热处理淬火裂纹产生的原因及防止措施分析

合集下载

金属热处理产生的组织缺陷

金属热处理产生的组织缺陷

金属热处理产生的组织缺陷
金属热处理缺陷指在热处理生产过程中产生的使零件失去使用价值或不符合技术条件要求的各种补助,以及使热处理以后的后续工序工艺性能变坏或降低使用性能的热处理隐患。

最危险的缺陷为裂纹,其中最主要的是淬火裂纹,其次是加热裂纹、延迟裂纹、冷处理裂纹、回火裂纹、时效裂纹、磨削裂纹和电镀裂纹等。

导致淬火裂纹的原因:(1)原材料已有缺陷(冶金缺陷扩展成淬火裂纹);(2)原始组织不良(如钢中粗大组织或魏氏组织倾向大);(3)夹杂物;(4)淬火温度不当;(5)淬火时冷却不当;(6)机械加工缺陷;(7)不及时回火。

最常见的缺陷是变形,其中淬火变形占多数,产生的原因是相变和热应力。

残余应力、组织不合格、性能不合格、脆性及其他缺陷发生的频率和严重性较低。

内应力来源有两个方面:(1)冷却过程中零件表面与中心冷却速率不同、其体积收缩在表面与中心也不一样。

这种由于温度差而产生的体积收缩量不同所引起的内用力叫做“热应力”;(2)钢件在组织转变时比体积发生变化,如奥氏体转变为马氏体时比体积增大。

由于零件断面上各处转变的先后不同,其体积变化各处不同,由此引起额内应力称作“组织应力”。

钢的淬火缺陷及其防止措施

钢的淬火缺陷及其防止措施

钢的淬火缺陷及其防止措施1. 淬火工件的过热和过烧过热:工件在淬火加热时,由于温度过高或时间过长造成奥氏体晶粒粗大的缺陷。

由于过热不仅在淬火后得到粗大马氏体组织,而且易于引起淬火裂纹,因此,淬火过热的工件强度和韧性降低,易于产生脆性断裂。

轻微的过热可用延长回火时间补救。

严重的过热则需进行一次细化晶粒退火,然后再重新淬火。

过烧:淬火加热温度太高,使奥氏体晶界局部熔化或者发生氧化的现象。

过烧是严重的加热缺陷,工件一旦过烧无法补救,只能报废。

过烧的原因主要是设备失灵或操作不当造成的。

高速钢淬火温度高容易过烧,火焰炉加热局部温度过高也容易造成过烧。

2. 淬火加热时的氧化和脱碳淬火加热时,钢件与周围加热介质相互作用往往会产生氧化和脱碳等缺陷。

氧化使工件尺寸减小,表面光洁度降低,并严重影响淬火冷却速度,进而使淬火工件出现软点或硬度不足等新的缺陷。

工件表面脱碳会降低淬火后钢的表面硬度、耐磨性,并显著降低其疲劳强度。

因此,淬火加热时,在获得均匀化奥氏体时,必须注意防止氧化和脱碳现象。

在空气介质炉中加热时,防止氧化和脱碳最简单的方法是在炉子升温加热时向炉内加入无水分的木炭,以改变炉内气氛,减少氧化和脱碳。

此外,采用盐炉加热、用铸铁屑覆盖工件表面,或是在工件表面热涂硼酸等方法都可有效地防止或减少工件的氧化和脱碳。

3. 淬火时形成的内应力有两种情况:①工作在加热或冷却时,引起的热应力。

②由于热处理过程中各部位冷速的差异引起的相变应力。

当两力相复合超过钢的屈服强度时,工件就变形;当复合力超过钢的抗拉强度时,工件就开裂。

解决办法:①工件在加热炉中安放时,要尽量保证受热均匀,防止加热时变形;②对形状复杂或导热性差的高合金钢,应缓慢加热或多次预热,以减少加热中产生的热应力;③选择合适的淬火冷却介质和淬火方法,以减少冷却中热应力和相变应力。

但淬火不是最终热处理,为了消除淬火钢的残余内应力,得到不同强度、硬度和韧性配合的性能,需要配以不同温度的回火。

热处理常见缺陷分析与对策-学习总结

热处理常见缺陷分析与对策-学习总结

热处理常见缺陷分析与对策时 间:2020.10.28 学习人:吴俊 部 门:试验检测中心基本知识点:1、热处理缺陷直接影响产品质量、使用性能和安全。

2、热处理缺陷中最危险的是:裂纹。

有:淬火裂纹、延迟裂纹、冷处理裂纹、回火裂纹、时效裂纹、磨削裂纹和电镀裂纹。

其中生产中最常见的裂纹是纵火裂纹。

3、热处理缺陷中最常见的是:热处理变形,它有尺寸变化和形状畸变。

4、淬火获得马氏体组织,以保证硬度和耐磨性。

淬火后应进行回火,以消除残余应力,如W6Mo5Cr4V2应进行一次回火。

5、亚共析钢淬火加热温度: +(30-50)度。

6、高速钢应采用调质处理即淬火+高温回火。

7、回火工艺若控制不当则会产生回火裂纹。

8、热处理过热组织可通过多次正火或退火消除,严重过热组织则应采用高温变形和退火联合作用才能消除。

9、渗氮零件基本组织为回火索氏体。

其原始组织中若有大块F 或表面严重脱碳,则易出现针状组织。

10、有色金属最有效的强化手段是固溶处理和固溶处理+时效处理。

11、疲劳破坏有疲劳源区、裂纹疲劳扩展和瞬时断裂三个阶段。

12、高速钢的热组织为:共晶莱氏体,也有可能晶界会熔化。

13、应力腐蚀开裂的必要条件之一是:存在拉应力。

14、65Mn 钢第二类回火脆性温度区间为250-380。

钼能有效抑制第二类回火脆性。

15、热处理时发生的组织变化中,体积比容变化最大的是马氏体。

16、防止淬裂的工艺措施:等温淬火、分级淬火、水-油淬火和水-空气双液淬火。

17、高温合金热处理产生的特殊热处理缺陷有:晶间氧化、表面成分变化、腐蚀点、晶粒粗大及混合晶粒等。

18、感应加热淬火缺陷有:表层硬度低、硬化层深度不合格、变形大、残留应力大、尖角过热及软点与软带。

19、弹簧钢的组织状态一般为:T+M 。

20、氢脆条件:氢的存在、三项应力和对氢敏感的组织。

21、断裂有脆性断裂和韧性断裂。

绝大多数热处理裂纹属脆性断裂。

22、高碳钢淬火前应进行球化退火。

23、时效变形的主要影响因素有:化学成分、回火温度和时效温度。

42crmo淬火开裂危险尺寸

42crmo淬火开裂危险尺寸

42crmo淬火开裂危险尺寸
摘要:
一、42CrMo 淬火开裂的定义和特点
二、42CrMo 淬火开裂的原因分析
1.原始材料原因
2.淬火原因
三、42CrMo 淬火开裂的预防措施
四、总结
正文:
一、42CrMo 淬火开裂的定义和特点
42CrMo 淬火开裂是指在42CrMo 钢经过淬火处理后产生的裂纹,这种裂纹往往在淬火过程中或淬火后的室温放置过程中产生,对钢材的性能和使用寿命有着重要的影响。

42CrMo 淬火开裂的特点是裂纹分布没有一定的规律,但一般容易在工件的尖角、截面突变处形成。

二、42CrMo 淬火开裂的原因分析
1.原始材料原因
42CrMo 钢在锻造过程中,可能会产生心部原始裂纹。

这些裂纹在淬火过程中会由于淬火应力而直接开裂。

另外,材料的元素偏析和原始组织粗大也可能导致开裂。

2.淬火原因
在淬火过程中,可能会出现以下几种情况:
a.淬火时使组织粗大,过热过烧组织,不同组织间的应力;
b.淬火油底下有一点水,引起的硬度不均匀;
c.淬火温度过高或过低,淬火后残余奥氏体过多或过少。

三、42CrMo 淬火开裂的预防措施
针对42CrMo 淬火开裂的产生原因,可以从以下几个方面进行预防:
1.严格控制淬火温度,避免过高或过低;
2.确保淬火油的质量和数量,避免油中混入水分;
3.合理设计工件结构,避免尖角、截面突变等容易产生应力集中的部位;
4.对原材料进行充分的热处理,减少原始裂纹。

四、总结
42CrMo 淬火开裂是一个严重影响钢材性能和使用寿命的问题。

铸造铝合金热处理质量缺陷及其消除与预防

铸造铝合金热处理质量缺陷及其消除与预防

铸造铝合金热处理质量缺陷及其消除与预防铝合金铸件热处理后常见的质量问题有:力学性能不合格、变形、裂纹、过烧等缺陷,对其产生原因和消除与预防方法分述如下。

〔1〕力学性能不合格通常表现为退火状态伸长率〔6 5〕偏低,淬火或时效处理后强度和伸长率不合格。

其形成的原因有多种:如退火温度偏低、保温时间缺乏,或冷却速度太快;淬火温度偏低、保温时间不够,或冷却速度太慢〔淬火介质温度过高〕;不完全人工时效和完全人工时效温度偏高,或保温时间偏长;合金的化学成分出现偏差等。

消除这种缺陷,可采取以下方法:再次退火,提高加热温度或延长保温时间;提高淬火温度或延长保温时间,降低淬火介质温度;如再次淬火,则要调整其后的时效温度和时间;如成分出现偏差,则要根据具体的偏差元素、偏差量,改变或调整重复热处理的工艺参数等。

〔2〕变形与翘曲通常在热处理后或随后的机械加工过程中,反映出铸件尺寸、形状的变化。

产生这种缺陷的原因是:加热升温速度或淬火冷却速度太快〔太剧烈〕;淬火温度太高;铸件的设计构造不合理〔如两连接壁的壁厚相差太大,框形构造中加强筋太薄或太细小〕;淬火时工件下水方向不当及装料方法不当等。

消除与预防的方法是:降低升温速度,提高淬火介质温度,或换成冷却速度稍慢的淬火介质,以防止合金产生剩余应力;在厚壁或薄壁部位涂敷涂料或用石棉纤维等隔热材料包覆薄壁部位;根据铸件构造、形状选择合理的下水方向或采用专用防变形的夹具;变形量不大的部位,则可在淬火后立即予以矫正。

〔3〕裂纹表现为淬火后的铸件外表用肉眼可以看到明显的裂纹,或通过荧光检查肉眼看不见的微细裂纹。

裂纹多曲折不直并呈暗灰色。

产生裂纹的原因是:加热速度太快,淬火时冷却太快〔淬火温度过高或淬火介质温度过低,或淬火介质冷却速度太快〕;铸件构造设计不合理〔两连接壁壁厚差太大,框形件中间的加强筋太薄或太细小〕;装炉方法不当或下水方向不对;炉温不均匀,使铸件温度不均匀等。

消除与预防的方法是:减慢升温速度或采取等温淬火工艺;提高淬火介质温度或换成冷却速度慢的淬火介质;在壁厚或薄壁部位涂敷涂料或在薄壁部位包覆石棉等隔热材料;采用专用防开裂的淬火夹具,并选择正确的下水方向。

变速箱齿轮的热处理常见缺陷及其防止措施

变速箱齿轮的热处理常见缺陷及其防止措施

变速箱齿轮的热处理常见缺陷及其防止措施变速箱齿轮是汽车传动系统中的重要组成部分,其质量和性能直接影响到汽车的驾驶稳定性和可靠性。

热处理是提高变速箱齿轮性能的关键步骤之一,然而在热处理过程中常会出现一些缺陷,影响齿轮的质量。

本文将介绍变速箱齿轮热处理常见缺陷以及相应的防止措施。

一、热处理常见缺陷1. 软化现象:在热处理过程中,如果温度过高或保温时间过长,会导致齿轮表面过度软化,从而使齿轮硬度降低。

软化现象会导致齿轮的强度和耐磨性下降,影响其使用寿命。

2. 淬火裂纹:淬火过程中,如果齿轮表面温度不均匀或冷却速度过快,会产生裂纹。

这些裂纹会降低齿轮的强度和韧性,甚至引发断裂。

3. 淬火变形:淬火过程中,由于齿轮的不均匀加热或冷却不均匀,容易导致齿轮发生变形。

变形会影响齿轮的精度和配合性能,导致传动噪声和振动增加。

4. 残余应力:热处理后,齿轮内部会产生残余应力。

过大的残余应力会引起齿轮变形和裂纹,影响齿轮的使用寿命。

二、防止措施1. 控制热处理参数:合理控制热处理温度和保温时间,避免齿轮表面软化现象的发生。

同时,要保证齿轮表面温度均匀,避免淬火裂纹的产生。

2. 优化冷却方式:选择适当的淬火介质和冷却方式,确保齿轮冷却均匀,避免淬火变形的发生。

可以采用喷水冷却或油浸冷却等方式,以提高冷却效果。

3. 适当回火处理:在淬火后进行适当的回火处理,可以降低齿轮的硬度,减少残余应力的产生。

回火温度和时间的选择要根据齿轮的具体材料和要求进行调整。

4. 采用预应力技术:通过在热处理过程中施加预应力,可以减小齿轮的残余应力,提高其承载能力和抗疲劳性能。

5. 严格控制热处理工艺:热处理工艺参数的控制非常重要,要严格按照工艺规范进行操作,避免因操作不当而引起的缺陷。

6. 定期检测和评估:对热处理后的齿轮进行定期的质量检测和性能评估,及时发现并处理问题,确保齿轮的质量和性能稳定。

总结:变速箱齿轮的热处理是确保其质量和性能的关键环节,然而在热处理过程中常会出现软化现象、淬火裂纹、淬火变形和残余应力等缺陷。

TP347厚壁不锈钢管道热处理及裂纹预防措施

TP347厚壁不锈钢管道热处理及裂纹预防措施

TP347厚壁不锈钢管道热处理及裂纹预防措施TP347不锈钢管是一种具有耐高温性能的不锈钢管,常用于化工、石化、石油和电力等领域的管道系统。

在使用过程中,由于管道的厚壁特性和工作环境的复杂性,需要进行热处理和裂纹预防措施,以确保管道的安全可靠运行。

本文将介绍TP347厚壁不锈钢管道的热处理工艺和裂纹预防措施。

1. 固溶处理固溶处理是不锈钢管道热处理的第一步,其目的是溶解不锈钢中的铁素体相和碳化物,提高管材的塑性和加工性能。

TP347不锈钢在固溶处理时应控制温度在1050-1100℃范围内,保持一定时间后迅速冷却,以防止管道产生过度固溶和晶粒长大。

2. 淬火处理淬火处理是为了使固溶后的不锈钢管道获得更高的强度和硬度。

经过固溶处理的TP347不锈钢管道在850-900℃温度范围内进行快速加热,然后迅速冷却,从而形成奥氏体组织,提高管道的抗拉伸强度和硬度。

冷处理是通过冷却不锈钢管道的表面,以增强其表面硬度和耐磨性。

TP347不锈钢管道在冷处理过程中,可以采用液氮或空气冷却的方式,使表面形成马氏体组织,提高管道的耐磨性和抗腐蚀性能。

1. 控制热处理过程在TP347不锈钢管道的热处理过程中,需要严格控制加热温度、保温时间和冷却速度,以避免热处理过程中产生过度固溶或快速冷却而引起的热裂纹。

还需要对管道进行预热和后热处理,以缓解热应力和提高管道的抗裂性能。

2. 选择合适的焊接材料和工艺TP347不锈钢管道在焊接过程中容易产生焊接裂纹,因此需要选择合适的焊接材料和工艺。

可以采用低氢焊接材料、预热焊接和控制焊接层减氢处理等措施,避免焊接过程中产生裂纹。

3. 加强检测和监控在TP347不锈钢管道的制造和使用过程中,需要加强对管道的检测和监控,及时发现管道表面和内部的裂纹,采取相应的修复和防护措施。

可以采用无损检测、压力测试和振动检测等手段,确保管道的完整性和安全性。

4. 优化设计和选材在工程设计阶段,需要根据不同的工作条件和环境要求,优化TP347不锈钢管道的设计和选材,选择合适的管道壁厚、材质和连接方式,减少管道的应力集中和热应力,降低管道的裂纹风险。

模具钢淬火中的裂纹分析及解决方案

模具钢淬火中的裂纹分析及解决方案

模具钢淬火中的裂纹分析及解决方案模具钢在淬火过程中容易发生裂纹问题,这会对模具的使用寿命和性能造成严重影响。

因此,进行裂纹分析并提出解决方案至关重要。

本文将围绕模具钢淬火中的裂纹问题展开讨论,包括裂纹的形成原因、常见的裂纹类型,以及相应的解决方案。

首先,淬火中裂纹的形成原因主要有以下几点:1.内应力积累:模具钢在冷却过程中会出现温度梯度,不同部位的冷却速度不一致,导致内应力积累,最终引发裂纹。

2.不均匀变形:由于模具钢的结构和尺寸复杂,淬火过程中容易产生不均匀变形,造成应力超过材料的弹性极限,从而使裂纹形成。

3.冷却速度过快:过快的冷却速度会导致模具钢表面和内部温度梯度过大,产生应力集中,从而引发裂纹。

常见的裂纹类型主要有:1.表面裂纹:表面裂纹是最常见的裂纹类型,通常由于冷却速度过快或应力集中引起。

这种裂纹通常分布在模具钢的最外层。

2.内部裂纹:内部裂纹是由于冷却速度不均匀或结构变形造成的。

这种裂纹通常分布在模具钢的内部。

针对上述裂纹问题,下面给出一些解决方案:1.控制冷却速度:合理控制冷却速度可以减少模具钢淬火过程中的热应力,降低裂纹的风险。

可以通过增加冷却介质的温度、减小冷却介质的流量或使用其他缓慢冷却方法来实现。

2.合理设计模具结构:模具的设计结构应该避免尖角和过于薄壁的部位,以减少应力集中导致的裂纹。

在可能的情况下,可以添加过渡圆角和半径,有助于减少裂纹的风险。

3.适当的预处理:通过适当的热处理工艺可以改善模具钢的力学性能和织构,减少应力集中和变形,降低裂纹的发生。

这包括应用回火、退火和正火等热处理方法。

4.使用有效的质量控制措施:在制造模具钢过程中,需要严格控制原材料的质量,以确保材料的均匀性和稳定性。

此外,必须严格控制加工中的工艺参数,以确保产品的质量。

总结起来,模具钢淬火中的裂纹问题对模具的使用寿命和性能都有很大的影响。

针对裂纹的形成原因和类型,我们可以通过控制冷却速度、合理设计模具结构、适当的预处理和使用有效的质量控制措施等方面来解决这一问题。

影响淬火热处理变形的原因

影响淬火热处理变形的原因

影响淬火热处理变形的原因淬火是将钢件加热到临界温度以上,保温适当的时间,然后以大于临界冷却速度冷却,获得马氏体或贝氏体组织的热处理工艺,它是强化钢材的最重要的热处理方法。

大量重要的机器零件及各类刀具、刃具、量具等都离不开淬火处理。

需要淬火的工件,经过加热后,便放到一定的淬火介质中快速冷却。

但冷却过快,工件的体积收缩及组织转变都很剧烈,从而不可避免地引起很大的内应力,容易造成工件变形及开裂。

由于淬火变形影响因素非常复杂,导致变形控制十分棘手。

而采用校直办法纠正变形或通过加大磨削加工余量,都会增加成本,因此研究钢件淬火热处理变形的影响因素,提出防止变形的措施是提高产品质量、延长零部件使用寿命、提高经济效益的重要课题。

零件热处理变形原因分析1 热应力引起的变形钢件在加热和冷却过程中,将发生热胀冷缩的体积变化以及因组织转变时新旧相比容差而产生的体积改变。

零件加热到淬火温度时,屈服强度明显降低,塑性则大大提高。

当应力超过屈服强度时,就会产生塑性变形,如果造成应力集中,并超过了材料的强度极限,就会使零件淬裂。

导热性很差的高碳合金钢,如合金模具钢Cr12MoV、高速钢W18Cr4V之类的工具钢,淬火加热温度很高,如不采用多次预热和缓慢加热,不但会造成零件变形,而且会导致零件开裂而报废。

此外,铸钢件和锻件毛坯,如果表层存在着一层脱碳层,由于表层和心部导热性能不同,在淬火加热较快时,也会产生热应力而引起变形。

冷却时由于温差大,热应力是造成零件变形的主要原因。

2 组织应力引起的变形体积的变化往往与加热和冷却有关,因为它和钢的膨胀系数相关。

比容的变化导致零件尺寸和形状的变化。

组织应力的产生起源于体积的收缩和膨胀,没有体积的膨胀,就没有组织转变的不等时性,也就没有组织应力引起的变形,导致热处理变形的内应力是热应力和组织应力共同作用形成的复合应力,热应力和组织应力综合作用的结果是不定的,可能因冷却条件及淬火温度的不同而产生不同情况,淬火应力是由急冷急热应力及由组织转变不同时所引起的应力综合构成的。

影响淬火开裂的因素

影响淬火开裂的因素

影响淬火开裂的因素钢的淬火裂纹的形成原因包括内部元素和外部条件。

内部元素主要是由马氏体的成分、组织结构等决定的本质脆性;外部因素主要是各种工艺条件、零件尺寸形状等引起的宏观内应力的大小、方向、分布状态等。

影响本质脆性的因素,例如钢材的冶金质量、钢中的含碳量及合金元素、马氏体的组织结构、马氏体显微裂纹、显微局部应力、原始组织状态等。

影响宏观内应力的因素较为复杂,例如淬透性、淬透性深度、脱碳、表面硬化、工件尺寸和形状、加工质量及粗糙度、热处理工艺规范、加热及冷却设备、淬火后的回火与矫直及再加工等等。

显然影响淬火裂纹的因素十分复杂。

在现在一旦出现淬火裂纹的报废零件,往往是“打不清的官司”。

只有认清各种因素作用的本质、途径、规律性,并对具体零件的淬裂现象进行具体分析、检测,才能搞清主要因素、次要因素,并从中确定防止淬裂的措施,提高成品率,控制废品率,增加经济效益。

因此研究影响淬火开裂的因素及其作用规律具有重要实际意义。

一、钢材冶金质量的影响缩孔和严重的轧制缺陷造成材料明显的不均匀性,这时材料是不宜于进行热处理的。

而不少材料的冶金缺陷均可能单独与宏观或微观的内应力发生作用,促发淬火裂纹。

这些冶金质量问题包括:粗视偏析、固溶体偏析、固溶氢、锻轧缺陷、压渣、铁素体-珠光体带状组织及碳化物带状组织等。

1. 粗视偏析的影响钢在铸造凝固过程中产生的内应力可能导致开裂。

例如约0.3%℃的碳钢,形成凝固裂纹的倾向比较大,它是由δ—Fe向γ—Fe相变过程中形成的。

当裂纹形成后,它向内部发展以致当裂纹与液相接触时,富集着杂质元素的钢液填入裂纹中,这样裂纹就变成了偏析线。

在整个钢锭范围内发生的偏析,称区域偏析。

用于制造大型锻件的大钢锭中最易出现区域偏析。

用具有粗视偏析的坯料制成的零件,尤其是形状复杂的工件,其淬火开裂的倾向性较高。

这是由于各区域化学成分不同,M s点不同,则马氏体转变的不同时性较大,从而造成较大内应力,以致淬火开裂。

二次淬火裂纹风险分析

二次淬火裂纹风险分析

二次淬火裂纹风险分析纵向裂纹裂纹呈轴向,形状细而长。

当模具完全淬透即无心淬火时,心部转变为比容最大的淬火马氏体,产生切向拉应力,模具钢的含碳量愈高,产生的切向拉应力愈大,当拉应力大于该钢强度极限时导致纵向裂纹形成。

以下因素又加剧了纵向裂纹的产生:(1)钢中含有较多S、P、Bi、Pb、Sn、As等低熔点有害杂质,钢锭轧制时沿轧制方向呈纵向严重偏析分布,易产生应力集中形成纵向淬火裂纹,或原材料轧制后快冷形成的纵向裂纹未加工掉保留在产品中导致最终淬火裂纹扩大形成纵向裂纹;(2)模具尺寸在钢的淬裂敏感尺寸范围内(碳工具钢淬裂危险尺寸为8-15mm,中低合金钢危险尺寸为25-40mm)或选择的淬火冷却介质大大超过该钢的临界淬火冷却速度时均易形成纵向裂纹。

预防措施:(1)严格原材料入库检查,对有害杂质含量超标钢材不投产;(2)尽量选用真空冶炼,炉外精炼或电渣重熔模具钢材;(3)改进热处理工艺,采用真空加热、保护气氛加热和充分脱氧盐浴炉加热及分级淬火、等温淬火;(4)变无心淬火为有心淬火即不完全淬透,获得强韧性高的下贝氏体组织等措施,大幅度降低拉应力,能有效避免模具纵向开裂和淬火畸变。

横向裂纹裂纹特征是垂直于轴向。

未淬透模具,在淬硬区与未淬硬区过渡部分存在大的拉应力峰值,大型模具快速冷却时易形成大的拉应力峰值,因形成的轴向应力大于切向应力,导致产生横向裂纹。

锻造模块中S、P,Bi,Pb,Sn,As等低熔点有害杂质的横向偏析或模块存在横向显微裂纹,淬火后经扩展形成横向裂纹。

预防措施:(1)模块应合理锻造,原材料长度与直径之比即锻造比最好选在2—3之间,锻造采用双十字形变向锻造,经五镦五拔多火锻造,使钢中碳化物和杂质呈细、小,匀分布于钢基体,锻造纤维组织围绕型腔无定向分布,大幅度提高模块横向力学性能,减少和消除应力源;(2)选择理想的冷却速度和冷却介质:在钢的Ms点以上快冷,大于该钢临界淬火冷却速度,钢中过冷奥氏体产生的应力为热应力,表层为压应力,内层为张应力,相互抵消,有效防止热应力裂纹形成,在钢的Ms—Mf之间缓冷,大幅度降低形成淬火马氏体时的组织应力。

5CrMnMo热锻模淬火开裂原因分析

5CrMnMo热锻模淬火开裂原因分析
参考文献
[1]哈比希K H.材料的磨损与硬度[M].北京:机械工业出版 社,1987.47.
[2] Tang J,He I。,Jin Z H,et aI.Materialtr;bo_electrication po— tential changing dur;ng wea[J].Materials and Design,2003,
图3a中的6点硬度为43.1、43.8、44.6、43.1、 42.9、43.6HRC,平均值为43.5HRC,最高值与最 低值相差1.7HRc,而图3b硬度为44.o、43.9、
·50·
(a) 内部
(b)表面
图3锻模显微组织200× F培3 Mjcrnstructure ill the interior(a)锄d n魄r the sIIrface
[3] 白建龙.5【:rMnMo 5crNiMo钢热锻模具的热处理现状[J]. 热加工工艺,1989,(6):45—49.
[4]中国机械]:程学会热处理专业学会《热处理手册》编委会.热处 理手册(第二分册)rM].北京:机械工、世出版社,1978.
(上接第22页) [7] I。u Yi—zhen,WANG Qu—dong,ZENG)(ia0-qin,et a1_Effects
2实际生产条件
5CrMnMo热作模具钢的标准成分(质量分数) 为:o.5%~o.6%C,1.2%Mn,o.35%Si,o.5%~ o.8%Cr,o.15%~o.2%Mo,杂质元素o.030%P、 O.030%S。
锻模尺寸为1 090mm×510mm×310mm,工作 表面加工有浅的沟槽,沟槽本身加工多为圆弧过渡, 表面已打磨光亮。热处理工艺为:淬火加热温度 8 60℃,保温时间5h,热油淬火;540℃回火12h。加

淬火时出现裂纹的原因及解决方法

淬火时出现裂纹的原因及解决方法

轴类高频淬火设备,是目前机械行业里经常使用的一种设备,广泛应用于多个领域,但是轴类零件在高频淬火中会出现淬火裂纹,给大家简单解答一下裂纹产生的原因及预防措施,希望能在以后的工作中帮到大家。

轴类高频淬火设备出现淬火裂纹的原因:1、工件的形状尺寸不均匀,结构设计不合理或形状复杂,尺寸突变或淬火部位加工粗糙,或有凹槽、孔、尖角、键槽、棱边等结构因素,温度偏高或局部过热,尤其是尖角和小孔等位置,淬火后热应力和组织应力大,造成淬火裂纹的产生。

2、加热温度不均匀,或者工件的回火不及时,当重新淬火时,未进行退火处理而直接淬火;淬火介质选择不当,冷却速度过大。

3、由于加热温度过快或过高,冷却过快或操作不规范,介质选择不当,冷却器设计不良,冷却不均匀等。

4、冷却介质的成分含量、温度及压力等选择出现问题;淬火前机械加工应力很大,没有进行预先热处理,加工粗糙,存在严重的刀痕等。

5、原材料内部存在质量缺陷(组织不均匀,成分偏析、大块的非金属夹杂物、内部裂纹、严重的网状或带状碳化物等),材料淬硬性能过高,钢的含碳量高于上限的要求。

针对轴类高频淬火设备产生淬火裂纹的上述原因,应采取以下预防措施:1、改进工件的结构形式,淬火前各部位不允许有毛刺、严重的划痕,对孔用铜塞堵住,调整温度或缓慢加热,避免上述不良设计的发生。

2、合理选择加热规范,加强原材料的检验,严格控制钢材的成分,从而进行锻造或进行球化退火处理。

3、感应淬火前进行去应力退火处理,消除刀痕等应力集中部位;高频淬火后及时回火,可采用炉内或自回火方式,正火或退火后再进行高频淬火。

4、控制冷却介质的各项技术要求符合工艺的规定,必要时进行工艺试验,改进感应器和冷却系统的设计,使喷水孔布置合理,选择合适的冷却介质,降低喷水压力。

热处理缺陷

热处理缺陷

热处理缺陷一、淬火裂纹(一)淬火裂纹的类型和特征1. 纵向裂纹:沿工件纵向分布,裂纹较深而长,一条或几条。

产生原因:完全淬透,温度升高,裂纹倾向增大,尺寸较长而形状复杂的工件易产生纵向裂纹2. 横向裂纹:裂纹垂直于轴向,断口形貌由中心向四周发散,易长生于尺寸较大的工件,由于内外层马氏体相变不同时,相变应力较大产生3. 表面裂纹:呈网状,深度较浅,高频或火焰淬火时,加热未达到奥氏体化温度就快冷火加热到临界温度以上后冷速慢4. 剥离裂纹:表面淬火工件,表面淬硬层剥落或化学热处理后沿扩散层出现的表面剥落称玻璃裂纹。

裂纹平行于工件表面,潜伏在表皮下。

5. 淬火裂纹微观特征:抛光态下,曲折刚直,多沿晶扩展,也有穿晶、混晶扩展,裂纹两侧无脱碳,断口上无氧化色,呈脆性沿晶或混晶断裂。

(二)淬火裂纹形成机理钢中奥氏体向马氏体转变时体积增大所产生的应力导致淬火裂纹。

当钢淬火冷却时,在首先达到M s点温度的工件外层率先形成马氏体,发生体积膨胀,产生应力,外表面的马氏体膨胀几乎不受限制。

继续冷却当靠近中心部位的材料到达M s点温度时,新生的马氏体膨胀收到早已形成的外层马氏体的限制,产生使表面张开的内应力。

当马氏体大量形成所产生的内应力大于零件外层淬火状态的马氏体强度时,便出现开裂。

(三)影响淬火裂纹的因素1. 钢的化学成分:含碳、铬、钼、磷高易引起裂纹2. 材料缺陷:发纹、气泡、碳化物偏析、非金属夹杂、过热、折叠、微裂纹等3. 钢件形状结构:截面急剧变化的工件,有尖角、缺口、孔洞、槽口、冲压标记、刻痕、加工刀痕等应力集中部位易发生。

4. 淬火前原始组织:球状珠光体比片状珠光体不易产生淬火裂纹,因球状珠光体淬成马氏体时其比容变化小、应力小5. 淬火温度淬火温度高易产生裂纹,奥氏体晶粒粗大,淬透性提高,淬裂倾向大。

淬火温度与淬火裂纹发生率之间有三种情况:1)对于小型零件,淬火温度高,淬火裂纹发生率高2)对于大型零件,淬火温度高,淬火裂纹发生率低3)对于中型零件,裂纹发生有个转变温度6. 冷却速度冷速快,使表面产生压应力,内层为张应力,这种应力不易产生裂纹,但冷到马氏体转变点以下时产生相变应力,表面为张应力,易产生淬火裂纹。

几种感应淬火裂纹及其防止方法

几种感应淬火裂纹及其防止方法
,
夕 分 钟 以 」 淬 火 应 力 合 理地 降 低 了 则 油 道 内 壁 裂 纹就 不 发展成
,
形 裂纹
相反 未及 时 回
,
,
火或 回火 不 足


油道 裂 纹 就 会发 展 成

形裂 纹 ∋图
,
∃ (。而
当完 全 没 有 回 火 时
则不必 磨 削
,
,
就 会 发 生 孔 周 围 淬 硬 层 的剥 落 油 道 内壁裂 纹
检 验时 裂纹 处可 见脱 碳 和 氧 化 现 象
,
∋图 #
(




图 图# 材 料纵 向 裂纹引 起的
,
裂纹处 的 脱碳 和 氧 化
形 裂纹
,

+
锻打 折 叠
,
裂 纹 处 有 氧 化 和 脱 碳 现 象 往 往 呈 现 出 规 则 性 即 在 不 同 轴 的 同 一序 号轴 颈 − 发 现 ∋图 (
,
裂 纹更 易


孔 的内 壁 发 生 了 裂 纹
,
裂纹
油道


内 壁 裂 纹 是否 发 展 成 为
%
,
形裂纹
决 定 于 回 火 是 否 及 时 和 回 火 温度 的 高 低
& 中回 火 % ∃



淬 火后 及 时 回 火

∋炉 中 回 火或 自回 火 ( 回 火 温 度 适宜 ∋炉
,
%
小 时 以 上 自 回火 温度 高 于 ∀ ∀
毫 米 ( 虽 然 在 轴 颈表 面 上 看 到 的 裂纹 是离 开 孔

淬火裂纹的主要特征_理论说明以及概述

淬火裂纹的主要特征_理论说明以及概述

淬火裂纹的主要特征理论说明以及概述1. 引言1.1 概述淬火裂纹作为金属材料加工过程中常见的缺陷之一,对于材料的性能和可靠性产生了重要影响。

淬火裂纹是在淬火过程中由于残余应力以及相变引起的热应力和组织变形之间的相互作用而形成的。

正确理解和控制淬火裂纹对材料制造和应用具有重要意义。

1.2 文章结构本文共分为五个部分进行阐述,结构安排如下:第二部分将重点介绍淬火裂纹的主要特征,包括其裂纹形态、尺寸和位置分布以及裂纹方向和走向等方面。

通过对这些特征进行详细描述,可以帮助读者全面了解淬火裂纹的表现形式。

第三部分将对淬火过程中产生应力变化的理论进行说明。

其中包括探讨淬火过程中残余应力与热应力之间的关系以及组织变形与裂纹生成机制等内容。

第四部分将介绍已有的实验研究成果,并通过典型案例进行分析。

文章将涵盖实验方法和原理介绍,以及对典型淬火裂纹案例的分析。

此外,还将讨论影响淬火裂纹形成的因素以及相应的控制策略。

最后一部分为总结与展望,在总结中将对本文进行概括性陈述,并概述已有研究存在的不足之处。

同时,还将提出改进建议,并展望未来在淬火裂纹领域中可开展的研究方向。

1.3 目的本文旨在全面阐述淬火裂纹的主要特征、理论说明以及实验研究,并探讨其应变机制和析出物与裂纹形成关系。

通过对淬火裂纹相关理论和实践研究情况的综合分析,旨在提供对淬火过程中可能产生的问题有更加准确的认识,同时为其他研究者和工程师提供相关知识和指导,以进一步改进材料制造工艺并降低淬火裂纹风险。

2. 淬火裂纹的主要特征:2.1 裂纹形态:淬火裂纹通常呈现为沿材料表面或内部延伸的细小裂隙。

这些裂纹可以是直线状、分叉状或环形等不同形态。

在金属材料中,淬火裂纹往往呈现出透明的外观,观察时需要使用显微镜或增大镜进行辨识。

2.2 裂纹尺寸和位置分布:淬火裂纹的尺寸通常范围在几微米到数百微米之间。

它们可以在材料表面或内部发生,但更常见的是沿着晶界、晶粒边界或孪生界面形成。

热处理裂纹及其预防

热处理裂纹及其预防

热处理裂纹及其预防热处理裂纹的分类:⾮淬⽕裂纹——表⾯龟裂、表⾯边缘T型裂纹;淬⽕裂纹——纵裂(组织应⼒型)、弧裂(局部拉应⼒型)、⼤型⼯件淬⽕裂纹(纵断、横断)、边廓表⾯裂纹(局部拉应⼒型)、脱裂、第⼆类应⼒裂纹。

纵裂⑴纵裂的宏观形态沿细长零件表⾯启裂,在沿纵向扩展的同时,⼜以垂直表⾯的⽅向向截⾯内部扩展,形成外宽内尖的楔形裂⼝。

纵裂的扩展总是终⽌于截⾯的中⼼处附近,外观上看纵向单条裂纹和横截⾯上的楔形裂⼝,是纵裂的基本宏观形态。

⑵纵裂的形成条件淬透是纵裂形成的必要条件。

⼩⼯件淬透后的应⼒状态属于组织应⼒型残余应⼒,⼀般情况下组织应⼒的切向应⼒显著⼤于轴向应⼒。

因此形成组织应⼒型残余应⼒是纵裂的应⼒条件。

⑶纵裂预防措施①采⽤较缓慢的冷却介质,如油等。

也可⽤⽔、油双液淬⽕,但⽔、油双液淬⽕对于⼀些⼩件⽆实际使⽤价值。

②⼯件加热避免过热,出炉后可适当预冷,淬⽕后及时回⽕。

③加强技术管理技术培训,切实对有关⼯艺操作⼈员进⾏淬裂理论教育。

弧裂⑴弧裂形成的条件应同时具备整体快速冷却、不能淬透、具有弧裂的⼏何敏感部位的结构形式。

⑵⼏何敏感部位的结构形式有孔洞、凹⾯和碗⾯、截⾯尺⼨突变、轴肩。

⑶⼏何敏感部位的缓冷效应具有上述结构形式在淬⽕冷却过程中的主要作⽤是显著降低那⾥的实际冷却速度,产⽣缓冷效应。

⑷⼏何敏感部位处的组织⼏何敏感部位缓冷效应,要么使局部未淬硬产⽣淬⽕屈⽒体并处在马⽒体的包围之中(在⾦相的宏观或微观上可看出);要么淬硬层被局部明显减薄。

在热处理⽣产中产⽣的弧裂中,前⼀种占绝⼤多数。

⑸弧裂的形成扩展⽅式及典型宏观形态弧裂⾸先在⼏何敏感部位的表⾯上形成,并由此沿曲(弧)⾯先向截⾯内部定向扩展,严重时可穿越零件的其余截⾯,再向零件的外表⾯延伸,直到在那⾥呈弧形露出;严重时常使相应部位沿弧裂脱落(或经敲击即可脱落)。

开裂⾯通常为形状各异的曲(弧)⾯,最典型的是从⼏个不同的⽅向观察时都呈弧形,是判定弧裂的重要依据。

锻造和热处理过程中裂纹形成原因分析

锻造和热处理过程中裂纹形成原因分析

锻造和热处理过程中裂纹形成原因分析发布时间:2021-05-20T10:33:30.803Z 来源:《基层建设》2020年第31期作者:裴一飞[导读] 摘要:裂缝很常见,生产过程往往是锻造和热处理过程。

航空工业哈尔滨飞机工业集团有限公司黑龙江哈尔滨 150000摘要:裂缝很常见,生产过程往往是锻造和热处理过程。

锻造裂纹通常在高温下发生,在锻造过程中会延伸并接触空气,形成裂纹中氧化的皮肤。

此框形成的裂纹不仅厚而且多,裂纹的两端不相连,尖端相对圆。

所处理的裂纹的形状和性能与锻造裂纹不同。

出现热处理后的裂纹是因为加热时该元素出现裂纹,导致在裂纹的咸晶方向上脱碳,最终结构比锻造裂纹厚。

对于和零件尤其如此本文收集了大量裂缝方式,分析总结了裂缝的原因。

最后,裂缝分为三类。

关键词:锻造、热处理;裂纹形成原因;过程;存在缺陷;前言裂纹是锻造和热处理中常见的缺陷之一,也是锻造行业中的热点和难点。

但是,锻造零件产生裂纹的可能性很大,因此必须研究锻造和热处理过程中的裂纹,并分析裂纹的原因。

一、锻造缺陷与热处理缺陷过热燃烧。

过度燃烧意味着加热温度高,切割机又大又不均匀,没有金属光泽,玻璃周围有氧化和渗碳。

造成裂缝。

当锻造温度较高或最终温度较低时,容易产生裂纹。

另一个裂缝是在水的钻井和冷却后形成的。

缩小范围。

表面缺陷是冲压、切割、板材磨损、穿孔等造成的。

在随后的钻孔中,观察到锻造体中存在表面氧化等缺陷以形成折弯。

通过显微镜观察,你可以看到弯曲周围明显的碳流失。

过火裂缝。

这些裂缝大多发生在MCU改造后,因此裂缝周围的微观结构与其他区域没有显着差异,也没有渗碳。

二、实验方法1.试样制备和宏观观察在试验前的第一阶段,只需对所选杆的工件裂纹进行宏观观察,在观察过程中,选择要测量的区域。

下一步是手动剪切选定区域,使其垂直于镜像且长度小于10 mm。

采样方法可能会有所不同,但在采样时必须选择温度和环境。

如果样品温度过高,可以使用冷水冷却样品,以免由于样品在回收过程中过热而改变事件的内部组织。

汽车转向节中频淬火裂纹的分析及防止措施

汽车转向节中频淬火裂纹的分析及防止措施

由于堵孔等因素致使圆角加热不足,造成圆角区域硬化
层深度过小,或硬化区结束在圆角区域内,拉应力峰值集 中在圆角区域,并接近表面。
3)盲孔过热。盲孔内侧一半要求在硬化区内,为了保 证圆角及端面在淬火加热时达到正常淬火温度,而盲孔 口的温度却往往会偏高,甚至会过热,如盲孔口无倒角, 或倒角太小时,过热的可能性更大。其结果一是在淬火过 程中形成应力过大;二是使该区内钢的破断抗力降低,容
reason
iS the tensile stress concentration in the quenching
zone
and the formation of Non Hardened Zone caused by the
high speed intermediate frequency
cause
调整时的主轴移动量,再根据螺母3的螺距估算出螺母
的加工机床,其加工质量及精度势必会影响到国家相关 重型工业的发展。为了确保机床的滑枕部件尤其是主轴 的相关精度,我们必须对在装配过程中影响滑枕部件精 度的相关因素进行系统研究,采取有力的手段,对其装配 和调整方法进行优化,从而保证机床滑枕部件的相关精度。
加热温
度,℃
880~920
室/kW
47—38 65~52
加热时间/s
风冷时
间,s
淬火介质和 冷却方式 O.1%.0.2%聚乙烯 醇水溶液喷冷
喷冷时
间,s
18
压力/MPa
连续
121
22s包括延时加热7s
23
1.5—2 l
8000 68 530 +0.9一+O.98 880—920 0.14
O.12~0.16
crack.Reducing the
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热处理淬火裂纹产生的原因
及防止措施分析
摘要:在热处理生产实践时,常常会遇到一些零件和工具,特别是形状复杂时,淬火过程因处理不当以及一些其他因素,造成工件内部存在有强大的淬火应力,以致引起淬火裂纹。

淬火裂纹直接导致零件的报废,产生的原因和条件及防止方法具有很摘要的现实意义。

关键词:淬火裂纹的实质产生原因和条件防止方法
一、淬火裂纹的实质
钢件在进行淬火是,在冷却的过程中同时产生了热应力和组织应力。

由于温度的降低使零件内部产生了热应力,由于奥氏体向马氏体的转变使内部产生了组织应力,组织应力是钢件表面淬火时拉应力,钢件表面在拉应力的作用下,有开裂的危险。

根据淬火裂纹断口形式和外观状态分析,淬火裂纹是在内应力作用下的脆性断裂。

二、淬火裂纹产生的原因和条件
1、钢的化学成分对淬火裂纹敏感性的影响
在一定的淬火介质中冷却时,钢的化学成分对热处理裂纹形成的影响,是由于它使钢件的内应力分布于应力集中的敏感性和钢的机械性能发生了改变的缘故。

合金元素对内应力的影响,则主要是由于合金元素对钢的组织结构影响的结果。

在钢中含有的所有元素中,碳对钢机械性能的影响最大,随着含碳量的增加,钢件淬火后组织应力也有所增大,由于组织应力作
用的结果,使钢的表面具有危险的拉应力。

因此,淬裂倾向将随着含碳量的增多而增大。

钢中其他常存因素,如硫、磷等夹杂物较多,呈条状、网状分布时,往往在正常淬火条件下形成裂纹。

合金元素能够在不同程度上使奥氏体的等温曲线的位置右移,即增大其淬透性,这样可以用缓慢的冷却介质进行淬火。

从而残余应力较小,是钢的马氏体转变温度降低,则残余奥氏体数量增多,组织应力减小,有利于降低钢件的淬裂倾向。

2、原材料缺陷对淬火时形成裂纹的影响
钢件内部的发纹、皮下气泡、较严重的碳化物偏析以及非金属夹杂等在淬火过程中,有可能在这些缺陷处产生裂纹。

各种锻件加工时,不论是温度过高或过低都容易在锻轧过程出现细小裂纹。

由于毛坯在锻轧后,表面上存在一些氧化皮,因此这些细小裂纹便不容易被发现。

但钢件机械加工后一些淬火处理,将会使原来存留的的裂纹扩展开来,从而使其暴露于钢件的表面。

3、钢件的结构特点对形成裂纹的影响
钢件的淬火裂纹的形成倾向与钢件的尺寸和形状等设计结构特点有关。

生产实践表明,具有截面急剧变化的工件或者有尖锐槽口的工件,在淬火冷却时这些部位会淬火时大的应力集中,都易于产生淬火裂纹。

4、淬火前的原始组织和应力状态对形成裂纹的影响
根据加热时的相变理论可以知道,钢的原始组织对加热时奥氏
体晶粒度及其长大有影响。

将钢加热到Ac1温度以上时,钢中的珠光体组织将转变为奥氏体。

高温奥氏体的晶粒大小及其长大倾向与及其长大倾向与钢的原始组织-----珠光体的形状和粗细有关。

淬火加热时,细片状珠光体的允许淬火温度范围较宽,并且淬火后可以获得较细的马氏体。

但是,与球状珠光体相比,片状珠光体却易于在加热温度偏高时引起奥氏体晶粒粗化,亦即倾向于过热。

所以对片状珠光体而言必须严格控制淬火加热温度和保温时间。

否则将因钢件过热导致淬火开裂。

球状珠光体相比在正常的淬火温度下可以保持较细小的奥氏体晶粒。

淬火后保障获得细密的马氏体组织,减小其内应力。

因此,原始组织为均匀的球状珠光体的钢对减少裂纹来说,是淬火前较理想的组织状态。

淬火前的原始组织与淬火裂纹密切相关的另一个问题,是钢件重复淬火时要充分的退火处理,即必须避免把淬火状态的组织直接再进行第二次处理,不经退火而重复淬火时,易形成裂纹。

钢件在切削加工过程时,也会产生很大的内应力,切削加工时选用的切削用量越大,产生的内应力也愈大。

这种机械加工造成的残余内应力,如果不经过去除,在淬火加热过程中,特别是高合金钢的复杂制件,有可能与由于加热速度过快产生的内应力发生叠加而导致开裂。

欲消除这种应力状态,则需要进行高温(450℃以上)的回火或去除应力的退火处理,才有利于减少钢件淬火时的变形或开裂。

5、加热因素对形成裂纹的影响
淬火加热温度越高,钢的晶粒越趋长大。

对同一牌号的钢,淬火加热温度越高,由于较大的奥氏体晶粒能使其淬透性增加,则淬火冷却时产生的应力亦越大。

另外,钢晶粒的大小,对钢破断抗力的大小的影响也很显著,随着晶粒尺寸的增大,破断抗力值则下降。

正因为淬火温度越高,奥氏体晶粒越粗大,破断抗力值越低,而且冷却时淬火时的应力越大。

所以,过热必将易于引起淬火裂纹。

若淬火温度过低,淬火后组织中有薄的网状铁素体时,尽管铁素体组织有较高的塑性,但因强度较低往往沿着铁素体网形成脆性断裂。

6、冷却因素对形成裂纹的影响
在由加热温度冷却到开始相变温度的过程中,钢的组织仍保持奥氏体状态(即过冷奥氏体),具有较低的屈服极限和很高的塑性,在应力状态上,由于没有发生相的转变,只产生热应力,所以在该冷却阶段钢件不会产生裂纹。

但钢件冷却到Ms点以下的温度,即钢发生相变时,除因冷却不一致所形成的热应力外,还有因相变进行的不等时性而产生的组织应力。

相变的结果,奥氏体转变成具有高硬度和低塑性的马氏体。

因此,在该温度区间的冷过程,最易于引起淬火裂纹。

因此,淬火时使钢在马氏体转变区间内缓慢冷却,成为防止形成裂纹的重要措施。

三、防止淬火裂纹的措施
1、改善钢件结构,合理选择钢材和确定技术条件
(1)工件各部分的截面要均匀,减少截面尺寸的急剧变化。

(2)热处理钢件在形状设计上要避免有尖锐的棱角。

(3)设计者在选择钢件所用材料时,除了应当无条件的满足钢件承载运转时所必须的强度、硬度、韧性等机械性能外,还应当严格顾及到材料在制造中的工艺性,特别是热处理的工艺问题。

(4)合理确定技术条件是减轻淬火裂纹的另一个重要途径。

a、局部硬化或表面硬化时即可满足使用性能要求者,尽量不要求整体淬火。

b、对于整体淬火钢件,局部可以放宽要求者,尽量不强求硬度一致。

c、对于贵重制件或结构及复杂的制件,当热处理难于达到技术要求时,应临时更改技术文件,适当放宽对使用寿命影响不大的要求,以免多次返修造成废品。

d、对于工作时受力复杂、承载较重的零件或工具,应当根据具体要求提出明确的技术条件。

2、妥善安排冷热加工工序和正确应用预先热处理
冷加工工序安排的合理,可以简化热处理工艺过程的复杂程度,从而降低而处理废品和提高生产率。

3、正确选择加热介质、加热温度和保温时间
(1)加热介质,淬火加热过程中应当既保证获得均匀的和晶粒度大小的奥氏体,同时其中的碳又不被烧损。

这是加热时的主要问题。

如碳量被烧损,不仅影响硬度而且易于形成淬火裂纹。

为了使钢件加热时不脱碳,可综合考虑其他因素,合理选择保护气氛、盐浴、真空加热等介质。

(2)加热温度,实际加热温度要根据加热时间和实践来确定,淬火温度过高,由于过热,淬火后亦形成裂纹;当加热不足和保温
时间不够时,钢件内部未能得到均匀的奥氏体,而有一部分铁素体存在,从而淬火后得到的组织是马氏体和少量的铁素体。

经低温回火后在使用过程中易于早期形成裂纹。

(3)保温时间,在允许的加热温度范围内,稍长的保温时间,可能对一般钢材不至于过热,但是对于锰钢,稍许延长保温时间也会产生过热,特别是在允许的加热温度的上限时,趋向更大。

因此严格控制保温时间对防止钢件过热,与严格的对待淬火温度没有同等重要意义。

4、合理选用冷却介质和冷却方法
钢件淬火冷却必须大于它的临街冷却速度才能获得完全硬化。

然而,快速冷却有事导致强大的内应力,以致形成淬火裂纹的主要因素之一。

因此,必须从既能达到硬化目的,又能免除淬火缺陷,两方面进行考虑,来正确选择冷却介质和冷却方法。

实践证明Ms 点以上的快速冷却,Ms点以下的缓冷,不仅能够使钢件硬化,并能增加热应力和减小组织应力,使形成裂纹的可能性减小。

(1)采用单液淬火时,应当在满足硬化条件下尽量采用冷却较缓慢的介质。

(2)采用双液淬火(常用水—油双液淬火),通过准确控制在水中的停留时间,达到硬化和防止裂纹产生的目的。

(3)对于截面尺寸较小的零件,采用分级淬火法是防止裂纹的行之有效的重要方法。

(4)采用等温淬火法,可使钢件强度、塑性、韧性得到合理的
配合,减少变形和裂纹的产生。

5、防止淬火裂纹的其他方法
众所周知,有许多工件的开裂不是在淬火冷却之后立即出现的,而是当工件从淬火介质中取出经过一定时间以后显现出来的,这就是所谓的时效裂纹。

毫无例外,这种时效裂纹也是由于较大的淬火应力所引起的。

若工件淬火后能够立即回火降低淬火应力,便可以有效地防止裂纹。

因此,缩短淬火与回火制件的时间间隔,已成为防止裂纹所应遵循的重要措施。

综上所述,影响淬火裂纹的因素很多。

即从结构设计到工艺分析;从备料到加工;从预先热处理到最后热处理均有导致钢件形成淬火裂纹的潜在因素。

在防止淬火裂纹方面有多种多样的方法,但值得说明的是,在生产上只求某一种措施可以万能解决开裂问题往往难于办到。

因此,为消除淬火裂纹,需要从各方面着手去解决。

那海娟。

相关文档
最新文档