以命题 为真命题;

2021年全国高考乙卷数学(理)试题(解析版)

2021年全国高考乙卷数学(理)试题(解析版)
设正方体棱长为2,则 ,
,所以 .
故选:D
6.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()
A. 60种B. 120种C. 240种D. 480种
【答案】C
【解析】
【分析】先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.
当 时,由 , ,画出 的图象如下图所示:
由图可知 , ,故 .
当 时,由 时, ,画出 的图象如下图所示:
由图可知 , ,故 .【解析】
【分析】先考虑函数的零点情况,注意零点左右附近函数值是否编号,结合极大值点的性质,对进行分类讨论,画出图象,即可得到 所满足的关系,由此确定正确选项.
【详解】若 ,则 为单调函数,无极值点,不符合题意,故 .
有 和 两个不同零点,且在 左右附近是不变号,在 左右附近是变号的.依题意,为函数的极大值点, 在 左右附近都是小于零的.
【点睛】本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排思想求解.
7.把函数 图像上所有点的横坐标缩短到原来的 倍,纵坐标不变,再把所得曲线向右平移 个单位长度,得到函数 的图像,则 ()
A. B.
C. D.
【答案】B
【解析】
【分析】解法一:从函数 的图象出发,按照已知的变换顺序,逐次变换,得到 ,即得 ,再利用换元思想求得 的解析表达式;
8.在区间 与 中各随机取1个数,则两数之和大于 的概率为()
A. B. C. D.
【答案】B
【解析】
【分析】设从区间 中随机取出的数分别为 ,则实验的所有结果构成区域为 ,设事件 表示两数之和大于 ,则构成的区域为 ,分别求出 对应的区域面积,根据几何概型的的概率公式即可解出.

2021年高考真题:数学(理科)(全国甲卷)【含答案及解析】

2021年高考真题:数学(理科)(全国甲卷)【含答案及解析】

2021年普通⾼等学校招⽣全国统⼀考试(甲卷)理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}104,53M x x N xx ìü=<<=££íýîþ,则M N =I ()A.103x x ìü<£íýîþ B.143x x ìü£<íýîþC.{}45x x £< D.{}05x x <£2.为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间3.已知2(1)32i z i -=+,则z =()A .312i --B.312i -+ C.32i -+ D.32i --4.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录表的数据V 的满足5lg L V =+.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为()( 1.259»)A.1.5B.1.2C.0.8D.0.65.已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF Ð=°=,则C 的离心率为()A.2B.2C.D.6.在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A EFG -后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()A. B. C. D.7.等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件8.2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影,,A B C ¢¢¢满足45A C B Т¢¢=°,60A B C ¢¢Ð¢=°.由C 点测得B 点的仰角为15°,BB ¢与CC ¢的差为100;由B 点测得A 点的仰角为45°,则A ,C 两点到水平面A B C ¢¢¢的高度差AA CC ¢¢-约为1.732»)()A.346B.373C.446D.4739.若cos 0,,tan 222sin p a a a a æöÎ=ç÷-èø,则tan a =()A.15B.C.3D.310.将4个1和2个0随机排成一行,则2个0不相邻的概率为()A.13B.25C.23D.4511.已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ^==,则三棱锥O ABC -的体积为()A.12 B.12C.4D.412.设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x Î时,2()f x ax b =+.若()()036f f +=,则92f æö=ç÷èø()A.94-B.32-C.74D.52二、填空题:本题共4小题,每小题5分,共20分.13.曲线212x y x -=+在点()1,3--处的切线方程为__________.14.已知向量()()3,1,1,0,a b c a kb ===+r r r r r .若a c ^r r ,则k =________.15.已知12,F F 为椭圆C :221164x y+=的两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为________.16.已知函数()2cos()f x x w j =+的部分图像如图所示,则满足条件74()()043f x f f x f p p æöæöæöæö--->ç÷ç÷ç÷ç÷èøèøèøèø的最小正整数x 为________.三、解答题:共70分.解答应写出交字说明、证明过程或演算步骤,第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品二级品 合计甲机床15050200乙机床12080200合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++()2P K k ³0.0500.0100.001k3.8416.63510.82818.已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{}n a 是等差数列:②数列是等差数列;③213aa =.注:若选择不同的组合分别解答,则按第一个解答计分.19.已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ^(1)证明:BF DE ^;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?20.抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C 于P ,Q 两点,且OP OQ ^.已知点()2,0M ,且M e 与l 相切.(1)求C ,M e 的方程;(2)设123,,A A A 是C 上的三个点,直线12A A ,13A A 均与M e 相切.判断直线23A A 与M e 的位置关系,并说明理由.21.已知0a >且1a ¹,函数()(0)ax x f x x a=>.(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为r q =.(1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为()1,0,M 为C 上的动点,点P 满足AP =u u u ru u u r,写出Р的轨迹1C 的参数方程,并判断C 与1C 是否有公共点.[选修4-5:不等式选讲](10分)23.已知函数()2,()2321f x x g x x x =-=+--.(1)画出()y f x =和()y g x =的图像;(2)若()()f x a g x +³,求a 的取值范围.答案及解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}104,53M x x N xx ìü=<<=££íýîþ,则M N =I ()A.103x x ìü<£íýîþB.143x x ìü£<íýîþC.{}45x x £< D.{}05x x <£【答案】B 【解析】【分析】根据交集定义运算即可【详解】因为1{|04},{|5}3M x x N x x =<<=££,所以1|43M N x x ìüÇ=£<íýîþ,故选:B.【点睛】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.2.为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间【答案】C 【解析】【分析】根据直方图的意义直接计算相应范围内的频率,即可判定ABD,以各组的中间值作为代表乘以相应的频率,然后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即可判定C.【详解】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为0.020.040.066%+==,故A 正确;该地农户家庭年收入不低于10.5万元的农户比率估计值为0.040.0230.1010%+´==,故B 正确;该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为0.100.140.2020.6464%50%++´==>,故D 正确;该地农户家庭年收入的平均值的估计值为30.0240.0450.1060.1470.2080.2090.10100.10110.04120.02130.02140.027.68´+´+´+´+´+´+´+´+´+´+´+´=(万元),超过6.5万元,故C 错误.综上,给出结论中不正确的是C.故选:C.【点睛】本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的估计值.注意各组的频率等于´频率组距组距.3.已知2(1)32i z i -=+,则z =()A.312i --B.312i -+C.32i -+ D.32i --【答案】B 【解析】【分析】由已知得322iz i+=-,根据复数除法运算法则,即可求解.【详解】2(1)232i z iz i -=-=+,32(32)23312222i i i i z i i i i ++×-+====-+--×.故选:B.4.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录表的数据V 的满足5lg L V =+.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为()( 1.259»)A. 1.5 B. 1.2C. 0.8D. 0.6【答案】C 【解析】【分析】根据,L V 关系,当 4.9L =时,求出lg V ,再用指数表示V ,即可求解.【详解】由5lg L V =+,当 4.9L =时,lg 0.1V =-,则10.11010100.8V --===».故选:C .5.已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF Ð=°=,则C 的离心率为()A.2 B.2C. D.【答案】A 【解析】【分析】根据双曲线的定义及条件,表示出12,PF PF ,结合余弦定理可得答案.【详解】因为213PF PF =,由双曲线的定义可得12222PF PF PF a -==,所以2PF a =,13PF a =;因为1260F PF Ð=°,由余弦定理可得2224923cos60c a a a a =+-´××°,整理可得2247c a =,所以22274a c e ==,即2e =.故选:A【点睛】关键点睛:双曲线的定义是入手点,利用余弦定理建立,a c 间的等量关系是求解的关键.6.在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A EFG -后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()A. B. C. D.【答案】D 【解析】【分析】根据题意及题目所给的正视图还原出几何体的直观图,结合直观图进行判断.【详解】由题意及正视图可得几何体的直观图,如图所示,所以其侧视图为故选:D7.等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则()A. 甲是乙的充分条件但不是必要条件B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件【答案】B 【解析】【分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案.【详解】由题,当数列为2,4,8,---L 时,满足0q >,但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件.故选:B .【点睛】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.8.2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影,,A B C ¢¢¢满足45A C B Т¢¢=°,60A B C ¢¢Ð¢=°.由C 点测得B 点的仰角为15°,BB ¢与CC ¢的差为100;由B 点测得A 点的仰角为45°,则A ,C 两点到水平面A B C ¢¢¢的高度差AA CC ¢¢-约为1.732»)()A.346B.373C.446D.473【答案】B 【解析】【分析】通过做辅助线,将已知所求量转化到一个三角形中,借助正弦定理,求得''A B ,进而得到答案.【详解】过C 作'CH BB ^,过B 作'BD AA ^,故()''''''100100AA CC AA BB BH AA BB AD -=--=-+=+,由题,易知ADB △为等腰直角三角形,所以AD DB =.所以''100''100AA CC DB A B -=+=+.因为15BCH Ð=°,所以100''tan15CH C B ==°在'''A B C V 中,由正弦定理得:''''100100sin 45sin 75tan15cos15sin15A B C B ===°°°°°,而sin15sin(4530)sin 45cos30cos 45sin 304°=°-°=°°-°°=,所以1004''1)273A B ´´==+»,所以''''100373AA CC A B -=+».故选:B .【点睛】本题关键点在于如何正确将''AA CC -的长度通过作辅助线的方式转化为''100A B +.9.若cos 0,,tan 222sin p a a a a æöÎ=ç÷-èø,则tan a =()A.15B.5C.3 D.3【答案】A 【解析】【分析】由二倍角公式可得2sin 22sin cos tan 2cos 212sin a a a a a a ==-,再结合已知可求得1sin 4a =,利用同角三角函数的基本关系即可求解.【详解】cos tan 22sin aa a=-Q 2sin 22sin cos cos tan 2cos 212sin 2sin a a a aa a a a\===--,0,2p a æöÎç÷èøQ ,cos 0a \¹,22sin 112sin 2sin a a a \=--,解得1sin 4a =,cos 4a \==,sin tan cos 15a a a \==.故选:A.【点睛】关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出sin a .10.将4个1和2个0随机排成一行,则2个0不相邻的概率为()A.13B.25C.23 D.45【答案】C 【解析】【分析】采用插空法,4个1产生5个空,分2个0相邻和2个0不相邻进行求解.【详解】将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有155C =种排法,若2个0不相邻,则有2510C =种排法,所以2个0不相邻的概率为1025103=+.故选:C.11.已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ^==,则三棱锥O ABC -的体积为()A.12 B.12C.4D.4【答案】A 【解析】【分析】由题可得ABC V 为等腰直角三角形,得出ABC V 外接圆的半径,则可求得O 到平面ABC 的距离,进而求得体积.【详解】,1AC BC AC BC ^==Q ,ABC \V 为等腰直角三角形,AB \=,则ABC V 外接圆的半径为2,又球的半径为1,设O 到平面ABC 的距离为d ,则2d ==,所以11111332212O ABC ABC V S d -=×=´´´´=V .故选:A.【点睛】关键点睛:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解.12.设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x Î时,2()f x ax b =+.若()()036f f +=,则92f æö=ç÷èø()A.94-B.32-C.74D.52【答案】D 【解析】【分析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数解析式()222f x x =-+,进而利用定义或周期性结论,即可得到答案.【详解】因为()1f x +是奇函数,所以()()11f x f x -+=-+①;因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+,因为()()036f f +=,所以()462a b a b a -+++=Þ=-,令0x =,由①得:()()()11102f f f b =-Þ=Þ=,所以()222f x x =-+.思路一:从定义入手.9551222222f f f f æöæöæöæö=+=-+=-ç÷ç÷ç÷ç÷èøèøèøèø1335112222f f f f æöæöæöæö-=-+=-+=-ç÷ç÷ç÷ç÷èøèøèøèø511322=2222f f f f æöæöæöæö-=-+=--+-ç÷ç÷ç÷ç÷èøèøèøèø所以935222f f æöæö=-=ç÷ç÷èøèø.思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T =.所以91352222f f f æöæöæö==-=ç÷ç÷ç÷èøèøèø.故选:D .【点睛】在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计算的效果.二、填空题:本题共4小题,每小题5分,共20分.13.曲线212x y x -=+在点()1,3--处的切线方程为__________.【答案】520x y -+=【解析】【分析】先验证点在曲线上,再求导,代入切线方程公式即可.【详解】由题,当1x =-时,3y =-,故点在曲线上.求导得:()()()()222221522x x y x x +--==++¢,所以1|5x y =-=¢.故切线方程为520x y -+=.故答案为:520x y -+=.14.已知向量()()3,1,1,0,a b c a kb ===+r r r r r .若a c ^r r ,则k =________.【答案】103-.【解析】【分析】利用向量的坐标运算法则求得向量c r的坐标,利用向量的数量积为零求得k 的值【详解】()()()3,1,1,0,3,1a b c a kb k ==\=+=+r r r r Q r,(),33110a c a c k ^\=++´=Q n r r r r ,解得103k =-,故答案为:103-.【点睛】本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量()()1122,,,p x y q x y ==r r垂直的充分必要条件是其数量积12120x x y y +=.15.已知12,F F 为椭圆C :221164x y+=的两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为________.【答案】8【解析】【分析】根据已知可得12PF PF ^,设12||,||PF m PF n ==,利用勾股定理结合8m n +=,求出mn ,四边形12PFQF 面积等于mn ,即可求解.【详解】因为,P Q 为C 上关于坐标原点对称的两点,且12||||PQ F F =,所以四边形12PFQF 为矩形,设12||,||PF m PF n ==,则228,48m n m n +=+=,所以22264()2482m n m mn n mn =+=++=+,8mn =,即四边形12PFQF 面积等于8.故答案为:8.16.已知函数()2cos()f x x w j =+的部分图像如图所示,则满足条件74()()043f x f f x f p p æöæöæöæö--->ç÷ç÷ç÷ç÷èøèøèøèø的最小正整数x 为________.【答案】2【解析】【分析】先根据图象求出函数()f x 的解析式,再求出7(),(43f f p 4p-的值,然后求解三角不等式可得最小正整数或验证数值可得.【详解】由图可知313341234T p p p =-=,即2T pp w==,所以2w =;由五点法可得232p p j ´+=,即6p j =-;所以()2cos 26f x x p æö=-ç÷èø.因为7()2cos 143f p 11p æö-=-=ç÷èø,()2cos 032f 4p 5p æö==ç÷èø;所以由74(()())(()(043f x f f x f p p--->可得()1f x >或()0f x <;因为()12cos 22cos 1626f p p p æöæö=-<-=ç÷ç÷èøèø,所以,方法一:结合图形可知,最小正整数应该满足()0f x <,即cos 206x p æö-<ç÷èø,解得,36k x k k p 5p p +<<p +ÎZ ,令0k =,可得536x <<pp ,可得x 的最小正整数为2.方法二:结合图形可知,最小正整数应该满足()0f x <,又(2)2cos 406f p æö=-<ç÷èø,符合题意,可得x 的最小正整数为2.故答案为:2.【点睛】关键点睛:根据图象求解函数的解析式是本题求解的关键,根据周期求解w ,根据特殊点求解j .三、解答题:共70分.解答应写出交字说明、证明过程或演算步骤,第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品二级品 合计甲机床15050200乙机床12080200合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++()2P K k ³0.0500.0100.001k3.8416.63510.828【答案】(1)75%;60%;(2)能.【解析】【分析】本题考查频率统计和独立性检验,属基础题,根据给出公式计算即可【详解】(1)甲机床生产的产品中的一级品的频率为15075%200=,乙机床生产的产品中的一级品的频率为12060%200=.(2)()22400150801205040010 6.63527013020020039K ´-´==>>´´´,故能有99%的把握认为甲机床的产品与乙机床的产品质量有差异.18.已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{}n a 是等差数列:②数列是等差数列;③213aa =.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】答案见解析【解析】,结合,n n a S 的关系求出n a ,利用{}n a 是等差数列可证213a a =;选②③作条件证明①时,an b =+,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a 是等差数列.【详解】选①②作条件证明③:(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ³时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n aa n =-,所以213a a =.选①③作条件证明②:因为213a a =,{}n a 是等差数列,所以公差2112d a a a =-=,所以()21112n n n S na d n a -=+==,)1n -=+=所以是等差数列.选②③作条件证明①:(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ³时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43a b =-;当0b =时,()221,21n a a a a n ==-,当2n ³时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列;当43a b =-4=3an b an a =+-03a=-<不合题意,舍去.综上可知{}n a 为等差数列.【点睛】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,等差数列的证明通常采用定义法或者等差中项法.19.已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ^(1)证明:BF DE ^;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?【答案】(1)见解析;(2)112B D =【解析】【分析】通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直和求出二面角的平面角的余弦值最大,进而可以确定出答案.【详解】因为三棱柱111ABC A B C -是直三棱柱,所以1BB ^底面ABC ,所以1BB AB ^因为11//A B AB ,11BF A B ^,所以BF AB ^,又1BB BF B Ç=,所以AB ^平面11BCC B .所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.所以()()()()()()1110,0,0,2,0,0,0,2,0,0,0,2,2,0,2,0,2,2B A C B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ££).(1)因为()()0,2,1,1,1,2BF DE a ==--uu u v u uu v,所以()()0121120BF DE a ×=´-+´+´-=uu u v uu u v,所以BF DE ^.(2)设平面DFE 的法向量为(),,m x y z =u r,因为()()1,1,1,1,1,2EF DE a =-=--uu u v u u u v,所以00m EF m DE ì×=í×=îu u u v v u u u v v ,即()0120x y z a x y z -++=ìí-+-=î.令2z a =-,则()3,1,2m a a =+-v因为平面11BCC B 的法向量为()2,0,0BA =u u u r,设平面11BCC B 与平面DEF 的二面角的平面角为q ,则cos m BA m BA q ×===×u u u v v u u u v v .当12a =时,2224a a -+取最小值为272,此时cos q3=.所以()minsin 3q ==,此时112B D =.【点睛】本题考查空间向量的相关计算,能够根据题意设出(),0,2D a (02a ££),在第二问中通过余弦值最大,找到正弦值最小是关键一步.20.抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C 于P ,Q 两点,且OP OQ ^.已知点()2,0M ,且M e 与l 相切.(1)求C ,M e 的方程;(2)设123,,A A A 是C 上的三个点,直线12A A ,13A A 均与M e 相切.判断直线23A A 与M e 的位置关系,并说明理由.【答案】(1)抛物线2:C y x =,M e 方程为22(2)1x y -+=;(2)相切,理由见解析【解析】【分析】(1)根据已知抛物线与1x =相交,可得出抛物线开口向右,设出标准方程,再利用对称性设出,P Q 坐标,由OP OQ ^,即可求出p ;由圆M 与直线1x =相切,求出半径,即可得出结论;(2)先考虑12A A 斜率不存在,根据对称性,即可得出结论;若121323,,A A A A A A 斜率存在,由123,,A A A 三点在抛物线上,将直线121223,,A A A A A A 斜率分别用纵坐标表示,再由1212,A A A A 与圆M 相切,得出2323,y y y y +×与1y 的关系,最后求出M 点到直线23A A 的距离,即可得出结论.【详解】(1)依题意设抛物线200:2(0),(1,),(1,)C y px p P y Q y =>-,20,1120,21OP OQ OP OQ y p p ^\×=-=-=\=uu u r uu u r Q ,所以抛物线C 的方程为2y x =,(0,2),M M e 与1x =相切,所以半径为1,所以M e 的方程为22(2)1x y -+=;(2)设111222333(),(,),(,)A x y A x y A x y 若12A A 斜率不存在,则12A A 方程为1x =或3x =,若12A A 方程为1x =,根据对称性不妨设1(1,1)A ,则过1A 与圆M 相切的另一条直线方程为1y =,此时该直线与抛物线只有一个交点,即不存在3A ,不合题意;若12A A 方程为3x =,根据对称性不妨设12(3,A A 则过1A 与圆M 相切的直线13A A为(3)3y x -=-,又1313313131,03A A y y k y x x y y -====\=-+,330,(0,0)x A =,此时直线1323,A A A A 关于x 轴对称,所以直线23A A 与圆M 相切;若直线121323,,A A A A A A 斜率均存在,则121323121323111,,A A A A A A k k k y y y y y y ===+++,所以直线12A A 方程为()11121y y x x y y -=-+,整理得1212()0x y y y y y -++=,同理直线13A A 的方程为1313()0x y y y y y -++=,直线23A A 的方程为2323()0x y y y y y -++=,12A A Q 与圆M相切,1=整理得22212121(1)230y y y y y -++-=,13A A 与圆M 相切,同理22213131(1)230y y y y y -++-=所以23,y y 为方程222111(1)230y y y y y -++-=的两根,2112323221123,11y y y y y y y y -+=-×=--,M 到直线23A A的距离为:2123|2|y -+=221==,所以直线23A A 与圆M 相切;综上若直线1213,A A A A 与圆M 相切,则直线23A A 与圆M 相切.【点睛】关键点点睛:(1)过抛物线上的两点直线斜率只需用其纵坐标(或横坐标)表示,将问题转化为只与纵坐标(或横坐标)有关;(2)要充分利用1213,A A A A 的对称性,抽象出2323,y y y y +×与1y 关系,把23,y y 的关系转化为用1y 表示.21.已知0a >且1a ¹,函数()(0)ax x f x x a=>.(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围.【答案】(1)20,ln2æùçúèû上单调递增;2,ln2éö+¥÷êëø上单调递减;(2)()()1,,e e È+¥.【解析】【分析】(1)求得函数的导函数,利用导函数的正负与函数的单调性的关系即可得到函数的单调性;(2)利用指数对数的运算法则,可以将曲线()y f x =与直线1y =有且仅有两个交点等价转化为方程ln ln x a x a =有两个不同的实数根,即曲线()y g x =与直线ln ay a=有两个交点,利用导函数研究()g x 的单调性,并结合()g x 的正负,零点和极限值分析()g x 的图象,进而得到ln 10a a e<<,发现这正好是()()0g a g e <<,然后根据()g x 的图象和单调性得到a 的取值范围.【详解】(1)当2a =时,()()()()22222ln 2222ln 2,242xx x x x x x x x x x f x f x ¢--===n n n ,令()'0f x =得2ln 2x =,当20ln 2x <<时,()0f x ¢>,当2ln 2x >时,()0f x ¢<,∴函数()f x 在20,ln2æùçúèû上单调递增;2,ln2éö+¥÷êëø上单调递减;(2)()ln ln 1ln ln a x a x x x af x a x x a a x a x a==Û=Û=Û=,设函数()ln x g x x =,则()21ln xg x x-¢=,令()0g x ¢=,得x e =,在()0,e 内()0g x ¢>,()g x 单调递增;在(),e +¥上()0g x ¢<,()g x 单调递减;()()1max g x g e e\==,又()10g =,当x 趋近于+¥时,()g x 趋近于0,所以曲线()y f x =与直线1y =有且仅有两个交点,即曲线()y g x =与直线ln ay a=有两个交点的充分必要条件是ln 10a a e<<,这即是()()0g a g e <<,所以a 的取值范围是()()1,,e e È+¥.【点睛】本题考查利用导数研究函数的单调性,根据曲线和直线的交点个数求参数的取值范围问题,属较难试题,关键是将问题进行等价转化,分离参数,构造函数,利用导数研究函数的单调性和最值,图象,利用数形结合思想求解.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为r q =.(1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为()1,0,M 为C 上的动点,点P 满足AP =u u u r u u u r,写出Р的轨迹1C 的参数方程,并判断C 与1C 是否有公共点.【答案】(1)(222x y -+=;(2)P 的轨迹1C 的参数方程为32cos 2sin x y qqì=-+ïí=ïî(q 为参数),C 与1C 没有公共点.【解析】【分析】(1)将曲线C 的极坐标方程化为2cos r q =,将cos ,sin x y r q r q ==代入可得;(2)设(),P x y ,设)Mq q +,根据向量关系即可求得P 的轨迹1C 的参数方程,求出两圆圆心距,和半径之差比较可得.【详解】(1)由曲线C 的极坐标方程r q =可得2cos r q =,将cos ,sin x y r q r q ==代入可得22x y +=,即(222x y -+=,即曲线C 的直角坐标方程为(222x y +=;(2)设(),P x y ,设)Mq qQAP =u u u r u u u r ,())()1,22cos x y q q q q \-=+-=+,则122cos 2sin x y q q ì-=+ïí=ïî,即32cos 2sin x y qq ì=+ïí=ïî,故P 的轨迹1C 的参数方程为32cos 2sin x y qq ì=+ïí=ïî(q 为参数)Q曲线C 的圆心为),曲线1C 的圆心为()3-,半径为2,则圆心距为3-,32-<-Q ,\两圆内含,故曲线C 与1C 没有公共点.【点睛】关键点睛:本题考查参数方程的求解,解题的关键是设出M 的参数坐标,利用向量关系求解.[选修4-5:不等式选讲](10分)23.已知函数()2,()2321f x x g x x x =-=+--.(1)画出()y f x =和()y g x =的图像;(2)若()()f x a g x +³,求a 的取值范围.【答案】(1)图像见解析;(2)112a ³【解析】【分析】(1)分段去绝对值即可画出图像;(2)根据函数图像数形结和可得需将()y f x =向左平移可满足同角,求得()y f x a =+过1,42A æöç÷èø时a的值可求.【详解】(1)可得2,2 ()22,2x xf x xx x-<ì=-=í-³î,画出图像如下:34,231()232142,2214,2xg x x x x xxì-<-ïïï=+--=+-£<íïï³ïî,画出函数图像如下:(2)()|2|f x a x a+=+-,如图,在同一个坐标系里画出()(),f xg x图像,()y f x a=+是()y f x=平移了a个单位得到,则要使()()f x ag x+³,需将()y f x=向左平移,即0a>,当()y f x a =+过1,42A æöç÷èø时,1|2|42a +-=,解得112a =或52-(舍去),则数形结合可得需至少将()y f x =向左平移112个单位,112a \³.【点睛】关键点睛:本题考查绝对值不等式的恒成立问题,解题的关键是根据函数图像数形结合求解.。

2021年全国统一高考理科数学试卷(全国甲卷)(含详细解析)

2021年全国统一高考理科数学试卷(全国甲卷)(含详细解析)

2021年全国统一高考理科数学试卷(全国甲卷)(含详细解析)2021年普通高等学校招生全国统一考试理科数学甲卷注意事项:1.在答题卡上填写姓名和准考证号;2.选择题用铅笔在答题卡上涂黑选项,非选择题在答题卡上作答;3.考试结束后,将试卷和答题卡一并交回。

一、选择题共12小题,每小题5分,共60分。

1.(5分) 设集合M={x|0<x<4},N={x|≤x≤5},则M∩N=()A。

{x|0<x≤} B。

{x|≤x<4} C。

{x|4≤x<5} D。

{x|0<x≤5}2.(5分) 对某地农村经济情况进行抽样调查,得到收入频率分布直方图。

下列结论中不正确的是()A。

低于4.5万元的农户比率估计为6%B。

不低于10.5万元的农户比率估计为10%C。

农户年收入平均值不超过6.5万元D。

有一半以上的农户年收入介于4.5万元至8.5万元之间3.(5分) 已知,则z=()A。

-1-i B。

-1+i C。

+i D。

-i4.(5分) 青少年视力是社会普遍关注的问题,视力情况可借助视力表测量,通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记数法的数据V满足L=5+lgV。

已知某同学视力的五分记录法的数据为4.9,则其视力的小数记数法的数据约为()1.5、1.2、0.8、0.65.(5分) 已知双曲线C的两个焦点为F1和F2,点P在C上且∠F1PF2=60°,|PF1|=3|PF2|,则C的离心率为()A.≈1.259 B。

C。

D.6.(5分) 在一个正方体中,过顶点A的三条棱的中点分别为E、F、G。

该正方体截去三棱锥A-EFG后,所得多面体的三视图中,正视图如右图所示,则相应的侧视图是()A。

B。

C。

D.7.(5分) 等比数列{an}的公比为q,前n项和为Sn,设甲:q>0,乙:{Sn}是递增数列,则()A.甲是乙的充分条件但不是必要条件 B.甲是乙的必要条件但不是充分条件 C.甲是乙的充要条件 D.甲既不是乙的充分条件也不是乙的必要条件8.(5分) 2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m),三角高程测量法是珠峰高程测量方法之一。

2021年全国统一高考数学试卷(新高考Ⅰ卷)(含详细解析)

2021年全国统一高考数学试卷(新高考Ⅰ卷)(含详细解析)

2021年全国统一高考数学试卷(新高考Ⅰ卷)(含详细解析)2021年全国统一高考数学试卷(新高考Ⅰ卷)注意事项:在答卷前,考生务必在答题卡上填写自己的姓名和准考证号。

回答选择题时,选出每小题的答案后,用铅笔在答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

1.(5分) 设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=()A。

{2} B。

{2,3} C。

{3,4} D。

{2,3,4}2.(5分) 已知z=2-i,则|z-3i|=()A。

6-2i B。

4-2i C。

6+2i D。

4+2i3.(5分) 已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为()A。

2 B。

4 C。

4√2 D。

2√24.(5分) 下列区间中,函数f(x)=7sin(x)单调递增的区间是()A。

(0,π/2) B。

(π/2,π) C。

(π,3π/2) D。

(3π/2,2π)5.(5分) 已知F1,F2是椭圆C的两个焦点,点M在C上,则|MF1|·|MF2|的最大值为()A。

13 B。

12 C。

9 D。

66.(5分) 若tanθ=-2,则cos2θ=()A。

-3/5 B。

-4/5 C。

-24/25 D。

-7/257.(5分) 若过点(a,b)可以作曲线y=ex的两条切线,则()XXX<a B。

ea<b C。

0<a<eb D。

0<b<ea8.(5分) 有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球,甲表示事件“两次取到的数字和为偶数”,乙表示事件“两次取到的数字都是奇数”,则P(甲∪乙)=()A。

2/3 B。

5/9 C。

7/9 D。

2021年全国统一高考数学试卷(新课标)(理科)及解析

2021年全国统一高考数学试卷(新课标)(理科)及解析

2021年全国统一高考数学试卷(新课标)(理科)及解析2021年全国统一高考数学试卷(新课标Ⅰ)(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x��4x+3<0},B={x|2x��3>0},则A∩B=()A.(��3,��) B.(��3,)C.(1,) D.(,3)22.(5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=() A.1B. C. D.2 3.(5分)已知等差数列{an}前9项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.97 4.(5分)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是() A.B.C.D.5.(5分)已知方程��=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是() A.(��1,3) B.(��1,) C.(0,3) D.(0,)6.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17π B.18π C.20π D.28π2|x|7.(5分)函数y=2x��e在[��2,2]的图象大致为()A. B.第1页(共22页)C. D.8.(5分)若a>b>1,0<c<1,则()ccccA.a<b B.ab<baC.alogbc<blogac D.logac<logbc 9.(5分)执行如图的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x 10.(5分)以抛物线C的顶点为圆心的圆交C 于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为() A.2 B.4 C.6 D.8 11.(5分)平面α过正方体ABCD��A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,则m、n所成角的正弦值为() A.B.C.D.),x=��为f(x)的零点,x=12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤为y=f(x)图象的对称轴,且f(x)在(,)单调,则ω的最大值为()A.11 B.9 C.7 D.5二、填空题:本大题共4小题,每小题5分,共25分.13.(5分)设向量=(m,1),=(1,2),且|+|=||+||,则m= . 14.(5分)(2x+222)的展开式中,x的系数是.(用数字填写答案)第2页(共22页)5315.(5分)设等比数列{an}满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为. 16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤. 17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.18.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D��AF��E与二面角C��BE��F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E��BC��A的余弦值.19.(12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?第3页(共22页)20.(12分)设圆x+y+2x��15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.21.(12分)已知函数f(x)=(x��2)e+a(x��1)有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.x222第4页(共22页)[选修4-4:坐标系与参数方程]23.在直线坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪一种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|��|2x��3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.第5页(共22页)感谢您的阅读,祝您生活愉快。

2021年全国统一高考数学试卷(理科)(乙卷)-带解析

2021年全国统一高考数学试卷(理科)(乙卷)-带解析

2021年全国统一高考数学试卷(理科)(乙卷)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设2(z+)+3(z﹣)=4+6i()A.1﹣2i B.1+2i C.1+i D.1﹣i2.(5分)已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,则S∩T=()A.∅B.S C.T D.Z3.(5分)已知命题p:∃x∈R,sin x<1;命题q:∀x∈R,e|x|≥1,则下列命题中为真命题的是()A.p∧q B.¬p∧q C.p∧¬q D.¬(p∨q)4.(5分)设函数f(x)=,则下列函数中为奇函数的是()A.f(x﹣1)﹣1B.f(x﹣1)+1C.f(x+1)﹣1D.f(x+1)+1 5.(5分)在正方体ABCD﹣A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A.B.C.D.6.(5分)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者()A.60种B.120种C.240种D.480种7.(5分)把函数y=f(x)图像上所有点的横坐标缩短到原来的倍,纵坐标不变个单位长度,得到函数y=sin(x﹣),则f(x)=()A.sin(﹣)B.sin(+)C.sin(2x﹣)D.sin(2x+)8.(5分)在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于()A.B.C.D.9.(5分)魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作,其中第一题是测量海岛的高.如图,点E,H,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,GC和EH都称为“表目距”,GC与EH的差称为“表目距的差”()A.+表高B.﹣表高C.+表距D.﹣表距10.(5分)设a≠0,若x=a为函数f(x)=a(x﹣a)2(x﹣b)的极大值点,则()A.a<b B.a>b C.ab<a2D.ab>a211.(5分)设B是椭圆C:+=1(a>b>0)的上顶点,则C的离心率的取值范围是()A.[,1)B.[,1)C.(0,]D.(0,] 12.(5分)设a=2ln1.01,b=ln1.02,c=,则()A.a<b<c B.b<c<a C.b<a<c D.c<a<b二、填空题:本题共4小题,每小题5分,共20分。

2021年全国统一高考数学1卷(理科)

2021年全国统一高考数学1卷(理科)
【详解】 展开式的通项公式为 ( 且 )
所以 的各项与 展开式的通项的乘积可表示为:

在 中,令 ,可得: ,该项中 的系数为 ,
在 中,令 ,可得: ,该项中 的系数为
所以 的系数为
故选:C
9.已知 ,且 ,则 ( )
A. B.
C. D.
【答案】A
用二倍角 余弦公式,将已知方程转化为关于 的一元二次方程,求解得出 ,再用同角间的三角函数关系,即可得出结论.
故答案为:1.
14.设 为单位向量,且 ,则 ______________.
【答案】
整理已知可得: ,再利用 为单位向量即可求得 ,对 变形可得: ,问题得解.
【详解】因为 为单位向量,所以
所以
解得:
所以
故答案为:
15.已知F为双曲线 的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C的离心率为______________.
【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,
因此,最适合作为发芽率 和温度 的回归方程类型的是 .
故选:D.
6.函数 的图像在点 处的切线方程为( )
A. B.
C. D.
【答案】B
【分析】
求得函数 的导数 ,计算出 和 的值,可得出所求切线的点斜式方程,化简即可.
【详解】 , , , ,
故选:C.
5.某校一个课外学习小组为研究某作物种子发芽率y和温度x(单位:°C)的关系,在20个不同温度条件下进行种子发芽实验,由实验数据 得到下面散点图:
由此散点图,在10°C至40°C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是( )

2021年全国高考乙卷数学(理)试题(含解析)

2021年全国高考乙卷数学(理)试题(含解析)

设正方体棱长为 2,则 BC1 = 2
2, PC1
=
1 2
D1B1
=
2,
sin ÐPBC1
=
PC1 BC1
=
1 2
,所以 ÐPBC1
=
p 6
.
故选:D 6.C 【分析】
先确定有一个项目中分配 2 名志愿者,其余各项目中分配 1 名志愿者,然后利用组合,排列,乘法原理求 得.
根据题意,有一个项目中分配 2 名志愿者,其余各项目中分配 1 名志愿者,可以先从 5 名志愿者中任选 2
5
2021 年全国高考乙卷数学(理)试题
1.C
参考答案及解析
【分析】
设 z = a + bi ,利用共轭复数的定义以及复数的加减法可得出关于 a 、 b 的等式,解出这两个未知数的值,
即可得出复数 z .
( ) ( ) 设 z = a + bi ,则 z = a - bi ,则 2 z + z + 3 z - z = 4a + 6bi = 4 + 6i ,
ì4a = 4 所以, íî6b = 6 ,解得 a = b = 1,因此, z = 1+ i .
故选:C. 2.C 【分析】
分析可得 T Í S ,由此可得出结论.
任取 t ÎT ,则 t = 4n +1 = 2 × (2n ) +1 ,其中 n Î Z ,所以, t Î S ,故 T Í S ,
的图象,
根据已知得到了函数
y
=
sin
æ çè
x
-
p 4
ö ÷ø 的图象,所以
f
é êë2
æ çè
x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年普通高等学校招生全国统一考试理科数学〔必修+选修II 〕本试卷分第一卷〔选择题〕和第二卷〔非选择题〕两局部。

第一卷1至2页。

第二卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第一卷考前须知:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

.......... 3.第一卷共l2小题,每题5分,共60分。

在每题给出的四个选项中,只有一项为哪一项符合题目要求的。

一、选择题1.复数1z i =+,z 为z 的共轭复数,那么1zz z --=A .2i -B .i -C .iD .2i2.函数0)y x =≥的反函数为A .2()4x y x R =∈B .2(0)4x y x =≥C .24y x =()x R ∈ D .24(0)y x x =≥3.下面四个条件中,使a b >成立的充分而不必要的条件是A .1a b +>B .1a b ->C .22a b >D .33a b >4.设n S 为等差数列{}n a 的前n 项和,假设11a =,公差2d =,224k k S S +-=,那么k =A .8B .7C .6D .55.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,那么ω的最小值等于A .13B .3C .6D .96.直二面角α− ι−β,点A ∈α,AC ⊥ι,C 为垂足,B ∈β,BD ⊥ι,D 为垂足.假设AB=2,AC=BD=1,那么D 到平面ABC 的距离等于A .3B C D .17.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,那么不同的赠送方法共有A .4种B .10种C .18种D .20种8.曲线y=2xe -+1在点〔0,2〕处的切线与直线y=0和y=x 围成的三角形的面积为A .13 B .12C .23D .19.设()f x 是周期为2的奇函数,当0≤x≤1时,()f x =2(1)x x -,那么5()2f -=A .-12B .1 4-C .14D .1210.抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.那么cos AFB ∠=A .45B .35C .35-D .45-11.平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .假设该球面的半径为4,圆M 的面积为4π,那么圆N 的面积为A .7πB .9πC .11πD .13π12.设向量a ,b ,c 满足a =b =1,a b =12-,,a c b c --=060,那么c 的最大值等于A .2BCD .1第二卷考前须知:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.第二卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域 内作答,在试题卷上作答无效。

3.第二卷共l0小题,共90分。

二、填空题:本大题共4小题,每题5分,共20分把答案填在题中横线上 〔注意:在试卷上作.....答无效...〕13.〔〕20的二项展开式中,x 的系数与x 9的系数之差为: .y 214.a ∈〔2π,π〕,tan2α=15.F 1、F 2分别为双曲线C : 29x - 227y =1的左、右焦点,点A ∈C ,点M 的坐标为〔2,0〕,AM 为∠F 1AF 2∠的平分线.那么|AF 2| = .16.己知点E 、F 分别在正方体ABCD -A 1B 2C 3D 4的棱BB 1 、CC 1上,且B 1E =2EB, CF=2FC 1,那么面AEF与面ABC 所成的二面角的正切值等于 .三、解答题:本大题共6小题,共70分解容许写出文字说明,证明过程或演算步骤 17.〔本小题总分值l0分〕〔注意:在试题卷上作答无效.........〕△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .己知A —C =90°,a+c=2b ,求 C .18.〔本小题总分值12分〕〔注意:在试题卷上作答无效.........〕〔I 〕求该地1位车主至少购置甲、乙两种保险中的l 种的概率;〔Ⅱ〕X 表示该地的l00位车主中,甲、乙两种保险都不购置的车主数。

求X 的期望。

19.〔本小题总分值12分〕〔注意:在试题卷上作答无效.........〕 如图,四棱锥S ABCD -中, AB CD ⊥,BC CD ⊥,侧面SAB 为等边三角形,2,1AB BC CD SD ====.〔Ⅰ〕证明:SD SAB ⊥平面;〔Ⅱ〕求AB 与平面SBC 所成角的大小. 20.〔本小题总分值12分〕〔注意:在试题卷上作答无效.........〕 设数列{}n a 满足10a =且1111.11n na a +-=--〔Ⅰ〕求{}n a 的通项公式; 〔Ⅱ〕设111,, 1.nn n n k n k a b b S n+=-==<∑记S 证明:21.〔本小题总分值12分〕〔注意:在试题卷上作答无效.........〕 O 为坐标原点,F 为椭圆22:12y C x +=在y 轴正半轴上的焦点,过F 且斜率为-2的直线l 与C 交于A 、B 两点,点P 满足0.OA OB OP ++=〔Ⅰ〕证明:点P 在C 上;〔Ⅱ〕设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上. 22.〔本小题总分值12分〕〔注意:在试题卷上作答无效.........〕 〔Ⅰ〕设函数2()ln(1)2xf x x x =+-+,证明:当0x >时,()0f x >;参考答案评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细那么。

2.对计算题,当考生的解答在某一步出现错误时,如果后继局部的解答未改变该题的内容和难度,可视影响的程度决定后继局部的给分,但不得超过该局部正确解容许得分数的一半;如果后继局部的解答有较严重的错误,就不再给分。

3.解答右端所注分数,表示考生正确做到这一步应得的累加分数。

4.只给整数分数,选择题不给中间分。

一、选择题1—6 BBADCC 7—12 BAADDA 二、填空题 13.0 14.43-15.6 16.23三、解答题:本大题共6小题,共70分解容许写出文字说明,证明过程或演算步骤 17.解:由2a c b +=及正弦定理可得 sin sin 2sin .A C B +=…………3分又由于90,180(),A C B A C -=︒=︒-+故 2cos 2.C =…………7分因为090C ︒<<︒, 所以245,C C =︒-18.解:记A 表示事件:该地的1位车主购置甲种保险;B 表示事件:该地的1位车主购置乙种保险但不购置甲种保险;C 表示事件:该地的1位车主至少购置甲、乙两种保险中的1种;D 表示事件:该地的1位车主甲、乙两种保险都不购置; 〔I 〕()0.5,()0.3,,P A P B C A B ===+ …………3分 ()()()()0.8.P C P A B P A P B =+=+= …………6分〔II 〕,()1()10.80.2,D C P D P C ==-=-=~(100,0.2)X B ,即X 服从二项分布,…………10分所以期望1000.220.EX =⨯= …………12分 19.解法一:〔I 〕取AB 中点E ,连结DE ,那么四边形BCDE 为矩形,DE=CB=2, 连结SE ,那么, 3.SE AB SE ⊥= 又SD=1,故222ED SE SD =+, 所以DSE ∠为直角。

…………3分由,,AB DE AB SE DESE E ⊥⊥=,得AB ⊥平面SDE ,所以AB SD ⊥。

SD 与两条相交直线AB 、SE 都垂直。

所以SD ⊥平面SAB 。

…………6分〔II 〕由AB ⊥平面SDE 知, 平面ABCD ⊥平面SED 。

作,SF DE ⊥垂足为F ,那么SF ⊥平面ABCD , 作FG BC ⊥,垂足为G ,那么FG=DC=1。

连结SG ,那么SG BC ⊥, 又,BC FG SGFG G ⊥=,故BC ⊥平面SFG ,平面SBC ⊥平面SFG 。

…………9分作FH SG ⊥,H 为垂足,那么FH ⊥平面SBC 。

37SF FG FH SG ⨯==,即F 到平面SBC 的距离为21.7 由于ED//BC ,所以ED//平面SBC ,E 到平面SBC 的距离d 也有21.7设AB 与平面SBC 所成的角为α, 那么2121sin ,arcsin .77d EB αα=== (12)分解法二:以C 为坐标原点,射线CD 为x 轴正半轴,建立如下图的空间直角坐标系C —xyz 。

设D 〔1,0,0〕,那么A 〔2,2,0〕、B 〔0,2,0〕。

又设(,,),0,0,0.S x y z x y z >>>则〔I 〕(2,2,),(,2,)AS x y z BS x y z =--=-,(1,,)DS x y z =-,由||||AS BS =得 故x=1。

由22||11,DS y z =+=得又由222||2(2)4,BS x y z =+-+=得即2213410,,.22y z y y z +-+===故 …………3分于是133333(1,,),(1,,),(1,,)222222S AS BS =--=-, 故,,,DS AD DS BS AS BS S ⊥⊥=又所以SD ⊥平面SAB 。

…………6分〔II 〕设平面SBC 的法向量(,,)a m n p =,那么,,0,0.a BS a CB a BS a CB ⊥⊥⋅=⋅=又33(1,,),(0,2,0),22BS CB =-= 故30,2220.m n p n ⎧-+=⎪⎨⎪=⎩…………9分取p=2得(2),(2,0,0)a AB ==-又。

故AB 与平面SBC 所成的角为arcsin 720.解: 〔I 〕由题设1111,11n na a +-=--即1{}1na -是公差为1的等差数列。

又1111,.11nn a a ==--故 所以11.n a n=-〔II 〕由〔I 〕得n b ===,…………8分111 1.nnn k k k S b =====<∑∑ …………12分21.解:〔I 〕F 〔0,1〕,l 的方程为1y =+,代入2212y x +=并化简得2410.x --=…………2分设112233(,),(,),(,),A x y B x y P x y那么12x x ==由题意得312312()() 1.x x x y y y =-+==-+=-所以点P 的坐标为(1).2--经验证,点P 的坐标为(,1)2--满足方程 221,2y x +=故点P 在椭圆C 上。

相关文档
最新文档