新人教版八年级数学上册知识点总结-参考模板
新人版八年级数学(上册)知识点总结归纳
新人教版八年级上册数学知识点总结归纳1 第十一章三角形第十二章全等三角形第十三章轴对称第十四章整式乘法和因式分解第十五章分式第十一章三角形1、三角形的概念由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。
4、三角形的特性与表示三角形有下面三个特性:(1)三角形有三条线段(2)三条线段不在同一直线上三角形是封闭图形(3)首尾顺次相接三角形用符号“∆”表示,顶点是A、B、C的三角形记作“∆ABC”,读作“三角形ABC”。
5、三角形的分类三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。
它是两条直角边相等的直角三角形。
6、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。
新人教版八年级数学上册知识点总结-人教数学八年级上册知识点
新人教版八年级数学上册知识点总结-人教数学八年
级上册知识点
以下是新人教版八年级数学上册的知识点总结:
1. 负数的概念和运算:了解负数的概念和性质,掌握负数的四则运算法则,学会在数轴上表示负数。
2. 整式的加减法:了解整式的概念和性质,学会整式的加减运算法则。
3. 一元一次方程:了解一元一次方程的概念和性质,学会解一元一次方程,了解方程的解集和方程解的判断。
4. 一次函数的概念:了解函数的概念和性质,学会用函数的图象、方程、表格等形式描述函数,了解一次函数的特点。
5. 一次函数的应用:学会利用一次函数解决实际问题,包括线性规律、线性关系和一次函数的应用问题。
6. 一次不等式:了解一次不等式的概念和性质,学会解一元一次不等式,并了解不等式解集的表示方法。
7. 数据的收集整理和可视化:了解数据的收集和整理方法,学会利用统计图形描述数据分布和提取数据信息。
8. 小数运算:了解小数的概念和性质,学会小数的四则运算和混合运算。
9. 长方形和正方形:了解长方形和正方形的性质和关系,学会计算长方形和正方形的面积和周长。
10. 平行线与角:了解平行线的性质和判定方法,学会利用平行线的性质解决平行线和角的问题。
以上是新人教版八年级数学上册的主要知识点总结,希望对你有帮助!。
人教版小学八年级上册数学知识点总结
人教版小学八年级上册数学知识点总结一、数与代数(一)二次根式1.二次根式的概念二次根式是指形如√a(a≥0)的数学表达式,其中a被称为被开方数。
当a>0时,二次根式有两个值,分别为正根和负根;当a=0时,二次根式的值为0。
2.二次根式的性质•非负性:对于任意实数a,√a的值总是非负的。
•乘方与开方互逆:对于任意非负实数a,有√(a^2) = a。
•运算性质:√(ab) = √a × √b(a≥0, b≥0);√(a/b) = √a / √b(a≥0, b>0)。
3.二次根式的化简与运算通过合并同类二次根式、利用二次根式的乘法法则进行化简和运算。
(二)一元二次方程1.一元二次方程的概念只含有一个未知数,且未知数的最高次数为2的方程称为一元二次方程。
一般形式为ax^2 + bx + c = 0(a≠0)。
2.一元二次方程的解法•直接开平方法:当一元二次方程可以化为x^2 = p或(x-m)^2 = p的形式时,可以直接开平方求解。
•配方法:通过配方将一元二次方程转化为完全平方的形式,然后开平方求解。
•公式法:对于一般形式的一元二次方程ax^2 + bx + c = 0,其解为x = [-b ± √(b^2 - 4ac)] / (2a)。
•因式分解法:将一元二次方程化为两个一次方程的乘积形式,然后分别求解。
3.一元二次方程的应用一元二次方程在实际问题中有广泛应用,如面积、体积、速度、时间等问题。
通过设立未知数,建立一元二次方程,然后求解未知数,可以得到实际问题的解。
(三)分式1.分式的概念一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子A / B 就叫做分式,其中A称为分子,B称为分母。
分式是不同于整式的一类代数式。
2.分式的性质•分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
•分式的约分与通分:通过约分可以化简分式,通过通分可以比较分式的大小或进行分式的加减运算。
初二数学上册知识点总结(人教版)
初二数学上册知识点总结(人教版)初二数学上册知识点总结(人教版)本文档总结了初二数学上册的重要知识点。
以下是每个章节的主要内容概述。
第一章:有理数- 有理数的概念和性质- 有理数的加法、减法、乘法和除法运算- 有理数的大小比较和绝对值- 有理数的混合运算第二章:平方根和立方根- 平方根和立方根的概念和性质- 求平方根和立方根的方法- 平方根和立方根的运算法则第三章:比例与相似- 比例的概念和性质- 求解比例的方法- 相似的概念和性质- 判断两个图形是否相似的方法第四章:代数式- 代数式的概念和表达方法- 代数式的加法、减法、乘法和除法运算- 多项式的概念和运算法则- 代数式的应用问题第五章:一次函数与方程- 一次函数的概念和性质- 一次函数的图像和性质- 解一元一次方程的方法- 一次函数与方程的实际应用第六章:一次不等式和不等式组- 不等式及其解集的概念- 解一元一次不等式的方法- 解不等式组的方法- 不等式和不等式组的应用第七章:平面图形的认识- 平面图形的基本概念和性质- 三角形的分类和性质- 四边形的分类和性质- 平行线和垂直线的判定方法第八章:平面图形的应用- 通过条件画图的方法- 图形的旋转、翻折和滑动变换- 图形的对称性和轴- 图形的符号表示和坐标表示第九章:数据的处理- 数据的收集和整理方法- 数据的统计和分析方法- 数据的图表表示和解读- 数据的应用问题以上是初二数学上册的知识点总结。
希望对你的学习有所帮助!。
人教版八年级上数学知识点总结
人教版八年级上数学知识点总结
一、整数运算
1. 整数的加减法运算
- 同号相加、异号相减
- 借位规则
2. 整数的乘除法运算
- 正数乘除正数为正,负数乘除负数为正
- 正数乘除负数为负,负数乘除正数为负
二、分数与小数
1. 分数的概念与表示方法
- 分子、分母的含义
- 分数的大小比较
2. 分数的加减法运算
- 分数相加减时,先找到相同的分母
3. 分数的乘除法运算
- 乘法:分子相乘,分母相乘- 除法:乘以倒数
4. 小数的概念与表示方法
- 小数位数与数值大小的关系
三、代数式与方程式
1. 代数式的概念与运算
- 字母的含义
- 代数式的加减运算
2. 一元一次方程
- 方程的定义与解法
- 列方程的步骤与技巧
四、正比例与反比例
1. 正比例
- 定义与性质
- 比例关系的表示方法
2. 反比例
- 定义与性质
- 比例关系的表示方法
五、平面图形与坐标系
1. 平面图形的概念与性质
- 直线、曲线、多边形等
2. 坐标系与坐标表示
- 直角坐标系
- 坐标点的表示方式
以上是人教版八年级上数学的主要知识点总结,希望能对同学们复习和学习有所帮助。
人教版八年级数学上册知识点总结(最新精编版)
人教版八年级数学上册知识点总结第十一章三角形1.三角形的定义定义:不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。
组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。
三角形ABC 用符号表示为△ABC.三角形ABC 的顶点C 所对的边AB 可用c 表示,顶点B 所对的边AC 可用b 表示,顶点A 所对的边BC 可用a 表示.注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC 是三角形ABC 的符号标记,单独的△没有意义.2、(1)三角形按边分类:(2)三角形按角分类:3、三角形的三边关系三角形的任意两边之和大于第三边.三角形的任意两边之差小于第三边。
注意:(1)三边关系的依据是:两点之间线段最短;(2)围成三角形的条件是:任意两边之和大于第三边.三角形等腰三角形不等边三角形底边和腰不相等的等腰三角形等边三角形三角形直角三角形斜三角形锐角三角形钝角三角形人教版八年级数学上册知识点总结D CB A21D CBAD CB A4、和三角形有关的线段:(1)三角形的中线三角形中,连结一个顶点和它对边中点的线段表示法:1、AD 是△ABC 的BC 上的中线.2、BD=DC=0.5BC.3、AD 是∆ABC 的中线;注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部;③三角形三条中线交于三角形内部一点;④中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角与交点之间的线段。
表示法:1、AD 是△ABC 的∠BAC 的平分线.2、∠1=∠2=0.5∠BAC.3、AD 平分∠BAC,交BC 于D注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部;③三角形三条角平分线交于三角形内部一点;(3)三角形的高三角形的高:从三角形的一顶点向它的对边作垂线,顶点和垂足之间的线段叫做三角形的高,表示法:1、AD 是△ABC 的BC 上的高。
(完整版)新人教版八年级数学上册知识点总结归纳
新人教版八年级上册数学知识点总结新人教版八年级上册数学知识点总结归纳1第十一章三角形第12章全等三角形第13章轴对称第14章整式乘法和因式分解第15章分式多边形知识要点梳理ar知识点一:多边形及有关概念多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,则此多边形为凸多边形,反之为凹多边形(见图an dAl l th i n gs in t h ei r b e i n g a r eg o o d f or s o 新人教版八年级上册数学知识点总结 凸多边形 凹多边形 图1 (2)多边形通常还以边数命名,多边形有n 条边就叫做n 边形.三角形、四边形都属于多边形,其中三角 形是边数最少的多边形.知识点二:正多边形 各个角都相等、各个边都相等的多边形叫做正多边形。
如正三角形、正方形、正五边形等。
正三角形 正方形 正五边形 正六边形 正十二边形要点诠释: 各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形知识点三:多边形的对角线 多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. 如图2,BD 为四边形ABCD 的一条对角线。
要点诠释: (1)从n 边形一个顶点可以引(n -3)条对角线,将多边形分成(n -2)个三角形。
(2)n 边形共有条对角线。
证明:过一个顶点有n -3条对角线(n ≥3的正整数),又∵共有n 个顶点,∴共有n(n-3)条对角线,但过两个不相邻顶点的对角线重复了一次,∴凸n 边形,共有条对角线。
知识点四:多边形的内角和公式 1.公式:边形的内角和为. 2.公式的证明: 证法1:在边形内任取一点,并把这点与各个顶点连接起来,共构成个三角形,这个三角形的内角和为,再减去一个周角,即得到边形的内角和为. 证法2:从边形一个顶点作对角线,可以作条对角线,并且边形被分成个三角形,这个三角形内角和恰好是边形的内角和,等于.i e an dl l th i n gs i n t h e i r b e i n g a r e g o o d f o r s o 新人教版八年级上册数学知识点总结 证法3:在边形的一边上取一点与各个顶点相连,得个三角形,边形内角和等于这个三角形的内角和减去所取的一点处的一个平角的度数, 即.要点诠释: (1)注意:以上各推导方法体现出将多边形问题转化为三角形问题来解决的基础思想。
数学八年级上册知识点总结人教版
数学八年级上册知识点总结人教版第十一章三角形。
1. 三角形的概念。
- 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
- 三角形有三条边、三个内角和三个顶点。
2. 三角形的分类。
- 按角分类:- 锐角三角形:三个角都是锐角的三角形。
- 直角三角形:有一个角是直角的三角形,直角三角形中直角所对的边叫做斜边,另外两条边叫做直角边。
- 钝角三角形:有一个角是钝角的三角形。
- 按边分类:- 不等边三角形:三边都不相等的三角形。
- 等腰三角形:有两边相等的三角形,相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,腰与底边所夹的角叫做底角。
等腰三角形中,等边三角形是特殊的等腰三角形,它的三边都相等。
3. 三角形的三边关系。
- 三角形两边之和大于第三边,两边之差小于第三边。
- 用式子表示为:a + b>c,a - b(a、b、c为三角形的三边)。
4. 三角形的高、中线与角平分线。
- 高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。
三角形有三条高,锐角三角形的三条高都在三角形内部;直角三角形有两条高是直角边,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部。
- 中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
三角形的三条中线都在三角形内部,且相交于一点,这个点叫做三角形的重心。
- 角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
三角形的三条角平分线都在三角形内部,且相交于一点。
5. 三角形的内角和与外角和。
- 三角形内角和定理:三角形的内角和为180^∘。
- 三角形的外角:三角形的一边与另一边的延长线组成的角叫做三角形的外角。
- 三角形的外角性质:- 三角形的一个外角等于与它不相邻的两个内角之和。
- 三角形的一个外角大于与它不相邻的任何一个内角。
- 三角形的外角和为360^∘。
初二数学上册知识点总结人教版(精选14篇)
初二数学上册知识点总结人教版〔精选14篇〕篇1:初二数学上册知识点总结人教版初二上册数学知识点一.知识框架二.知识概念1.一次函数:假设两个变量x,y间的关系式可以表示成y=kx+bk≠0的形式,那么称y是x的一次函数x为自变量,y为因变量。
特别地,当b=0时,称y是x的正比例函数。
2.正比例函数一般式:y=kx(k≠0),其图象是经过原点0,0的一条直线。
3.正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k0时,y随x的增大而增大;当k篇2:人教版初二数学上册知识点总结 1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 假如两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的`两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的间隔相等28 定理2 到一个角的两边的间隔一样的点,在这个角的平分线上29 角的平分线是到角的两边间隔相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的断定定理假如一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,假如一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的间隔相等40 逆定理和一条线段两个端点间隔相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点间隔相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 假如两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,假如它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理假如两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247 勾股定理的逆定理假如三角形的三边长a、b、c有关系a2+b2=c2 ,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°550 多边形内角和定理 n边形的内角的和等于(n-2)×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形断定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形断定定理2 两组对边分别相等的四边形是平行四边形58 平行四边形断定定理3 对角线互相平分的四边形是平行四边形59平行四边形断定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角初二上册数学知识点归纳平均数根本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数根本算法:①求出总数量以及总份数,利用根本公式①进展计算。
人教版新编八年级上册数学笔记重点归纳
人教版新编八年级上册数学笔记重点归纳在八年级的数学学习中,学生们将接触到许多新的概念和技能,这些内容不仅为后续的学习打下基础,也为日常生活中的实际应用提供了支持。
本文将对八年级上册数学的重点内容进行归纳总结,帮助学生更好地理解和掌握这些知识。
一、代数基础1. 代数表达式代数表达式是由数字、字母和运算符组成的数学表达式。
学生需要掌握如何简化代数表达式,包括合并同类项和使用分配律。
例子:简化(3x + 5x 2) 得到(8x 2)。
2. 方程与不等式学生需要学习如何解一元一次方程和不等式。
解方程的基本步骤包括移项、合并同类项和系数的处理。
例子:解方程(2x + 3 = 11),步骤为:(2x = 11 3) →(2x = 8) →(x = 4)。
3. 函数概念函数是描述变量之间关系的数学工具。
学生需要理解函数的定义、表示方法(如图像、表格和公式)以及如何判断一个关系是否为函数。
例子:函数(y = 2x + 1) 表示每个(x) 值对应一个(y) 值。
二、几何知识1. 平面几何学生需要掌握基本的几何图形及其性质,包括三角形、四边形、圆等。
特别是三角形的内角和、外角和以及相似三角形的性质。
例子:三角形的内角和为180度。
2. 面积与周长学生需要学习如何计算各种图形的面积和周长。
常见图形的公式包括:矩形:面积= 长×宽,周长= 2(长+ 宽)圆:面积= πr²,周长= 2πr3. 立体几何学生需要了解立体图形的基本性质,包括长方体、正方体、圆柱体等的体积和表面积计算。
例子:长方体的体积公式为(V = 长×宽×高)。
三、统计与概率1. 数据收集与整理学生需要学习如何收集、整理和表示数据,包括使用频数表、条形图和折线图等。
例子:通过频数表整理班级学生的身高数据。
2. 平均数、中位数与众数学生需要掌握如何计算一组数据的平均数、中位数和众数,这些统计量能够帮助我们更好地理解数据的特征。
人教版八年级上册数学知识点汇总
第一章勾股定理1.勾股定理o直角三角形两直角边的平方和等于斜边的平方,即a2+b2=c2(其中a、b为直角边,c为斜边)。
o应用:用于直角三角形中的边长计算、证明等。
2.一定是直角三角形吗o如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形一定是直角三角形。
3.勾股定理的应用o应用于解决实际问题中的直角三角形边长计算。
第二章实数1.认识无理数o有理数:可以表示为有限小数或无限循环小数的数。
o无理数:无限不循环小数,如2、π等。
2.平方根o算数平方根:一个正数x的平方等于a,则x是a的算数平方根。
o平方根:一个数x的平方等于a,则x是a的平方根,正数有两个平方根,互为相反数;0的平方根是0本身;负数没有平方根。
3.立方根o立方根:一个数x的立方等于a,则x是a的立方根。
o每个数都有一个立方根,正数的立方根是正数,0的立方根是0,负数的立方根是负数。
4.估算与开方o估算:对复杂小数进行近似计算。
o用计算机开平方或立方。
5.实数o实数是有理数和无理数的统称,可以在数轴上表示。
第三章位置与坐标1.确定位置o在平面内,确定一个物体的位置一般需要两个数据(横坐标和纵坐标)。
2.平面直角坐标系o由两条互相垂直且有公共原点的数轴组成。
o通常地,两条数轴分别置于水平位置(x轴)与竖直位置(y轴),取向右与向上的方向分别为正方向。
3.轴对称与坐标变化o关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。
第四章一次函数1.函数o如果在一个变化过程中有两个变量x和y,且对于x的每一个值,y都有唯一确定的值,则称y是x的函数。
2.一次函数o形式为y=kx+b(k、b为常数,k ≠ 0)的函数称为一次函数。
o当b = 0时,称为正比例函数y=kx。
3.一次函数的图像及性质o图像是一条直线,经过点(0, b)和(−kb,0)。
o当k > 0时,y随x的增大而增大;当k < 0时,y随x的增大而减小。
最新人教版八年级数学上册第一章知识点汇总(附答案)
最新人教版八年级数学上册第一章知识点
汇总(附答案)
最新人教版八年级数学上册第一章知识点汇总(附答案)
一、整数与实数
1. 整数与实数的概念
整数是由正整数、负整数和0组成的数集,用Z表示。
实数是包括整数、分数和无理数在内的所有数字的集合,用R表示。
2. 整数的大小比较
当整数的绝对值相等时,正整数大于负整数;当整数的绝对值不相等时,绝对值大的整数大于小的整数。
3. 整数的运算
整数的加法、减法满足交换律和结合律,乘法满足交换律、结合律和分配律。
4. 实数的加法、减法、乘法和除法运算
实数的加法、减法、乘法满足交换律、结合律和分配律。
实数
的除法是除数不为0的实数之间的运算。
5. 整数的绝对值
整数a的绝对值表示为|a|,当a≥0时,|a|=a;当a<0时,|a|=-a。
答案:
1. 整数与实数的概念:
- 整数是由正整数、负整数和0组成的数集,用Z表示。
- 实数是包括整数、分数和无理数在内的所有数字的集合,用
R表示。
2. 整数的大小比较:
- 当整数的绝对值相等时,正整数大于负整数;当整数的绝对
值不相等时,绝对值大的整数大于小的整数。
3. 整数的运算:
- 整数的加法、减法满足交换律和结合律,乘法满足交换律、结合律和分配律。
4. 实数的加法、减法、乘法和除法运算:
- 实数的加法、减法、乘法满足交换律、结合律和分配律。
实数的除法是除数不为0的实数之间的运算。
5. 整数的绝对值:
- 整数a的绝对值表示为|a|,当a≥0时,|a|=a;当a<0时,|a|=-a。
初二数学上册知识点总结人教版
初二数学上册知识点总结人教版篇1:初二数学上册知识点总结人教版初二上册数学知识点一.知识框架二.知识概念1.一次函数:若两个变量x,y间的关系式可以表示成y=kx+bk≠0的形式,则称y是x的一次函数x为自变量,y为因变量。
特别地,当b=0时,称y是x的正比例函数。
2.正比例函数一般式:y=kx(k≠0),其图象是经过原点0,0的一条直线。
3.正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
4.已知两点坐标求函数解析式:待定系数法线性函数是初中生学习函数的开始,也是以后学习其他函数的基石。
教师在学习本章内容时,要从实际问题出发,引入变量,从具体到抽象理解事物。
培养学生良好的变化感和对应感,体验数形结合的思想。
在教学过程中,要更加注重理解和应用,同时解决实际问题,让学生体会到数学的实用价值和乐趣。
初二数学知识点总结归纳运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:① 列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分数的加减规则是:同分母分数加减,同分母分子加减。
人教版八年级数学上册知识点归纳总结全册资料
人教版八年级数学上册知识点归纳总结全册资料目录1. 单元一:有理数2. 单元二:平方根与立方根3. 单元三:一元一次方程4. 单元四:图形的平移与旋转5. 单元五:函数的概念与性质6. 单元六:方程与不等式7. 单元七:统计与概率8. 单元八:相交线与平行线9. 单元九:锐角与三角函数10. 单元十:三角恒等变换单元一:有理数- 有理数的定义与相反数- 有理数的大小比较- 有理数的加减法运算- 有理数的乘法运算- 有理数的除法运算- 近似数和有效数字单元二:平方根与立方根- 平方根的定义与性质- 平方根的计算- 平方根的应用- 立方根的定义与性质- 立方根的计算- 立方根的应用单元三:一元一次方程- 一元一次方程的定义与解的概念- 一元一次方程的解法与检验- 一元一次方程的应用单元四:图形的平移与旋转- 图形的平移与平移变换- 图形的旋转与旋转变换- 图形的轴对称与轴对称变换- 图形的合同与合同变换单元五:函数的概念与性质- 函数的定义与表示- 函数的自变量与因变量- 函数的图像与对应关系- 函数的单调性与奇偶性- 函数的性质与判断单元六:方程与不等式- 一元二次方程- 一元二次方程的解法与应用- 一元二次方程的判别式与根的关系- 一元二次不等式与解的概念- 一元二次不等式的解法与应用单元七:统计与概率- 统计图表的应用与分析- 统计调查与样本估计- 概率的基本概念与计算- 概率的应用与分析单元八:相交线与平行线- 平行线的定义、性质与判定- 平行线的性质与应用- 相交线的性质与应用- 平行线与相交线综合应用单元九:锐角与三角函数- 锐角的概念与性质- 三角函数的定义与计算- 锐角三角函数的应用与计算- 锐角三角函数的图像与性质单元十:三角恒等变换- 三角恒等式的等价性与证明- 三角恒等式的应用与计算- 三角恒等式的证明技巧与方法以上为人教版八年级数学上册的知识点归纳总结,希望对您有所帮助。
需要更详细的内容和解释,请参考教材或向老师咨询。
人教版八年级数学上册知识点总结和复习要点
人教版八年级数学上册知识点总结和复习要点一、全等三角形1全等三角形的概念与性质概念:能够完全重合的两个三角形叫做全等三角形。
性质:全等三角形的对应边相等,对应角相等。
2全等三角形的判定条件SSS(边边边):三边对应相等的两个三角形全等。
SAS(边角边):两边及其夹角对应相等的两个三角形全等。
ASA(角边角):两角及其夹边对应相等的两个三角形全等。
AAS(角角边):两角及其一角的对边对应相等的两个三角形全等。
HL(直角、斜边):在一对直角三角形中,斜边及另一条直角边相等。
例子:若△ABC与△DEF中,AB = DE,AC = DF,∠A = ∠D,则根据SAS判定条件,△ABC ≌△DEF。
二、轴对称1轴对称的概念概念:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2轴对称的性质性质:轴对称图形上对应点到对称轴的距离相等;对应点的连线与对称轴垂直。
例子:等腰三角形是轴对称图形,其对称轴是底边上的高(中线或顶角平分线)。
三、实数1平方根与立方根的概念平方根:如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方根)。
立方根:如果一个数的立方等于a,那么这个数就叫做a的立方根(或三次方根)。
2实数的分类与性质实数可以分为有理数和无理数两大类。
有理数包括整数和分数,而无理数则是无限不循环小数。
实数具有封闭性、有序性和传递性等性质。
例子:√4 = 2,是4的平方根;∛8 = 2,是8的立方根。
四、一次函数1一次函数的概念概念:一般地,形如y = kx + b(k,b是常数,k ≠0)的函数,叫做一次函数。
2一次函数的性质性质:一次函数的图像是一条直线;当k > 0时,函数值y随x的增大而增大;当k < 0时,函数值y随x的增大而减小。
例子:函数y = 2x + 1是一次函数,其图像是一条斜率为2、截距为1的直线。
五、整式的乘法与因式分解1整式的乘法整式的乘法包括单项式乘单项式、单项式乘多项式、多项式乘多项式等。
八年级上册人教版数学知识点7篇
八年级上册人教版数学知识点7篇八年级上册人教版数学知识点11全等三角形的对应边、对应角相等2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等3角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等5边边边公理(SSS)有三边对应相等的两个三角形全等6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等7定理1在角的平分线上的点到这个角的两边的距离相等8定理2到一个角的两边的距离相同的点,在这个角的平分线上9角的平分线是到角的两边距离相等的所有点的集合10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)11推论1等腰三角形顶角的平分线平分底边并且垂直于底边12等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合13推论3等边三角形的各角都相等,并且每一个角都等于60°14等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)15推论1三个角都相等的三角形是等边三角形16推论2有一个角等于60°的等腰三角形是等边三角形17在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半18直角三角形斜边上的中线等于斜边上的一半19定理线段垂直平分线上的点和这条线段两个端点的距离相等20逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上初二数学求定义域口诀求定义域有讲究,四项原则须留意。
负数不能开平方,分母为零无意义。
指是分数底正数,数零没有零次。
限制条件不唯一,满足多个不等式。
求定义域要过关,四项原则须注意。
负数不能开平方,分母为零无意义。
分数指数底正数,数零没有零次。
限制条件不唯一,不等式组求解集。
初中提高数学成绩诀窍很多初中生认为自己只要上数学课听得懂就够了,但是一做到综合题就蒙了,基础题会做,但是会马虎。
新人教版八年级上册数学各章节知识点总结(最新整理)
轴对称图形可以经过旋转得出。 用坐标轴表示轴对称:关于 x 轴对称(x,y)与(x,-y);关于 y 轴对称(x,y)与(-x,y)。 第三节等腰三角形 有两个边相等的三角形叫做等腰三角形。 等腰三角形的性质:1)等腰三角形的两个底角相等。简言之:等边对等角。
1 ap
(
a≠0,p是正
整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的;当a<0时,a-p的值可能是正也可能是负的,如
(2)2
1 (2)2
1 4
, (2)3
1 (2)3
1 8
;
④运算要注意运算顺序。 2.整式的除法 1)单项式除法单项式 单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的 指数作为商的一个因式; 2)多项式除以单项式
一般地, (a)n
a n (当n为偶数时), a n (当n为奇数时).
底数有时形式不同,但可以化成相同。 要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。 3.积的乘方法则
一般地,对于任意底数a、b与任意正整数n,有 (ab)n an bn (n为正整数)。即积的乘方,等于把积
②相同字母相乘,运用同底数的乘法法则;
③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式; ④单项式乘法法则对于三个以上的单项式相乘同样适用; ⑤单项式乘以单项式,结果仍是一个单项式。
2)单项式与多项式相乘:就是用单项式去乘多项式的每一项,再把所得的积相加。即单项式乘以多项式, 是通过乘法对加法的分配律,把它转化为单项式乘以单项式。
新人教版数学八年级上册知识总结
新人教版数学八年级上册知识总结本文总结了新人教版数学八年级上册的主要知识点。
1. 整数
- 整数的概念及表示法:正整数、负整数、零
- 整数的加法与减法运算规则
- 整数的乘法与除法运算规则
- 整数的乘方运算规则
- 整数的运算性质
2. 分数
- 分数的概念及表示法
- 分数的加法与减法运算规则
- 分数的乘法与除法运算规则
- 分数的化简与比较
3. 小数
- 小数的概念及表示法
- 小数的加法与减法运算规则- 小数的乘法与除法运算规则- 小数与分数的转换
4. 百分数
- 百分数的概念及表示法
- 百分数的加法与减法运算规则- 百分数的乘法与除法运算规则- 百分数与小数、分数的关系
5. 平方根与立方根
- 平方根的概念、性质与计算- 立方根的概念、性质与计算- 平方根与立方根的运算规则
6. 图形的认识
- 点、线、线段、射线的概念
- 线段的比较与运算
- 直角、直线、平行线、垂直线的概念
- 多边形的分类与性质
7. 算式与方程式
- 代数式的概念及表示法
- 算式与方程式的区别与联系
- 一元一次方程的解法
以上是本文对新人教版数学八年级上册的知识总结,包括整数、分数、小数、百分数、平方根与立方根、图形的认识以及算式与方
程式等内容。
希望能够帮助你对该教材的学习有所了解。
(完整版)人教版八年级数学上册知识点总结
(完整版)人教版八年级数学上册知识点总
结
人教版八年级数学上册知识点总结
本文档总结了人教版八年级数学上册的知识点,旨在帮助学生复和掌握这一学期的数学内容。
1. 数与式
- 自然数、整数、有理数、无理数的概念和区别
- 分数与小数的相互转化及其应用
- 相反数和绝对值的概念和计算方法
- 科学记数法和约数、倍数的概念
2. 代数初步
- 代数式的概念和基本性质
- 代数式的运算:加减乘除、合并同类项、提取公因式等
- 一元一次方程的解法和实际应用
- 描述和解决问题中的代数问题
3. 几何初步
- 点、线、面及其相互关系的认识
- 基本图形的性质和计算
- 三角形的分类及其性质
- 直角三角形的勾股定理和应用
4. 相似和全等
- 图形的相似性质和判定方法
- 相似三角形的性质和计算
- 全等图形的性质和判定方法
5. 平面直角坐标系
- 平面直角坐标系的建立和使用
- 点的坐标及其运算
- 点在平面直角坐标系中的位置关系和性质
6. 数据与概率
- 统计图表的表示和读取
- 中心倾向与离散程度的度量
- 概率的基本概念和计算方法
- 利用概率解决问题
以上是人教版八年级数学上册的知识点总结,希望对同学们的学习有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版八年级数学上册知识点总结第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:n边形的内角和等于(2)n-·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n边形的一个顶点出发可以引(3)n-条对角线,把多边形分成(2)n-个三角形.②n边形共有(3)2n n-条对角线.第十二章全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质①点P(,)-.x yx y关于x轴对称的点的坐标为'P(,)②点P(,)-.x yx y关于y轴对称的点的坐标为"P(,)⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章 整式的乘除与分解因式一、知识框架:二、知识概念:1.基本运算:⑴同底数幂的乘法:m n m n a a a +⨯=⑵幂的乘方:()n m mn a a =⑶积的乘方:()n nab a =2.整式的乘法: ⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式.⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3.计算公式:⑴平方差公式:()()22-⨯+=-a b a b a b⑵完全平方公式:()222a b a ab b2-=-++=++;()2222a b a ab b4.整式的除法:⑴同底数幂的除法:m n m n÷=a a a-⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式.⑶多项式÷单项式:用多项式每个项除以单项式后相加.⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:()()22-=+-a b a b a b②完全平方公式:()2222±+=±a ab b a b③立方和:3322+=+-+a b a b a ab b()()④立方差:3322-=-++()()a b a b a ab b⑶十字相乘法:()()()2+++=++x p q x pq x p x q⑷拆项法⑸添项法第十五章分式一、知识框架:二、知识概念:1.分式:形如A B,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a b c c c ±±= ⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a cacb d bd ⨯=⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与 被除式相乘.用字母表示为:a ca d adb d bc bc÷=⨯= ⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:n n n a a b b ⎛⎫= ⎪⎝⎭8.整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数)⑵()n m mn a a =(m n 、是正整数)⑶()n n n ab a b =(n 是正整数)⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >) ⑸n n n a a b b ⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1n n a a -=(0a ≠,n 是正整数)9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).---精心整理,希望对您有所帮助。