实验十二 铁磁材料的磁滞回线和基本磁化曲线

合集下载

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告一、实验目的1、认识铁磁物质的磁化规律,加深对铁磁材料磁滞回线和基本磁化曲线概念的理解。

2、学会使用示波器观察并测绘铁磁材料的磁滞回线和基本磁化曲线。

3、测定样品的一些基本磁化参数,如饱和磁感应强度 Bs、剩磁感应强度 Br、矫顽力 Hc 等。

二、实验原理1、铁磁材料的磁化特性铁磁物质具有很强的磁化能力,其磁导率远大于非铁磁物质。

铁磁材料的磁化过程是不可逆的,存在磁滞现象。

2、磁滞回线当磁场强度 H 从零开始逐渐增加时,磁感应强度 B 随之增加。

当H 增大到一定值时,B 不再增加,达到饱和值 Bs。

随后逐渐减小 H,B 并不沿原曲线减小,而是滞后于 H 的变化。

当 H 减小到零时,B 不为零,而是保留一定的值 Br,称为剩磁感应强度。

要使 B 减为零,必须加反向磁场,当反向磁场达到一定值 Hc 时,B 才为零,Hc 称为矫顽力。

继续增大反向磁场,B 达到反向饱和值Bs,再逐渐增大正向磁场,B 又沿原来的曲线变化,形成一个闭合的曲线,称为磁滞回线。

3、基本磁化曲线将一系列不同幅值的正弦交变磁场依次作用于铁磁材料样品,可得到一系列大小不同的磁滞回线。

连接各磁滞回线顶点的曲线称为基本磁化曲线。

三、实验仪器示波器、实验变压器、电阻箱、标准互感器、待测铁磁材料环形样品等。

四、实验步骤1、按实验电路图连接好线路,检查无误后接通电源。

2、调节示波器,使其能清晰显示磁滞回线。

3、逐渐增大交流电压,使磁场强度 H 逐渐增加,观察示波器上磁滞回线的变化,直至达到饱和。

4、逐点记录磁滞回线顶点的坐标(H,B)。

5、减小交流电压,重复上述步骤,测量多组数据。

6、根据测量数据绘制磁滞回线和基本磁化曲线。

五、实验数据记录与处理1、实验数据记录表|交流电压(V)|磁场强度 H(A/m)|磁感应强度 B(T)|||||||||2、根据实验数据,在坐标纸上绘制磁滞回线。

3、连接磁滞回线的顶点,得到基本磁化曲线。

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告

实验题目:铁磁材料的磁滞回线和基本磁化曲线实验目的:认识铁磁物质的磁化规律;测定样品的基本磁化规律,作μ-H 曲线;计算样品的H c 、B r 、B m和(H m ,B m )等参数;测绘样品的磁滞回线,估算其磁带损耗。

实验原理:铁磁物质在外磁场作用下被强烈磁化,故磁导率μ很大;在磁化场作用停止后,铁磁质可以保留磁化状态。

以B 为纵轴,H 为横轴作图,原点表示磁化之前物质处于磁中性状态,B=H=0,当H 开始增加时,B 随之增加。

如右上图中a ,称为起始磁化曲线。

当H 从H m 减小时,B 沿滞后于H 的曲线SR 减小,这就是磁滞现象。

当H=0时,B=B r 称为保留剩磁。

当B=0时,H=-H c ,H c 称为矫顽力。

当磁场沿H m →0→-H c →-H m →0→H c →H m 次序变化时,相应的B 沿一条闭合曲线变化(右上图),这个曲线就是磁滞回线。

若铁磁材料在交变电场中不断反复被磁 图一:磁滞回线化、去磁化,那么材料在这个过程中要消耗额外的能量,称为磁滞损耗,其值与磁滞回线面积成正比。

磁滞回线的顶点的连线称为基本磁化曲线(右下图)。

实验内容:1、将仪器的连线连接好,开启仪器;2、退磁后,将额定电压调至3.0V ,测量铁磁质的磁滞回线;3、将电压从0.5V 逐渐调至3.0V ,依次得到B m 、H m ,从而得到铁磁质的基本磁化曲线。

实验数据: B表一:磁滞回线数据表二:基本磁化曲线数据数据处理:磁滞回线根据数据作图得:图三:实验测量所得磁滞回线从图中大致得到:B m=0.604T;H m=194.0A/m;B r=0.183T;H c=37.3A/m。

基本磁化曲线根据数据作图得:图四:实验所得基本磁化曲线实验小结:1、本实验原理相对比较简单,操作上也没有什么难点,但是应该注意每次进行完一次测量,应当进行退磁处理,否则测量结果将不准确;2、实验中发现若使用电压越高,那么进行一次退磁后的剩磁会越多,这和电压高所带来的更大的磁滞现象有关;3、实验最终所得结果比较理想,磁滞曲线和基本磁化曲线与标准图样相比基本相同。

铁磁材料的磁滞回线和基本磁化曲线

铁磁材料的磁滞回线和基本磁化曲线

铁磁材料的磁滞回线和基本磁化曲线【实验目的】1. 认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。

2. 测定样品的基本磁化曲线,作μ-H 曲线。

3. 测定样品的H D、B r、B S 和(H m·B m)等参数。

4. 测绘样品的磁滞回线,估算其磁滞损耗。

【实验仪器】DH4516 型磁滞回线实验仪,数字万用表,示波器。

【实验原理】铁磁物质是一种性能特异,用途广泛的材料。

铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。

其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。

另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B与磁化场强度H之间的关系曲线。

图中的原点O表示磁化之前铁磁物质处于磁中性状态,即B=H=O,当磁场H从零开始增加时,磁感应强度B随之缓慢上升,如线段o a 所示,继之B随H迅速增长,如a b 所示,其后B的增长又趋缓慢,并当H增至H S 时,B 到达饱和值B S,oabs 称为起始磁化曲线。

图1表明,当磁场从H S 逐渐减小至零,磁感应强度B并不沿起始磁化曲线恢复到“O”点,而是沿另一条新的曲线S R 下降,比较线段O S 和S R 可知,H 减小B相应也减小,但B的变化滞后于H的变化,这现象称为磁滞,磁滞的明显特征是当H=O 时,B不为零,而保留剩磁B r。

当磁场反向从O逐渐变至-H D 时,磁感应强度B消失,说明要消除剩磁,必须施加反向磁场,H D 称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段R D 称为退磁曲线。

图1还表明,当磁场按H S→O→H D→-H S→O→H D´→H S 次序变化,相应的磁感应强度B则沿闭合曲线SRDS' R'D'S 变化,这闭合曲线称为磁滞回线。

所以,当铁磁材料处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。

12铁磁材料的磁滞回线和基本磁化曲线

12铁磁材料的磁滞回线和基本磁化曲线

实验报告:铁磁资料的磁滞回线和基本磁化曲线一、实验题目:铁磁资料的磁滞回线和基本磁化曲线二、实验目的:1认识铁磁物质的磁化规律,比较两种典型的铁磁物质动向磁化特征。

2 测定样品的基本磁化曲线,作μ-H 曲线。

3计算样品的 H c、 B r、 B m和( H m· B m)等参数。

4测绘样品的磁滞回线,估量其磁滞消耗。

三、实验原理:1铁磁资料的磁滞现象铁磁物质是一种性能特异,用途宽泛的资料。

铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。

其特色是在外磁场作用下能被激烈磁化,故磁导率μ很高。

另一特色是磁滞,即磁化场作用停止后,铁磁质仍保存磁化状态,图1为铁磁物质磁感觉强度 B 与磁化场强度H 之间的关系曲线。

图中的原点0 表示磁化以前铁磁物质处于磁中性状态,即B=H=0,当磁场H从零开始增加时,磁感觉强度 B 随之迟缓上涨,如线段0a 所示,继之 B 随 H快速增加,如ab 所示,其后 B 的增加又趋迟缓,并当H 增至 H m时, B 抵达饱和值,0abs 称为开端磁化曲线,图 1 表明,当磁场从H m渐渐减小至零,磁感觉强度 B 其实不沿开端磁化曲线恢复到“0”点,而是沿另一条新曲线SR降落,比较线段0S 和 SR可知, H减小 B 相应也减小,但 B 的变化滞后于H 的变化,这现象称为磁滞,磁滞的显然特色是当H=0时, B 不为零,而保存剩磁Br 。

BH图 1 铁磁资料的开端磁化曲线和磁滞回线图2同一铁磁资料的一簇磁滞回线当磁场反向从0 渐渐变至 -H C时,磁感觉强度 B 消逝,说明要除去剩磁,一定施加反向磁场, H C称为矫顽力,它的大小反应铁磁资料保持剩磁状态能力,线段RD称为退磁曲线。

图 1 还表示,当磁场按 H m→ 0→ H C→ -H m→ 0→ H C→ H m序次变化,相应的磁感觉强度 B 则沿闭合曲线SRDS′ R′ D′ S 变化,这条闭合曲线称为磁滞回线,因此,当铁磁资料处于交变磁场中时(如变压器中的死心),将沿磁滞回线频频被磁化→去磁→反向磁化→反向去磁。

物理实验报告 铁磁材料的磁滞回线和基本磁化曲线

物理实验报告 铁磁材料的磁滞回线和基本磁化曲线

物理实验报告铁磁材料的磁滞回线和基本磁化曲线一、实验原理铁磁材料在磁场的作用下会发生磁化现象,而磁化程度随着磁场强度的变化而发生变化。

在一定的磁场范围内,铁磁材料的磁化程度与磁场的强度之间存在着一种函数关系,成为基本磁化曲线。

而铁磁材料在外磁场作用下,它的磁化状态会发生变化,在磁场强度逐渐增大时,磁矩也逐渐变大,这种变化的过程称为磁滞回线。

本实验旨在通过使用霍尔效应仪器和实验方法,实现对铁磁材料磁滞回线和基本磁化曲线的测定,探讨磁滞回线和基本磁化曲线之间的关系,并对实验结果进行分析和讨论。

二、实验装置实验仪器主要包括霍尔效应电路、锁相放大器、磁力计、线圈等实验器材。

三、实验步骤1、首先将磁力计放置在霍尔效应电路的输出端,然后将电路连接好。

2、在运行实验之前,需要先将霍尔效应电路进行调零操作,以保证实验的精度。

3、在调零之后,需要将待测物品即铁磁材料放置在磁力计的测量端。

4、接下来,可以利用锁相放大器对磁力计的输出信号进行检测,并进行相应的数据采集和处理。

5、在不同磁场强度下,可以对待测物品的磁化状态进行测量和记录,并记录相应的数据。

6、最终,可以将所得数据绘制成磁滞回线和基本磁化曲线图形,并对实验结果进行分析和讨论。

四、实验结果通过对铁磁材料的实验测量和数据处理,可以得到所得到的磁滞回线和基本磁化曲线图形如下:[图1] 铁磁材料的磁滞回线根据实验结果可知,铁磁材料的磁滞回线和基本磁化曲线之间存在着一定的关系,当外磁场逐渐增大时,铁磁材料的磁矩也逐渐增大,并随着磁场的逐渐增大而逐渐达到饱和状态。

当外磁场逐渐减小时,铁磁材料的磁矩也逐渐减小,并在磁场降低到一定程度时达到磁剩余状态。

五、实验分析此外,铁磁材料的基本磁化曲线也具有一定的特点,即其呈现S形曲线,表明在一定的磁场强度范围内,铁磁材料的磁化程度与磁场强度之间呈现一定的正比关系,但随着磁场强度的逐渐增大,铁磁材料的磁化程度将达到饱和状态,磁化度不再增大。

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告一、实验目的1、认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。

2、测定样品的基本磁化曲线,作μ-H 曲线。

3、测定样品的 Hc、Br、Bm 和(Hm,Bm)等参数。

4、了解磁滞回线的概念以及如何用示波器观察磁滞回线。

二、实验原理1、铁磁材料的磁化特性铁磁物质是一种性能特异,用途广泛的材料。

铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。

其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。

另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图 1 为铁磁物质的磁感应强度B 与磁化场强度 H 之间的关系曲线。

图 1 铁磁质 B H 曲线铁磁材料的磁化过程为:其未被磁化时的状态称为去磁状态,这时若在铁磁材料上加一个由小到大的磁化场 H,则铁磁材料内部的磁场强度 B 随 H 的增加而增加,开始时 B 的增加较慢,而后随着 H 的增加,B 的增加变快,再继续增加 H 时,B 的增加又变慢,当 H 增加到 Hm 时,B 达到饱和值Bm 。

从图中可以看出,B 和H 的关系不是线性的,而是非线性的。

2、磁滞回线当 H 从 Hm 逐渐减小至零,B 并不沿起始磁化曲线恢复到“0”点,而是沿另一条新的曲线 SR 下降,比较线段 OS 和 SR 可知,H 减小 B也减小,但 B 的变化滞后于 H 的变化,这一现象称为磁滞。

当 H = 0 时,B = Br,Br 称为剩余磁感应强度。

要使 B 减到 0,必须加一反向磁场 Hc,Hc 称为矫顽力。

若再使反向磁场逐渐增加到 Hm,B 就沿图 1 中 S'R'C'变化,继而在 Hm 到 0 时,B 又沿 S'C 变化。

当 H 在 0 和 Hm 之间反复变化时,就得到一系列闭合的 B H 曲线,称为磁滞回线。

3、基本磁化曲线对于同一铁磁材料,选择不同的最大磁化电流 I,可得到不同的磁滞回线,将各条磁滞回线的顶点连接起来,所得到的曲线称为基本磁化曲线。

铁磁材料的磁滞回线及基本磁化曲线_实验报告

铁磁材料的磁滞回线及基本磁化曲线_实验报告

铁磁材料的磁滞回线及基本磁化曲线_实验报告摘要:本实验旨在从实验结果中观察到铁磁材料的磁滞回线及基本磁化曲线的特性。

根据实验观察,铁磁材料的磁滞回线及基本磁化曲线有一定的特性:当磁感应强度B在某一特定值Ming之后,磁滞回线开始放大;在磁滞回线和磁化曲线处,在较低的磁感应强度B下,磁通密度H值是较为均匀的,当磁感应强度B增大时,磁通密度H增大。

从实验结果看,随着磁感应强度的改变,磁通密度也随之变化。

关键词:铁磁材料;磁滞回线;磁化曲线1、实验目的本实验旨在探究铁磁材料的磁滞回线及基本磁化曲线,主要探究磁化曲线和磁滞回线特性,揭示铁磁材料磁性特性和应用基础。

2、实验原理铁磁性材料在一定范围内,随着外加磁场的强弱,由于内在磁介质的存在,响应磁场的强弱而产生的磁效应,可用磁化曲线来描述,磁化曲线横坐标为外加磁场B,纵坐标为磁通密度H,绘制磁化曲线时,可得到磁滞回线区和磁化曲线区,按假设,若满足磁滞回线的条件,虚部磁化曲线低于实部磁化曲线,磁通密度H随外加磁场B的增强而减弱。

3、实验材料(1)各类铁磁材料;(2)阳极小电流表;(3)变压器;(4)钳形线圈;(5)可调晶闸管及其他电路控制元件;(6)电子计算表等。

4、实验流程(1)实验电路图设计:根据实验要求,绘制实验电路图,电路中包括可调晶闸管、比较示波器和磁电路。

(2)测量磁滞回线:将晶闸管设置为半导体导通阶段,阳极小电流表与变压器连接,在钳形线圈中绕入样品,并加入磁电路及相关电路控制元件,应用变压设备,根据电路控制调节磁感应强度,测量磁滞回线的特性,进而得到磁滞回线参数。

(3)测量磁化曲线:将可调晶闸管设置为完全打开或全关闭,将变压器的输出电压稳定,调节比较示波器的控制参数,进而得到磁化曲线数据,从而得到铁磁材料的磁滞回线和磁化曲线参数。

5、实验结果分析通过上述实验,本实验求出了铁磁材料的磁滞回线及基本磁化曲线参数。

实验研究发现,当磁感应强度B增大时,磁通密度H增大,且随着磁感应强度的改变,磁通密度也随之变化。

实验十二 铁磁材料的磁滞回线和基本磁化曲线

实验十二   铁磁材料的磁滞回线和基本磁化曲线

实验十二 铁磁材料的磁滞回线和基本磁化曲线一、实验目的1.认识铁磁质的磁化规律,比较两种典型的铁磁质的动态磁特性。

2.测定样品的基本磁化曲线,作μr -H 曲线。

3.测定样品的H D 、B r 、B m 和[H ·B]max 等参数。

4.测绘样品的磁滞回线,估算其磁滞损耗。

二、实验原理1.铁磁物质及其磁滞曲线根据介质在磁场中的表现,一般将磁介质分为顺磁质、抗磁质和铁磁质。

设想在真空中(没有磁介质时)有一磁场的磁感应强度是B0,其大小是B 0,将磁介质放入这个磁场中,若磁介质中的磁感应强度比B 0小一点,那末这个介质是抗磁质;若磁介质中的磁感应强度比B 0大一点,那末这个介质是抗磁质;若磁介质中的磁感应强度比B 0大得多,甚至数百数万倍的增长,那末这个介质是铁磁质。

实验表现是铁磁质移近磁极时被吸住,顺磁质稍微有被磁极吸引,而抗磁质反而被磁极稍微推开。

下表是一些材料的相对磁导率,根据相对磁导率很容易区分顺磁质、抗磁质和铁磁质。

铁磁质材料包含铁、钴、镍、某些稀有金属及其众多合金以及它们的许多氧化物的混合物(铁氧体)等。

铁磁质是一种性能特异、用途广泛的材料,我们一般情况提到磁介质均指铁磁质。

其特征是在外磁场作用下能被强烈磁化,磁导率μ很高;另一特征是磁滞,即磁化场消失后,介质仍保留磁性,即有剩磁。

图1为铁磁质的磁感应强度B 与磁化场强度H 之间的关系曲线。

图1 铁磁质的B -H 关系曲线 图2 铁磁质的μ-H 关系曲SS线图1中的原点O表示磁化之前铁磁质处于磁中性状态,即B=H=0,当磁场H从零开始增加时,磁感应强度B随之缓慢上升,如线段Oa所示,继之B 随H迅速增长,如ab所示,其后B的增长又趋缓慢,并当H增至H S时,B到达饱和值B S,OabS称为起始磁化曲线。

(注意:这里说的饱和值B S,并不是说B的最大值。

其实在达到B S后磁感应强度B仍然在随磁化场强度H变化,这时的B-H关系几乎是线性的。

实验_铁磁材料的磁滞回线和基本磁化曲线

实验_铁磁材料的磁滞回线和基本磁化曲线


基本磁化曲线。磁滞回线顶点的连线为铁 磁材料的基本磁化曲线,磁导率。
B H
3,实验器
• 数码照片 • 磁滞回线实验组合分为实验仪和测试仪两大部分 。
4,操作指南
• • • 电路连接。选样品1按实验仪上所给的电路图连接线路, 令 ,“U选择” 置于0位。 和 分别接示波器的“X 输入”和“Y输入”。 R1 2.5 样品退磁。 U U2 1 观察磁滞回线。令 ,调节示波器,出现磁滞回线。
• •
操作指南(续2)
• • 令 测定样品1的特性参数。 取步骤7中的H B-H曲线,并估算曲 U和 B 3的对应值,用坐标纸绘制 .0V , R1 2.5 线所围面积(磁滞损耗)。
5,数据处理
• 按照实验内容的要求,记录所需的数据,自己画数据表格。 • 作图。画磁滞回线至少取50个数据。
U 2.2V
操作指南(续1)
• 观察基本磁化曲线。对样品进行退磁,从U=0开始提高励磁电 压,将在显示屏上得到面积由小到大的一族磁滞回线。这些磁 滞回线的顶点就是样品的基本磁化曲线,长余辉示波器,便可 观察到该曲线的轨迹 。 观察比较样品1和2的磁化性能。 测绘曲线。接通实验仪和测试仪之间的连线。开启电源,对样 品进行退磁后,依次测定10组H和B值。
实验 铁磁材料的磁滞回线和基本磁化曲线

1,背景介绍 2,实验原理 3,仪器介绍 4,操作指南 5,数据处理要求
1,简介
• 铁磁材料(镍、钴、铁及其合金)在电力、通讯等领域有着十分 广泛的应用。磁滞回线磁滞回线反映磁性材料在外磁场中的磁化 特性。
2,实验原理
• • 铁磁物质。在外磁场作用下,能被强烈磁化,磁导率很 高。磁场作用停止后,仍保持磁化状态,即磁滞。 0 磁化曲线。O点为磁中性状态,即 B H ,当磁场 H从 H s B达到 0开始增加时,B随之缓慢上升,并当H到 时, 饱和值 B ,到此为磁化曲线。当 H减小到0时,B不为0, s 而保留剩磁 。 Br

铁磁材料的磁滞回线和基本磁化曲线

铁磁材料的磁滞回线和基本磁化曲线
Байду номын сангаас
2,实验原理 ,
铁磁物质。在外磁场作用下,能被强烈磁化,磁导率很 高。磁场作用停止后,仍保持磁化状态,即磁滞。 磁化曲线。O点为磁中性状态,即B = H = 0,当磁场H 从0开始增加时,B随之缓慢上升,并当H到 H s 时,B达 到饱和值 Bs ,到此为磁化曲线。当H减小到0时,B不 为0,而保留剩磁 B r 。 当磁场反向从0逐渐变为时,B消失,即要消除剩磁,必 须加反向磁场。 Hc 为矫顽力,反映保持剩磁状态的能力。
磁化曲线和磁滞回线
实验原理( 实验原理(续)
磁滞回线。当铁磁材料处于交变磁场中, 将沿磁滞回线反复运动,在此过程中要消 耗额外的能量,并以热的形式释放,为磁 滞损耗。可以证明,磁滞损耗与磁滞回线 所围面积成正比。 基本磁化曲线。磁滞回线顶点的连线为铁 磁材料的基本磁化曲线,磁导率。 B
µ =
H
3,实验仪器 ,
大学物理实验-预习导航 大学物理实验 预习导航
铁磁材料的磁滞回线和 基本磁化曲线
北京工业大学 高一波
内容介绍
1,背景介绍 2,实验原理 3,仪器介绍 4,操作指南 5,数据处理要求
1,简介 ,
铁磁材料(镍、钴、铁及其合金)在电力、通 讯等领域有着十分广泛的应用。磁滞回线磁滞 回线反映磁性材料在外磁场中的磁化特性。
操作指南( 操作指南(续2) )
令 U = 3.0V , R1 = 2.5Ω 测定样品1的特性参数。 取步骤7中的H和B的对应值,用坐标纸绘制 B-H曲线,并估算曲线所围面积(磁滞损 耗)。
5,数据处理 ,
按照实验内容的要求,记录所需的数据,自己 画数据表格。 作图。画磁滞回线至少取50个数据。
操作指南( 操作指南(续1) )

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告

实验题目:铁磁材料的磁滞回线和基本磁化曲线实验目的:认识铁磁物质的磁化规律;测定样品的基本磁化规律,作μ—H曲线;计算样品的H c、Br、B m和(H m,Bm)等参数;测绘样品的磁滞回线,估算其磁带损耗。

实验原理:铁磁物质在外磁场作用下被强烈磁化,故磁导率μ很Array大;在磁化场作用停止后,铁磁质可以保留磁化状态。

以B为纵轴,H为横轴作图,原点表示磁化之前物质处于磁中性状态,B=H=0,当H开始增加时,B随之增加。

如右上图中a,称为起始磁化曲线.当H从H m减小时,B沿滞后于H的曲线SR减小,这就是磁滞现象。

当H=0时,B=Br称为保留剩磁。

当B=0时,H=-H c,H c称为矫顽力。

当磁场沿H m→0→-Hc→-Hm→0→H c→H m次序变化时,相应的B沿一条闭合曲线变化(右上图),这个曲线就是磁滞回线.若铁磁材料在交变电场中不断反复被磁图一:磁滞回线化、去磁化,那么材料在这个过程中要消耗额外的B 能量,称为磁滞损耗,其值与磁滞回线面积成正比。

磁滞回线的顶点的连线称为基本磁化曲线(右下图)。

图二:基本磁化曲线实验内容:1、将仪器的连线连接好,开启仪器;2、退磁后,将额定电压调至3。

0V,测量铁磁质的磁滞回线;3、将电压从0。

5V逐渐调至3.0V,依次得到Bm、Hm,从而得到铁磁质的基本磁化曲线.实验数据:磁滞回线:表一:磁滞回线数据数据处理:磁滞回线根据数据作图得:图三:实验测量所得磁滞回线从图中大致得到:Bm=0.604T;Hm=194。

0A/m;B r=0.183T;H c=37。

3A/m。

基本磁化曲线根据数据作图得:图四:实验所得基本磁化曲线实验小结:1、本实验原理相对比较简单,操作上也没有什么难点,但是应该注意每次进行完一次测量,应当进行退磁处理,否则测量结果将不准确;2、实验中发现若使用电压越高,那么进行一次退磁后的剩磁会越多,这和电压高所带来的更大的磁滞现象有关;3、实验最终所得结果比较理想,磁滞曲线和基本磁化曲线与标准图样相比基本相同。

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】实验题目:铁磁材料的磁滞回线和基本磁化曲线 实验目的:认识铁磁物质的磁化规律;测定样品的基本磁化规律,作μ-H 曲线;计算样品的H c 、B r 、B m 和(H m ,B m )等参数;测绘样品的磁滞回线,估算其磁带损耗。

实验原理:铁磁物质在外磁场作用下被强烈磁化,故磁导率μ很大;在磁化场作用停止后,铁磁质可以保留磁化状态。

以B 为纵轴,H 为横轴作图,原点表示磁化之前物质处于磁中性状态,B=H=0,当H 开始增加时,B 随之增加。

如右上图中a ,称为起始磁化曲线。

当H 从H m 减小时,B 沿滞后于H 的曲线SR 减小,这就是磁滞现象。

当H=0时,B=B r 称为保留剩磁。

当B=0时,H=-H c ,H c 称为矫顽力。

当磁场沿H m →0→-H c →-H m →0→H c →H m 次序变化时,相应的B 沿一条闭合曲线变化(右上图),这个曲线就是磁滞回线。

若铁磁材料在交变电场中不断反复被磁 图一:磁滞回线化、去磁化,那么材料在这个过程中要消耗额外的能量,称为磁滞损耗,其值与磁滞回线面积成正比。

磁滞回线的顶点的连线称为基本磁化曲线(右下图)。

B图二:基本磁化曲线实验内容:1、将仪器的连线连接好,开启仪器;2、退磁后,将额定电压调至,测量铁磁质的磁滞回线;3、将电压从逐渐调至,依次得到Bm 、Hm,从而得到铁磁质的基本磁化曲线。

实验数据:磁滞回线:表一:磁滞回线数据基本磁化曲线:表二:基本磁化曲线数据数据处理:磁滞回线根据数据作图得:图三:实验测量所得磁滞回线从图中大致得到:Bm=;Hm=m;Br=;Hc=m。

基本磁化曲线根据数据作图得:图四:实验所得基本磁化曲线实验小结:1、本实验原理相对比较简单,操作上也没有什么难点,但是应该注意每次进行完一次测量,应当进行退磁处理,否则测量结果将不准确;2、实验中发现若使用电压越高,那么进行一次退磁后的剩磁会越多,这和电压高所带来的更大的磁滞现象有关;3、实验最终所得结果比较理想,磁滞曲线和基本磁化曲线与标准图样相比基本相同。

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告

实验题目:铁磁材料的磁滞回线和基本磁化曲线 实验目的:认识铁磁物质的磁化规律;测定样品的基本磁化规律,作μ-H曲线;计算样品的H c 、B r 、B m 和(H m ,B m )等参数;测绘样品的磁滞回线,估算其磁带损耗。

实验原理:铁磁物质在外磁场作用下被强烈磁化,故磁导率μ很大;在磁化场作用停止后,铁磁质可以保留磁化状态。

以B 为纵轴,H 为横轴作图,原点表示磁化之前物质处于磁中性状态,B=H=0,当H 开始增加时,B 随之增加。

如右上图中a ,称为起始磁化曲线。

当H 从H m 减小时,B 沿滞后于H 的曲线SR 减小,这就是磁滞现象。

当H=0时,B=B r 称为保留剩磁。

当B=0时,H=-H c ,H c 称为矫顽力。

当磁场沿H m →0→-H c →-H m →0→H c →H m 次序变化时,相应的B 沿一条闭合曲线变化(右上图),这个曲线就是磁滞回线。

若铁磁材料在交变电场中不断反复被磁 图一:磁滞回线化、去磁化,那么材料在这个过程中要消耗额外的能量,称为磁滞损耗,其值与磁滞回线面积成正比。

磁滞回线的顶点的连线称为基本磁化曲线(右下图)。

B图二:基本磁化曲线实验内容:1、将仪器的连线连接好,开启仪器;2、退磁后,将额定电压调至,测量铁磁质的磁滞回线;3、将电压从逐渐调至,依次得到B m、H m,从而得到铁磁质的基本磁化曲线。

实验数据:磁滞回线:表一:磁滞回线数据基本磁化曲线:表二:基本磁化曲线数据数据处理:磁滞回线根据数据作图得:图三:实验测量所得磁滞回线从图中大致得到:B m=;H m=m;B r=;H c=m。

基本磁化曲线根据数据作图得:图四:实验所得基本磁化曲线实验小结:1、本实验原理相对比较简单,操作上也没有什么难点,但是应该注意每次进行完一次测量,应当进行退磁处理,否则测量结果将不准确;2、实验中发现若使用电压越高,那么进行一次退磁后的剩磁会越多,这和电压高所带来的更大的磁滞现象有关;3、实验最终所得结果比较理想,磁滞曲线和基本磁化曲线与标准图样相比基本相同。

铁磁材料的滞回线和基本磁化曲线实验报告

铁磁材料的滞回线和基本磁化曲线实验报告

铁磁材料的滞回线和基本磁化曲线
实验报告.doc
铁磁材料的滞回线和基本磁化曲线实验报告
一、实验介绍
1.目的:了解铁磁材料的滞回线特性和基本磁化曲线特性。

2.原理:铁磁材料对外加磁场可以产生磁化,当外加磁场大于一定值时,磁化会达到平衡,此时,电流为零。

3.实验装置:实验使用的设备有:铁磁材料及其连接的实验装置,电流表、电压表等。

二、实验步骤
1.准备实验:将铁磁材料放入实验装置中,接上电源,接好电流表、电压表等装置,打开实验装置。

2.测量滞回线:用电流表测量铁磁材料在不同外加磁场下的磁化,记录电流和电压数据,即可得到滞回线的曲线。

3.测量基本磁化曲线:用电压表测量铁磁材料在不同外加磁场下的磁化,记录电流和电压数据,即可得到基本磁化曲线的曲线。

三、实验结果
1.滞回线曲线:
在H=0.2T,I=0mA时,V=1.9V;
在H=0.4T,I=4.8mA时,V=3.6V;
在H=0.6T,I=9.6mA时,V=5.3V;
在H=0.8T,I=14.4mA时,V=7.0V;
2.基本磁化曲线:
在H=0.2T,V=1.9V时,I=0mA;
在H=0.4T,V=3.6V时,I=4.8mA;
在H=0.6T,V=5.3V时,I=9.6mA;
在H=0.8T,V=7.0V时,I=14.4mA。

四、实验结论
通过实验,我们发现,铁磁材料的滞回线曲线是一条倒U形曲线,而基本磁化曲线是一条正U形曲线,由此可见,铁磁材料对外加磁场的反应有其特定规律。

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告

实验题目:铁磁材料的磁滞回线和基本磁化曲线实验目的:认识铁磁物质的磁化规律;测定样品的基本磁化规律,作μ-H 曲线;计算样品的H c 、B r 、B m 和(H m ,B m )等参数;测绘样品的磁滞回线,估算其磁带损耗。

实验原理:铁磁物质在外磁场作用下被强烈磁化,故磁导率μ很大;在磁化场作用停止后,铁磁质可以保留磁化状态。

以B 为纵轴,H 为横轴作图,原点表示磁化之前物质处于磁中性状态,B=H=0,当H 开始增加时,B 随之增加。

如右上图中a ,称为起始磁化曲线。

当H 从H m 减小时,B 沿滞后于H 的曲线SR 减小,这就是磁滞现象。

当H=0时,B=B r 称为保留剩磁。

当B=0时,H=-H c ,H c 称为矫顽力。

当磁场沿H m →0→-H c →-H m →0→H c →H m 次序变化时,相应的B 沿一条闭合曲线变化(右上图),这个曲线就是磁滞回线。

若铁磁材料在交变电场中不断反复被磁 图一:磁滞回线化、去磁化,那么材料在这个过程中要消耗额外的能量,称为磁滞损耗,其值与磁滞回线面积成正比。

磁滞回线的顶点的连线称为基本磁化曲线(右下图)。

B图二:基本磁化曲线实验内容:1、将仪器的连线连接好,开启仪器;2、退磁后,将额定电压调至3.0V,测量铁磁质的磁滞回线;3、将电压从0.5V逐渐调至3.0V,依次得到B m、H m,从而得到铁磁质的基本磁化曲线。

实验数据:磁滞回线:表一:磁滞回线数据基本磁化曲线:表二:基本磁化曲线数据数据处理:磁滞回线根据数据作图得:图三:实验测量所得磁滞回线从图中大致得到:B m=0.604T;H m=194.0A/m;B r=0.183T;H c=37.3A/m。

基本磁化曲线根据数据作图得:图四:实验所得基本磁化曲线实验小结:1、本实验原理相对比较简单,操作上也没有什么难点,但是应该注意每次进行完一次测量,应当进行退磁处理,否则测量结果将不准确;2、实验中发现若使用电压越高,那么进行一次退磁后的剩磁会越多,这和电压高所带来的更大的磁滞现象有关;3、实验最终所得结果比较理想,磁滞曲线和基本磁化曲线与标准图样相比基本相同。

铁磁材料的磁滞回线及基本磁化曲线-实验报告

铁磁材料的磁滞回线及基本磁化曲线-实验报告

铁磁材料的磁滞回线和基本磁化曲线【实验目的】1. 认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。

2. 测定样品的基本磁化曲线,作μ-H曲线。

3. 测定样品的H D、B r、B S和(H m·B m)等参数。

4. 测绘样品的磁滞回线,估算其磁滞损耗。

【实验仪器】DH4516型磁滞回线实验仪,数字万用表,示波器。

【实验原理】铁磁物质是一种性能特异,用途广泛的材料。

铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。

其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。

另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B与磁化场强度H之间的关系曲线。

图中的原点O表示磁化之前铁磁物质处于磁中性状态,即B=H=O,当磁场H从零开始增加时,磁感应强度B随之缓慢上升,如线段oa所示,继之B随H迅速增长,如ab所示,其后B的增长又趋缓慢,并当H增至H S时,B到达饱和值B S,oabs称为起始磁化曲线。

图1表明,当磁场从H S逐渐减小至零,磁感应强度B并不沿起始磁化曲线恢复到“O”点,而是沿另一条新的曲线SR下降,比较线段OS和SR可知,H减小B相应也减小,但B的变化滞后于H的变化,这现象称为磁滞,磁滞的明显特征是当H=O时,B不为零,而保留剩磁Br。

当磁场反向从O逐渐变至-H D时,磁感应强度B消失,说明要消除剩磁,必须施加反向磁场,H D称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD称为退磁曲线。

图1还表明,当磁场按H S→O→H D→-H S→O→H D´→H S次序变化,相应的磁感应强度B则沿闭合曲线'变化,这闭合曲线称为磁滞回线。

所以,当铁磁材料处于交变磁场中时(如变压器中的铁SR'DSRD'S心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。

在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗,可以证明,磁滞损耗与磁滞回线所围面积成正比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验十二 铁磁材料的磁滞回线和基本磁化曲线一、实验目的1.认识铁磁质的磁化规律,比较两种典型的铁磁质的动态磁特性。

2.测定样品的基本磁化曲线,作μr -H 曲线。

3.测定样品的H D 、B r 、B m 和[H ·B]max 等参数。

4.测绘样品的磁滞回线,估算其磁滞损耗。

二、实验原理1.铁磁物质及其磁滞曲线根据介质在磁场中的表现,一般将磁介质分为顺磁质、抗磁质和铁磁质。

设想在真空中(没有磁介质时)有一磁场的磁感应强度是B0,其大小是B 0,将磁介质放入这个磁场中,若磁介质中的磁感应强度比B 0小一点,那末这个介质是抗磁质;若磁介质中的磁感应强度比B 0大一点,那末这个介质是抗磁质;若磁介质中的磁感应强度比B 0大得多,甚至数百数万倍的增长,那末这个介质是铁磁质。

实验表现是铁磁质移近磁极时被吸住,顺磁质稍微有被磁极吸引,而抗磁质反而被磁极稍微推开。

下表是一些材料的相对磁导率,根据相对磁导率很容易区分顺磁质、抗磁质和铁磁质。

铁磁质材料包含铁、钴、镍、某些稀有金属及其众多合金以及它们的许多氧化物的混合物(铁氧体)等。

铁磁质是一种性能特异、用途广泛的材料,我们一般情况提到磁介质均指铁磁质。

其特征是在外磁场作用下能被强烈磁化,磁导率μ很高;另一特征是磁滞,即磁化场消失后,介质仍保留磁性,即有剩磁。

图1为铁磁质的磁感应强度B 与磁化场强度H 之间的关系曲线。

图1 铁磁质的B -H 关系曲线 图2 铁磁质的μ-H 关系曲SS线图1中的原点O表示磁化之前铁磁质处于磁中性状态,即B=H=0,当磁场H从零开始增加时,磁感应强度B随之缓慢上升,如线段Oa所示,继之B 随H迅速增长,如ab所示,其后B的增长又趋缓慢,并当H增至H S时,B到达饱和值B S,OabS称为起始磁化曲线。

(注意:这里说的饱和值B S,并不是说B的最大值。

其实在达到B S后磁感应强度B仍然在随磁化场强度H变化,这时的B-H关系几乎是线性的。

定义M=B/μ0-H为磁化强度,则在B到达饱和值B S后,磁化强度M是几乎不变的,达到饱和磁化强度M S。

饱和磁化强度M S以及如图2所示的起始磁导率μI、最大磁导率μM是研究软磁材料的三个重要参量。

)当磁场从H S逐渐减小至零,磁感应强度B并不沿起始磁化曲线恢复到O点,而是沿另一条新的曲线SQ下降,比较线段OS和SQ可知,H减小B相应也减小,但B的变化滞后于H的变化,这现象称为磁滞,磁滞的明显特征是当H=0时,B不为零,而保留剩磁Br。

当磁场反向从O逐渐变至-H C时,磁感应强度B消失,说明要消除剩磁,必须施加反向磁场,H C称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段QC称为退磁曲线。

当磁场按H S→O→H C→-H S→O→H C→H S次序变化,相应的磁感应强度B则沿闭合曲线SQCS'Q'C'S变化,这闭合曲线称为磁滞回线。

当铁磁材料处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化—去磁—反向磁化—反向去磁。

在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗,理论和实践证明,磁滞损耗与磁滞回线所围面积成正比。

应该说明,当初始态为H=B=0的铁磁材料,在交变磁场强度由弱到强依次进行磁化,可以得到面积由小到大向外扩张的一簇磁滞回线,如图3所示,这些磁滞回线顶点的连线称为铁磁材料的基本磁化曲线。

由此可近似确定其磁导率=B/H,因B与H非线性,故铁磁材料的μ不是常数而是随H而变化(如图2所示)。

铁磁材料的相对磁导率μr=μ/μ0可高达数千乃至数万,这一特点是它用途广泛的主要原因之一。

磁化曲线和磁滞回线是铁磁材料分类和选用的重要依据,图4为常见的典型磁滞回线。

其中磁滞回线狭长,矫顽力、剩磁和磁滞损耗均较小的软磁材料,是制造变压器、电机和交流磁铁的主要材料。

而硬磁材料的磁滞回线较宽,矫顽力大,剩磁强,可用来制造永磁体。

(参照图5)对于硬磁材料来说,[H·B]max值是一个重要参量,这个值越大越适应于制作永磁体。

对于要求磁感应强度相同的情况,用[H·B]max值大的磁介质可以节省很多材料,它也是永磁体质量好坏的重要标志。

图3图4 典型铁磁性物质的磁滞回线图5铁磁性物质属强磁性材料,它在电工设备和科学研究中的应用非常广泛,按它们的化学成分和性能的不同,可以分为金属磁性材料和非金属磁性材料(铁氧体)两大族。

金属磁性材料还可分为硬磁、软磁和压磁材料等。

实验表明,不同铁磁性物质的磁滞回线形状有很大差异。

图4给出三种不同铁磁材料的磁滞回线,其中软磁材料的面积最小;硬磁材料的矫顽力较大,剩磁也较大;而铁氧体材料的磁滞回线则近似于矩形,故亦称矩磁材料。

软磁材料的特点是相对磁导率μr 和饱和磁感强度B max 一般都比较大,但矫顽力H c 比硬磁质小得多,磁滞回线所包围的面积很小,磁滞特性不显著。

软磁软磁 软磁软磁 硬磁 矩磁材料在磁场中很容易被磁化,而由于它的矫顽力很小,所以也容易去磁。

因此,软磁材料是很适宜于制造电磁铁、变压器、交流电动机、交流发电机等电器中的铁心。

硬磁材料又称永磁材料,它的特点是剩磁B r和矫顽力H c都比较大,磁滞回线所包围的面积也就大,磁滞特性非常显著。

所以把硬磁材料放在外磁场中充磁后,仍能保留较强的磁性,并且这种剩余磁性不易被消除,因此硬磁材料适宜于制造永磁体。

在各种电表及其他一些电器设备中,常用永磁铁来获得稳定的磁场。

压磁材料具有强的磁致伸缩性能。

所谓磁致伸缩是指铁磁性物体的形状和体积在磁场变化时也会发生变化,特别是改变物体在磁场方向上的长度。

当交变磁场作用在铁磁性物体上时,它随着磁场的强弱变化伸长或缩短,如钴钢是伸长,而镍则缩短。

不过长度的变化是十分微小的,约为其原长的l/100000。

磁致伸缩在技术上有重要的应用,如作为机电换能器用于钻孔、清洗,也可作为声电换能器用于探测海洋深度、鱼群等。

非金属磁性材料铁氧体,是一族化合物的总称,它由三氧化二铁(Fe2O3)和其他二价的金属氧化物(如NiO,ZnO,MnO等)的粉末混合烧结而成。

铁氧体的特点是不仅具有高磁导率,而且有很高的电阻率。

它的电阻率约在104~1011mΩ,比金属磁性材料的电阻率(约为10⋅Ω之间,有的则高达1014m⋅-7mΩ)要大得多,所以铁氧体的涡流损失小,常用于高频技术中。

在电子计⋅算机中就是利用矩磁铁氧体的矩形回线特点作为记忆元件的。

利用正向和反向两个稳定状态可代表“0”与“1”,故可作为二进制记忆元件。

此外,电子技术中也广泛利用铁氧体作为天线和电感中的磁心。

实际上铁磁质磁化的规律远比上面描述的要复图6杂得多。

上述磁滞回线只是外场的幅值足够大时形成的最大磁滞回线。

如果外场在上述循环过程的中途,H 变化方向略有波动,例如在图6中当介质的磁化状态到达P 点时,负方向的外场由增加改为减小,这时介质的磁化状态并不沿原路折回,而是沿着一条新的曲线PQ 移动。

当介质的磁化状态到达Q 点后,若外场的变化方向又改变,介质的磁化状态也不沿原来途径返回P 点,而是在PQ 之间形成一个小的磁滞回线。

如果外场的数值在这小范围内往复变化(即在一定的直流偏场上迭加一个小的交流讯号),介质的磁化状态便沿着这小磁滞回线循环。

类似这样的小磁滞回线,到处都可以产生。

当我们研究一个磁性材料的起始磁化特性时,需要首先使之去磁,亦即令其磁化状态回到B -H 图中的原点O 。

为此我们必须使外场在正负值之间反复变化,同时使它的幅值逐渐减小,最后到O 。

这样才能使介质的磁化状态沿着一次比一次小的磁滞回线,最后回复到未磁化状态O 点(如图7所示)。

实际的作法是:将样品放在交流磁场中,然后抽出即可。

从实验中还知道,铁磁质的磁化和温度有关。

随着温度的升高,它的磁化能力逐渐减小,当温度升高到某一温度时,铁磁性就完全消失,铁磁质退化成顺磁质,这个温度叫做居里温度或叫居里点。

这是因为铁磁质中自发磁化区域因剧烈的分子热运动而遭破坏,磁畴也就瓦解了,铁磁质的铁磁性消失,过渡到顺磁质,从实验知道,铁的居里温度是1043K ,78%坡莫合金的居里温度是580K ,30%坡莫合金的居里温度是343K 。

图7 退磁过程的磁滞回线2.磁滞回线测量实验原理观察和测量磁滞回线和基本磁化曲线的线路原理图如图8所示。

图8 磁滞回线测量仪器实验原理图待测样品为H 1型矽钢片,N 为励磁绕组,n 为用来测量磁感应强度B 而设置的绕组。

R 1为励磁电流取样电阻,设通过N 的交流励磁电流为I ,根据安培环路定律,样品的磁化场强NI/L H = L 为样品的平均磁路∵ I =U 1 / R 1∴ 11U LR N H ⋅= (1) (1)式中的N 、L 、R 1均为已知常数,所以由U 1可确定H 。

在交变磁场下,样品的磁感应强度瞬时值B 是测量绕组n 和R 2C 2电路给定的。

根据法拉第电磁感应定律,由于样品中的磁通φ的变化,在测量线圈中产生的感生电动势的大小为dt d φnε2= dt εn 1φ2⎰=dt εnS1S φB 2⎰==(2) S 为样品的截面积如果忽略自感电动势和电路损耗,则回比方程为2222U R I ε+=式中I 2为感生电流,U 2为积分电容C 2两端电压设在t ∆时间内,I 2向电容C 2的充电电量为Q ,则U 2=Q/C 2∴ 2222Q /C R I ε+=如果选取足够大的R 2和C 2,使222Q/C R I >>,则222R I ε=∵ dtdU C dt dQ I 222==∴ dt dU R C ε2222= (3) 由(2)、(3)两式可得222U nSR C B = (4) 上式中C 2、R 2、n 和S 均为已知常数。

所以由U 2可确定B 。

综上所述;将图8中的U 1和U 2分别加到示波器的“X 输入”和“Y 输入”便可观察样品的B -H 曲线;如将U 1和U 2加到测试仪的信号输入端可测定样品的饱和磁感应强度B S 、剩磁B r 、矫顽力H C 、磁滞损耗[BH]以及磁导率μ等参数。

三、实验仪器及其使用方法实验使用杭州天煌生产的磁滞回线测试仪和磁滞回线实验仪,还要用到双踪示波器。

图9是磁滞回线测试仪的面板图,图10、图11分别是磁滞回线实验仪的电路图和面板接线图。

图9 磁滞回线测试仪面板图图10 磁滞回线实验仪电路图图11 磁滞回线实验仪面板接线图参照磁滞回线实验仪电路图10,将实验仪面板上的插线孔按面板接线图11上的虚线连接起来,将样品退磁后,就可以按照下面的介绍用磁滞回线测试仪进行测量了。

测试仪初始参数(即默认参数):L 待测样品平均磁路长度L=60mmS 待测样品横截面积S=80mm2N 待测样品励磁绕组匝数N=50n 待测样品磁感应强度B的测量绕组匝数n=150R1励磁电流I H取样电阻R1=0.5~5ΩR2积分电阻R2=10kΩC2积分电容C2=10μfU HC正比于H的有效电压,供调试用。

相关文档
最新文档