2017年初三数学二模25题
2017北京市中考数学二模分类25题圆和答案解析
2017年北京市中考数学分类25题圆顺义25.如图,在Rt△ABC中,∠CA B=90 ,以AB为直径的⊙O交BC于点D,点E是AC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)点P是BD上一点,连接AP,DP,若BD:CD=4:1,求sin∠APD的值.EB房山25.如图,△ABC 中,AC=BC=a,AB=b.以BC为直径作⊙O交AB于点D,交AC 于点E,过点D作⊙O的切线MN,交CB的延长线于点M,交AC 于点N.(1)求证: MN⊥AC;(2) 连接BE,写出求BE长的思路.丰台26.如图,AB 为半圆的直径,O 为圆心,C 为圆弧上一点,AD 垂直于过点C 的切线,垂足为点D ,AB 的延长线交切线CD 于点E .(1)求证:AC 平分∠DAB ;(2)若AB =4,B 为OE 的中点,CF ⊥AB ,垂足为点F ,求CF 的长.平谷25.如图,已知△ABC 内接于⊙O ,AB 是⊙O 的直径,点F 在⊙O 上,且点C 是BF 的中点,过点C 作⊙O 的切线交AB 的延长线于点D ,交AF 的延长线于点E . (1)求证:AE ⊥DE ;(2)若∠BAF =60°,AF=4,求CE 的长.石景山25.如图,AB为⊙O的直径,弦BC,DE相交于点F,且DE⊥AB于点G,过点C 作⊙O的切线交DE的延长线于点H.(1)求证:HC HF(2)若⊙O的半径为5,点F是BC的中点,tan HCF m∠=,写出求线段BC长的思路.朝阳25.如图,△ABC中,∠A=45°,D是AC边上一点,⊙O过D、A、B三点,OD∥BC.(1)求证:直线BC是⊙O的切线;(2)OD, AB相交于点E,若AB=AC,OD=r,写出求AE长的思路.西城25.如图,AB 是⊙O 的直径,C 是⊙O 上一点,过点B 作⊙O 的切线,与AC 延长线交于点D ,连接BC ,OE ∥BC 交⊙O 于点E ,连接BE 交AC 于点H . (1)求证:BE 平分∠ABC ;(2)连接OD ,若BH =BD =2,求OD 的长.海淀25.如图,AB 是⊙O 的直径,BC 为弦,D 为AC 的中点,AC ,BD 相交于E 点,过点A 作⊙O 的切线交BD 的延长线于P 点. (1)求证:∠PAC =2∠CBE ;(2)若PD =m ,∠CBE=α,请写出求线段CE 长的思路.东城25.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,CE ⊥AD 交AD 的延长线于点E .(1)求证:∠BDC =∠A ;(2)若CE =4,DE =2,求AD 的长.通州24.如图,AB 是⊙O 的直径,PC 切⊙O 于点C ,AB 的延长线与PC 交于点P ,PC 的延长线与AD 交于点D ,AC 平分∠DAB .(1)求证:AD ⊥PC ;(2)连接BC ,如果∠ABC =60°,BC =2,P求线段PC 的长.昌平25.如图,AB 为⊙O 的直径,点D ,E 为⊙O 上的两个点,延长AD 至C ,使∠CBD=∠BED .(1)求证:BC 是⊙O 的切线;(2)当点E 为弧AD 的中点且∠BED=30°时,⊙O 半径为2,求DF 的长度.BCA怀柔25.如图,AB 是⊙O 的直径,CD 为⊙O 的弦,过点B 作⊙O 的切线,交AD 的延长线于点E ,连接AC 并延长,过点E 作EG ⊥AC 的延长线于点G ,并且∠GCD = ∠GAB .BAEEA(1)求证:AC BD =;(2)若AB =10,sin ∠ADC =35,求AG 的长.2017年北京市中考数学二模分类25题圆答案顺义25.(1)证明:连接OD ,AD ,∵AB 为⊙O 的直径,∴∠ADB =90°.∴∠ADC =90°.∵点E 是AC 的中点,∴12DE AC CE ==. ∴∠C =∠1.∵OB =OD ,∴∠B =∠2.在Rt △ABC 中,∵∠CAB =90°,∴∠C +∠B =90°.∴∠1+∠2=90°.∴∠ODE =180°-(∠1+∠2)=90°.∴OD ⊥DE . ∴DE 是⊙O 的切线.(2)解:设BD =4x ,CD =x ,则BC =5x . 由△ABC ∽△DAC ,得AC BCCD AC=. ∴55AC x x x ===.∴sin AC B BC ===. ∵∠APD=∠B ,∴sin sin 5APD B ∠==.房山25. (1)证明:连接 OD ,CD .∵BC 是⊙O 的直径,321oEDC A∴∠BDC =90°,即CD ⊥AB ∵AC =BC , ∴D 是AB 的中点又∵BC 是⊙O 的直径,即O 为 BC 的中点 ∴OD ∥AC ,∠MDO =∠MNC ∵MN 是⊙O 的切线,切点为D∴OD ⊥MN 即∠MDO =90°=∠MNC ∴MN ⊥ (2) 由BC 是⊙O 的直径,可得∠BEC =90°; 由CD ⊥AB ,在 Rt △ACD 中,AD 、AC 的长可知, 用勾股定理可求CD 的长;由AB ⋅CD =2S △ABC =AC ⋅BE ,可得BE 的长 .丰台26.(1)证明:连接OC ,∵DE 与⊙O 切于点C ,∴OC ⊥DE .∵AD ⊥DE ,∴OC ∥AD .∴∠2=∠3.∵OA =OC ,∴∠1=∠3.∴∠1=∠2,即AC 平分∠DAB . (2)解:∵AB =4,B 是OE 的中点,∴OB =BE =2,OC =2.∵CF ⊥OE ,∴∠CFO = 90º,∵∠COF = ∠EOC ,∠OCE = ∠CFO ,∴△OCE ∽△OFC ,∴OEOC OCOF =,∴OF =1.∴CF =3.平谷25.(1)证明:连接OC .∵DE 切⊙O 于C ,∴OC ⊥DE 于C .∵点C 是BF 的中点,∴∠BAC =∠EAC .∵OC=OA ,∴∠BAC =∠OCA .∴∠EAC =∠OCA .∴OC ∥AE .∴AE ⊥DE 于E .(2)连接BF .∵AB 是⊙O 直径,∴∠BFA =∠AEC =∠ECO =90°. ∴四边形CEFG 是矩形.即CO ⊥BF 于G . ∴BG=GF=CE .∵∠BAE =60°,AF =4,∴BF =CE =石景山25.(1)证明:连接OC ,如图1.∵CH 是⊙O 的切线, ∴2190∠+∠=°. ∵DE ⊥AB , ∴3490∠+∠=°.∵OB OC =,∴14∠=∠.∴23∠=∠. 又∵53∠=∠∴25∠=∠. ∴HC HF =. (2)求解思路如下: 思路一:连接OF ,如图2.① OF 过圆心且点F 是BC 的中点,由垂径定理可得2BC CF =,90OFC ∠=°; ② 由6∠与1∠互余,2∠与1∠互余可得62∠=∠,从而可知tan 6m ∠=;图1③ 在Rt OFC △中,由tan 6CF m OF∠==,可设OF x =,CF mx =,由勾股定 理,得222()5x mx +=,可解得x 的值;④ 由22BC CF mx ==,可求BC 的长.思路二:连接AC ,如图3.① 由AB 是⊙O 的直径,可得ACB △是直角三角形,知6∠与4∠互余, 又DE ⊥AB 可知3∠与4∠互余,得63∠=∠;② 由63∠=∠,32∠=∠,可得62∠=∠,从而可知tan 6m ∠=;③ 在Rt ACB △中,由tan 6BCm AC ∠==,可设AC x =,BC mx =,由勾股定 理,得222()10x mx +=,可解得x 的值; ④ 由BC mx =,可求BC 的长.朝阳25.(1)证明:连接OB .∵∠A =45°, ∴∠DOB =90°. ∵OD ∥BC ,∴∠DOB +∠CBO =180°. ∴∠CBO =90°.∴ 直线BC 是⊙O 的切线. (2)求解思路如下:如图,延长BO 交⊙O 于点F ,连接AF .①由AB =AC ,∠BAC =45°,可得∠ABC =67.5°,∠ABF =22.5°; ②在Rt △EOB 中,由OB =r ,可求BE 的长;③由BF 是直径,可得∠FAB =90°,在Rt △FAB 中,由BF =2r , 可求AB 的长,进而可求AE 的长.西城25(1)∵AB 是⊙O 的直径∴ ∠ACB = 90°∵OE ∥BC ∴ OE ⊥AC ∴ 弧AE =弧EC .∴ ∠1= ∠2 .∴BE 平分∠ABC .H图 2 图3(2)BD 是⊙O 的切线,∴ ∠ABD = 90°.∵∠ACB = 90°,BH =BD =2,∴ ∠BDH =∠3.∴∠CBD =∠2.∴∠1= ∠2 =∠CBD .∴∠CBD =30°.∠ADB =60°.在Rt △ABD中, ∠ADB =90°,∴AB=OB Rt △OBD 中,222OD OB BD =+,∴ OD . 海淀25.(1)证明:∵D 为AC 的中点,∴∠CBA =2∠CBE .∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠1+∠CBA =90°.∴∠1+2∠CBE =90°.∵AP 是⊙O 的切线,∴∠PAB =∠1+∠PAC =90°. ∴∠PAC =2∠CBE . (2)思路:①连接AD ,由D 是AC 的中点,∠2=∠CBE , 由∠ACB =∠PAB =90°,得∠P =∠3=∠4,故AP =AE ; ②由AB 是⊙O 的直径,可得∠ADB =90°;由AP =AE , 得PE =2PD =2m ,∠5=12∠PAC =∠CBE =α③在Rt △PAD 中,由PD =m ,∠5=α,可求PA 的长;④在Rt △PAB 中,由PA 的长和∠2=α,可求BP 的长; 由BE PB PE =-可求BE 的长; ⑤在Rt △BCE 中,由BE 的长和CBE α∠=,可求CE 的长.东城25.(1)证明:连接OD .∵CD 是⊙O 切线,∴∠ODC =90°.即∠ODB +∠BDC =90°. ∵AB 为⊙O 的直径,∴∠ADB =90°.即∠ODB +∠ADO =90°. ∴∠BDC =∠ADO .∵OA =OD ,∴∠ADO =∠A .∴∠BDC =∠A . (2)∵CE ⊥AE ,∴∠E =∠ADB =90°.∴DB ∥EC .∴∠DCE =∠BDC .∵∠BD C=∠A ,∴∠A =∠DCE .∵∠E=∠E ,∴△AEC ∽△CED .∴EC 2=DE •AE .∴16=2(2+AD ).∴AD =6. 通州24.(1)①连接OC ,OC //AD ②AD ⊥PC (2)32昌平25.(1)证明:∵AB 为⊙O 的直径∴∠ADB=90°∴∠A+∠DBA=90°∵ 弧BD =弧BD 错误!未指定书签。
中考数学 二模 25题
1.(2017年嘉定宝山)已知:8=AB ,⊙O 经过点A 、B .以AB 为一边画平行四边形ABCD ,另一边CD 经过点O (如图8).以点B 为圆心,BC 为半径画弧,交线段OC 于点E (点E 不与点O 、点C 重合).(1)求证:OE OD =;(2)如果⊙O 的半径长为5(如图9),设x OD =,y BC =,求y 关于x 的函数解析式,并写出它的定义域;(3)如果⊙O 的半径长为5,联结AC ,当AC BE ⊥时,求OD 的长.2.(2017年普陀)如图10,半圆O 的直径AB =10,有一条定长为6的动弦CD 在弧AB 上滑动(点C 、点D 分别不与点A 、点B 重合),点E 、F 在AB 上,EC ⊥CD ,FD ⊥CD . (1)求证:EO OF =;(2)联结OC ,如果△ECO 中有一个内角等于45 ,求线段EF 的长; (3)当动弦CD 在弧AB 上滑动时,设变量CE x =,四边形CDFE 面积为S ,周长为l ,问:S 与l 是否分别随着x 的变化而变化?试用所学的函数知识直接写出它们的函数解析式及函数定义域,以说明你的结论.图9 B O A 备用图 B OA 图8 E CB A O D 图103.(2017年崇明)如图,梯形ABCD 中,AB CD ∥,90ABC ∠=︒,6AB =,8BC =,tan 2D =,点E 是射线CD 上一动点(不与点C 重合),将BCE ∆沿着BE 进行翻折,点C 的对应点记为点F . (1)如图1,当点F 落在梯形ABCD 的中位线MN 上时,求CE 的长;(2)如图2,当点E 在线段CD 上时,设CE x =,BFC EFCS y S ∆∆=,求y 与x 之间的函数关系式,并写出定义域;(3)如图3,联结AC ,线段BF 与射线CA 交于点G ,当CBG ∆是等腰三角形时,求CE 的长.ABCDEFM NEDCFABEDC FAB GD CAB(第25题图1)(第25题图2)(第25题图3)(第25题备用图)4.(2017年杨浦)已知:以O 为圆心的扇形AOB 中,∠AOB =90°,点C 为»AB 上一动点,射线AC 交射线OB 于点D ,过点D 作OD 的垂线交射线OC 于点E ,联结AE . (1) 如图1,当四边形AODE 为矩形时,求∠ADO 的度数; (2) 当扇形的半径长为5,且AC =6时,求线段DE 的长;(3) 联结BC ,试问:在点C 运动的过程中,∠BCD 的大小是否确定?若是,请求出它 的度数;若不是,请说明理由.5.(2017年奉贤)已知:如图9,线段AB =4,以AB 为直径作半圆O ,点C 为弧AB 的中点,点P 为直径AB 上一点,联结PC ,过点C 作CD //AB ,且CD =PC ,过点D 作DE//PC ,交射线PB 于点E ,PD 与CE 相交于点Q . (1)若点P 与点A 重合,求BE 的长; (2)设PC = x ,y CEPD,当点P 在线段AO 上时,求y 与x 的函数关系式及定义域; (3)当点Q 在半圆O 上时,求PC 的长.图9ACPOBD E Q备用图AO BCA OBCD E(备用图) A O B CD E (图1)6.(2017年闵行)如图,在梯形ABCD 中,AD // BC ,∠B = 90°,AB = 4,BC = 9,AD = 6.点E 、F 分别在边AD 、BC 上,且BF = 2DE ,联结FE .FE 的延长线与CD 的延长线相交于点P .设DE = x ,PEy EF . (1)求y 关于x 的函数解析式,并写出函数的定义域;(2)当以ED 为半径的⊙E 与以FB 为半径的⊙F 外切时,求x 的值;(3)当△AEF ∽△PED 时,求x 的值.7.(2017年长宁金山)如图,△ABC 的边AB 是⊙O 的直径,点C 在⊙O 上,已知AC =6 cm ,BC =8 cm ,点P 、Q 分别在边AB 、BC 上,且点P 不与点A 、B 重合,BQ =k ·AP (k >0),连接PC 、PQ . (1)求⊙O 的半径长; (2)当k =2时,设AP =x ,△CPQ 的面积为y ,求y 关于x 的函数关系式,并写出定义域; (3)如果△CPQ ∽△ABC ,且∠ACB =∠CPQ ,求k 的值.第25题图A B CDE F P (第25题图)A B C D (备用图)EP 第25题图 C AB D8.(2017年虹口)如图,在△ABC 中,AB=AC =5,cos B =45,点P 为边BC 上一动点,过点P 作射线PE 交射线BA 于点D ,∠BPD=∠BAC .以点P 为圆心,PC 长为半径作⊙P 交射线PD 于点E ,联结CE ,设BD=x ,CE=y . (1)当⊙P 与AB 相切时,求⊙P 的半径;(2)当点D 在BA 的延长线上时,求y 关于x 的函数解析式,并写出定义域; (3)如果⊙O 与⊙P 相交于点C 、E ,且⊙O 经过点B ,当OP=54时,求AD 的长.9.(2017年浦东新区)如图所示,︒=∠45MON ,点P 是MON ∠内一点,过点P 作OM PA ⊥于点A 、ON PB ⊥于点B ,且22=PB .取OP 的中点C ,联结AC 并延长,交OB 于点D .(1)求证:OPB ADB ∠=∠;(2)设x PA =,y OD =,求y 关于x 的函数解析式;(3)分别联结AB 、BC ,当ABD △与CPB △相似时,求PA 的长.(第25题图)(备用图)10.(2016年崇明)如图,已知BC 是半圆O 的直径,8BC =,过线段BO 上一动点D ,作AD BC ⊥交半圆O 于点A ,联结AO ,过点B 作BH AO ⊥,垂足为点H ,BH 的延长线交半圆O 于点F . (1)求证:AH BD =;(2)设BD x =,BE BF y ⋅=,求y 关于x 的函数关系式;(3)如图2,若联结FA 并延长交CB 的延长线于点G ,当FAE ∆与FBG ∆相似时,求BD 的长度.11.(2016年宝山嘉定)如图8,⊙O 与过点O 的⊙P 相交于AB ,D 是⊙P 的劣弧OB 上一点,射线OD 交⊙O 于点E ,交AB 的延长线于点C .如果AB =24,32tan =∠AOP . (1) 求⊙P 的半径长;(2) 当△AOC 为直角三角形时,求线段OD 的长; (3) 设线段OD 的长度为x ,线段CE 的长度为y ,求y 与x 之间的函数关系式及其定义域.(第25题图1)ABDOE HFC(第25题图2) CO D B G A F H E 图8_C _ E _B _O_P_A_ D12.(2016年长宁金山)如图, 已知在Rt △ABC 中, ∠ACB =90°, AB =5, 4sin 5A, P 是边BC 上的一点, PE ⊥AB , 垂足为E , 以点P 为圆心, PC 为半径的圆与射线PE 相交于点Q , 线段CQ 与边AB 交于点D . (1)求AD 的长;(2)设CP =x , △PCQ 的面积为y , 求y 关于x 的函数解析式, 并写出定义域;(3)过点C 作CF ⊥AB , 垂足为F , 联结PF 、QF , 如果△PQF 是以PF 为腰的等腰三角形, 求CP 的长.13.(2016年闸北)如图,在△ABC 中,AB=AC=6,BC=4,⊙B 与边AB 相交于点D ,与边BC 相交于点E ,设⊙B 的半径为x . (1)当⊙B 与直线AC 相切时,求x 的值;(2)设DC 的长为y ,求y 关于x 的函数解析式,并写出定义域; (3)若以AC 为直径的⊙P 经过点E ,求⊙P 与⊙B 公共弦的长.BCAP EQDBCACB ADE (第25题图)14.(2016年闵行)如图,已知在△ABC 中,AB = AC = 6,AH ⊥BC ,垂足为点H .点D 在边AB 上,且AD = 2,联结CD 交AH 于点E .(1)如图1,如果AE = AD ,求AH 的长;(2)如图2,⊙A 是以点A 为圆心,AD 为半径的圆,交线段AH 于点F .设点P 为边BC 上一点,如果以点P 为圆心,BP 为半径的圆与⊙A 外切,以点P 为圆心,CP 为半径的圆与⊙A 内切,求边BC 的长;(3)如图3,联结DF .设DF = x ,△ABC 的面积为y ,求y 关于x 的函数解析式,并写出自变量x 的取值范围.15.(2016年松江)已知:如图1,在梯形ABCD 中,AD //BC ,∠BCD =90º, BC=11,CD=6,tan ∠ABC =2,点E 在AD 边上,且AE=3ED ,EF //AB 交BC 于点F ,点M 、N 分别在射线FE 和线段CD 上.(1)求线段CF 的长; (2)如图2,当点M 在线段FE 上,且AM ⊥MN ,设FM ·cos ∠EFC =x ,CN =y ,求y 关于x 的函数解析式,并写出它的定义域;(3)如果△AMN 为等腰直角三角形,求线段FM 的长.AB C H D (第25题图1) E AB C H D E(第25题图3) F P AB C H D E(第25题图2) F (第25题图1)AC B DE F(第25题图2)AC B DE FNM (备用图)A CBDE F16.(2016年黄埔)如图7,在Rt △ABC 中,90ACB ∠=︒,1AC =,BC =7,点D 是边CA 延长线上的一点,AE ⊥BD ,垂足为点E ,AE 的延长线交CA 的平行线BF 于点F ,联结CE 交AB 于点G .(1)当点E 是BD 的中点时,求tan AFB ∠的值;(2)CE AF 的值是否随线段AD 长度的改变而变化,如果不变,求出CE AF 的值;如果变化,请说明理由;(3)当BGE ∆与BAF ∆相似时,求线段AF 的长.19.(2016年杨浦)已知:半圆O 的直径AB =6,点C 在半圆O 上,且tan 22ABC ∠=,点D 为AC 上一点,联结DC (如图).(1)求BC 的长;(2)若射线DC 交射线AB 于点M ,且△MBC 与△MOC 相似,求CD 的长; (3)联结OD ,当OD//BC 时,作∠DOB 的平分线交线段DC 于点N ,求ON 的长.图7AB C DEF G (第25题备用图) A B O C A B O C D(第25题图)20.(2016年奉贤) 已知:如图,在边长为5的菱形ABCD 中,cos A =35,点P 为边AB 上一点,以A 为圆心、AP 为半径的⊙A 与边AD 交于点E ,射线CE 与⊙A 另一个交点为点F . (1)当点E 与点D 重合时,求EF 的长;(2)设AP =x ,CE =y ,求y 关于x 的函数关系式及定义域;(3)是否存在一点P ,使得 2EF PE =⋅,若存在,求AP 的长,若不存在,请说明理由.21.(2016年普陀)如图9,在Rt △ABC 中,90C ∠= ,14AC =,3tan 4A =,点D 是边AC 上的一点,8AD =.点E 是边AB 上一点,以点E 为圆心,EA 为半径作圆,经过点D .点F 是边AC 上一动点(点F 不与A 、C 重合),作FG EF ⊥,交射线BC 于点G . (1)用直尺圆规作出圆心E ,并求圆E 的半径长(保留作图痕迹);(2)当点G 在边BC 上时,设AF x =,CG y =,求y 关于x 的函数解析式,并写出它的定义域;(3)联结EG ,当△EFG 与△FCG 相似时,推理判断以点G 为圆心、CG 为半径的圆G 与圆E 可能产生的各种位置关系.DCBA E F第25题图P DCBA备用图DCBA图9DCBA图9备用图22.(2016年浦东)如图,Rt △ABC 中,90ACB ∠= ,6BC =,点D 为斜边AB 的中点,点E 为边AC 上的一个动点.联结DE ,过点E 作DE 的垂线与边BC 交于点F ,以,DE EF 为邻边作矩形DEFG .(1)如图1,当8AC =,点G 在边AB 上时,求DE 和EF 的长; (2)如图2,若12DE EF =,设AC x =,矩形DEFG 的面积为y ,求y 关于x 的函数解析式; (3)若23DE EF =,且点G 恰好落在Rt △ABC 的边上,求AC 的长.23.(2015年黄埔)如图8,Rt △ABC 中,90C ︒∠=,30A ︒∠=,BC =2,CD 是斜边AB 上的高,点E 为边AC 上一点(点E 不与点A 、C 重合),联结DE ,作CF ⊥DE ,CF 与边AB 、线段DE 分别交于点F 、G .(1)求线段CD 、AD 的长;(2)设CE x =,DF y =,求y 关于x 的函数解析式,并写出它的定义域; (3)联结EF ,当△EFG 与△CDG 相似时,求线段CE 的长.GFED C BA 第25题 图2A BC D EFG 第25题 图1 ABCD备用图DCBA(备用图)图8GFDCB A E23.(2015年奉贤)已知:如图,线段AB =8,以A 为圆心,5为半径作圆A ,点C 在⊙A 上,过点C 作CD //AB 交⊙A 于点D (点D 在C 右侧),联结BC 、AD . (1)若CD=6,求四边形ABCD 的面积;(2)设CD =x ,BC =y ,求y 与x 的函数关系式及自变量x 的取值范围;(3)设BC 的中点为M ,AD 的中点为N ,线段MN 交⊙A 于点E ,联结CE ,当CD 取何值时,CE //AD .23.(2015年松江区)如图,已知在直角梯形ABCD 中,AD ∥BC ,∠ABC =90º,AB =4,AD=3,552sin =∠BCD ,点P 是对角线BD 上一动点,过点P 作PH ⊥CD ,垂足为H . (1)求证:∠BCD =∠BDC ;(2)如图1,若以P 为圆心、PB 为半径的圆和以H 为圆心、HD 为半径的圆外切时,求DP 的长;(3)如图2,点E 在BC 延长线上,且满足DP =CE ,PE 交DC 于点F ,若△ADH 和△ECF 相似,求DP 的长.DCB (第25题图)AB(备用图)AABCHPD (第25题图1)ABCHPD EF(第25题图2)23.(2015年闵行区)如图,已知在梯形ABCD 中,AD // BC ,AB = DC = 5,AD = 4.M 、N 分别是边AD 、BC 上的任意一点,联结AN 、DN .点E 、F 分别在线段AN 、DN 上,且ME // DN ,MF // AN ,联结EF .(1)如图1,如果EF // BC ,求EF 的长;(2)如果四边形MENF 的面积是△ADN 的面积的38,求AM 的长;(3)如果BC = 10,试探索△ABN 、△AND 、△DNC 能否两两相似?如果能,求AN 的长;如果不能,请说明理由.23.(2015年嘉定)在Rt △ABC 中,︒=∠90C ,2=BC ,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,联结AE ,过点E 作直线EM 与射线CB 垂直,交点为M .(1)若点M 与点B 重合如图10,求BAE ∠cot 的值;(2)若点M 在边BC 上如图11,设边长x AC =,y BM =,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围; (3)若EBM BAE ∠=∠,求斜边AB 的长.A B C D M N E F(图1)A B C D M NE F (第25题图)A CB (M )ED 图10ACBMED图11。
2017年初三第二次联考数学试卷
第8题图2017年初三第二次联考数学试卷(考生注意:本试题共25小题,满分120分,考试时间120分钟)一、选择题:(本大题共10个小题,每小题3分,共30分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑.1.在14,1-,0, 3.2-这四个数中,属于负分数的是( ). A .14B .1-C .0D . 3.2-2.下列4个图形中,是中心对称图形但不是..轴对称的图形是().A .B .C .D . 3.下列计算正确的是( ).A .523m m -=B .236a a a ⋅=C .326()ab ab = D .322()2m n mn m ÷= 4.下列说法中,正确的是( ).A .不可能事件发生的概率是0B .打开电视机正在播放动画片,是必然事件C .随机事件发生的概率是21D .对“梦想的声音”节目收视率的调查,宜采用普查 5.如图,AB ∥CD ,CB 平分∠ABD ,若∠C=40°,则∠D 的度数为( ). A .90° B . 100° C . 110° D . 120°6.在函数2y x=中,自变量x 的取值范围是( ). A .3x -≥且0x ≠B .3x ≤且0x ≠C .0x ≠D .3x -≥7.如图,在□ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,25:4:=∆∆ABF DEF S S ,则DE :EC =( ). A .2:5 B .2:3 C .3:5 D .3:2 8.如图,⊙O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=︒,4OC =,CD 的长为( ).A .22B .4C .24D .8B第5题图BC9.如果关于x 的分式方程1311a x x x --=++有负分数解,且关于x 的不等式组()24,3412a x x x x -≥--⎧⎪⎨+<+⎪⎩的解集为2x <-,那么符合条件的所有整数a 的积是( ) A 、3- B 、0C 、3D 、910.如图,平面直角坐标系中,矩形OABC 的顶点B 在第一象限,点C 在x 轴上,点A 在y 轴上,D 、E 分别是AB ,OA 中点.过点D 的双曲线(,)00ky x k x=>>与BC 交于点G .连接DC ,F 在DC 上,且DF :FC =3:1,连接DE ,EF .若△DEF 的面积为6,则k 的值为( ). A .163 B .323C .6D .10二、填空题:(本大题共6小题,每小题3分,共18分)请把下列各题的正确答案填写在答题卡中对应的横线上. 11.经过十多年的成长,中国城市观众到影院观影的习惯已经逐渐养成:2010年,某影院观众人次总量才23400,但到2016年已经暴涨至13.5万.其中13。
黄浦区2017年初三二模25题详解
已知,Rt △ABC 斜边AB 上点D 、E ,满足∠DCE=450,(1) 如图1,当AC=1,BC=3,且点D 与点A 重合时,求线段BE 的长; (2) 如图2,当△ABC 是等腰三角形时,求证:222DE BE AD =+;(3) 如图3,当AC=3,BC=4,设AD=x ,BE=y ,,求y 关于x 的函数关系式,并写出定义域。
解:(1)方法一、过E 作EF ∥BC 交CA 于F易证△CEF 为等腰直角三角形。
由此设EF 为a ,则CF=a ,FA=1-a 在Rt △EFA 中,3=FA EF ,由此解得a 233-, 又CA CF BA BE =,即12aBE =得到BE=33-方法二、三角形内角平分线定理(需证明) 此时CE 是∠ACB 的平分线,则EA EB CA CB =,得到方程132=-BE BE ,解得BE=33-(2)(3)方法一、背景图形 将等腰三角形的底角放在顶角顶点旋转。
(如右图)则△ADE ∽△BAE △ADE ∽△CDA 由此△ABE ∽ACD ,(即左∽右)其中∠AEB=∠DAC ,∠BAE=∠ADC (交错角相等) 则ACBECD AB =,得CD BE AC AB ⋅=⋅图1D图2EC图3ACA(2)基于上述背景图形,第二问可以理解为将一个450放在等腰Rt △的顶点处旋转。
设BD=a ,DE=c ,CE=b ,则有()()22⎪⎭⎫⎝⎛++=++c b a c b c a整理后可得结论。
(3)没有了原来的等腰三角形,那就构造!!!构造等腰Rt △CMN ,并作CH ⊥AB 则CH=HM=HN=512在Rt △CMN 中,有222DN ME DE += ○1 DE=5-x-y , ME=BE-BM=54512516-=⎪⎭⎫⎝⎛--y yDN=AD+AN=5359512+=⎪⎭⎫⎝⎛-+x x将上述三条线段代入○1并整理即可得结果 2156028--=x x y ⎪⎭⎫⎝⎛≤≤7150x 定义域做法与第一小题相同(2)(3)方法二背景图形 将一个450角放在正方形一个顶点处旋转 易证△AEF ∽△DHF ∽△BEGDH+BG=GH以上证明过程中,得到了两组角的相等。
2017年中考数学二模试卷含答案解析
2017年中考数学二模试卷一、选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项填在答题卡相应位置)1.9的算术平方根是()A.±3 B.3 C.D.2.2016年,巴彦淖尔市计划投资42亿元,完成300个嘎查村的建设任务.农村牧区“十个全覆盖”推进正酣.将42亿用科学记数法应表示为()A.0.042×107B.0.42×108C.4.2×109D.42×10103.下列计算正确的是()A.a3+a2=2a5B.(﹣2a3)2=4a6C.(a+b)2=a2+b2D.a6÷a2=a34.不等式组的整数解的和是()A.﹣1 B.1 C.0 D.15.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35° B.40° C.50° D.65°6.一个几何体的三视图如图所示,该几何体的侧面积为()A.2πcm2B.4πcm2C.8πcm2D.16πcm27.已知一组数据:1,2,6,3,3,下列说法错误的是()A.众数是3 B.中位数是6 C.平均数是3 D.方差是2.88.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上.下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的个数为()A.1 B.2 C.3 D.49.如图,在平行四边形ABCD中,E是CD上的一点,DE:EC=2:3,连接AE、BE、BD,且AE、BD交于点F,则S△DEF:S△EBF:S△ABF=()A.2:5:25 B.4:9:25 C.2:3:5 D.4:10:2510.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.二、填空题(本题共6小题,每小题4分,共24分)11.分解因式:﹣3x3y+12x2y﹣12xy= .12.要使式子有意义,则a的取值范围为.13.在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有球个.14.如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为m(结果不作近似计算).15.抛物线y=x2﹣2x+3的顶点坐标是,当x= 时,y随x的增大而减小.16.如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC,BC相切于点E,F,与AB分别交于点G,H,且EH的延长线和CB的延长线交于点D,则CD 的长为.三、解答题(共86分,解答应写成文字说明、证明过程、演算步骤)17.(1)计算:2sin60°﹣()﹣1+(﹣1)0(2)先化简,再求值:(1﹣)÷,其中a=2+.18.某校为了更好地开展球类运动,体育组决定用1600元购进足球8个和篮球14个,并且篮球的单价比足球的单价多20元,请解答下列问题:(1)求出足球和篮球的单价;(2)若学校欲用不超过3240元,且不少于3200元再次购进两种球50个,求出有哪几种购买方案?(3)在(2)的条件下,若已知足球的进价为50元,篮球的进价为65元,则在第二次购买方案中,哪种方案商家获利最多?19.某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?20.如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.(1)请用列表或画树状图的方法写出所有的可能;(2)求一次函数y=kx+b的图象经过一、二、四象限的概率.21.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.22.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.23.如图,⊙O是Rt△ABC的外接圆,AC是⊙O的直径,弦BD=BA,AB=12,BC=5,BE⊥DC,交DC的延长线于点E.(1)求证:△ABC∽△DEB;(2)求证:BE是⊙O的切线;(3)求DE的长.24.已知,如图二次函数y=ax2+bx+c(a≠0)的图象与y轴交于点C(0,4)与x轴交于点A、B,点B(4,0),抛物线的对称轴为x=1.直线AD交抛物线于点D(2,m).(1)求二次函数的解析式并写出D点坐标;(2)点E是BD的中点,点Q是线段AB上一动点,当△QBE和△ABD相似时,求点Q的坐标;(3)抛物线与y轴交于点C,直线AD与y轴交于点F,点M为抛物线对称轴上的动点,点N在x轴上,当四边形CMNF周长取最小值时,求出满足条件的点M和点N的坐标.2017年中考数学二模试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项填在答题卡相应位置)1.9的算术平方根是()A.±3 B.3 C.D.【考点】22:算术平方根.【分析】根据开方运算,可得算术平方根.【解答】解:9的算术平方根是3,故选:B.2.2016年,巴彦淖尔市计划投资42亿元,完成300个嘎查村的建设任务.农村牧区“十个全覆盖”推进正酣.将42亿用科学记数法应表示为()A.0.042×107B.0.42×108C.4.2×109D.42×1010【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:42亿=42 0000 0000=4.2×109,故选:C.3.下列计算正确的是()A.a3+a2=2a5B.(﹣2a3)2=4a6C.(a+b)2=a2+b2D.a6÷a2=a3【考点】48:同底数幂的除法;47:幂的乘方与积的乘方;4C:完全平方公式.【分析】根据合并同类项法则;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;完全平方公式,同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a3和a2不是同类项不能合并,故本选项错误;B、(﹣2a3)2=4a6,正确;C、应为(a+b)2=a2+b2+2ab,故本选项错误;D、应为a6÷a2=a4,故本选项错误.故选B.4.不等式组的整数解的和是()A.﹣1 B.1 C.0 D.1【考点】CC:一元一次不等式组的整数解.【分析】先解出不等式组的解集,从而可以得到不等式组的整数解,从而可以得到不等式组的整数解的和.【解答】解:解得,﹣2<x≤,∴的整数解是x=﹣1,x=0,x=1,∵(﹣1)+0+1=0,故的整数解得和是0,故选C.5.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35° B.40° C.50° D.65°【考点】R2:旋转的性质.【分析】根据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.【解答】解:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C.6.一个几何体的三视图如图所示,该几何体的侧面积为()A.2πcm2B.4πcm2C.8πcm2D.16πcm2【考点】U3:由三视图判断几何体;MP:圆锥的计算.【分析】由几何体的主视图和左视图都是等腰三角形,俯视图是圆,可以判断这个几何体是圆锥,进而得出圆锥的高以及母线长和底面圆的半径,再利用圆锥侧面积公式求出即可.【解答】解:依题意知母线l=4cm,底面半径r=2÷2=1,则由圆锥的侧面积公式得S=πrl=π×1×4=4πcm2.故选B.7.已知一组数据:1,2,6,3,3,下列说法错误的是()A.众数是3 B.中位数是6 C.平均数是3 D.方差是2.8【考点】W7:方差;W1:算术平均数;W4:中位数;W5:众数.【分析】分别求出这组数据的平均数、中位数、众数和方差,再分别对每一项进行判断即可.【解答】解:A、3出现了2次,出现的次数最多,则众数是3,故本选项正确;B、把这组数据从小到大排列为:1,2,3,3,6,最中间的数是3,则中位数是3,故本选项错误;C、这组数据的平均数是(1+2+6+3+3)÷5=3,故本选项正确;D、这组数据的方差是: [(1﹣3)2+(2﹣3)2+(6﹣3)2+(3﹣3)2+(3﹣3)2]=,故本选项正确;故选B.8.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上.下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的个数为()A.1 B.2 C.3 D.4【考点】LE:正方形的性质;KD:全等三角形的判定与性质;KK:等边三角形的性质.【分析】根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,利用解三角形求正方形的面积等知识可以判断④的正误.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC﹣BE=CD﹣DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,a2+(a﹣)2=4,解得a=,则a2=2+,∴S正方形ABCD=2+,④说法正确,∴正确的有①②④.故选C.9.如图,在平行四边形ABCD中,E是CD上的一点,DE:EC=2:3,连接AE、BE、BD,且AE、BD交于点F,则S△DEF:S△EBF:S△ABF=()A.2:5:25 B.4:9:25 C.2:3:5 D.4:10:25【考点】S9:相似三角形的判定与性质;K3:三角形的面积;L5:平行四边形的性质.【分析】根据平行四边形的性质求出DC=AB,DC∥AB,求出DE:AB=2:5,根据相似三角形的判定推出△DEF∽△BAF,求出△DEF和△ABF的面积比,根据三角形的面积公式求出△DEF 和△EBF的面积比,即可求出答案.【解答】解:根据图形知:△DEF的边DF和△BFE的边BF上的高相等,并设这个高为h,∵四边形ABCD是平行四边形,∴DC=AB,DC∥AB,∵DE:EC=2:3,∴DE:AB=2:5,∵DC∥AB,∴△DEF∽△BAF,∴==, ==,∴====∴S△DEF:S△EBF:S△ABF=4:10:25,故选D.10.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】要找出准确反映s与x之间对应关系的图象,需分析在不同阶段中s随x变化的情况.【解答】解:由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<x≤2,s=,当2<x≤3,s=1,由以上分析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分.故选C.二、填空题(本题共6小题,每小题4分,共24分)11.分解因式:﹣3x3y+12x2y﹣12xy= ﹣3xy(x﹣2)2.【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣3xy(x2﹣4x+4)=﹣3xy(x﹣2)2,故答案为:﹣3xy(x﹣2)212.要使式子有意义,则a的取值范围为a≥﹣2且a≠0 .【考点】72:二次根式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:a+2≥0且a≠0,解得:a≥﹣2且a≠0.故答案为:a≥﹣2且a≠0.13.在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有球12 个.【考点】X4:概率公式.【分析】设袋中共有球x个,根据概率公式列出等式解答.【解答】解:设袋中共有球x个,∵有3个白球,且摸出白球的概率是,∴=,解得x=12(个).故答案为:12.14.如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为12m(结果不作近似计算).【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】首先过点D作DE⊥AB于点E,可得四边形BCDE是矩形,然后分别在Rt△ABC与Rt △ADE中,利用正切函数的知识,求得AB与AE的长,继而可求得答案.【解答】解:过点D作DE⊥AB于点E,则四边形BCDE是矩形,根据题意得:∠ACB=β=60°,∠ADE=α=30°,BC=18m,∴DE=BC=18m,CD=BE,在Rt△ABC中,AB=BC•tan∠ACB=18×tan60°=18(m),在Rt△ADE中,AE=DE•tan∠ADE=18×tan30°=6(m),∴DC=BE=AB﹣AE=18﹣6=12(m).故答案为:12.15.抛物线y=x2﹣2x+3的顶点坐标是(1,2),当x= <1 时,y随x的增大而减小.【考点】H3:二次函数的性质.【分析】由于二次函数的二次项系数a=1>0,由此可以确定抛物线开口方向,利用y=ax2+bx+c的顶点坐标公式为(﹣,),对称轴是x=﹣可以确定对称轴,然后即可确定在对称轴的左侧y随x的增大而减小,由此得到x的取值范围.【解答】解:∵y=x2﹣2x+3,∴二次函数的二次项系数a=1>0,∴抛物线开口向上,∵y=ax2+bx+c的顶点坐标公式为(﹣,),对称轴是x=﹣,∴此函数对称轴是x=1,顶点坐标是(1,2),∴当x<1时,y随x的增大而减小.故答案为:(1,2),<1.16.如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC,BC相切于点E,F,与AB分别交于点G,H,且EH的延长线和CB的延长线交于点D,则CD的长为 a .【考点】MC:切线的性质;MH:切割线定理;S7:相似三角形的性质.【分析】连接OE、OF,由切线的性质结合结合直角三角形可得到正方形OECF,并且可求出⊙O的半径为0.5a,则BF=a﹣0.5a=0.5a,再由切割线定理可得BF2=BH•BG,利用方程即可求出BH,然后又因OE∥DB,OE=OH,利用相似三角形的性质即可求出BH=BD,最终由CD=BC+BD,即可求出答案.【解答】解:如图,连接OE、OF,∵由切线的性质可得OE=OF=⊙O的半径,∠OEC=∠OFC=∠C=90°,∴OECF是正方形,∵由△ABC的面积可知×AC×BC=×AC×OE+×BC×OF,∴OE=OF=a=EC=CF,BF=BC﹣CF=0.5a,GH=2OE=a,∵由切割线定理可得BF2=BH•BG,∴a2=BH(BH+a),∴BH=a或BH=a(舍去),∵OE∥DB,OE=OH,∴△OEH∽△BDH,∴=,∴BH=BD,CD=BC+BD=a+a=a.故答案为: a.三、解答题(共86分,解答应写成文字说明、证明过程、演算步骤)17.(1)计算:2sin60°﹣()﹣1+(﹣1)0(2)先化简,再求值:(1﹣)÷,其中a=2+.【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)原式利用特殊角的三角函数值,零指数幂、负整数指数幂法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:(1)原式=2×﹣2+1=﹣1;(2)原式=•=,当a=2+时,原式==+1.18.某校为了更好地开展球类运动,体育组决定用1600元购进足球8个和篮球14个,并且篮球的单价比足球的单价多20元,请解答下列问题:(1)求出足球和篮球的单价;(2)若学校欲用不超过3240元,且不少于3200元再次购进两种球50个,求出有哪几种购买方案?(3)在(2)的条件下,若已知足球的进价为50元,篮球的进价为65元,则在第二次购买方案中,哪种方案商家获利最多?【考点】CE:一元一次不等式组的应用;8A:一元一次方程的应用.【分析】(1)设足球的单价为x元,则篮球的单价为(x+20)元,则根据所花的钱数为1600元,可得出方程,解出即可;(2)根据题意所述的不等关系:不超过3240元,且不少于3200元,等量关系:两种球共50个,可得出不等式组,解出即可;(3)分别求出三种方案的利润,继而比较可得出答案.【解答】解:(1)设足球的单价为x元,则篮球的单价为(x+20)元,根据题意,得8x+14(x+20)=1600,解得:x=60,x+20=80.即足球的单价为60元,则篮球的单价为80元;(2)设购进足球y个,则购进篮球(50﹣y)个.根据题意,得,解得:,∵y为整数,∴y=38,39,40.当y=38,50﹣y=12;当y=39,50﹣y=11;当y=40,50﹣y=10.故有三种方案:方案一:购进足球38个,则购进篮球12个;方案二:购进足球39个,则购进篮球11个;方案三:购进足球40个,则购进篮球10个;(3)商家售方案一的利润:38(60﹣50)+12(80﹣65)=560(元);商家售方案二的利润:39(60﹣50)+11(80﹣65)=555(元);商家售方案三的利润:40(60﹣50)+10(80﹣65)=550(元).故第二次购买方案中,方案一商家获利最多.19.某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有200 名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?【考点】VC:条形统计图;VB:扇形统计图.【分析】(1)喜好“核桃味”牛奶的学生人数除以它所占的百分比即可得本次被调查的学生人数;(2)用本次被调查的学生的总人数减去喜好原味、草莓味、菠萝味、核桃味的人数得出喜好香橙味的人数,补全条形统计图即可,用喜好“菠萝味”牛奶的学生人数除以总人数再乘以360°,即可得喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)用喜好草莓味的人数占的百分比减去喜好原味的人数占的百分比,再乘以该校的总人数即可.【解答】解:(1)10÷5%=200(名)答:本次被调查的学生有200名,故答案为:200;(2)200﹣38﹣62﹣50﹣10=40(名),条形统计图如下:=90°,答:喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数为90°;(3)1200×()=144(盒),答:草莓味要比原味多送144盒.20.如图有A 、B 两个大小均匀的转盘,其中A 转盘被分成3等份,B 转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A 转盘指针指向的数字记作一次函数表达式中的k ,将B 转盘指针指向的数字记作一次函数表达式中的b . (1)请用列表或画树状图的方法写出所有的可能;(2)求一次函数y=kx+b 的图象经过一、二、四象限的概率.【考点】X6:列表法与树状图法;F7:一次函数图象与系数的关系. 【分析】(1)列表得出所有等可能的情况数即可;(2)找出满足一次函数y=kx+b 的图象经过一、二、四象限的情况,即可求出所求的概率. 【解答】解:(1)列表如下:所有等可能的情况有12种;(2)一次函数y=kx+b 的图象经过一、二、四象限时,k <0,b >0,情况有4种, 则P==.21.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,过点D 作对角线BD 的垂线交BA 的延长线于点E .(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【考点】L8:菱形的性质;L7:平行四边形的判定与性质.【分析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.22.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)观察函数图象得到当﹣4<x<﹣1时,一次函数图象都在反比例函数图象上方;(2)先利用待定系数法求一次函数解析式,然后把B点坐标代入y=可计算出m的值;(3)设P点坐标为(t, t+),利用三角形面积公式可得到••(t+4)=•1•(2﹣t﹣),解方程得到t=﹣,从而可确定P点坐标.【解答】解:(1)当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)把A(﹣4,),B(﹣1,2)代入y=kx+b得,解得,所以一次函数解析式为y=x+,把B(﹣1,2)代入y=得m=﹣1×2=﹣2;(3)设P点坐标为(t, t+),∵△PCA和△PDB面积相等,∴••(t+4)=•1•(2﹣t﹣),即得t=﹣,∴P点坐标为(﹣,).23.如图,⊙O是Rt△ABC的外接圆,AC是⊙O的直径,弦BD=BA,AB=12,BC=5,BE⊥DC,交DC的延长线于点E.(1)求证:△ABC∽△DEB;(2)求证:BE是⊙O的切线;(3)求DE的长.【考点】MD:切线的判定;S9:相似三角形的判定与性质.【分析】(1)根据BDE=∠CAB(圆周角定理)且∠BED=∠CBA=90°即可得出结论;(2)连接OB,OD,证明△ABO≌△DBO,推出OB∥DE,继而判断OB⊥DE,可得出结论.(3)根据△BED∽△CBA,利用对应边成比例的性质可求出DE的长度.【解答】(1)BDE=∠CAB(圆周角定理)且∠BED=∠CBA=90°,∴△ABC∽△DEB;(2)证明:连结OB,OD,在△ABO和△DBO中,,∴△ABO≌△DBO(SSS),∴∠DBO=∠ABO,∵∠ABO=∠OAB=∠BDC,∴∠DBO=∠BDC,∴OB∥ED,∵BE⊥ED,∴EB⊥BO,∴OB⊥BE,∴BE是⊙O的切线.(3)∵△BED∽△CBA,∴,即=,解得:DE=.24.已知,如图二次函数y=ax2+bx+c(a≠0)的图象与y轴交于点C(0,4)与x轴交于点A、B,点B(4,0),抛物线的对称轴为x=1.直线AD交抛物线于点D(2,m).(1)求二次函数的解析式并写出D点坐标;(2)点E是BD的中点,点Q是线段AB上一动点,当△QBE和△ABD相似时,求点Q的坐标;(3)抛物线与y轴交于点C,直线AD与y轴交于点F,点M为抛物线对称轴上的动点,点N在x轴上,当四边形CMNF周长取最小值时,求出满足条件的点M和点N的坐标.【考点】HF:二次函数综合题.【分析】(1)首先运用待定系数法求出二次函数的解析式,然后把点D(2,m)代入二次函数的解析式,就可求出点D的坐标;(2)过点D作DH⊥AB于点H,如图1,根据勾股定理可求出BD,易求出点A的坐标,从而得到AB长,然后分两种情况:①△QBE∽△ABD,②△QBE∽△DBA讨论,运用相似三角形的性质求出BQ,从而得到OQ,即可得到点Q的坐标;(3)根据待定系数法得到直线AD的解析式为:y=x+2,过点F作关于x轴的对称点F′,即F′(0,﹣2),连接DF′交对称轴于M′,x轴于N′,由条件可知,点C,D是关于对称轴x=1对称,则CF+F′N+M′N′+M′C=CF+DF′=2+2,得到四边形CFNM的最短周长为:2+2时直线DF′的解析式为:y=3x﹣2,从而得到满足条件的点M和点N的坐标.【解答】解:(1)由题可得:,解得:,则二次函数的解析式为y=﹣x2+x+4.∵点D(2,m)在抛物线上,∴m=﹣×22+2+4=4,∴点D的坐标为(2,4);(2)过点D作DH⊥AB于点H,如图1,∵点D(2,4),点B(4,0),∴DH=4,OH=2,OB=4,∴BH=2,∴DB==2.∵点E为DB的中点,∴BE=BD=.令y=0,得﹣x2+x+4=0,解得:x1=4,x2=﹣2,∴点A为(﹣2,0),∴AB=4﹣(﹣2)=6.①若△QBE∽△ABD,则=,∴=,解得:BQ=3,∴OQ=OB﹣BQ=4﹣3=1,∴点Q的坐标为(1,0);②若△QBE∽△DBA,则=,∴=,∴BQ=,∴OQ=OB﹣BQ=4﹣=,∴点Q的坐标为(,0).综上所述:点Q的坐标为(1,0)或(,0);(3)如图2,由A(﹣2,0),D(2,4),可求得直线AD的解析式为:y=x+2,即点F的坐标为:F(0,2),过点F作关于x轴的对称点F′,即F′(0,﹣2),连接DF′交对称轴于M′,x轴于N′,由条件可知,点C,D是关于对称轴x=1对称,则CF+F′N+M′N′+M′C=CF+DF′=2+2,则四边形CFNM的周长=CF+FN+NM+MC≥CF+FN′+M′N′+M′C,即四边形CFNM的最短周长为:2+2.此时直线DF′的解析式为:y=3x﹣2,所以存在点N的坐标为N(,0),点M的坐标为M(1,1).。
2017西城区初三二模数学试卷及答案
北京市西城区 2017 年初三二模试卷数学2017. 6考生须知1 .本试卷共6 页,共五道大题,25 道小题,满分120 分。
考试时间120 分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
、选择题 (本题共32 分,每小题4分) 下面各题均有四个选项,其中只有一个是符合题意的.1.3的倒数是1A.3 B.C.13D.2.列运算中正确的是B. a a2a23.若一个多边形的内角和是C.(ab)2 a2b2720°,则这个多边形的边数是D.2 3 5 (a ) a4.A.5 B .若x 3 y 2 0,则y x的值为A .8 B.6C.7C.55.列图形中,既是中心对称图形又是轴对称图形的是6.对于一组统计数据:3,3,6,3,5,A.中位数是6 B .众数是3列说法中错误.7.D.的是C.平均数是4如图,边长为3 的正方形ABCD 绕点EF 交AD于点H,则四边形DHFC 的面积为C 按顺时针方向旋转30D .方差是1.6°后得到正方形EFCG ,A .3B.33C.9D.638.如图,点A,B,C 是正方体三条相邻的棱的中点,沿着A,B,C三点所在的平面将该正方体的一个角切掉,然后将其展开,其展开图可能是A B CA B C D二、填空题 (本题共16 分,每小题4分)39.函数y 3中,自变量x 的取值范围是x210.若把代数式x2 8x 17化为(x h)2 k的形式,其中 h,11.如k 为常数,则 h k =图,在△ ABC 中,∠ ACB= 52°,点D,E 分别是AB,AC 的中点.若点F 在线段DE 上,且∠ AFC= 90°,则∠FAE的度数为°.12.如图,在平面直角坐标系xOy 中,点A 在第一象限,点B 在x 轴的正半轴上,∠ OAB=90°.⊙ P1 是△ OAB 的内切圆,且P1 的坐标为(3,1).(1)OA 的长为,OB 的长为;(2)点C在OA 的延长线上,CD∥AB交x轴于点D.将⊙ P1沿水平方向向右平移2个单位得到⊙ P2,将⊙ P2沿水平方向向右平移2 个单位得到⊙ P3,按照同样的方法继续操作,依次得到⊙ P4,⋯⋯⊙P n.若⊙P1,⊙P2,⋯⋯⊙P n均在△ OCD的内部,且⊙ P n恰好与CD 相切,则此时OD 的长为.(用含n 的式子表示)三、解答题 (本题共30 分,每小题5分)1 1 013.计算:( ) 127 (5 )06tan 60 .414.如图,点C是线段AB 的中点,点D,E在直线AB 的同侧,∠ECA=∠DCB,∠D=∠E.求证:AD=BE.215.已知x 3x 1 0 ,求代数式(x 2)(x 3) (2x 1)(2x 1) 4x 的值.16.已知关于x的一元二次方程x2 7x 11 m 0 有实数根.(1)求m 的取值范围;(2)当m 为负整数时,求方程的两个根.A B C D 17.列方程(组)解应用题:水上公园的游船有两种类型,一种有4 个座位,另一种有6 个座位.这两种游船的收费标准是:一条4 座游船每小时的租金为60 元,一条6 座游船每小时的租金为100 元.某公司组织38名员工到水上公园租船游览,若每条船正好坐满,并且1 小时共花费租金600 元,求该公司分别租用4 座游船和6 座游船的数量.18.为了解“校本课程”开展情况,某校科研室随机选取了若干学生进行问卷调查( 要求每位学生只能填写一种自己喜欢的课程) ,并将调查的结果绘制成如下两幅不完整的统计图:调查结果的条形统计图调查结果的扇形统计图请根据以上信息回答下列问题:(1) 参加问卷调查的学生共有人;(2) 在扇形统计图中,表示“ C”的扇形的圆心角为度;(3) 统计发现,填写“喜欢手工制作”的学生中,男生人数∶女生人数= 1∶6.如果从所有参加问卷调查的学生中随机选取一名学生,那么这名学生是填写“喜欢手工制作”的女生的概率为四、解答题 (本题共20 分,每小题5分)1 9.如图,在平面直角坐标系xOy 中,一次函数y kx b的图象与x 轴交于点A( 3,0),4与 y 轴交于点B ,且与正比例函数y 4x 的图象的交点为3(1) 求一次函数y kx b 的解析式;(2) 若点D 在第二象限,△ DAB 是以AB 为直角边的等腰直角三角形,直接写出点D 的坐标.20.如图,四边形ABCD中,∠ BAD= 135°,∠BCD= 90°,AB=BC= 2,tan∠ BDC= 6.3.(1) 求BD 的长;(2) 求AD 的长.21.如图,以△ ABC 的一边 AB 为直径作⊙ O , ⊙O 与 BC 边的交点 D 恰好为 BC 的中点, 过点 D 作⊙O 的切线交 AC 边于点 E .(1) 求证: DE ⊥ AC ;3 OF(2) 连结 OC 交 DE 于点 F ,若 sin ABC 3 ,求 OF的值. 4 FCxOy 中,点 P(x,y) 经过变换 得到点 P (x,y) ,该变换记作x ax by,(x,y) (x,y),其中 (a,b 为常数).例如,当a 1,且 b 1时, y ax by( 2,3) (1, 5) .(1) 当 a 1,且 b 2时, (0,1) = ; (2) 若 (1,2) (0, 2),则 a= , b = ;(3) 设点 P(x,y) 是直线 y 2x 上的任意一点, 点 P 经过变换 得到点 P (x , y ) .若点 P与点 P 重合,求 a 和 b 的值. 五、解答题 (本题共 22分,第 23题7分,第 24题7分,第 25题 8分)k1 23.在平面直角坐标系 xOy 中, A , B 两点在函数 C 1: y 1(x 0)的图象上,x其中 k 1 0.AC ⊥ y 轴于点 C ,BD ⊥ x 轴于点 D ,且 AC=1. (1) 若k 1=2,则 AO 的长为 ,△BOD 的面积为 ;(2) 如图 1,若点 B 的横坐标为 k 1,且 k 1 1,当 AO=AB 时,求 k 1的值; k2(3) 如图 2,OC=4,BE ⊥ y 轴于点 E ,函数 C 2:y 2(x 0)的图象分别与线段 BE ,xBD 交于点 M ,N ,其中 0 k 2 k 1.将△ OMN 的面积记为 S 1 ,△ BMN 的面积记为 S 2, 若 S S 1 S 2,求 S 与 k 2的函数关系式以及 S 的最大值.24.在△ ABC 中,AB=AC ,AD ,CE 分别平分∠ BAC 和∠ ACB ,且 AD 与 CE 交于点 M .点22 .在平面直角坐标系N 在射线AD 上,且NA=NC.过点N 作NF⊥ CE 于点G,且与AC 交于点F ,再过点F 作FH ∥CE,且与AB 交于点H .如图1,当∠ BAC=60°时,点M,N,G 重合.①请根据题目要求在图1 中补全图形;②连结EF,HM ,则EF 与HM 的数量关系是(1)(2) 如图2,当∠BAC =120 °时,求证:AF=EH ;(3) 当∠ BAC=36 时,我们称△ABC 为“黄金三角形” ,此时BCAC5 1.若EH=4,2 直接写出GM 的图1 图225.如图1,在平面直角坐标系xOy中,直线 l和抛物线W交于A,B两点,其中点A 是抛物线W 的顶点.当点A 在直线 l 上运动时,抛物线W 随点A 作平移运动.在抛物线平移的过程中,线段AB的长度保持不变.应用上面的结论,解决下列问题:如图2,在平面直角坐标系xOy 中,已知直线l1:y x 2.点A是直线l1上的一个动点,且点A 的横坐标为t .以A 为顶点的抛物2线C1 : y x bx c 与直线l1 的另一个交点为点B.(1) 当 t 0 时,求抛物线C1的解析式和AB 的长;(2) 当点B 到直线OA 的距离达到最大时,直接写出此时点A 的坐标;1(3)过点A 作垂直于 y 轴的直线交直线l2 : y x 于点C .以C 为顶点的抛物线22C2 : y x2 mx n与直线l2的另一个交点为点D.①当AC⊥ BD 时,求t 的值;②若以A,B,C,D 为顶点构成的图形是凸四边形,直接写出满足条件的t 的取值范围.图2 备用图北京市西城区 2017 年初三二模、选择题 (本题共 32 分,每小题 4分) 题号1 2 3 4 5 6 7 8 答案CCBABABD16 49101112x2 5 64 45 2n+3阅卷说明:第 12 题第一、第二个空各 1 分,第三个空 2分. 三、解答题 (本题共 30 分,每小题5分)13.解:原式 =4 3 3 1 6 3=5 3 3 .16.解: (1) ∵关于 x 的一元二次方程 x 27x 11 m 0 有实数根,2∴724(11 m) 0.数学试卷参考答案及评分标准2017.64分 5分14.证明:∵点 C 是线段 AB 的中点,∴ AC=BC. ⋯⋯⋯ 1分∵∠ ECA= ∠DCB ,∴∠ ECA+∠ ECD =∠ DCB +∠ECD , 即∠ ACD=∠ BCE. ⋯⋯⋯⋯在△ ACD 和△ BCE 中,D E, ACD BCE, AC BC,2分∴△ ACD ≌ △BCE. ∴AD=BE .15.解: (x 2)(x 3) (2x 1)(2x 1) 4x4 分 5分22x 2 5x 6 (4x 21) 4x 2分 23x 29x 7.3分 22∵ x 2 3x 1 0 , 即 x 2 3x 1 , 4分 ∴原式3(x 23x) 7 3 1 7 4.5分1⋯分⋯B依题意得4x 6y 38,60x 100y 600. x 5, 解得y 3.(2) 54;3 (3) 20.17. 解:5∴ m.4(2) ∵ m 为负整数,∴ m 1.此时方程为 x 2 7x 12 0. 解得 x 1= 3,x 2= 4.设租用 4 座游船 x 条,租用 6 座游船 y 条.2⋯分⋯ ⋯ 3 ⋯分 ⋯ 4 分 5分 ⋯ 1 分 18. 答: 解:该公司租用(1) 80; 4 座游船 5 条, 6 座游船 3 条 .5分 1分 四、 19. 20 分,每小题 5 分)4 解: (1)∵点 C( m ,4)在直线 y x 上, 3解答题 (本题共 4∴ 4 4m ,解得 m 3.3 ∵点 A( 3,0)与 C(3,4)在直线 y kx b(k 0) 上,1分4 y= 3xC y=kx+bB20. ∴0 3k b,4 3k b.2 k2, 解得 3 b 2.∴一次函数的解析式为 y 2x 2.3(2) 点 D 的坐标为 ( 2,5)或( 5,3).阅卷说明:两个点的坐标各 1 分 .解: (1)在 Rt △ BCD 中,∠ BCD= 90°, BC= 2,2分A-33分 5分∴2 6∴CD 3 .∴ CD= 6. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ∴由勾股定理得 BD= BC 2+CD 2= 10 . ⋯⋯⋯ 2 分 (2)如图,过点 D 作 DE ⊥AB交 BA 延长线于点 E .1分tan ∠ BDC= 36,3分4分 3分 5分∵∠ BAD= 135 °,∴∠ EAD= ∠ ADE= 45°.∴AE=ED . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分设AE=ED= x ,则AD= 2x.2 2 2∵DE2+BE2=BD 2,∴ x2+(x+2)2=( 10)2. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分解得x1= _3(舍),x2=1 .∴AD= 2x= 2. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分21.(1)证明:连接OD .∵DE 是⊙ O 的切线,∴DE⊥OD,即∠ ODE= 90° . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分∵AB是⊙O 的直径,∴O是AB的中点.又∵D 是BC 的中点,.∴ OD∥ AC .∴∠ DEC= ∠ODE= 90 ° .∴DE⊥AC . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分(2)连接AD .∵OD∥AC,OF OD FC EC .∵AB 为⊙O 的直径,∴∠ ADB= ∠ADC =90° . 又∵D为BC的中点,∴AB=AC.∵ sin∠ ABC= AD=3,AB 4故设AD= 3x , 则AB=AC= 4x , OD= 2x . ∵DE⊥AC,∴∠ ADC= ∠AED= 90 °.∵∠ DAC= ∠ EAD,∴△ ADC ∽△ AED. ∴AD AC .AE AD .∴ AD2 AE AC.9∴AE x.4∴ EC 7x.43分4分22.五、23.OF OD 8 FC EC7.解:(1) (0,1) = ( 2,2) ;1(2)a= 1, b= ;2(3) ∵点P(x,y)经过变换得到的对应点∴(x,y) (x, y).∵点P(x,y) 在直线y 2x 上,∴ (x,2x) (x,2x) .x ax 2bx,2x ax 2bx.即(1 a 2b)x 0,(2 a 2b)x 0.∵ x 为任意的实数,1 a 2b 0,2 a 2b 0.a解得b3,215分1分3分P(x,y ) 与点 P重合,4分31∴ a ,b .24解答题 (本题共22 分,第23 题7 分,解:(1) AO 的长为5,△BOD 的面积为k124 题7 分,第25题8 分)1;(2) ∵ A,B两点在函数C1:y k1 (x 0) 的图象上,∴点A,B的坐标分别为(1,k1) ,(k1,1) .∵AO=AB,由勾股定理得AO2 1 k12,AB222(1 k1)2 (k1 1)2,5分2分3分222 ∴ 1 k12 (1 k1)2 (k1 1)2.解得 k1 2 3或 k1 2 3.∴k1 2 3(3) ∵ OC=4,∴点A 的坐标为(1,4) .∴ k1 4.设点 B 的坐标为 (m, 4) ,m∵BE ⊥ y 轴于点 E ,BD ⊥ x 轴于点 D , ∴四边形 ODBE 为矩形,且 S 四边形 ODBE =4,点 M 的纵坐标为 4 ,点 N 的横坐标为 m .m∵点 M ,N 在函数 C 2: y k2(x 0)的图象上,2x∴点 M 的坐标为 (mk2 , 4) ,点 N 的坐标为 (m,k2) .4 m m其中 0 k 2 4.∴当 k 2 2 时, S 的最大值为 1.(2)连接 MF (如图 2).∵AD , CE 分别平分∠ BAC 和∠ ACB , 且∠ BAC =120°, ∴∠ 1=∠2=60°,∠ 3=∠4.AB=AC , AD ⊥BC. NG ⊥EC ,∠ MDC =∠ NGM =90 °. ∠ 4+∠6=90°,∠ 5+∠6=90°.∠ 4= ∠ 5. ∠ 3=∠ 5.NA=NC ,∠ 2=60 °,△ ANC 是等边三角形 . AN=AC.∵ S1k 22k 242(k 2 2)21∴ S2= 1BM BN 1(m mk2)( 4 k2)2 2 4 m m2(4 k 2)8∴S=S 1 S 2 =(4 k 2 S 2 ) S 2 =4 k 2 2S 2.2∴ S 4k 2 2(4 k 2)214k 224k2, 6分24. 解: (1)补全图形见图 1,EF 与 HM 的数量关系是 EF=HM 7分1分图2在△ AFN 和△ AMC 中,5 3,AN AC,2 2,∴△ AFN≌△ AMC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分∴AF=AM.∴△ AMF 是等边三角形.∴AF=FM,∠ 7=60°.∴∠ 7=∠ 1.∴FM∥ AE.∵FH∥CE,∴四边形FHEM 是平行四边形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分∴EH=FM.∴ AF=EH. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分(3) GM 的长为5 1. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分25.解:(1) ∵点A 在直线l1: y x 2上,且点A 的横坐标为0,∴点A 的坐标为(0, 2) .∴抛物线C1的解析式为y x2 2. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分∵点B 在直线l1 : y x 2 上,∴设点B 的坐标为(x,x 2).∵点B 在抛物线C1: y x2 2 上,2 ∴ x 2 x 2 2.解得 x 0 或 x 1.∵点A 与点B 不重合,∴点B 的坐标为( 1, 3). ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分∴由勾股定理得AB= (0 1)2 ( 2 3)2 2 . ⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2) 点A 的坐标为(1, 1).(3) ①方法一:设AC,BD 交于点E,直线l1: y x 2分别与x轴、 y轴交于点P和Q(如图1).则点P 和点Q 的坐标分别为(2,0) ,(0, 2)∴OP=OQ=2.∴∠ OPQ =45°.∵AC⊥ y 轴,∴AC∥ x 轴.∴∠EAB =∠OPQ =45°.∵∠DEA =∠AEB=90°,AB = 2 ,4分y图1∴EA=EB =1.∵点A 在直线l1 : y x 2 上,且点A 的横坐标为t ,∴点A 的坐标为(t,t 2).∴点B 的坐标为(t 1,t 3) . ∵AC∥ x 轴,∴点C 的纵坐标为 t 2.1∵点C 在直线l2 : y x 上,22∴点C 的坐标为(2t 4,t 2) .∴抛物线C2的解析式为y [x (2t 4)]2 (t 2) .∵BD⊥AC,∴点D 的横坐标为 t 1.1∵点D在直线l2 : y x 上,2 t1∴点D 的坐标为(t 1, ) . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分2∵点D 在抛物线C2:y [x (2t 4)]2 (t 2) 上,t 1 2∴ [(t 1) (2t 4)]2 (t 2) .25解得t 或 t 3.2∵当 t 3时,点C 与点D 重合,5∴t . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分2方法二:设直线l1:y x 2与x轴交于点P,过点A作 y轴的平行线,过点B 作x 轴的平行线,交于点N.(如图2) y则∠ ANB=90°,∠ ABN=∠ OPB.在△ABN 中,BN=ABcos∠ABN,AN=ABsin∠ABN. ∵在抛物线C1随顶点A 平移的过程中,AB 的长度不变,∠ ABN 的大小不变,∴ BN 和AN 的长度也不变,即点A 与点B 的横坐标的差以及纵坐标的差都保持不变.同理,点C 与点D 的横坐标的差以及纵坐标的差也保持不变由(1)知当点A 的坐标为(0, 2) 时,点B 的坐标为( 1, 3) ,∴当点A的坐标为(t,t 2)时,点B的坐标为(t 1,t 3) . ∵AC∥ x 轴,∴点C 的纵坐标为 t 2.1∵点C 在直线l2 : y x 上,2∴点C 的坐标为(2t 4,t 2) .令 t 2 ,则点C 的坐标为(0,0) . ∴抛物线C2的解析式为y x2 .1∵点D在直线l2 : y x 上,22x∴设点D 的坐标为(x, ).2∵点D 在抛物线C2:y x2上,x2∴x .21解得x 或 x 0.2∵点C 与点D 不重合,11∴点D 的坐标为( , ).2411 ∴当点C 的坐标为(0,0) 时,点D 的坐标为( , ) .24∴当点C 的坐标为(2t 4,t 2) 时,点D 的坐标为(2t 7,t 7) . ⋯⋯5分24 ∵BD⊥AC,7 ∴ t 1 2t .25∴t . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分215② t 的取值范围是t 或 t 5. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分4说明:设直线l1与l2交于点M.随着点A从左向右运动,从点D与点M 重合,。
2017年安徽省中考数学二模试卷解析及答案
2017年安徽省中考数学⼆模试卷解析及答案2017年安徽省中考数学⼆模试卷参考答案与试题解析⼀、选择题(本⼤题共10⼩题,每⼩题4分,满分40分)每⼩题都给出代号为A、B、C、D的四个选项,其中只有⼀个是正确的,请把正确选项的代号写在题后的括号内,每⼀⼩题选对得4分,不选、选错或选出的代号超过⼀个的(不论是否写在括号内)⼀律得0分.1.﹣2的相反数是()A.2 B.1 C.D.﹣【考点】相反数.【分析】依据相反数的定义解答即可.【解答】解:﹣2的相反数是2.故选:A.2.如图是由四个相同的⼩⽴⽅体组成的⽴体图形的主视图和左视图,那么这个⽴体图形不可能是()A.B. C. D.【考点】由三视图判断⼏何体.【分析】依次分析所给⼏何体从正⾯看及从左⾯看得到的图形是否与所给图形⼀致即可.【解答】解:A、主视图和左视图从左往右2列正⽅形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正⽅形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正⽅形的个数均依次为1,2,不符合所给图形;D、主视图和左视图从左往右2列正⽅形的个数均依次为2,1,符合所给图形.故选C.3.下列计算正确的是()A.4x2+2x2=6x4B.(x﹣y)2=x2﹣y2C.(x3)2=x5D.x2?x2=x4【考点】幂的乘⽅与积的乘⽅;合并同类项;同底数幂的乘法;完全平⽅公式.【分析】结合幂的乘⽅与积的乘⽅、同底数幂的乘法的概念和运算法则进⾏求解即可.【解答】解:A、4x2+2x2=6x2≠6x4,计算错误,本选项错误;B、(x﹣y)2=x2+y2﹣2xy≠x2﹣y2,计算错误,本选项错误;C、(x3)2=x6≠x5,计算错误,本选项错误;D、x2?x2=x4,计算正确,本选项正确.故选D.4.2016年2⽉初,合肥市教育考试院召开新闻发布会,公布了合肥市市区参加2016年中考的学⽣约为27600⼈,与去年相⽐增加300多⼈,⽤科学记数法表⽰“27600”正确的()A.2.76×103B.2.76×104C.2.76×105D.0.276×105【考点】科学记数法—表⽰较⼤的数.【分析】科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,⼩数点移动了多少位,n的绝对值与⼩数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:27600=2.76×104,故选:B.5.如图,已知AB∥DE,∠ABC=65°,∠CDE=138°,则∠C的值为()A.21°B.23°C.25°D.30°【考点】平⾏线的性质;三⾓形的外⾓性质.【分析】根据两直线平⾏,内错⾓相等以及三⾓形外⾓和定理即可解答.【解答】解:如图,反向延长DE交BC于M,∵AB∥DE,∴∠BMD=∠ABC=65°,∴∠CMD=180°﹣∠BMD=115°,⼜∵∠CDE=∠CMD+∠C,∴∠BCD=∠CDE﹣∠CMD=138°﹣115°=23°.故选:B.6.“国庆黄⾦周”期间,⼩东和爸爸、妈妈外出旅游,⼀家三⼈随机站在⼀排拍照纪念,⼩东恰好站在中间的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】画树状图展⽰所有6种等可能的结果数,再找出⼩东站在中间的结果数,然后根据概率公式求解.【解答】解:设⼩东和爸爸、妈妈分别为:甲、⼄、丙,画树状图为:共有6种等可能的结果数,其中甲站在中间的结果数为2,所以⼩东在中间的概率=.故选:B.7.甲、⼄两个车站相距96千⽶,快车和慢车同时从甲站开出,1⼩时后快车在慢车前12千⽶,快车⽐慢车早40分钟到达⼄站,快车和慢车的速度各是多少?设快车的速度为x千⽶/时,则下列⽅程正确的是()A.B.=40C.D.【考点】由实际问题抽象出分式⽅程.【分析】设快车的速度为x千⽶/时,根据快车⽐慢车早40分钟到达⼄站,列⽅程求解.【解答】解:设快车的速度为x千⽶/时,可得:,故选C8.如图所⽰,△ABC是等边三⾓形,点D为AB上⼀点,现将△ABC沿EF折叠,使得顶点A与D点重合,且FD⊥BC,则的值等于()A.B.C.D.【考点】翻折变换(折叠问题);等边三⾓形的性质.【分析】过点E作EG⊥BC,由翻折性质知AE=DE、AF=DF、∠A=∠EDF=60°,设EG=x,在Rt△DEG中表⽰出AE=DE=2EG=2x、DG=x,继⽽在Rt△BEG中求得BE==x、BG==x,即可得AB=BC=AE+BE=x、CD=BC﹣BD=x,从⽽得出AF=DF=CDtanC=(2﹣2)x,即可得出答案.【解答】解:如图,过点E作EG⊥BC于点G,由题意知AE=DE、AF=DF、∠A=∠EDF=60°,设EG=x,∵FD⊥BC,∴∠FDC=90°,∴∠EDG=30°,则AE=DE=2EG=2x,DG==x,∴BE===x,BG===x,∴BC=AB=AE+BE=2x+x=x,∵CD=BC﹣BD=x﹣(x+x)=x,∴AF=DF=CDtanC=x?=(2﹣2)x,∴==,故选:D.9.如图,原有⼀⼤长⽅形,被分割成3个正⽅形和2个长⽅形后仍是中⼼对称图形.若原来该⼤长⽅形的周长是120,则分割后不⽤测量就能知道周长的图形标号为()A.①②B.②③C.①③D.①②③【考点】中⼼对称图形.【分析】⾸先设图形①的长和宽分别是a、c,图形②的边长是b,图形③的边长是d,由于原来该⼤长⽅形的周长是120,得出2(a+2b+c)=120,a=b+d,b=c+d;然后分别判断出图形①、图形②的周长都等于原来⼤长⽅形的周长的,所以它们的周长不⽤测量就能知道,⽽图形③的周长不⽤测量⽆法知道,据此解答即可.【解答】解:如图,设图形①的长和宽分别是a、c,图形②的边长是b,图形③的边长是d,∵原来该⼤长⽅形的周长是120,∴2(a+2b+c)=120.根据图⽰,可得,①﹣②,可得:a﹣b=b﹣c,∴2b=a+c,∴120=2(a+2b+c)=2×2(a+c)=4(a+c),或120=2(a+2b+c)=2×4b=8b,∴2(a+c)=60,4b=60,∵图形①的周长是2(a+c),图形②的周长是4b,∴图形①②的周长是定值,不⽤测量就能知道,图形③的周长不⽤测量⽆法知道.∴分割后不⽤测量就能知道周长的图形的标号为①②.故选:A.10.⼀元⼆次⽅程m1x2+x+1=0的两根分别为x1,x2,⼀元⼆次⽅程m2x2+x+1=0的两根为x3,x4,若x1<x3<x4<x2<0,则m1,m2的⼤⼩关系为()A.0>m1>m2B.0>m2>m1C.m2>m1>0 D.m1>m2>0【考点】根与系数的关系.【分析】设f(x)=m1x2+x+1,⽅程f(x)=0的两实根为x1,x2(x1<x2),x3,x4是⼀元⼆次⽅程m2x2+x+1=0的两根,所以由x1<x3<x4<x2成⽴,即x3,x4在两实根x1,x2之间,可由根的分布的相关知识将这⼀关系转化为不等式,得出m1与m2的关系.【解答】解:∵x1,x2是⼀元⼆次⽅程m1x2+x+1=0的两根,∴m1x12+x1+1=0,m1x22+x2+1=0,∴f(x3)=m1x32+x3+1,f(x4)=m1x42+x4+1,∵x3,x4是⼀元⼆次⽅程m2x2+x+1=0的两根,∴m2x32+x3+1=0,m2x42+x4+1=0,∴f(x3)=(m1﹣m2)x32,f(x4)=(m1﹣m2)x42,∵x1<x3<x4<x2<0,∴,∴,∴m2>m1>0.故选:C.⼆、填空题(本⼤题共4⼩题,每⼩题5分,满分20分)11.化简:﹣=.【考点】⼆次根式的加减法.【分析】先把各根式化为最简⼆次根式,再根据⼆次根式的减法进⾏计算即可.【解答】解:原式=2﹣=.故答案为:.12.若函数y=,则当函数值y=15时,⾃变量x的值是﹣2或5.【考点】函数值.【分析】将y=15代⼊函数解析式中,求出x值,此题得解.【解答】解:当y=x2+3=15,解得:x=﹣2或x=2(舍去);当y=3x=15,解得:x=5.故答案为:﹣2或5.13.观察下列图形规律:当n=11时,图形“△”的个数是“●”的个数的2倍.【考点】规律型:图形的变化类.【分析】⾸先根据n=1、2、3、4时,“?”的个数分别是3、6、9、12,判断出第n个图形中“?”的个数是3n;然后根据n=1、2、3、4,“△”的个数分别是1、3、6、10,判断出第n个“△”的个数是;最后根据图形“△”的个数是“●”的个数的2倍,求出n的值是多少即可.【解答】解:∵n=1时,“?”的个数是3=3×1;n=2时,“?”的个数是6=3×2;n=3时,“?”的个数是9=3×3;n=4时,“?”的个数是12=3×4;∴第n个图形中“?”的个数是3n;⼜∵n=1时,“△”的个数是1=;n=2时,“△”的个数是3=;n=3时,“△”的个数是6=;n=4时,“△”的个数是10=;∴第n个“△”的个数是;由3n=,解得n=11或n=0(舍去),故答案为:11.14.如图,反⽐例函数y=(x>0)的图象经过矩形OABC对⾓线的交点M,分别与AB、BC相交于点D、E.,则下列结论正确的是①④(将正确的结论填在横线上).=s△ODB,②BD=4AD,③连接MD,S△ODM=2S△OCE,④连接ED,则△BED∽①s△OEB△BCA.【考点】反⽐例函数综合题.=S△OBA,由点E、点D在反【分析】①正确.由四边形ABCD是矩形,推出S△OBC=S△OAD=,即可推出S△OEB=S△OBD.⽐例函数y=(x>0)的图象上,推出S△CEO②错误.设点B(m,n),D(m,n′)则M(m,n,),由点M,点D在反⽐例函数y=(x>0)的图象上,可得m?n=m?n′,推出n′=n,推出AD=AB,推出BD=3AD,故②错误.=S△OBD﹣S△BDM=?b?a﹣?b?a=ab,S△CEO=S△OAD=③错误.因为S△ODMab=ab,所以S△ODM:S△OCE=ab:ab=3:2,故③错误.④正确.由==3,推出DE∥AC,推出△BED∽△BCA.【解答】解:∵四边形ABCD是矩形,=S△OBA,∴S△OBC∵点E、点D在反⽐例函数y=(x>0)的图象上,=S△OAD=,∴S△CEO=S△OBD,故①正确,∴S△OEB设点B(m,n),D(m,n′)则M(m,n,),∵点M,点D在反⽐例函数y=(x>0)的图象上,∴m?n=m?n′,∴n′=n ,∴AD=AB ,∴BD=3AD ,故②错误,连接DM ,∵S △ODM =S △OBD ﹣S △BDM =?b?a ﹣?b?a=ab ,∵S △CEO =S △OAD =?a?b=ab ,∴S △ODM :S △OCE =ab : ab=3:2,故③错误,连接DE ,同法可证CE=BC ,∴BE=3EC ,∴==3,∴DE ∥AC ,∴△BED ∽△BCA ,故④正确.故答案为①④三、(本⼤题共2⼩题,每⼩题8分,满分16分)15.先化简,再求值:,其中a=﹣2.【考点】分式的化简求值.【分析】⾸先把括号内的分式进⾏通分相加,把除法转化为乘法,然后计算乘法即可化简,最后代⼊数值计算即可.【解答】解:原式=(1﹣a )(1+a )=1﹣a .当a=﹣2时,原式=1+2=3.16.求不等式x﹣1>3x的解集,并判断x=﹣是否为此不等式的解.【考点】不等式的解集.【分析】先解出不等式的解,再判断即可.【解答】解:解不等式x﹣1>3x,可得:x<﹣2,所以x=﹣不是此不等式的解.四、(本⼤题共2⼩题,每⼩题8分,满分16分)17.现有⼀个“Z”型的⼯件(⼯件厚度忽略不计),如图⽰,其中AB为20cm,BC 为60cm,∠ABC=90°,∠BCD=50°,求该⼯件如图摆放时的⾼度(即A到CD的距离).(结果精确到0.1m,参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)【考点】解直⾓三⾓形的应⽤.【分析】过点A作AP⊥CD于点P,交BC于点Q,由∠CQP=∠AQB、∠CPQ=∠B=90°知∠A=∠C=50°,在△ABQ中求得分别求得AQ、BQ的长,结合BC知CQ 的长,在△CPQ中可得PQ,根据AP=AQ+PQ得出答案.【解答】解:如图,过点A作AP⊥CD于点P,交BC于点Q,∵∠CQP=∠AQB,∠CPQ=∠B=90°,∴∠A=∠C=50°,在△ABQ中,∵AQ==≈31.10,BQ=ABtanA=20tan50°≈23.84,∴CQ=BC﹣BQ=60﹣23.84=36.16,在△CPQ中,∵PQ=CQsinC=36.16sin50°≈27.70,∴AP=AQ+PQ=27.70+31.10≈58.8,答:⼯件如图摆放时的⾼度约为58.8cm.18.在平⾯直⾓坐标系中,点A、B的坐标分别是(0,3)、(﹣4,0),(1)将△AOB绕点A逆时针旋转90°得到△AEF,点O,B对应点分别是E,F,请在图中画出△AEF,并写出E、F的坐标;(2)以O点为位似中⼼,将△AEF作位似变换且缩⼩为原来的,在⽹格内画出⼀个符合条件的△A1E1F1.【考点】作图﹣位似变换;作图﹣旋转变换.【分析】(1)利⽤⽹格特点和旋转的性质,画出点O,B对应点E,F,从⽽得到△AEF,然后写出E、F的坐标;(2)分别连接OE、OF,然后分别去OA、OE、OF的三等份点得到A1、E1、F1,从⽽得到△A1E1F1.【解答】解:(1)如图,△AEF为所作,E(3,3),F(3,0);(2)如图,△A1E1F1为所作.五、(本⼤题共2⼩题,每⼩题10分,满分20分)19.如图,在平⾯直⾓坐标系中,四边形ABCD是矩形,AD∥x轴,A(﹣,3 ),AB=2,AD=3.(1)直接写出B、C、D三点的坐标;(2)将矩形ABCD向右平移m个单位,使点A、C恰好同时落在反⽐例函数y=(x>0)的图象上,得矩形A'B'C'D'.求矩形ABCD的平移距离m和反⽐例函数的解析式.【考点】待定系数法求反⽐例函数解析式;矩形的性质;坐标与图形变化﹣平移.【分析】(1)由四边形ABCD是矩形,得到AB=CD=2,BC=AD=3,根据A(﹣,3 ),AD∥x轴,即可得到B(﹣,1),C(﹣,1),D(﹣,3);(2)根据平移的性质将矩形ABCD向右平移m个单位,得到A′(﹣+m,3),C(﹣+m,1),由点A′,C′在反⽐例函数y=(x>0)的图象上,得到⽅程3×(﹣+m)=1×(﹣+m),即可求得结果.【解答】解:(1)∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∵A(﹣,3 ),AD∥x轴,∴B(﹣,1),C(﹣,1),D(﹣,3);(2)∵将矩形ABCD向右平移m个单位,∴A′(﹣+m,3),C(﹣+m,1),∵点A′,C′在反⽐例函数y=(x>0)的图象上,∴3×(﹣+m)=1×(﹣+m),解得:m=6,∴B′(,1),∴k=×1=,∴矩形ABCD的平移距离m=6,反⽐例函数的解析式为:y=.20.如图,已知△ABC为直⾓三⾓形,∠C=90°,边BC是⊙0的切线,切点为D,AB经过圆⼼O并与圆相交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若AC=8,tan∠DAC=,求⊙O的半径.【考点】切线的性质;解直⾓三⾓形.【分析】(1)连接OD,根据切线的性质得到OD⊥BC,根据平⾏线的性质和等腰三⾓形的性质证明;(2)连接CE,根据正切的定义和勾股定理求出AD,根据正切的定义计算即可.【解答】(1)证明:连接OD,∵BC是⊙O的切线,∴OD⊥BC,⼜∠C=90°,∴OD∥AC,∴∠ODA=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠CAD,即AD平分∠BAC;(2)解:连接CE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠OAD=∠CAD,tan∠DAC=,∴tan∠EAD=,∵tan∠DAC=,AC=8,∴CD=6,由勾股定理得,AD==10,∴=,解得,DE=,∴AE==,∴⊙O的半径为.六、(本题满分12分)21.某省是劳务输出⼤省,农民外出务⼯增长家庭收⼊的同时,也⼀定程度影响了⼦⼥的管理和教育,缺少管理和教育的留守⼉童的学习和⼼理健康状况等问题⽇趋显现,成为社会关注的焦点.该省相关部门就留守⼉童学习和⼼理健康状况等问题进⾏调查,本次抽样调查了该省某县部分留守⼉童,将调查出现的情况分四类,即A类:基本情况正常;B类;有轻度问题;C类:有较为严重问题;D 类:有特别严重问题.通过调查,得到下⾯两幅不完整的统计图,请根据图中的信息解决下⾯的问题.(1)在这次随机抽样调查中,共抽查了多少名学⽣留守⼉童?(2)扇形统计图中C类所占的圆⼼⾓是144°;这次调查中为D类的留守⼉童有20⼈;(3)请你估计该县20000名留守⼉童中,出现较为严重问题及以上的⼈数.【考点】条形统计图;全⾯调查与抽样调查;⽤样本估计总体;扇形统计图.【分析】(1)根据A类⼈数是10,所占的百分⽐是10%,据此即可求得总⼈数;(2)利⽤360°乘以对应的百分⽐即可求得C类圆⼼⾓的度数;利⽤总⼈数乘以对应的百分⽐求得D类的⼈数;(3)利⽤总⼈数乘以对应的百分⽐即可求解.【解答】解:(1)抽查的⼈数是10÷10%=100(⼈);(2)C类所占的圆⼼⾓是360°×=144°,D类的留守⼉童⼈数所占的百分⽐是:=40%,则D类的⼈数是100×(1﹣10%﹣30%﹣40%)=20(⼈),故答案是:144;20;(3)出现较为严重问题及以上的⼈数是:20000×(40%+20%)=12000.七、(本题满分12分)22.某企业⽣成⼀种节能产品,投放市场供不应求.若该企业每⽉的产量保持在⼀定的范围,每套产品的⽣产成本不⾼于50万元,每套产品的售价不低于120万元.已知这种产品的⽉产量x(套)与每套的售价y1(万元)之间满⾜关系式y1=190﹣2x.⽉产量x(套)与⽣成总成本y2(万元)存在如图所⽰的函数关系.(1)直接写出y2(2)与x之间的函数关系式;(3)求⽉产量x的取值范围;(4)当⽉产量x(套)为多少时,这种产品的利润W(万元)最⼤?最⼤利润是多少?【考点】⼆次函数的应⽤.【分析】(1)根据题意可以设出y2与x之间的函数关系式,然后根据图象中的数据即可求得函数的解析式;(2)根据题意可以列出相应的不等式组,从⽽可以求得x的取值范围;(3)根据题意可以得到W与x函数关系式,然后化为顶点式,再根据x的取值范围,即可求得W的最⼤值.【解答】解:(1)设y2与x的函数关系式为y2=kx+b,,得,∴y2与x之间的函数关系式是y2=30x+500;(2)由题意可得,,解得,25≤x≤35,即⽉产量x的取值范围是25≤x≤35;(3)由题意可得,W=x[190﹣2x﹣]=﹣2(x﹣40)2+2700,∵25≤x≤35,∴x=35时,W取得最⼤值,此时W=2650,即当⽉产量x(套)为35套时,这种产品的利润W(万元)最⼤,最⼤利润是2650万元.⼋、(本题满分14分)23.如图1,在四边形ABCD中,∠DAB被对⾓线AC平分,且AC2=AB?AD.我们称该四边形为“可分四边形”,∠DAB称为“可分⾓”.(1)如图2,在四边形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求证:四边形ABCD为“可分四边形”;(2)如图3,四边形ABCD为“可分四边形”,∠DAB为“可分⾓”,如果∠DCB=∠DAB,则求∠DAB的度数;(3)现有四边形ABCD为“可分四边形”,∠DAB为“可分⾓”,且AC=4,则△DAB 的最⼤⾯积等于8.【考点】相似形综合题.【分析】(1)由已知得出∠DAC=∠CAB=30°,由三⾓形内⾓和定理得出∠D+∠ACD=150°,由∠BCD=∠ACD+∠ACB=150°,得出∠D=∠ACB,证明△ADC∽△ACB.得出对应边成⽐例,得出AC2=AB?AD,即可得出结论;(2)由已知条件可证得△ADC∽△ACB,得出D=∠ACB,再由已知条件和三⾓形内⾓和定理得出∠DAC+2∠DAC=180°,求出∠DA=60°,即可得出∠DAB的度数;(3)根据“可分四边形”的定义求出AB?AD,计算即可.【解答】(1)证明:∵∠DAB=60°,AC平分∠DAB,∴∠DAC=∠CAB=30°,∴∠D+∠ACD=180°﹣30°=150°,∵∠BCD=∠ACD+∠ACB=150°,∴∠D=∠ACB,∴△ADC∽△ACB.∴AD:AC=AC:AB,∴AC2=AB?AD,∴四边形ABCD为“可分四边形”;(2)解:∵AC平分∠DAB,∴∠DAC=∠BAC,∵AC2=AB?AD,∴AD:AC=AC:AB,∴△ADC∽△ACB,∴∠D=∠ACB,∵∠DCB=∠DAB,∴∠DCB=∠DCA+∠ACB=2∠DAC,∵∠DAC+∠D+∠ACB=180°,∴∠DAC+2∠DAC=180°,解得:∠DAC=60°,∴∠DAB=120°;(3)∵四边形ABCD为“可分四边形”,AC=4,∴AB?AD=AC2=16,当DA⊥DB时,△DAB的最⼤,最⼤⾯积为8,故答案为:8.。
上海市青浦区2017年中考二模数学试卷附参考解答
青浦区2017学年九年级第二次学业质量调研测试数学试卷 2018.4(满分150分,100分钟完成)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂]1.下列实数中,有理数是( ▲ ) (A 2;(B )2.1g;(C )π; (D )135.2.下列方程有实数根的是( ▲ )(A )4+2=0x ; (B 22=1x --; (C )2+21=0x x -;(D )111x x x =--. 3.已知反比例函数1y x=,下列结论正确的是( ▲ ) (A )图像经过点(-1,1);(B )图像在第一、三象限;(C )y 随着x 的增大而减小; (D )当1x >时,1y <. 4.用配方法解方程241=0x x -+,配方后所得的方程是( ▲ ) (A )2(2)=3x -; (B )2(+2)=3x ; (C )2(2)=3x --;(D )2(+2)=3x -.5. “a 是实数,20a ≥”这一事件是( ▲ )学生数100.590.580.570.560.550.540.5图1(A )不可能事件; (B )不确定事件; (C )随机事件; (D )必然事件. 6. 某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图1所示,成绩的中位数落在( ▲ )(A )50.5~60.5分; (B )60.5~70.5分; (C )70.5~80.5分; (D )80.5~90.5分.二、填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案] 7.计算:32()=a a ÷- ▲ . 8.因式分解:24=a a - ▲ . 9.函数=3y x +的定义域是 ▲ .010.不等式组1020.x x +≥⎧⎨->⎩,的整数解是 ▲ .11.关于x 的方程=2(1)ax x a +≠的解是 ▲ . 12.抛物线2(3)+1y x =-的顶点坐标是 ▲ .13.掷一枚材质均匀的骰子,掷得的点数为合数的概率是 ▲ . 14.如果点1P (2,1y )、2P (3,2y )在抛物线2+2y x x =-上,那么1y ▲ 2y .(填“>”、 “<”或 “=”)15.如图2,已知在平行四边形ABCD 中,E 是边AB 的中点,F 在边AD上,且AF ︰FD=2︰1,如果AB a =u u u r r ,BC b =u u u r r ,那么EF =u u u r▲ .16.如图3,如果两个相似多边形任意一组对应顶点P 、P '所在的直线都经过同一点O ,且有(0)OP k OP k '=⋅≠,那么我们把这样的两个多边形叫位似多边形,点O 叫做位似中心.已知ABC ∆与A B C '''∆是关于点O 的位似三角形,3OA OA '=,则ABC ∆与A B C '''∆的周长之比是 ▲ .17.如图4,在△ABC 中,BC=7,AC =32,tan 1C =,点P 为AB 边上一动点(点P 不与点B 重合),以点P 为圆心,PB 为半径画圆,如果点C 在圆外,那么PB 的取值范围是 ▲ .18.已知,在Rt △ABC 中,∠C =90°,AC =9, BC =12,点D 、E 分别在边AC 、BC 上,且CD ︰CE =3︰4.将△CDE 绕点D 顺时针旋转,当点C 落在线段DE 上的点F 处时,BF恰好是∠ABC 的平分线,此时线段CD 的长是 ▲ .三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上] 19.(本题满分10分)计算:10121552(3)2-+---+().20.(本题满分10分)先化简,再求值:25+3222x x x x ⎛⎫--÷⎪++⎝⎭(),其中3x =.21. (本题满分10分,第(1)、(2)小题,每小题5分)如图5,在Rt △ABC 中,∠C =90°,AC=3,BC =4,∠ABC 的平分线交边AC 于点D ,延长BD 至点E ,且BD=2DE ,联结AE . (1)求线段CD 的长; (2)求△ADE 的面积.22.(本题满分10分)图3 ABCDE F图2图4POP'ED C BA图5如图6,海中有一个小岛A ,该岛四周11海里范围内有暗礁.有一货轮在海面上由西向正东方向航行,到达B 处时它在小岛南偏西60°的方向上,再往正东方向行驶10海里后恰好到达小岛南偏西45°方向上的点C 处.问:如果货轮继续向正东方向航行,是否会有触礁的危险?(参考数据: 2 1.41≈3 1.73)23.(本题满分12分,第(1)、(2)小题,每小题6分)如图7,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点M ,点E 在边 BC 上,且DAE DCB ∠=∠,联结AE ,AE 与BD 交于点F .(1)求证:2DM MF MB =⋅; (2)联结DE ,如果3BF FM =,求证:四边形ABED 是平行四边形.24.(本题满分12分,第(1)、(2)、(3)小题,每小题4分)已知:如图8,在平面直角坐标系xOy 中,抛物线23y ax bx =++的图像与x 轴交于点A (3,0),与y 轴交于点B ,顶点C 在直线2x =上,将抛物线沿射线AC 的方向平移,当顶点C 恰好落在y 轴上的点D 处时,点B 落在点E 处. (1)求这个抛物线的解析式;(2)求平移过程中线段BC 所扫过的面积;(3)已知点F 在x 轴上,点G 在坐标平面内,且以点C 、E 、F 、G 为顶点的四边形是矩形,求点F 的坐标. .MFE DCB A图7东AB C图6ABOxy ABOxy25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图9-1,已知扇形MON 2MON =90o ,点B 在弧MN 上移动,联结BM ,作OD ⊥BM ,垂足为点D ,C 为线段OD 上一点,且OC =BM ,联结BC 并延长交半径OM 于点A ,设OA = x ,∠COM 的正切值为y .(1)如图9-2,当AB ⊥OM 时,求证:AM =AC ; (2)求y 关于x 的函数关系式,并写出定义域; (3)当△OAC 为等腰三角形时,求x 的值.青浦区2017学年九年级第二次学业质量调研测试评分参考一、选择题:1.B ; 2.C ; 3.B ; 4.A ; 5.D ; 6.C . 二、填空题:7.a ; 8.()4-a a ; 9.3≥-x ; 10.101、、-;11. 21-a ; 12.(3,1);13.13; 14.>; 15.2132-r r b a ; 16.1︰3; 17.3508<<PB ;18.6.三、解答题:OMNDCBA图9-1 OMNDCBA图9-2NMO备用图19.解:原式5+5212-+. ································································ (8分)=51. ············································································· (2分)20.解:原式=()2245223--+⨯++x x x x , ····························································· (5分) =()()()233223+-+⨯++x x x x x , ······················································· (1分)=33-+x x . ·················································································· (1分) 当3=x 333+32. ············································ (3分) 21.解:(1)过点D 作DH ⊥AB ,垂足为点H . ················································ (1分)∵BD 平分∠ABC ,∠C =90°, ∴DH = DC =x , ········································································ (1分) 则AD =3-x . ∵∠C =90°,AC=3,BC =4,∴AB =5. ··········································· (1分)∵sin ∠==HD BCBAC AD AB, ∴435=-x x , ·········································································· (1分) ∴43=x . ················································································ (1分)(2)1141052233=⋅=⨯⨯=V ABD S AB DH . ············································· (1分)∵BD=2DE , ∴2==V V ABD ADE S BD S DE, ································································ (3分) ∴1015323=⨯=V ADE S . ······························································· (1分) 22.解:过点A 作AH ⊥BC ,垂足为点H . ······················································ (1分)由题意,得∠BAH =60°,∠CAH =45°,BC =10. ····································· (1分) 设AH =x ,则CH =x . ······································································· (1分) 在Rt △ABH 中,∵tan ∠=BH BAH AH ,∴10tan 60+︒=xx, ········································ (3分) 310=+x x ,解得53513.65=≈x , ······································· (2分)∵13.65>11, ················································································ (1分)∴货轮继续向正东方向航行,不会有触礁的危险. ································· (1分) 答:货轮继续向正东方向航行,不会有触礁的危险.23.证明:(1)∵AD //BC ,∴∠=∠DAE AEB , ·············································· (1分)∵∠=∠DCB DAE ,∴∠=∠DCB AEB , ································ (1分) ∴AE //DC , ··········································································· (1分)∴=FM AMMD MC. ··································································· (1分) ∵AD //BC ,∴=AM DMMC MB, ··················································· (1分) ∴=FM DM MD MB, ··································································· (1分) 即2=⋅MD MF MB .(2)设=FM a ,则=3BF a ,=4BM a . ··········································· (1分)由2=⋅MD MF MB ,得24=⋅MD a a ,∴2=MD a , ········································································ (1分)∴3==DF BF a . ·································································· (1分) ∵AD //BC ,∴1==AF DFEF BF, ···················································· (1分) ∴=AF EF , ········································································· (1分) ∴四边形ABED 是平行四边形. ···················································· (1分)24.解:(1)∵顶点C 在直线2x =上,∴22=-=bx a,∴4=-b a . ················ (1分) 将A (3,0)代入23y ax bx =++,得933=0++a b , ··················· (1分)解得1=a ,4=-b . ································································ (1分)∴抛物线的解析式为243=-+y x x . ·········································· (1分) (2)过点C 作CM ⊥x 轴,CN ⊥y 轴,垂足分别为M 、N .∵243=-+y x x =()221=--x ,∴C (2,1-). ························· (1分)∵1==CM MA ,∴∠MAC =45°,∴∠ODA =45°, ∴3==OD OA . ···································································· (1分) ∵抛物线243=-+y x x 与y 轴交于点B ,∴B (0,3),∴6=BD . ········································································ (1分) ∵抛物线在平移的过程中,线段BC 所扫过的面积为平行四边形BCDE 的面积,∴12262122==⨯⨯⋅=⨯=Y V BCDE BCDS S BD CN . ························ (1分) (3)联结CE .∵四边形BCDE 是平行四边形,∴点O 是对角线CE 与BD 的交点,即 5OE OC ==(i )当CE 为矩形的一边时,过点C 作1CF CE ⊥,交x 轴于点1F ,设点1F a (,0),在1Rt OCF V 中,22211=OF OC CF +, 即 22(2)5a a =-+,解得 52a =,∴点152F (,0) ································ (1分) 同理,得点252F (-,0) ······································································ (1分) (ii )当CE 为矩形的对角线时,以点O 为圆心,OC 长为半径画弧分别交x 轴于点3F 、4F ,可得 34=5OF OF OC ==,得点35F (,0)、45F (-,0)(2分)综上所述:满足条件的点有152F (,0),252F (-,0),35F (,0)),45F (-,0). 25.解:(1)∵OD ⊥BM ,AB ⊥OM ,∴∠ODM =∠BAM =90°. ··························· (1分)∵∠ABM +∠M =∠DOM +∠M ,∴∠ABM =∠DOM . ······················ (1分) ∵∠OAC =∠BAM ,OC =BM ,∴△OAC ≌△ABM , ·································································· (1分)∴AC =AM . ············································································· (1分) (2)过点D 作DE //AB ,交OM 于点E .··············································· (1分)∵OB =OM ,OD ⊥BM ,∴BD =DM . ··········································· (1分) ∵DE //AB ,∴=MD MEDM AE,∴AE =EM , ∵OM 2,∴AE =)122x . ··············································· (1分) ∵DE //AB , ∴2==OA OC DMOE OD OD , ···························································· (1分) ∴2=DM OA OD OE, ∴2=+y x .(02<≤x ····················································· (2分)(3)(i ) 当OA =OC 时, ∵111222===DM BM OC x , 在Rt △ODM 中,222124=-=-OD OM DM x .∵=DMy OD, ∴2121224=+-xx x .解得142-=x ,或142--=x . ··············································································· (2分)(ii )当AO =AC 时,则∠AOC =∠ACO ,∵∠ACO >∠COB ,∠COB =∠AOC ,∴∠ACO >∠AOC , ∴此种情况不存在. ·································································· (1分) (ⅲ)当CO =CA 时,则∠COA =∠CAO=α,∵∠CAO >∠M ,∠M =90α︒-,∴α>90α︒-,∴α>45︒,∴290α∠=>︒BOA ,∵90∠≤︒BOA ,∴此种情况不存在. ········································································································· (1分)。
2017初三二模数学汇编25题
(宝山)25. (本题满分14分,每小题满分分别为5分、5分、4分)如图8,在△ABC 中,∠ACB 为直角,AB=10,30=∠A °,半径为1的动圆Q 的圆心从点C 出发,沿着CB 方向以1个单位长度/秒的速度匀速运动,同时动点P 从点B 出发,沿着BA 方向也以1个单位长度/秒的速度匀速运动,设运动时间为t 秒(0<t ≤5)以P 为圆心,PB 长为半径的⊙P 与AB 、BC 的另一个交点分别为E 、D ,连结ED 、EQ . (1)判断并证明ED 与BC 的位置关系,并求当点Q 与点D 重合时t 的值; (2)当⊙P 和AC 相交时,设CQ 为x ,⊙P 被AC 截得的弦长为y ,求y 关于x 的函数; 并求当⊙Q 过点B 时⊙P 被AC 截得的弦长; (3)若⊙P 与⊙Q 相交,写出t 的取值范围.图8A(崇明)25.(本题满分14分,其中第(1)小题4分,第(2)小题4分,第(3)小题6分) 如图,梯形ABCD 中,AB CD ∥,90ABC ∠=︒,6AB =,8BC =,tan 2D =,点E 是射线CD 上一动点(不与点C 重合),将BCE ∆沿着BE 进行翻折,点C 的对应点记为点F .(1)如图1,当点F 落在梯形ABCD 的中位线MN 上时,求CE 的长;(2)如图2,当点E 在线段CD 上时,设CE x =,BFC EFCS y S ∆∆=,求y 与x 之间的函数关系式,并写出定义域;(3)如图3,联结AC ,线段BF 与射线CA 交于点G ,当CBG ∆是等腰三角形时,求CE 的长.BC DEFM NEDCFABEDC FAB GD CA B(第25题图1)(第25题图2)(第25题图3)(第25题备用图)(奉贤)025.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) 已知:如图9,线段AB =4,以AB 为直径作半圆O ,点C 为弧AB 的中点,点P 为直径AB 上一点,联结PC ,过点C 作CD //AB ,且CD =PC ,过点D 作DE//PC ,交射线PB 于点E ,PD 与CE 相交于点Q .(1)若点P 与点A 重合,求BE 的长; (2)设PC = x ,y CEPD,当点P 在线段AO 上时,求y 与x 的函数关系式及定义域; (3)当点Q 在半圆O 上时,求PC 的长.图9备用图(黄浦)25.(本题满分14分)已知:Rt △ABC 斜边AB 上点D 、E ,满足∠DCE =45°.(1)如图1,当AC =1,BCD 与A 重合时,求线段BE 的长; (2)如图2,当△ABC 是等腰直角三角形时,求证:AD 2+BE 2=DE 2;(3)如图3,当AC =3,BC =4时,设AD =x ,BE =y ,求y 关于x 的函数关系式,并写出定义域.(图1) (图2)(图3)C B ADE AD E C B (D ) E CB A(嘉定)25.(满分14分,第(1)小题5分,第(2)小题5分、第(3)小题4分)已知:8=AB ,⊙O 经过点A 、B .以AB 为一边画平行四边形ABCD ,另一边CD 经过点O (如图8).以点B 为圆心,BC 为半径画弧,交线段OC 于点E (点E 不与点O 、点C 重合).(1)求证:OE OD =;(2)如果⊙O 的半径长为5(如图9),设x OD =,y BC =,求y 关于x 的函数解析式,并写出它的定义域;(3)如果⊙O 的半径长为5,联结AC ,当AC BE ⊥时,求OD 的长.图9备用图图8(静安)25.(本题满分14分,第(1)小题满分6分,第(2)小题满分8分)如图,已知⊙O的半径OA的长为2,点B是⊙O上的动点,以AB为半径的⊙A与线段OB相交于点C,AC的延长线与⊙O相交于点D.设线段AB的长为x, 线段OC的长为y.(1)求y关于x的函数解析式,并写出定义域;(2)当四边形ABDO是梯形时,求线段OC的长.(第25题图)(闵行)25.(本题共3小题,其中第(1)小题各4分,第(2)、(3)小题各5分,满分14分)如图,在梯形ABCD 中,AD // BC ,∠B = 90°,AB = 4,BC = 9,AD = 6.点E 、F 分别在边AD 、BC 上,且BF = 2DE ,联结FE .FE 的延长线与CD 的延长线相交于点P .设DE = x ,PE y EF. (1)求y 关于x 的函数解析式,并写出函数的定义域;(2)当以ED 为半径的⊙E 与以FB 为半径的⊙F 外切时,求x 的值;(3)当△AEF ∽△PED 时,求x 的值.A B CD E F P (第25题图)A B C D (备用图)(普陀)25.(本题满分14分)如图10,半圆O 的直径AB =10,有一条定长为6的动弦CD 在弧AB 上滑动(点C 、点D 分别不与点A 、点B 重合),点E 、F 在AB 上,EC ⊥CD ,FD ⊥CD . (1)求证:EO OF =;(2)联结OC ,如果△ECO 中有一个内角等于45,求线段EF 的长;(3)当动弦CD 在弧AB 上滑动时,设变量CE x =,四边形CDFE 面积为S ,周长为l ,问:S 与l 是否分别随着x 的变化而变化?试用所学的函数知识直接写出它们的函数解析式及函数定义域,以说明你的结论.图10(长宁青浦)25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,△ABC的边AB是⊙O的直径,点C在⊙O上,已知AC=6 cm,BC=8 cm,点P、Q分别在边AB、BC上,且点P不与点A、B重合,BQ=k·AP(k >0),联接PC、PQ.(1)求⊙O的半径长;(2)当k=2时,设AP=x,△CPQ的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果△CPQ与△ABC相似,且∠ACB=∠CPQ,求k的值.第25题图备用图(松江)25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,已知在Rt△ABC中,∠ACB=90°,cos B=35,BC=3,P是射线AB上的一个动点,以P为圆心,P A为半径的⊙P与射线AC的另一个交点为D,直线PD交直线BC于点E.(1)当P A=1时,求CE的长;(2)如果点P在边AB的上,当⊙P与以点C为圆心,CE为半径的⊙C内切时,求⊙P的半径;(3)设线段BE的中点为Q,射线PQ与⊙P相交于点F,点P在运动过程中,当(徐汇)25.(本题满分14分)如图11,已知ABC ∆中,5==AC AB ,6=BC ,点O 是边BC 上的动点,以点O 为圆心,OB 为半径作圆O ,交边AB 于点D ,过点D 作B ODP ∠=∠,交边AC 于点P ,交圆O 于点E .设x OB =.(1)当点P 与点C 重合时,求PD 的长; (4分)(2)设y EP AP =-,求y 关于x 的函数解析式及定义域; (5分)(3)联结OP ,当OD OP ⊥时,试判断以点P 为圆心,PC 为半径的圆P 与圆O 的位置关系.(5分)图11 O P D B A C E(杨浦)25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5 分)已知:以O 为圆心的扇形AOB 中,∠AOB =90°,点C 为»AB 上一动点,射线AC 交射线OB 于点D ,过点D 作OD 的垂线交射线OC 于点E ,联结AE .(1) 如图1,当四边形AODE 为矩形时,求∠ADO 的度数;(2) 当扇形的半径长为5,且AC =6时,求线段DE 的长;(3) 联结BC ,试问:在点C 运动的过程中,∠BCD 的大小是否确定?若是,请求出它 的度数;若不是,请说明理由.(备用图) (第25题图)E (图1)(虹口)(浦东)。
上海市2017年初三数学二模试卷-黄浦区
2017年黄浦区九年级学业考试模拟考数 学 试 卷 2017年4月(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效; 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.单项式324z xy 的次数是( ▲ )(A )3;(B )4;(C )5;(D )6.2.下列方程中无实数解的是( ▲ )(A )02=+x ; (B )02=-x ; (C )02=x ; (D )02=x. 3.下列各组数据中,平均数和中位数相等的是( ▲ )(A )1,2,3,4,5; (B )1,3,4,5,6;(C )1,2,4,5,6; (D )1,2,3,5,6.4.二次函数()322---=x y 图像的顶点坐标是( ▲ )(A )(2,3);(B )(2,﹣3);(C )(﹣2,3);(D )(﹣2,﹣3).5.以一个面积为1的三角形的三条中位线为三边的三角形的面积为( ▲ )(A )4;(B )2;(C )41; (D )21. 6.已知点A (4,0),B (0,3),如果⊙A 的半径为1,⊙B 的半径为6,则⊙A 与⊙B 的位置关系是( ▲ )(A )内切; (B )相交; (C )外切;(D )外离.二、填空题:(本大题共12题,每题4分,满分48分) 7.计算:()=32x ▲ .8.因式分解:=-224y x ▲ .9.不等式组⎩⎨⎧≥+<-01202x x 的解集是 ▲ .学校 班级 准考证号 姓名…………………密○……………………………………封○……………………………………○线……………………………10.方程222=-x 的解是 ▲ .11.若关于x 的方程0322=+-k x x 有两个相等的实数根,则k 的值为 ▲ .12.某个工人要完成3000个零件的加工,如果该工人每小时能加工x 个零件,那么完成这批零件的加工需要的时间是 ▲ 小时.13.已知二次函数的图像经过点(1,3)和(3,3),则此函数图像的对称轴与x 轴的交点坐标是 ▲ . 14.从1到10这10个正整数中任取一个,该正整数恰好是3的倍数的概率是 ▲ . 15.正八边形的每个内角的度数是 ▲ .16.在平面直角坐标系中,点A (2,0),B (0,-3),若OC OB OA =+,则点C 的坐标为 ▲ . 17.如图,梯形ABCD 中,AD ∥BC ,∠A =90°,它恰好能按图示方式被分割成四个全等的直角梯形,则AB ∶BC = ▲ .18.如图,矩形ABCD ,将它分别沿AE 和AF 折叠,恰好使点B 、D 落到对角线AC 上点M 、N 处,已知MN =2,NC =1,则矩形ABCD 的面积是 ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:))11212sin 30-++-︒.20.(本题满分10分)解方程:21416222+=---+x x x x .DNMCBAEFDCBA如图,在△ABC 中,∠ACB =90°,∠A =15°,D 是边AB 的中点,DE ⊥AB 交AC 于点E . (1)求∠CDE 的度数; (2)求CE ∶EA .22.(本题满分10分)小明家买了一台充电式自动扫地机,每次完成充电后,在使用时扫地机会自动根据设定扫地时间,来确定扫地的速度(以使每次扫地结束时尽量把所储存的电量用完),下图是“设定扫地时间”与“扫地速度”之间的函数图像(线段AB ),其中设定扫地时间为x 分钟,扫地速度为y 平方分米/分钟. (1)求y 关于x 的函数解析式;(2)现在小明需要扫地机完成180平方米的扫地任务,他应该设定的扫地时间为多少分钟?23.(本题满分12分)如图,菱形ABCD ,以A 为圆心,AC 长为半径的圆分别交边BC 、DC 、AB 、AD 于点E 、F 、G 、H.(1)求证:CE =CF ; (2)当E 为弧中点时,求证:BE 2=CE •CB .DCBAFEDCBAHGOxy 100 20500100B A如图,点A 在函数()40y x x =>图像上,过点A 作x 轴和y 轴的平行线分别交函数xy 1=图像于点B 、C ,直线BC 与坐标轴的交点为D 、E .(1)当点C 的横坐标为1时,求点B 的坐标; (2)试问:当点A 在函数()40y x x=>图像上运动时,△ABC 的面积是否发生变化?若不变,请求出△ABC 的面积;若变化,请说明理由;(3)试说明:当点A 在函数()40y x x=>图像上运动时,线段BD 与CE 的长始终相等.E BCA DxyO25.(本题满分14分)已知:Rt △ABC 斜边AB 上点D 、E ,满足∠DCE =45°.(1)如图1,当AC =1,BCD 与A 重合时,求线段BE 的长; (2)如图2,当△ABC 是等腰直角三角形时,求证:AD 2+BE 2=DE 2;(3)如图3,当AC =3,BC =4时,设AD =x ,BE =y ,求y 关于x 的函数关系式,并写出定义域.(图1) (图2)(图3)C B ADE A D E C B (D ) E CB A黄浦区2017年九年级学业考试模拟考评分标准参考一、选择题(本大题6小题,每小题4分,满分24分)1.D ;2.D ;3.A ;4.B ;5.C ;6.A . 二、填空题:(本大题共12题,每题4分,满分48分)7.6x ; 8.()()y x y x 22-+; 9.122x -≤<; 10.6±; 11.89; 12.x 3000; 13.(2,0); 14.103;15.135; 16.(2,﹣3); 17.3∶1; 18.649+. 三、解答题:(本大题共7题,满分78分) 19. 解:原式= ()()112221-++-+ —————————————————(8分)=3—————————————————————————————(2分)20.解:()21622-=-+x x ———————————————————————(3分)01032=-+x x ————————————————————————(2分) 21=x ,52-=x ————————————————————————(2分)经检验,21=x 是增根,——————————————————————(1分)所以,原方程的根为5-=x .———————————————————(2分) 21. 解:(1)在Rt △ABC 中,D 是斜边AB 的中点,∴DC =DA ,———————————————————————————(2分) ∴∠DCA =∠DAC =15°, —————————————————————(1分) ∴∠BDC =30°. ————————————————————————(1分)又DE ⊥AB ,即∠BDE =90°. ∴∠CDE =60°. ————————————————————————(1分) (2)过点C 作DE 的垂线,垂足为F (如图). ———————————(1分) 设AD =2a ,则CD =AD =2a ,—————————————————————(1分) 在△CDF 中,∠CFD =90°,∠CDF =60°.∴CF =a 3.———————————————————————————(1分) 又DE ⊥AB ,∴CF ∥AB ,———————————————————————————(1分) ∴CE ∶EA =CF ∶AD =3∶2. ———————————————————(1分)22. 解:(1)设b kx y +=————————————————————————(1分)由题意得:⎩⎨⎧+=+=bk bk 10010020500,———————————————————(2分)解得:⎩⎨⎧=-=6005b k ,————————————————————————(1分)所以,解析式为6005+-=x y .(20100x ≤≤)——————————(1分)(2)设设定扫地时间为x 分钟. ———————————————————(1分)180平方米=18000平方分米. ————————————————————(1分) 由题意得:()180006005=+-x x ,————————————————(1分) 解得:602,1=x ,符合题意. ———————————————————(1分)答:设定扫地时间为60分钟. —————————————————————(1分) 23. 证:(1)联结AE 、AF . ————————————————————————(1分)由菱形ABCD ,得∠ACE =∠ACF . ——————————————————(1分) 又∵点E 、C 、F 均在圆A 上,∴AE =AC =AF ,——————————————————————————(1分) ∴∠AFC =∠ACF =∠ACE =∠AEC . —————————————————(1分) ∴△ACE ≌△ACF ,————————————————————————(1分)∴CE =CF . ———————————————————————————(1分) (2)∵E 是弧CG 中点,∴∠CAE =∠GAE ,令∠CAE =α.——————————————————(1分) 又菱形ABCD ,得BA =BC ,所以∠BCA =∠BAC =2α,—————————————————————(1分) 则∠AEC =2α=∠BAE +∠B .∴∠B =∠BAE ,——————————————————————————(1分) 所以BE =AE =AC .在△CAB 与△CEA 中,∠AEC =∠BCA =∠CAB ,∴△CAB ∽△CEA ,————————————————————————(1分) ∴CB CE CA CBCACA CE •=⇒=2,—————————————————(1分) 即CB CE BE •=2.———————————————————————(1分) 24. 解:(1)由点C 的横坐标为1,且AC 平行于y 轴,所以点A 的横坐标也为1,且位于函数xy 4=图像上,则()4,1A .—————(2分)又AB 平行于x 轴,所以点B 的纵坐标为4,且位于函数x y 1=图像上,则⎪⎭⎫⎝⎛4,41B .————(2分) (2)令⎪⎭⎫ ⎝⎛a a A 4,,由题意可得:⎪⎭⎫ ⎝⎛a a B 4,41,⎪⎭⎫⎝⎛a a C 1,. ———————(1分) 于是△ABC 的面积为:8934321144121=⨯⨯=-⨯-a a a a a a , ————(2分) 所以△ABC 的面积不变,为89.———————————————————(1分) (3)分别延长AB 、AC 交坐标轴于点F 、G . —————————————(1分)则⎪⎭⎫⎝⎛a F 4,0,()0,a G . ∵DF ∥AC ,——————————————————————————(1分)∴314141=-==aa aBA FB BC DB ,即BC DB 31=.———————————(1分)同理CB CE 31=,所以BD =CE . ——————————————————————————(1分) 25. 解:(1)过点E 作EH ⊥BC 于H . ———————————————————(1分) ∵∠ACB =90°,∠ACE =45°,∴∠BCE =45°. 又AC =1,BC =3, ∴33tan =B .—————————————————————————(1分) 在△CEH 中,∠CHE =90°,∠HCE =45°,令CH =EH =x , 则在△BEH 中,BH =x BEH3tan =,BE =2x . 于是23333-=⇒+=x x x ,—————————————————(1分) ∴BE =33-.—————————————————————————(1分) (2)∵△ABC 为等腰直角三角形,∴CA =CB .将△BCE 绕点C 旋转90°到△ACF 处,联结DF .(如图)——————(1分)则∠DCF =∠DCA +∠ACF =∠DCA +∠BCE =90°-45°=45°=∠DCE . ——(1分) 又CE =CF ,CD =CD .∴△DCE ≌△CDF ,———————————————————————(1分) ∴DE =DF .于是在△ADF 中,∠DAF =∠DAC +∠CAF=45°+45°=90°. ————————————(1分) ∴222AF DA DF +=,即222BE DA DE +=.—————————————————————(1分)(3)将△ACD 绕点C 旋转90°到△QCP 处,点Q 恰好在边BC 上,联结PE ,并延长PQ 交边AB 于点T .(如图)同(2),易证△ECD ≌△ECP ,得DE =EP . 又∠B +∠BQT =∠B +∠PQC =∠B +∠A =90°,∴∠BTQ =90°.又BQ =BC -CQ =BC -AC =1. ————————————————————(1分) 在△ABC 中,∠ACB =90°,AC =3,BC =4,则AB =5,3sin 5B =,4cos 5B =. 于是在△BTQ 中,得53=TQ ,54=TB .——————————————(1分) 所以在△PET 中,∠PTE =90°,PE =DE =y x --5,TE =45y -,PT =53+x , 有222TE PT PE +=,即()22254535⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=--y x y x ,————(1分)解得:28601505217x y x x -⎛⎫=≤≤ ⎪-⎝⎭ ———————————————(2分)ADECBF CBADETQ P。
2017年青浦区中考数学二模试卷(解析版)
2017年上海市青浦区中考数学二模试卷一、单项选择题(本大题共6题,每题4分,满分24分)1.下列运算中,正确的是()A.2a﹣a=1 B.a+a=2a C.(a3)3=a6D.a8÷a2=a42.不等式组的解集在数轴上可表示为()A.B.C.D.3.二次根式的值是()A.﹣3 B.3或﹣3 C.9 D.34.在正方形网格中,△ABC的位置如图所示,则cos∠B的值为()A.B.C.D.15.某集团公司有9个子公司,各个子公司所创年利润的情况如下表所示.各子公司所创年利润的众数和中位数分别是()6432年利润(千万元)子公司个数1242A.4千万元,3千万元B.6千万元,4千万元C.6千万元,3千万元D.3千万元,3千万元6.如图,在四边形ABCD中,动点P从点A开始沿A→B→C→D的路径匀速前进到D为止.在这个过程中,△APD的面积S随时间t的变化关系用图象表示正确的是()A.B.C.D.二、填空题(本大题共12题,每题4分,满分48分)7.若x:y=2:3,那么x:(x+y)=.8.在实数范围内分解因式:x2﹣3=.9.已知函数f(x)=,那么f(﹣1)=.10.已知反比例函数y=的图象经过一、三象限,则实数k的取值范围是.11.已知关于x的方程x2﹣2x+a=0有两个实数根,则实数a的取值范围是.12.方程=1的解为.13.抛物线y=﹣ax2+2ax+3(a≠0)的对称轴是.14.布袋中装有3个红球和n个白球,它们除颜色外其它都相同,如果从布袋里随机摸出一个球,所摸到的球恰好是红球的概率是,那么布袋中白球有个.15.化简:2﹣3(﹣)=.16.如图,在菱形ABCD中,EF∥BC,=,EF=3,则CD的长为.17.在△ABC中,已知BC=4cm,以边AC的中点P为圆心1cm为半径画⊙P,以边AB的中点Q为圆心x cm长为半径画⊙Q,如果⊙P与⊙Q相切,那么x=cm.18.如图,在Rt△ABC 中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB.设BE=a,DC=b,那么AB=.(用含a、b的式子表示AB)三、解答题:(本大题共7题,满分78分)19.计算:20170+()﹣1+6cos30°﹣|2﹣|.20.解方程:﹣=1﹣.21.已知直线y=﹣x+3与x轴、y轴分别交于A、B两点,设O为坐标原点.(1)求∠ABO的正切值;(2)如果点A向左平移12个单位到点C,直线l过点C且与直线y=﹣x+3平行,求直线l的解析式.22.小明在海湾森林公园放风筝.如图所示,小明在A处,风筝飞到C处,此时线长BC为40米,若小明双手牵住绳子的底端B距离地面1.5米,从B处测得C处的仰角为60°,求此时风筝离地面的高度CE.(计算结果精确到0.1米,≈1.732)23.如图,在△ABC 中,点P是AC边上的一点,过点P作与BC平行的直线PQ,交AB于点Q,点D在线段BC上,联接AD交线段PQ于点E,且=,点G 在BC延长线上,∠ACG的平分线交直线PQ于点F.(1)求证:PC=PE;(2)当P是边AC的中点时,求证:四边形AECF是矩形.24.已知△OAB在直角坐标系中的位置如图,点A在第一象限,点B在x轴正半轴上,OA=OB=6,∠AOB=30°.(1)求点A、B的坐标;(2)开口向上的抛物线经过原点O和点B,设其顶点为E,当△OBE为等腰直角三角形时,求抛物线的解析式;(3)设半径为2的⊙P与直线OA交于M、N两点,已知MN=2,P(m,2)(m>0),求m的值.25.如图,△ABC的边AB是⊙O的直径,点C在⊙O上,已知AC=6cm,BC=8cm,点P、Q分别在边AB、BC上,且点P不与点A、B重合,BQ=k•AP(k>0),联接PC、PQ.(1)求⊙O的半径长;(2)当k=2时,设AP=x,△CPQ的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果△CPQ与△ABC相似,且∠ACB=∠CPQ,求k的值.2017年上海市青浦区中考数学二模试卷参考答案与试题解析一、单项选择题(本大题共6题,每题4分,满分24分)1.下列运算中,正确的是()A.2a﹣a=1 B.a+a=2a C.(a3)3=a6D.a8÷a2=a4【考点】48:同底数幂的除法;35:合并同类项;47:幂的乘方与积的乘方.【分析】分别利用合并同类项法则以及结合幂的乘方运算法则以及同底数幂的除法运算法则化简求出答案.【解答】解:A、2a﹣a=a,故此选项错误;B、a+a=2a,故此选项正确;C、(a3)3=a9,故此选项错误;D、a8÷a2=a6,故此选项错误.故选:B.2.不等式组的解集在数轴上可表示为()A.B.C.D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出答案.【解答】解:解不等式2x+3≥1,得:x≥﹣1,解不等式x﹣2<0,得:x<2,∴不等式组的解集为﹣1≤x<2,故选:B.3.二次根式的值是()A.﹣3 B.3或﹣3 C.9 D.3【考点】73:二次根式的性质与化简.【分析】本题考查二次根式的化简,.【解答】解:=﹣(﹣3)=3.故选:D.4.在正方形网格中,△ABC的位置如图所示,则cos∠B的值为()A.B.C.D.1【考点】T1:锐角三角函数的定义.【分析】cos∠B的值可以转化为直角三角形的边的比的问题,因而过点A作AD 垂直于BC的延长线于点D.在Rt△ABD中根据三角函数的定义求解.【解答】解:作AD⊥BC的延长线于点D.在Rt△ABD中,BD=AD,则AB=BD.故cos∠B=.故选A.5.某集团公司有9个子公司,各个子公司所创年利润的情况如下表所示.各子公司所创年利润的众数和中位数分别是()年利润(千万6432元)子公司个数1242A.4千万元,3千万元B.6千万元,4千万元C.6千万元,3千万元D.3千万元,3千万元【考点】W5:众数;W4:中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.【解答】解:这组数据按照从小到大的顺序排列为:6,4,4,3,3,3,3,2,2,则众数为:3千万元,中位数为:3千万元.故选:D.6.如图,在四边形ABCD中,动点P从点A开始沿A→B→C→D的路径匀速前进到D为止.在这个过程中,△APD的面积S随时间t的变化关系用图象表示正确的是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】根据点P的运动过程可知:△APD的底边为AD,而且AD始终不变,点P到直线AD的距离为△APD的高,根据高的变化即可判断S与t的函数图象.【解答】解:设点P到直线AD的距离为h,∴△APD的面积为:ADh,当P在相等AB运动时,此时h不断增大,当P在线段BC上运动时,此时h不变,当P在线段CD上运动时,此时h不断减小,故选(C)二、填空题(本大题共12题,每题4分,满分48分)7.若x:y=2:3,那么x:(x+y)=2:5.【考点】S1:比例的性质.【分析】利用合比性质计算.【解答】解:∵=,∴==.故答案为2:5.8.在实数范围内分解因式:x2﹣3=(x+)(x﹣).【考点】58:实数范围内分解因式;54:因式分解﹣运用公式法.【分析】把3写成的平方,然后再利用平方差公式进行分解因式.【解答】解:x2﹣3=x2﹣()2=(x+)(x﹣).9.已知函数f(x)=,那么f(﹣1)=2+.【考点】E5:函数值;76:分母有理化.【分析】把x=﹣1直接代入函数f(x)=即可求出函数值.【解答】解:因为函数f(x)=,所以当x=﹣1时,f(x)==2+.10.已知反比例函数y=的图象经过一、三象限,则实数k的取值范围是k >1.【考点】G4:反比例函数的性质.【分析】根据反比例函数y=的图象经过一、三象限得出关于k的不等式,求出k的取值范围即可.【解答】解:∵反比例函数y=的图象经过一、三象限,∴k﹣1>0,即k>1.故答案为:k>1.11.已知关于x的方程x2﹣2x+a=0有两个实数根,则实数a的取值范围是a≤1.【考点】AA:根的判别式.【分析】由方程有两个实数根,得到根的判别式大于等于0,即可确定出a的范围.【解答】解:∵方程x2﹣2x+a=0有两个实数根,∴△=4﹣4a≥0,解得:a≤1,故答案为:a≤112.方程=1的解为x=2.【考点】AG:无理方程.【分析】方程两边平方转化为整式方程,求出整式方程的解得到x的值,经检验即可得到无理方程的解.【解答】解:方程两边平方得:x﹣1=1,解得:x=2,经检验x=2是原方程的解,故答案为:x=213.抛物线y=﹣ax2+2ax+3(a≠0)的对称轴是直线x=1.【考点】H3:二次函数的性质.【分析】直接利用抛物线对称轴公式求出答案.【解答】解:抛物线y=﹣ax2+2ax+3(a≠0)的对称轴是:直线x=﹣=1.故答案为:直线x=1.14.布袋中装有3个红球和n个白球,它们除颜色外其它都相同,如果从布袋里随机摸出一个球,所摸到的球恰好是红球的概率是,那么布袋中白球有6个.【考点】X4:概率公式.【分析】根据概率的概念建立等量关系:=,解方程即可.【解答】解:∵布袋中有n个白球,∴=,解得:n=6,则布袋中白球有6个;故答案为:6.15.化简:2﹣3(﹣)=+3.【考点】LM:*平面向量.【分析】根据向量的加减运算法则进行计算即可得解.【解答】解:2﹣3(﹣),=2﹣+3,=+3.故答案为: +3.16.如图,在菱形ABCD中,EF∥BC,=,EF=3,则CD的长为12.【考点】S9:相似三角形的判定与性质;L8:菱形的性质.【分析】要求CD的长,只要求出菱形的任意一条边长即可,根据题意可以求得△AEF∽△ABC,从而可以求得BC的长,本题得以解决.【解答】解:∵在菱形ABCD中,EF∥BC,=,EF=3,∴△AEF∽△ABC,AB=BC=CD=DA,,∴,∴,解得,BC=12,∴CD=12,故答案为:12.17.在△ABC中,已知BC=4cm,以边AC的中点P为圆心1cm为半径画⊙P,以边AB的中点Q为圆心x cm长为半径画⊙Q,如果⊙P与⊙Q相切,那么x=1或3cm.【考点】MK:相切两圆的性质.【分析】根据三角形的中位线的性质得到PQ=BC=2cm,①当⊙P与⊙Q相外切时,②当⊙P与⊙Q相内切时,列方程即可得到结论.【解答】解:∵BC=4cm,点P是AC的中点,点Q是AB的中点,∴PQ=BC=2cm,①当⊙P与⊙Q相外切时,PQ=1+x=2,∴x=1cm,②当⊙P与⊙Q相内切时,PQ=|x﹣1|=2,∴x=3cm(负值舍去),∴如果⊙P与⊙Q相切,那么x=1cm或3cm,故答案为:1或3.18.如图,在Rt△ABC 中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB.设BE=a,DC=b,那么AB=(a+b+).(用含a、b的式子表示AB)【考点】R2:旋转的性质;KW:等腰直角三角形.【分析】只要证明△FAE≌△DAE,推出EF=ED,∠ABF=∠C=45°,由∠EBF=∠ABF+∠ABE=90°,推出ED=EF=,可得BC=a+b+,根据AB=BC•cos45°即可解决问题.【解答】证明:∵△DAC≌△FAB,∴AD=AF,∠DAC=∠FAB,∴∠FAD=90°,∵∠DAE=45°,∴∠DAC+∠BAE=∠FAB+∠BAE=∠FAE=45°,在△FAE和△DAE中,,∴△FAE≌△DAE,∴EF=ED,∠ABF=∠C=45°,∵∠EBF=∠ABF+∠ABE=90°,∴ED=EF=,∴BC=a+b+,∴AB=BC•cos45°=(a+b+).故答案为(a+b+).三、解答题:(本大题共7题,满分78分)19.计算:20170+()﹣1+6cos30°﹣|2﹣|.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】首先计算乘方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:20170+()﹣1+6cos30°﹣|2﹣|=1+2+6×﹣2+=3+3﹣2+=1+420.解方程:﹣=1﹣.【考点】B3:解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:4x﹣2x﹣4=x2﹣4﹣x+2,即x2﹣3x+2=0,解得:x=1或x=2,经检验x=2是增根,分式方程的解为x=1.21.已知直线y=﹣x+3与x轴、y轴分别交于A、B两点,设O为坐标原点.(1)求∠ABO的正切值;(2)如果点A向左平移12个单位到点C,直线l过点C且与直线y=﹣x+3平行,求直线l的解析式.【考点】FF:两条直线相交或平行问题;Q3:坐标与图形变化﹣平移;T7:解直角三角形.【分析】(1)根据已知条件得到A(6,0),B(0,3),求得OA=6,OB=3,根据三角函数的定义即可得到结论;(2)将点A向左平移12个单位到点C,于是得到C(﹣6,0),设直线l的解析式为y=﹣x+b,把C(﹣6,0)代入y=﹣x+b即可得到结论.【解答】解:(1)∵直线y=﹣x+3与x轴、y轴分别交于A、B两点,∴A(6,0),B(0,3),∴OA=6,OB=3,∵∠AOB=90°,∴tan∠ABO===2;(2)将点A向左平移12个单位到点C,∴C(﹣6,0),∵直线l过点C且与直线y=﹣x+3平行,设直线l的解析式为y=﹣x+b,把C(﹣6,0)代入y=﹣x+b得0=﹣(﹣6)+b,∴b=﹣3,∴直线l的解析式为y=﹣x﹣3.22.小明在海湾森林公园放风筝.如图所示,小明在A处,风筝飞到C处,此时线长BC为40米,若小明双手牵住绳子的底端B距离地面1.5米,从B处测得C处的仰角为60°,求此时风筝离地面的高度CE.(计算结果精确到0.1米,≈1.732)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】过点B作BD⊥CE于点D,由锐角三角函数的定义求出CD的长,根据CE=CD+DE即可得出结论.【解答】解:过点B作BD⊥CE于点D,∵AB⊥AE,DE⊥AE,BD⊥CE,∴四边形ABDE是矩形,∴DE=AB=1.5米.∵BC=40米,∠CBD=60°,∴CD=BC•sin60°=40×=20,∴CE=CD+DE=20+1.5≈20×1.73+1.5≈36.1(米).答:此时风筝离地面的高度CE是36.1米.23.如图,在△ABC 中,点P是AC边上的一点,过点P作与BC平行的直线PQ,交AB于点Q,点D在线段BC上,联接AD交线段PQ于点E,且=,点G在BC延长线上,∠ACG的平分线交直线PQ于点F.(1)求证:PC=PE;(2)当P是边AC的中点时,求证:四边形AECF是矩形.【考点】S9:相似三角形的判定与性质;LC:矩形的判定.【分析】(1)根据相似三角形的性质得到=,,等量代换得到=,推出=,于是得到结论;(2)根据平行线的性质得到∠PFC=∠FCG,根据角平分线的性质得到∠PCF=∠FCG,等量代换得到∠PFC=∠FCG,根据等腰三角形的性质得到PF=PC,得到PF=PE,由已知条件得到AP=CP,推出四边形AECF是平行四边形,于是得到结论.【解答】(1)证明:∵PQ∥BC,∴△AQE∽△ABD,△AEP∽△ADC,∴=,,∴=,∵=,∴=,∴PC=PE;(2)∵PF∥DG,∴∠PFC=∠FCG,∵CF平分∠PCG,∴∠PCF=∠FCG,∴∠PFC=∠FCG,∴PF=PC,∴PF=PE,∵P是边AC的中点,∴AP=CP,∴四边形AECF是平行四边形,∵PQ∥CD,∴∠PEC=∠DCE,∴∠PCE=∠DCE,∴∠PCE+∠PCF=(∠PCD+∠PCG)=90°,∴∠ECF=90°,∴平行四边形AECF是矩形.24.已知△OAB在直角坐标系中的位置如图,点A在第一象限,点B在x轴正半轴上,OA=OB=6,∠AOB=30°.(1)求点A、B的坐标;(2)开口向上的抛物线经过原点O和点B,设其顶点为E,当△OBE为等腰直角三角形时,求抛物线的解析式;(3)设半径为2的⊙P与直线OA交于M、N两点,已知MN=2,P(m,2)(m>0),求m的值.【考点】HF:二次函数综合题.【分析】(1)根据30°的角所对的直角边是斜边的一半,可得AC的长,再根据锐角三角函数,可得OC,根据点的坐标,可得答案;(2)根据等腰直角三角形,可得E点坐标,再根据待定系数法,可得答案;(3)根据30°的角所对的直角边是斜边的一半,可得∠CNP=30°,再根据勾股定理OE的长,根据点的坐标,可得N点坐标,根据点的左右平移,可得P点坐标.【解答】解:(1)如图1,作AC⊥OB于C点,由OB=OA=6,得B点坐标为(6,0),由OB=OA=6,∠AOB=30°,得AC=OA=3,OC=OA•cos∠AOC=OA=3,∴A点坐标为(3,3);(2)如图2,由其顶点为E,当△OBE为等腰直角三角形,得OC=BC=CE=OB=3,即E点坐标为(3,﹣3).设抛物线的解析式为y=a(x﹣3)2﹣3,将B点坐标代入,解得a=,抛物线的解析式为y=(x﹣3)2﹣3化简得y=x2﹣2x;(3)如图3,PN=2,CN=,PC=1,∠CNP=∠AOB=30°,NP∥OB,NE=2,得ON=4,由勾股定理,得OE==2,即N(2,2).N向右平移2个单位得P(2+2,2),N向左平移2个单位,得P(2﹣2,2),m的值为2+2或2﹣2.25.如图,△ABC的边AB是⊙O的直径,点C在⊙O上,已知AC=6cm,BC=8cm,点P、Q分别在边AB、BC上,且点P不与点A、B重合,BQ=k•AP(k>0),联接PC、PQ.(1)求⊙O的半径长;(2)当k=2时,设AP=x,△CPQ的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果△CPQ与△ABC相似,且∠ACB=∠CPQ,求k的值.【考点】MR:圆的综合题.【分析】(1)首先证明∠ACB=90°,然后利用勾股定理即可解决问题.(2)如图2中,作PH⊥BC于H.由PH∥AC,推出=,推出=,推出PH=(10﹣x),根据y=•CQ•PH计算即可.(3)因为△CPQ与△ABC相似,∠CPQ=∠ACB=90°,又因为∠CQP>∠B,所以只有∠PCB=∠B,推出PC=PB,由∠B+∠A=90°,∠ACP+∠PCB=90°,推出∠A=∠ACP,推出PA=PC=PB=5,由△COQ∽△BCA,推出=,推出=,即可解决问题.【解答】解:(1)∵AB是直径,∴∠ACB=90°,∵AC=6,BC=8,∴AB===10,∴⊙O的半径为5.(2)如图2中,作PH⊥BC于H.∵PH∥AC,∴=,∴=,∴PH=(10﹣x),∴y=•CQ•PH=•(8﹣2x)•(10﹣x)=x2﹣x+24(0<x<4).(3)如图2中,∵△CPQ与△ABC相似,∠CPQ=∠ACB=90°,又∵∠CQP>∠B,∴只有∠PCB=∠B,∴PC=PB,∵∠B+∠A=90°,∠ACP+∠PCB=90°,∴∠A=∠ACP,∴PA=PC=PB=5,∴△COQ∽△BCA,∴=,∴=,∴k=.。
大连市2017年中考数学二模试卷及答案解析
大连市2017年中考数学二模试卷一、选择题(本大题共8小题,每小题3分,共24分)1.在下列实数中,是无理数的为()A.0B.﹣3.5C.D.2.据统计,“五一”小长假期间,大连市共接待海内外游客825400余人次,数825100用科学记数法表示为()A.8251×102B.825.1×103C.82.51×104D.8.251×1053.下列几何体中,主视图是三角形的为()A.B.C.D.4.把抛物线y=2x2向上平移5个单位,所得抛物线的解析式为()A.y=2x2+5B.y=2x2﹣5C.y=2(x+5)2D.y=2(x﹣5)25.如图,直线y=kx+b与x轴、y轴分别相交于点A(﹣3,0)、B(0,2),则不等式kx+b>0的解集是()A.x>﹣3B.x<﹣3C.x>2D.x<26.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.15个B.20个C.30个D.35个7.为了考察某种小麦的长势,从中抽取了10株麦苗,量得它们的长度如下(单位:cm):16、9、14、11、12、10、16、8、17、16则这组数据的中位数为()A.9B.11C.13D.168.一圆锥的底面直径为4cm,高为cm,则此圆锥的侧面积为()A.20πcm2B.10πcm2C.4πcm2D.4πcm2二、填空题(本小题共8小题,每小题3分,共24分)9.因式分解:x2﹣36=.10.在函数y=中,自变量x的取值范围是.11.一个正多边形的每一个内角都等于160°,则这个正多边形的边数是.12.如图,矩形ABCD的对角线AC、BD相交于点O,OA=3,则BD的长为.13.如图,从与旗杆AB相距27m的点C处,用测角仪CD测得旗杆顶端A的仰角为30°,已知测角仪CD的高为1.5米,则旗杆AB的高约为m(精确到0.1m,参考数据≈1.73)14.如图,在平面直角坐标系xOy中,点A在y轴上,点B的坐标为(1,2),将△AOB沿x轴向右平移得到△A′O′B′,点B的对应点B′恰好在函数y=(x>0)的图象上,此时点A移动的距离为.15.在平面直角坐标系xOy中,点A、B的坐标分别为(2,﹣1)、(3,0),以原点O为位似中心,把线段AB放大,点B的对应点B′的坐标为(6,0),则点A的对应点A′的坐标为.16.如图,在平面直角坐标系xOy中,直线y=﹣x+1与x轴、y轴分别相交于点A、B,将△AOB沿直线AB翻折,点O落在点O′处,则点O′的坐标为.三、解答题(本题共39分)17.计算:(﹣)0+|4﹣|﹣.18.先化简,再求值:m(m﹣2)﹣(m﹣1)2+m,其中m=﹣.19.如图,▱ABCD中,AB=3,BC=5,∠ABC的平分线与AD相交于点E,求DE的长.20.某区为了解七年级学生开展跳绳活动的情况,随机调查了该区部分学校七年级学生1分钟跳绳的次数,将调查结果进行统计,下面是根据调查数据制作的统计图表的一部分.分组次数x(个)人数A0≤x<12024B120≤x<13072C130≤x<140D x≥140根据以上信息,解答下列问题:(1)在被调查的学生中,跳绳次数在120≤x<130范围内的人数为人,跳绳次数在0≤x<120范围内的人数占被调查人数的百分比为%;(2)本次共调查了名学生,其中跳绳次数在130≤x<140范围内的人数为人,跳绳次数在x≥140范围内的人数占被调查人数的百分比为%;(3)该区七年级共有4000名学生,估计该区七年级学生1分钟跳绳的次数不少于130个的人数.四、解答题(本题共28分)21.某车间加工1500个零件后,采用了新工艺,工作效率提高了50%,这样加工同样多的零件就少用10小时,采用新工艺前每小时加工多少个零件?22.某商场销售一种商品,在一段时间内,该商品的销售量y(千克)与每千克的销售价x(元)满足一次函数关系(如图所示),其中30≤x≤80.(1)求y关于x的函数解析式;(2)若该种商品每千克的成本为30元,当每千克的销售价为多少元时,获得的利润为600元?23.如图,四边形ABCD是⊙O的内接四边形,∠ABD=∠CBD=60°,AC与BD相交于点E,过点C作⊙O 的切线,与AB的延长线相交于点F.(1)判断△ACD的形状,并加以证明(2)若CF=2,DE=4,求弦CD的长.五、解答题(本题共35分)24.如图,在平面直角坐标系xOy中,点A、B的坐标分别为(0,3)、(7,0),点C在第一象限,AC ∥x轴,∠OBC=45°.(1)求点C的坐标;(2)点D在线段AC上,CD=1,点E的坐标为(n,0),在直线DE的右侧作∠DEG=45°,直线EG与直线BC相交于点F,设BF=m,当n<7且n≠0时,求m关于n的函数解析式,并直接写出n的取值范围.25.阅读下面材料:小明遇到这样两个问题:(1)如图1,AB是⊙O的直径,C是⊙O上一点,OD⊥AC,垂足为D,BC=﹣6,求OD的长;(2)如图2△ABC中,AB=6,AC=4,点D为BC的中点,求AD的取值范围.对于问题(1),小明发现根据垂径定理,可以得出点D是AC的中点,利用三角形中位线定理可以解决;对于问题(2),小明发现延长AD到E,使DE=AD,连接BE,可以得到全等三角形,通过计算可以解决.请回答:问题(1)中OD长为;问题(2)中AD的取值范围是;参考小明思考问题的方法,解决下面的问题:(3)如图3,△ABC中,∠BAC=90°,点D、E分别在AB、AC上,BE与CD相交于点F,AC=mEC,AB=2EC,AD=nDB.①当n=1时,如图4,在图中找出与CE相等的线段,并加以证明;②直接写出的值(用含m、n的代数式表示).26.如图,抛物线y=a(x﹣1)(x﹣4)与x轴相交于点A、B(点A在点B的左侧),与x轴相交于点C,点D在线段CB上(点D不与B、C重合),过点D作CA的平行线,与抛物线相交于点E,直线BC 的解析式为y=kx+2.(1)抛物线的解析式为;(2)求线段DE的最大值;(3)当点D为BC的中点时,判断四边形CAED的形状,并加以证明.参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.在下列实数中,是无理数的为()A.0B.﹣3.5C.D.【考点】26:无理数.【分析】由于无理数就是无限不循环小数.有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、0是有理数,故A选项错误;B、﹣3.5是有理数,故B选项错误;C、是无理数,故C选项正确;D、=3,是有理数,故D选项错误.故选:C.2.据统计,“五一”小长假期间,大连市共接待海内外游客825400余人次,数825100用科学记数法表示为()A.8251×102B.825.1×103C.82.51×104D.8.251×105【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:825100=8.251×105,故选D.3.下列几何体中,主视图是三角形的为()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】根据主视图的观察角度,从物体的正面观察,即可得出答案.【解答】解:A、其三视图是矩形,故此选项错误;B、其三视图是三角形,故此选项正确;C、其三视图是矩形,故此选项错误;D、其三视图是正方形形,故此选项错误;故选:B.4.把抛物线y=2x2向上平移5个单位,所得抛物线的解析式为()A.y=2x2+5B.y=2x2﹣5C.y=2(x+5)2D.y=2(x﹣5)2【考点】H6:二次函数图象与几何变换.【分析】只要求得新抛物线的顶点坐标,就可以求得新抛物线的解析式了.【解答】解:原抛物线的顶点为(0,0),向上平移5个单位,那么新抛物线的顶点为(0,5),可设新抛物线的解析式为:y=2(x﹣h)2+k,代入得:y=2x2+5.故选A.5.如图,直线y=kx+b与x轴、y轴分别相交于点A(﹣3,0)、B(0,2),则不等式kx+b>0的解集是()A.x>﹣3B.x<﹣3C.x>2D.x<2【考点】FD:一次函数与一元一次不等式.【分析】根据图象和A的坐标得出即可.【解答】解:∵直线y=kx+b和x轴的交点A的坐标为(﹣3,0),∴不等式kx+b>0的解集是x>﹣3,故选A.6.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.15个B.20个C.30个D.35个【考点】X8:利用频率估计概率.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设出未知数列出方程求解.【解答】解:设袋中有黄球x个,由题意得=0.3,解得x=15,则白球可能有50﹣15=35个.故选D.7.为了考察某种小麦的长势,从中抽取了10株麦苗,量得它们的长度如下(单位:cm):16、9、14、11、12、10、16、8、17、16则这组数据的中位数为()A.9B.11C.13D.16【考点】W4:中位数.【分析】根据中位数的定义即可得.【解答】解:这组数据重新排列为:8、9、10、11、12、14、16、16、16、17,则其中位数为=13,故选:C.8.一圆锥的底面直径为4cm,高为cm,则此圆锥的侧面积为()A.20πcm2B.10πcm2C.4πcm2D.4πcm2【考点】MP:圆锥的计算.【分析】利用勾股定理易得圆锥母线长,那么圆锥的侧面积=底面周长×母线长÷2.【解答】解:圆锥的底面直径为4cm,高为cm,则底面半径=2cm,底面周长=4πcm,由勾股定理得,母线长=5cm,侧面面积=×4π×5=10πcm2.故选B.二、填空题(本小题共8小题,每小题3分,共24分)9.因式分解:x2﹣36=(x+6)(x﹣6).【考点】54:因式分解﹣运用公式法.【分析】直接用平方差公式分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:x2﹣36=(x+6)(x﹣6).10.在函数y=中,自变量x的取值范围是x≥﹣.【考点】E4:函数自变量的取值范围;72:二次根式有意义的条件.【分析】当函数表达式是二次根式时,被开方数为非负数,即2x+1≥0.【解答】解:依题意,得2x+1≥0,解得x≥﹣.11.一个正多边形的每一个内角都等于160°,则这个正多边形的边数是18.【考点】L3:多边形内角与外角.【分析】根据多边形的内角和公式,可得答案.【解答】解:设多边形为n边形,由题意,得(n﹣2)•180°=160°n,解得n=18,故答案为:18.12.如图,矩形ABCD的对角线AC、BD相交于点O,OA=3,则BD的长为6.【考点】LB:矩形的性质.【分析】根据矩形的对角线相等且相互平分即可解决问题.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∵OA=3,∴BD=2OA=6,故答案为6.13.如图,从与旗杆AB相距27m的点C处,用测角仪CD测得旗杆顶端A的仰角为30°,已知测角仪CD的高为1.5米,则旗杆AB的高约为17.1m(精确到0.1m,参考数据≈1.73)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】根据题意:过点D作DE⊥AB,交AB与E;可得Rt△ADE,解之可得AE的大小;进而根据AB=BE+AE 可得旗杆AB的高.【解答】解:过点D作DE⊥AB,垂足为E.在直角△ADE中,有AE=DE×tan30°=9,那么旗杆AB的高为AE+EB=9+1.5≈17.1(m).故答案为17.114.如图,在平面直角坐标系xOy中,点A在y轴上,点B的坐标为(1,2),将△AOB沿x轴向右平移得到△A′O′B′,点B的对应点B′恰好在函数y=(x>0)的图象上,此时点A移动的距离为2.【考点】G6:反比例函数图象上点的坐标特征;Q3:坐标与图形变化﹣平移.【分析】设A点向右移动的距离为a,由点B的坐标为(1,2)可知,B′(1+a,2),由点B′恰好在函数y=(x>0)的图象上求出a的值即可.【解答】解:设A点向右移动的距离为a,∵点B的坐标为(1,2),∴B′(1+a,2).∵点B′恰好在函数y=(x>0)的图象上,∴2(1+a)=6,解得a=2.故答案为:2.15.在平面直角坐标系xOy中,点A、B的坐标分别为(2,﹣1)、(3,0),以原点O为位似中心,把线段AB放大,点B的对应点B′的坐标为(6,0),则点A的对应点A′的坐标为(4,﹣2).【考点】SC:位似变换;D5:坐标与图形性质.【分析】由以原点O为位似中心,相似比为,根据位似图形的性质,即可求得答案.【解答】解:∵以原点O为位似中心,B(3,0)的对应点B′的坐标为(6,0),∴相似比为2,∵A(2,﹣1),∴点A′的对应点坐标为:(4,﹣2),故答案为:(4,﹣2).16.如图,在平面直角坐标系xOy中,直线y=﹣x+1与x轴、y轴分别相交于点A、B,将△AOB沿直线AB翻折,点O落在点O′处,则点O′的坐标为(,).【考点】F8:一次函数图象上点的坐标特征;PB:翻折变换(折叠问题).【分析】根据已知条件得到OA=2,OB=1,根据折叠的性质得到AO′=AO=2,BO′=BO=1,∠AO′B=90°,延长AC交y轴于C,过O′作O′D⊥OA于D,根据相似三角形的性质得到BC=,CO′=,得到OC=,AC=,根据O′D∥OC,得到△ADO′∽△AOC,根据相似三角形的性质即可得到结论.【解答】解:在y=﹣x+1中,令x=0,得y=1,令y=0,得x=2,∴A(2,0),B(0,1),∴OA=2,OB=1,∵将△AOB沿直线AB翻折,点O落在点O′处,∴AO′=AO=2,BO′=BO=1,∠AO′B=90°,延长AC交y轴于C,过O′作O′D⊥OA于D,∴∠CO′B=∠AOC=90°,∵∠BCO′=∠ACO,∴△BCO′∽△ACO,∴,∴==,∴BC=,CO′=,∴OC=,AC=,∵O′D⊥OA,∴O′D∥OC,∴△ADO′∽△AOC,∴==,即==,∴DO′=,AD=,∴OD=,∴O′(,),故答案为:(,).三、解答题(本题共39分)17.计算:(﹣)0+|4﹣|﹣.【考点】2C:实数的运算;6E:零指数幂.【分析】直接利用立方根和二次根式的性质、零指数幂的性质、绝对值的性质分别化简求出答案.【解答】解:原式=1+2﹣4+3=2.18.先化简,再求值:m(m﹣2)﹣(m﹣1)2+m,其中m=﹣.【考点】4J:整式的混合运算—化简求值.【分析】根据单项式乘多项式、完全平方公式和合并同类项可以化简题目中的式子,然后将m的值代入化简后的式子即可解答本题.【解答】解:m(m﹣2)﹣(m﹣1)2+m=m2﹣2m﹣m2+2m﹣1+m=m﹣1,当m═﹣时,原式==.19.如图,▱ABCD中,AB=3,BC=5,∠ABC的平分线与AD相交于点E,求DE的长.【考点】L5:平行四边形的性质.【分析】根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得DE的长度【解答】解:∵四边形ABCD为平行四边形,∴AE∥BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE=3,∵BC=5,CD=AB=3,∴DE=AD﹣AE=5﹣3=2.20.某区为了解七年级学生开展跳绳活动的情况,随机调查了该区部分学校七年级学生1分钟跳绳的次数,将调查结果进行统计,下面是根据调查数据制作的统计图表的一部分.分组次数x(个)人数A0≤x<12024B120≤x<13072C130≤x<140D x≥140根据以上信息,解答下列问题:(1)在被调查的学生中,跳绳次数在120≤x<130范围内的人数为72人,跳绳次数在0≤x<120范围内的人数占被调查人数的百分比为12%;(2)本次共调查了200名学生,其中跳绳次数在130≤x<140范围内的人数为59人,跳绳次数在x≥140范围内的人数占被调查人数的百分比为22.5%;(3)该区七年级共有4000名学生,估计该区七年级学生1分钟跳绳的次数不少于130个的人数.【考点】V7:频数(率)分布表;V5:用样本估计总体.【分析】(1)根据统计表可得跳绳次数在120≤x<130范围内的人数为72人;根据A组的人数是24,所占的百分比是12%即可求得调查的总人数,然后根据百分比的定义求得跳绳次数在0≤x<120范围内的人数占被调查人数的百分比;(2)利用总人数减去其它组的人数求得绳次数在x≥140范围内的人数占被调查人数的人数;(3)利用总人数乘以对应的比例即可求解.【解答】解:(1)根据统计表可得跳绳次数在120≤x<130范围内的人数为72人;调查的总人数是24÷12%=200(人).则跳绳次数在0≤x<120范围内的人数占被调查人数的百分比为=12%;故答案是:71,12;(2)调查的总人数是200人;跳绳次数在130≤x<140范围内的人数为200×29.5%=59(人),绳次数在x≥140范围内的人数占被调查人数的人数是200﹣24﹣72﹣59=45(人),则所长的百分比是=22.5%.故答案是:200,59,22.5;(3)估计该区七年级学生1分钟跳绳的次数不少于130个的人数是:4000×=2080(人).四、解答题(本题共28分)21.某车间加工1500个零件后,采用了新工艺,工作效率提高了50%,这样加工同样多的零件就少用10小时,采用新工艺前每小时加工多少个零件?【考点】B7:分式方程的应用.【分析】设采用新工艺前每时加工x个零件,那么采用新工艺后每时加工1.5x个零件,根据时间=,以此作为等量关系可列方程求解.【解答】解:设采用新工艺前每时加工x个零件.﹣10=,解得:x=50,经检验:x=50是原分式方程的解,且符合题意,答:采用新工艺之前每小时加工50个.22.某商场销售一种商品,在一段时间内,该商品的销售量y(千克)与每千克的销售价x(元)满足一次函数关系(如图所示),其中30≤x≤80.(1)求y关于x的函数解析式;(2)若该种商品每千克的成本为30元,当每千克的销售价为多少元时,获得的利润为600元?【考点】AD:一元二次方程的应用;FH:一次函数的应用.【分析】(1)设y与x之间的函数关系式为y=kx+b(k≠0),根据所给函数图象列出关于k、b的关系式,求出k、b的值即可;(2)根据每天可获得600元的利润列出方程,解方程即可.【解答】解:(1)当30≤x≤80时,设y与x之间的函数关系式为y=kx+b(k≠0).由所给函数图象可知,,解得,故y与x的函数关系式为y=﹣x+100;(2)∵y=﹣x+100,依题意得∴(x﹣30)(﹣x+100)=600,x2﹣280x+18700=0,解得x1=40,x2=90.∵30≤x≤80,∴取x=40.答:当每千克的销售价为40元时,获得的利润为600元.23.如图,四边形ABCD是⊙O的内接四边形,∠ABD=∠CBD=60°,AC与BD相交于点E,过点C作⊙O 的切线,与AB的延长线相交于点F.(1)判断△ACD的形状,并加以证明(2)若CF=2,DE=4,求弦CD的长.【考点】MC:切线的性质;M6:圆内接四边形的性质.【分析】(1)根据圆周角定理即可得到结论;(2)根据全等三角形的性质得到AF=DE=4,CE=CF=2,根据切线的性质得到FC2=FB•AF,求得FB=1根据相似三角形的性质即可得到结论;【解答】解:(1)∵∠ABD=∠CBD=60°,∴∠CAD=∠CBD=60°,∠ACD=∠ABD=60°,∴△ACD是等边三角形;(2)在△ACF与△DCE中,∴△ACF≌△DCE,∴AF=DE=4,CE=CF=2,∵CF是⊙O的切线,∴FC2=FB•AF,∴22=FB•4,∴FB=1∴AB=AF﹣BF=4﹣1=3,∵∠ABE=∠DCE,∠BAE=∠CDE,∴△∠ABE∽∠DCE,∴===,∴=,解得:CD=3.五、解答题(本题共35分)24.如图,在平面直角坐标系xOy中,点A、B的坐标分别为(0,3)、(7,0),点C在第一象限,AC ∥x轴,∠OBC=45°.(1)求点C的坐标;(2)点D在线段AC上,CD=1,点E的坐标为(n,0),在直线DE的右侧作∠DEG=45°,直线EG与直线BC相交于点F,设BF=m,当n<7且n≠0时,求m关于n的函数解析式,并直接写出n的取值范围.【考点】FI:一次函数综合题.【分析】(1)作CM⊥x轴于点M,利用等腰直角三角形和矩形的性质可求得OM和CM的长,可求得C 点坐标;(2)①当E在线段OB上时,连接OD,利用条件可证得△DOE∽△EBF,利用相似三角形的性质可得到m与n之间的关系;②当点E在线段BO的延长线上时,同样可证得△DOE∽△EBF,可得到m与n之间的关系.【解答】解:(1)作CM⊥x轴于点M,如图1,则∠CMB=∠AOM=90°,∴CM∥AO,∵AC∥x轴,∴四边形AOMC是矩形,∴CM=AO=3,AC=OM,∵∠OBC=45°,∴MB=MC=3,∴OM=7﹣3=4,∴C(4,3);(2)①当点E在线段OB上时,即当0<n<7时,如图2,连接OD,∵CD=1,∴AD=3=AO,∴∠AOD=∠ADO=45°=∠DOB=∠OBC,∵∠OEF=∠EFB+∠EBF,即∠OED+∠DEF=∠EFB+∠EBF,∴∠OED=∠EFB,∴△DOE∽△EBF,∴=,即=,∴m=﹣n2+n;②当点E在线段BO的延长线上时,即n<0时,连接OD,如图3,由(1)知∠DOB=∠OBC,∴∠DOE=∠EBF,∵∠DEF=45°=∠OBC,∴∠DEO+∠BEF=∠BFE+∠BEF,∴∠DEO=∠BFE,∴△DOE∽△EBF,∴=,即=,∴m=n2﹣n;综上可知m与n的函数关系式为m=.25.阅读下面材料:小明遇到这样两个问题:(1)如图1,AB是⊙O的直径,C是⊙O上一点,OD⊥AC,垂足为D,BC=﹣6,求OD的长;(2)如图2△ABC中,AB=6,AC=4,点D为BC的中点,求AD的取值范围.对于问题(1),小明发现根据垂径定理,可以得出点D是AC的中点,利用三角形中位线定理可以解决;对于问题(2),小明发现延长AD到E,使DE=AD,连接BE,可以得到全等三角形,通过计算可以解决.请回答:问题(1)中OD长为3;问题(2)中AD的取值范围是1<AD<5;参考小明思考问题的方法,解决下面的问题:(3)如图3,△ABC中,∠BAC=90°,点D、E分别在AB、AC上,BE与CD相交于点F,AC=mEC,AB=2EC,AD=nDB.①当n=1时,如图4,在图中找出与CE相等的线段,并加以证明;②直接写出的值(用含m、n的代数式表示).【考点】MR:圆的综合题.【分析】(1)由三角形中位线定理可得OD=BC,由此即可解决问题;(2)如图2中,延长AD到M,使得DM=AD,连接BM,CM.在△ABM中,理由三边关系定理可得6﹣4<AM<6+4,即2<2AD<10,1<AD<5;(3)①结论:EF=CE.如图4中,延长CD到M使得DM=CD,连接BM.由△ADC≌△BDM,推出BM=AC,∠M=∠ACD,由BM∥AC,推出△CEF∽△MBF,可得=,推出==,推出BF=mEF,推出BE=(m+1)EF,在Rt△BAE中,BE===(m+1)EC,推出(m+1)EC=(m+1)EF,由此即可证明;结论:=.如图3中,作BM∥AC交CD的延长线于M.证明方法类似①;【解答】解:(1)如图1中,∵OD⊥AC,∴AD=DC,∵AO=OB,BC=6,∴OD=BC=3.(2)如图2中,延长AD到M,使得DM=AD,连接BM,CM.∵AD=DM,BD=CD,∴四边形ABMC是平行四边形,∴BM=AC=4,∵AB=6,∴6﹣4<AM<6+4,即2<2AD<10,∴1<AD<5.(3)①结论:EF=CE.理由:如图4中,延长CD到M使得DM=CD,连接BM.∵AD=DB,∠ADC=∠BDM,∴△ADC≌△BDM,∴BM=AC,∠M=∠ACD,∴BM∥AC,∴△CEF∽△MBF,∴=,∴==,∴BF=mEF,∴BE=(m+1)EF,在Rt△BAE中,BE===(m+1)EC,∴(m+1)EC=(m+1)EF,∴EF=CE.②结论:=.理由:如图3中,作BM∥AC交CD的延长线于M.由△ADC∽△BDM,可得==n,∴BM=,∵=,∴=,∵AC=mEC,∴BF=EF,∴BE=(1+)EF,在Rt△BAE中,BE===(m+1)EC,∴(m+1)EC=(1+)EF,∴=.26.如图,抛物线y=a(x﹣1)(x﹣4)与x轴相交于点A、B(点A在点B的左侧),与x轴相交于点C,点D在线段CB上(点D不与B、C重合),过点D作CA的平行线,与抛物线相交于点E,直线BC 的解析式为y=kx+2.(1)抛物线的解析式为y=x2﹣x+2;(2)求线段DE的最大值;(3)当点D为BC的中点时,判断四边形CAED的形状,并加以证明.【考点】HF:二次函数综合题.【分析】(1)先利用一次函数解析式确定C(0,2),然后把C点坐标代入y=a(x﹣1)(x﹣4)中求出a即可;(2)如图1,过点D、E分别作y轴、x轴的平行线,两线相交于点F,先解方程(x﹣1)(x﹣4)=0得A(1,0),B(4,0),再利用待定系数法求出直线BC的解析式为y=﹣x+2,设E(m,m2﹣m+2),EF=n,则D(m﹣n,﹣m+n+2),则DF=﹣m+n+2﹣(m2﹣m+2)=﹣m2+2m+n,接着证明Rt△OCA∽Rt△FDE,利用相似比得到=2,则﹣m2+2m+n=2n,所以n=﹣m2+m,利用勾股定理得DE=﹣m2+m,然后根据二次函数的性质解决问题;(3)利用两点间的距离公式得到AC=,BC=2,再利用点D为BC的中点得到D(2,1),CD=,易得直线AC的解析式为y=﹣2x+2,接着求出直线DE的解析式为y=﹣2x+5,于是解方程组得E(3,﹣1),所以DE=,然后根据菱形的判定方法可判断四边形CAED为菱形.【解答】解:(1)当x=0时,y=kx+2=2,则C(0,2),把C(0,2)代入y=a(x﹣1)(x﹣4)得a•(﹣1)•(﹣4)=2,解得a=,∴抛物线解析式为y=(x﹣1)(x﹣4),即y=x2﹣x+2;故答案为y=x2﹣x+2;(2)如图1,过点D、E分别作y轴、x轴的平行线,两线相交于点F,当y=0时,(x﹣1)(x﹣4)=0,解得x1=1,x2=4,则A(1,0),B(4,0),设直线BC的解析式为y=kx+b,把C(0,2),B(4,0)代入得,解得,∴直线BC的解析式为y=﹣x+2,设E(m,m2﹣m+2),EF=n,则D(m﹣n,﹣m+n+2),∴DF=﹣m+n+2﹣(m2﹣m+2)=﹣m2+2m+n,∵OC∥DF,∴∠OCB=∠FDB,∵DE∥CA,∴∠ACB=∠EDB,∴∠OCA=∠FDE,∴Rt△OCA∽Rt△FDE,∴=,∴===2,∴﹣m2+2m+n=2n,∴n=﹣m2+m,在Rt△DEF中,DE==EF=n=﹣m2+m,∵DE=﹣(m﹣2)2+,∴当m=2时,DE的长有最大值,最大值为;(3)四边形CAED为菱形.理由如下:AC==,BC==2,∵点D为BC的中点,∴D(2,1),CD=,易得直线AC的解析式为y=﹣2x+2,设直线DE的解析式为y=﹣2x+p,把D(2,1)代入得1=﹣4+p,解得p=4,∴直线DE的解析式为y=﹣2x+5,解方程组得或,则E(3,﹣1),∴DE==,∴AC=DE,而AC∥DE,∴四边形CAED为平行四边形,∵CA=CD,∴四边形CAED为菱形.。
上海市杨浦区2017届中考数学二模试卷(解析版)
2017年上海市杨浦区中考数学二模试卷一、选择题(本大题共6小题,每小题4分,共24分)1.与平面直角坐标系中的点具有一一对应关系的是()A.实数B.有理数C.有序实数对D.有序有理数对2.化简(a≠0)的结果是()A.a B.﹣a C.﹣a D.a3.通常在频率分布直方图中,用每小组对应的小矩形的面积表示该小组的组频率.因此,频率分布直方图的纵轴表示()A.B.C.D.4.如果用A表示事件“若a>b,则a+c>b+c”,用P(A)表示“事件A发生的概率”,那么下列结论中正确的是()A.P(A)=1 B.P(A)=0 C.0<P(A)<1 D.P(A)>15.下列判断不正确的是()A.如果=,那么||=||B. +=+C.如果非零向量=k•(k≠0),那么∥D. +=06.下列四个命题中真命题是()A.矩形的对角线平分对角B.平行四边形的对角线相等C.梯形的对角线互相垂直D.菱形的对角线互相垂直平分二、填空题(本大题12小题,每小题4分,共48分)7.两个不相等的无理数,它们的乘积为有理数,这两个数可以是.8.化简:=.9.在实数范围内分解因式:a3﹣2a=.10.不等式组的解集是.11.方程的解是:x=.12.已知点A(2,﹣1)在反比例函数y=(k≠0)的图象上,那么当x>0时,y随x的增大而.13.如果将抛物线y=x2向左平移4个单位,再向下平移2个单位后,那么此时抛物线的表达式是.14.如表记录的是某班级女生在一次跳绳练习中跳绳的次数及相应的人数,则该班级女生本次练习中跳绳次数的平均数是次数40506070人数234115.如图,已知:△ABC中,∠C=90°,AC=40,BD平分∠ABC交AC于D,AD:DC=5:3,则D点到AB的距离是.16.正十二边形的中心角是度.17.如图,在甲楼的底部B处测得乙楼的顶部D点的仰角为α,在甲楼的顶部A 处测得乙楼的顶部D点的俯角为β,如果乙楼的高DC=10米,那么甲楼的高AB=米(用含α,β的代数式表示)18.如图,在Rt△ABC中,∠C=90°,CA=CB=4,将△ABC翻折,使得点B与边AC的中点M重合,如果折痕与边AB的交点为E,那么BE的长为.三、解答题(本大题共7小题,共78分)19.(10分)计算:27﹣()﹣1÷3+80﹣(﹣2)2.20.(10分)解方程:.21.(10分)已知:如图,在△ABC中,∠ABC=45°,tanA=,AB=14,(1)求:△ABC的面积;(2)若以C为圆心的圆C与直线AB相切,以A为圆心的圆A与圆C相切,试求圆A的半径.22.(10分)水果市场的甲、乙两家商店中都有批发某种水果,批发该种水果x 千克时,在甲、乙两家商店所花的钱分别为y1元和y2元,已知y1、y2关于x的函数图象分别为如图所示的折线OAB和射线OC.(1)当x的取值为时,在甲乙两家店所花钱一样多?(2)当x的取值为时,在乙店批发比较便宜?(3)如果批发30千克该水果时,在甲店批发比在乙店批发便宜50元,求射线AB的表达式,并写出定义域.23.(12分)已知:如图,四边形ABCD中,DB⊥BC,DB平分∠ADC,点E为边CD的中点,AB⊥BE.(1)求证:BD2=AD•DC;(2)连结AE,当BD=BC时,求证:ABCE为平行四边形.24.(12分)如图,已知抛物线y=ax2﹣x+c的对称轴为直线x=1,与x轴的一个交点为A(﹣1,0),顶点为B.点C(5,m)在抛物线上,直线BC交x轴于点E.(1)求抛物线的表达式及点E的坐标;(2)联结AB,求∠B的正切值;(3)点G为线段AC上一点,过点G作CB的垂线交x轴于点M(位于点E右侧),当△CGM与△ABE相似时,求点M的坐标.25.(14分)已知:以O为圆心的扇形AOB中,∠AOB=90°,点C为上一动点,射线AC交射线OB于点D,过点D作OD的垂线交射线OC于点E,联结AE.(1)如图1,当四边形AODE为矩形时,求∠ADO的度数;(2)当扇形的半径长为5,且AC=6时,求线段DE的长;(3)联结BC,试问:在点C运动的过程中,∠BCD的大小是否确定?若是,请求出它的度数;若不是,请说明理由.2017年上海市杨浦区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题4分,共24分)1.与平面直角坐标系中的点具有一一对应关系的是()A.实数B.有理数C.有序实数对D.有序有理数对【考点】D1:点的坐标.【分析】根据平面直角坐标系与有序实数对的关系,可得答案.【解答】解:有序实数对与平面直角坐标系中的点具有一一对应关系,故选:C【点评】本题考查了点的坐标,平面直角坐标系与有序实数对是一一对应关系.2.化简(a≠0)的结果是()A.a B.﹣a C.﹣a D.a【考点】73:二次根式的性质与化简.【分析】二次根式有意义,则a<0,根据二次根式的性质解答.【解答】解:有意义,则a<0,﹣a>0,原式=﹣a.故选C.【点评】本题考查了二次根式的化简,注意二次根式的结果为非负数及题目的隐含条件a<0.二次根式的性质:=|a|.3.通常在频率分布直方图中,用每小组对应的小矩形的面积表示该小组的组频率.因此,频率分布直方图的纵轴表示()A.B.C.D.【考点】V8:频数(率)分布直方图.【分析】根据频率分布直方图中纵横坐标的意义,易得长方形的面积为长乘宽,即组距×频率/组距=频率;即答案.【解答】解:在频率直方图中纵坐标表示频率/组距,横坐标表示组距,则小长方形的高表示频率/组距,小长方形的长表示组距,则长方形的面积为长乘宽,即组距×频率/组距=频率;故选:B.【点评】本题考查频率直方图中横纵坐标表示的意义.4.如果用A表示事件“若a>b,则a+c>b+c”,用P(A)表示“事件A发生的概率”,那么下列结论中正确的是()A.P(A)=1 B.P(A)=0 C.0<P(A)<1 D.P(A)>1【考点】X3:概率的意义.【分析】根据不等式的基本性质1知事件A是必然事件,由概率的意义可得答案.【解答】解:若a>b,根据不等式的基本性质知a+c>b+c必然成立,∴事件A是必然事件,∴P(A)=1,故选:A.【点评】本题主要考查概率的意义及不等式的基本性质,熟练掌握必然事件的定义是解题的关键.5.下列判断不正确的是()A.如果=,那么||=||B. +=+C.如果非零向量=k•(k≠0),那么∥D. +=0【考点】LM:*平面向量.【分析】根据模的定义,可确定A正确;根据平面向量的交换律,可判定B正确,又由如果非零向量非零向量=k•(k≠0),那么∥或共线,可得C错误;利用相反向量的知识,可判定D正确.【解答】解:A、如果=,那么||=||,故此选项正确;B、+=+,故本选项正确;C、如果非零向量=k•(k≠0),那么∥或共线,故此选项错误;D、+=0,故此选项正确;故选:C.【点评】此题考查了平面向量的知识.注意理解平面向量有关的定义是关键.6.下列四个命题中真命题是()A.矩形的对角线平分对角B.平行四边形的对角线相等C.梯形的对角线互相垂直D.菱形的对角线互相垂直平分【考点】O1:命题与定理.【分析】由矩形、菱形、梯形和平行四边形对角线的性质作出判断,从而利用排除法得出答案.【解答】解:矩形的对角线不能平分对角,A错误;平行四边形的对角线平分,但不一定相等,B错误.梯形的对角线不一定互相垂直,C错误;根据菱形的性质,菱形的对角线互相垂直平分,D正确;故选:D.【点评】本题考查了命题与定理;熟记矩形、菱形、梯形和平行四边形对角线的性质是解决问题的关键.二、填空题(本大题12小题,每小题4分,共48分)7.两个不相等的无理数,它们的乘积为有理数,这两个数可以是和﹣(答案不唯一).【考点】26:无理数.【分析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数.由此即可求解【解答】解:∵两个不相等的无理数,它们的乘积为有理数,这两个数可以是和﹣.(答案不唯一).【点评】此题主要考查了无理数的定义和性质,解题时注意无理数的积不一定是无理数.8.化简:=﹣.【考点】66:约分.【分析】先将分子与分母进行因式分解,再根据分式的基本性质,将分子与分母的公因式约去,即可求解.【解答】解:==﹣,故答案为:﹣.【点评】此题考查了约分,约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去.9.在实数范围内分解因式:a3﹣2a=a(a+)(a﹣).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式a,再根据平方差公式进行二次分解即可求得答案.【解答】解:a3﹣2a=a(a2﹣2)=a(a+)(a﹣).故答案为:a(a+)(a﹣).【点评】本题考查了提公因式法,公式法分解因式.注意提取公因式后利用平方差公式进行二次分解,注意分解要彻底.10.不等式组的解集是4<x<5.【考点】CB:解一元一次不等式组.【分析】根据不等式分别求出x的取值范围,画出坐标轴,在其上表示出来x.【解答】解:不等式组可以化为:,在坐标轴上表示为:∴不等式组的解集为:4<x<5.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x大于较小的数、小于较大的数,那么解集为x 介于两数之间.11.方程的解是:x=±2.【考点】AG:无理方程.【分析】对方程左右两边同时平方,可得x2+5=9,进而解可得x的值.【解答】解:根据题意,有,左右两边同时平方可得x2+5=9;解之,可得:x=±2.故答案为:±2.【点评】本题考查含二次根式的无理方程的解法,一般先化为一次或二次方程,再求解,答案注意根式有意义的条件.12.已知点A(2,﹣1)在反比例函数y=(k≠0)的图象上,那么当x>0时,y随x的增大而增大.【考点】G4:反比例函数的性质.【分析】首先将点A的坐标代入解析式求得k值,然后根据反比例函数的性质确定其增减性即可.【解答】解:∵点A(2,﹣1)在反比例函数y=(k≠0)的图象上,∴k=2×(﹣1)=﹣2<0,∴在每一象限内y随着x的增大而增大,故答案为:增大.【点评】本题考查了反比例函数的性质,解题的关键是利用待定系数法确定比例系数的值,难度不大.13.如果将抛物线y=x2向左平移4个单位,再向下平移2个单位后,那么此时抛物线的表达式是y=(x+4)2﹣2.【考点】H6:二次函数图象与几何变换.【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【解答】解:函数y=x2向左平移4个单位,得:y=(x+4)2;再向下平移2个单位后,得:y=(x+4)2﹣2.【点评】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.14.如表记录的是某班级女生在一次跳绳练习中跳绳的次数及相应的人数,则该班级女生本次练习中跳绳次数的平均数是54次数40506070人数2341【考点】W2:加权平均数.【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.【解答】解:该班级女生本次练习中跳绳次数的平均数是==54.故答案为54.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求40,50,60,70这四个数的平均数,对平均数的理解不正确.15.如图,已知:△ABC中,∠C=90°,AC=40,BD平分∠ABC交AC于D,AD:DC=5:3,则D点到AB的距离是15.【考点】KF:角平分线的性质.【分析】先求出CD的长,再根据角平分线的性质即可得出结论.【解答】解:∵AC=40,AD:DC=5:3,∴CD=40×=15.∵BD平分∠BAC交AC于D,∴D点到AB的距离是15.故答案为:15.【点评】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.16.正十二边形的中心角是30度.【考点】MM:正多边形和圆.【分析】根据正多边形的中心角的定义,可得正六边形的中心角是:360°÷12=30°.【解答】解:正十二边形的中心角是:360°÷12=30°.故答案为:30.【点评】此题考查了正多边形的中心角.此题比较简单,注意准确掌握定义是关键.17.如图,在甲楼的底部B处测得乙楼的顶部D点的仰角为α,在甲楼的顶部A 处测得乙楼的顶部D点的俯角为β,如果乙楼的高DC=10米,那么甲楼的高AB= +10米(用含α,β的代数式表示)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】作AH⊥CD交CD的延长线于H,根据正切的概念分别求出DC、DH,计算即可.【解答】解:作AH⊥CD交CD的延长线于H,在Rt△DBC中,tan∠DBC=,则AH=BC=,在Rt△AHD中,tan∠DAH=,DH=AH×tanβ=,∴AB=CH=CD+DH=+10,故答案为: +10.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.18.如图,在Rt△ABC中,∠C=90°,CA=CB=4,将△ABC翻折,使得点B与边AC的中点M重合,如果折痕与边AB的交点为E,那么BE的长为.【考点】PB:翻折变换(折叠问题);KW:等腰直角三角形.【分析】作DG⊥AE,先根据翻折变换的性质得到△DEF≌△BEF,再根据等腰三角形的性质及三角形外角的性质可得到∠AED=CDF,设CF=x,则DF=FB=4﹣x,根据勾股定理求出CF,可知tan∠AED=tanCDF,在Rt△ADG和Rt△EDG分别求出DG、EG,然后根据勾股定理即可得到结论.【解答】解:作DG⊥BE,∵△DEF是△BEF翻折而成,∴△DEF≌△BEF,∠B=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠AED+45°,∴∠AED=∠CDF,∵CA=CB=4,CD=AD=2,设CF=x,∴DF=FB=4﹣x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+4=(4﹣x)2,解得x=,∵∠A=45°,AD=2,∴AG=DG=,∵tan∠AED=tanCDF==,∴=,∴=,∴EG=,∴DE=BE==.故答案为:.【点评】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质以及锐角三角函数的综合运用,涉及面较广,但难易适中.三、解答题(本大题共7小题,共78分)19.(10分)(2017•杨浦区二模)计算:27﹣()﹣1÷3+80﹣(﹣2)2.【考点】2C:实数的运算;2F:分数指数幂;6E:零指数幂;6F:负整数指数幂.【分析】原式利用分数指数幂,零指数幂、负整数指数幂法则,以及完全平方公式化简即可得到结果.【解答】解:原式=3﹣1+1﹣7+4=7﹣7.【点评】此题考查了实数的运算,分数指数幂,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.20.(10分)(2017•杨浦区二模)解方程:.【考点】B3:解分式方程.【分析】分式方程去分母转化为一元二次方程,求出一元二次方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3(1﹣x)﹣(x+3)=(1﹣x)(x+3),整理得:x2﹣2x﹣3=0,即(x+1)(x﹣3)=0,解得:x1=﹣1,x1=3,经检验x1=﹣1,x1=3都是原方程的根.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.(10分)(2017•杨浦区二模)已知:如图,在△ABC中,∠ABC=45°,tanA=,AB=14,(1)求:△ABC的面积;(2)若以C为圆心的圆C与直线AB相切,以A为圆心的圆A与圆C相切,试求圆A的半径.【考点】MJ:圆与圆的位置关系;MC:切线的性质;T7:解直角三角形.【分析】(1)过C作CD⊥AB于D,解直角三角形得到CD=,根据三角形的面积公式即可得到结论;(2)根据圆C与直线AB相切,得到⊙C的半径=,根据勾股定理得到AC==,设⊙A的半径为r,当圆A与圆C内切时,当圆A与圆C外切时即可得到结论.【解答】解:(1)过C作CD⊥AB于D,∵tanA==,∴AD=,∵∠ABC=45°,∴BD=CD,∵AB=14,∴+CD=15,∴CD=,∴△ABC的面积=AB•CD=×15×=;(2)∵以C为圆心的圆C与直线AB相切,∴⊙C的半径=,∵AD=,∴AC==,设⊙A的半径为r,当圆A与圆C内切时,r﹣=,∴r=,当圆A与圆C外切时,r+=,∴r=,综上所述:以A为圆心的圆A与圆C相切,圆A的半径为:或.【点评】本题考查了圆与圆的位置关系,勾股定理,三角形的面积的计算,解直角三角形,注意分类讨论思想的应用.22.(10分)(2017•杨浦区二模)水果市场的甲、乙两家商店中都有批发某种水果,批发该种水果x千克时,在甲、乙两家商店所花的钱分别为y1元和y2元,已知y1、y2关于x的函数图象分别为如图所示的折线OAB和射线OC.(1)当x的取值为20千克时,在甲乙两家店所花钱一样多?(2)当x的取值为0<x<20时,在乙店批发比较便宜?(3)如果批发30千克该水果时,在甲店批发比在乙店批发便宜50元,求射线AB的表达式,并写出定义域.【考点】FH:一次函数的应用.【分析】(1)利用两个函数图象的交点坐标即可解决问题.(2)根据y2的图象在y1的下方,观察图象即可解决问题.(3)设AB的解析式为y=kx+b,由题意OC的函数解析式为y=10x,可得方程组,解方程组即可.【解答】解:(1)由图象可知,x=20千克时,y1=y2,故答案为20千克.(2)由图象可知,0<x<20时,在乙店批发比较便宜.故答案为0<x<20.(3)设AB的解析式为y=kx+b,由题意OC的函数解析式为y=10x,∴,解得,∴射线AB的表达式y=5x+100(x≥10).【点评】本题考查一次函数的应用、二元一次方程组等知识,解题的关键是灵活运用一次函数的性质解决问题,学会利用图象解决实际问题,属于中考常考题型.23.(12分)(2017•杨浦区二模)已知:如图,四边形ABCD中,DB⊥BC,DB 平分∠ADC,点E为边CD的中点,AB⊥BE.(1)求证:BD2=AD•DC;(2)连结AE,当BD=BC时,求证:ABCE为平行四边形.【考点】S9:相似三角形的判定与性质;L6:平行四边形的判定.【分析】(1)根据直角三角形的性质得到BE=DE,由等腰三角形的性质得到∠DBE=∠BDE,根据角平分线的定义得到∠ADB=∠BDE,等量代换得到∠ADB=∠DBE,根据平行线的判定定理得到AD∥BE,根据相似三角形的性质即可得到结论;(2)由已知条件得到△BDC是等腰直角三角形,根据等腰直角三角形的性质得到∠BDC=45°,求得∠ADE=90°,推出四边形ADEB是矩形,根据矩形的性质得到AB=DE,AE=BD,于是得到结论.【解答】(1)证明:∵DB⊥BC,点E为边CD的中点,∴BE=DE,∴∠DBE=∠BDE,∵DB平分∠ADC,∴∠ADB=∠BDE,∴∠ADB=∠DBE,∴AD∥BE,∵AB⊥BE,∴∠A=∠ABE=90°,∵∠DBC=90°,∴∠A=∠DBC,∴△ADB∽△BDC,∴,∴BD2=AD•DC;(2)解:∵BD=BC,∴△BDC是等腰直角三角形,∴∠BDC=45°,∴∠ADE=90°,∴四边形ADEB是矩形,∴AB=DE,AE=BD,∴AB=CE,AE=BC,∴四边形ABCE为平行四边形.【点评】本题考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,平行四边形的判定,平行线的判定和性质,正确的理解题意是解题的关键.24.(12分)(2017•杨浦区二模)如图,已知抛物线y=ax2﹣x+c的对称轴为直线x=1,与x轴的一个交点为A(﹣1,0),顶点为B.点C(5,m)在抛物线上,直线BC交x轴于点E.(1)求抛物线的表达式及点E的坐标;(2)联结AB,求∠B的正切值;(3)点G为线段AC上一点,过点G作CB的垂线交x轴于点M(位于点E右侧),当△CGM与△ABE相似时,求点M的坐标.【考点】HF:二次函数综合题.【分析】(1)由对称轴可求得a的值,再把A点坐标代入可求得c的值,则可求得抛物线表达式,则可求得B、C的坐标,由待定系数法可求得直线BC的解析式,可求得E点坐标;(2)由A、B、C三点的坐标可求得AB、AC和BC的长,可判定△ABC是以BC 为斜边的直角三角形,利用三角形的定义可求得答案;(3)设M(x,0),当∠GCM=∠BAE时,可知△AMC为等腰直角三角形,可求得M点的坐标;当∠CMG=∠BAE时,可证得△MEC∽△MCA,利用相似三角形的性质可求得x的值,可求得M点的坐标.【解答】解:(1)∵抛物线对称轴为x=1,∴﹣=1,解得a=,把A点坐标代入可得+1+c=0,解得c=﹣,∴抛物线表达式为y=x2﹣x﹣,∵y=x2﹣x﹣=(x﹣1)2﹣2,∴B(1,﹣2),把C(5,m)代入抛物线解析式可得m=﹣5﹣=6,∴C(5,6),设直线BC解析式为y=kx+b,把B、C坐标代入可得,解得,∴直线BC解析式为y=2x﹣4,令y=2可得2x﹣4=0,解得x=2,∴E(2,0);(2)∵A(﹣1,0),B(1,﹣2),C(5,6),∴AB=2,AC==6,BC==4,∴AB2+AC2=8+72=80=BC2,∴△ABC是以BC为斜边的直角三角形,∴tan∠B===3;(3)∵A(﹣1,0),B(1,﹣2),∴∠CAE=∠BAE=45°,∵GM⊥BC,∴∠CGM+∠GCB=∠GCB+∠ABC=90°,∴∠CGM=∠ABC,∴当△CGM与△ABE相似时有两种情况,设M(x,0),则C(x,2x﹣4),①当∠GCM=∠BAE=45°时,则∠AMC=90°,∴MC=AM,即2x﹣4=x+1,解得x=5,∴M(5,0);②当∠GMC=∠BAE=∠MAC=45°时,∵∠MEC=∠AEB=∠MCG,∴△MEC∽△MCA,∴=,即=,∴MC2=(x﹣2)(x+1),∵C(5,6),∴MC2=(x﹣5)2+62=x2﹣10x+61,∴(x﹣2)(x+1)=x2﹣10x+61,解得x=7,∴M(7,0);综上可知M点的坐标为(5,0)或(7,0).【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、勾股定理及其逆定理、三角函数的定义、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意利用对称轴求得a的值是解题的关键,在(2)中证得△ABC为直角三角形是解题的关键,在(3)中利用相似三角形的性质得到关于M点坐标的方程是解题的关键,注意分两种情况.本题考查知识点较多,综合性较强,难度适中.25.(14分)(2017•杨浦区二模)已知:以O为圆心的扇形AOB中,∠AOB=90°,点C为上一动点,射线AC交射线OB于点D,过点D作OD的垂线交射线OC 于点E,联结AE.(1)如图1,当四边形AODE为矩形时,求∠ADO的度数;(2)当扇形的半径长为5,且AC=6时,求线段DE的长;(3)联结BC,试问:在点C运动的过程中,∠BCD的大小是否确定?若是,请求出它的度数;若不是,请说明理由.【考点】MR:圆的综合题.【分析】(1)利用矩形的性质,只要证明△OAC是等边三角形,即可解决问题.(2)如图2中,作OH⊥AD于H.由△AOH∽△ADO,推出=,推出=,可得AD=,CD=AD﹣AC=,由DE∥OA,可得=,求出DE即可.(3)如图3中,结论:∠BCD的值是确定的.∠BCD=45°.连接AB、BC,由∠BCD=∠BAC+∠ABC,又∠BAC=∠BOC,∠ABC=∠AOC,即可推出∠BCD=∠BOC+∠AOC=(∠BCO+∠AOC)=×90°=45°.【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴AD=EC,AC=CD,OC=CE,∠AOD=90°∴AC=OC=OA,∴△AOC是等边三角形,∴∠OAD=60°,∴∠ADO=90°﹣∠OAD=30°.(2)如图2中,作OH⊥AD于H.∵OA=OC,OH⊥AC,∴AH=HC=3,∵∠OAH=∠OAD,∠AHO=∠AOD,∴△AOH∽△ADO,∴=,∴=,∴AD=,∴CD=AD﹣AC=,∵DE⊥OD,∴∠EDO=90°,∴∠AOD+∠EDO=180°,∴DE∥OA,∴=,∴=,∴DE=.(3)如图3中,结论:∠BCD的值是确定的.∠BCD=45°.理由:连接AB、BC.∵∠BCD=∠BAC+∠ABC,又∵∠BAC=∠BOC,∠ABC=∠AOC,∴∠BCD=∠BOC+∠AOC=(∠BCO+∠AOC)=×90°=45°.【点评】本题考查圆综合题、矩形的性质、圆周角定理、平行线的判定和性质、相似三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考压轴题.。
2017北京中考数学二模25圆专题
C ED P O B A 1【2017东城二模】25. 如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,CE ⊥AD 交AD 的延长线于点E .(1)求证:∠BDC =∠A ;(2)若CE =4,DE =2,求AD 的长.2【2017西城二模】25.如图,AB 是⊙O 的直径,C 是⊙O 上一点,过点B 作⊙O 的切线,与AC 延长线交于点D ,连接BC ,OE ∥BC 交⊙O 于点E ,连接BE 交AC 于点H .(1)求证:BE 平分∠ABC ;(2)连接OD ,若BH =BD =2,求OD 的长.3【2017海淀二模】25.如图,AB 是⊙O 的直径,BC 为弦,D 为AC 的中点,AC ,BD 相交于E 点,过点A 作⊙O 的切线交BD 的延长线于P 点.(1)求证:∠PAC =2∠CBE ;(2)若PD =m ,∠CBE =α,请写出求线段CE 长的思路.4【2017朝阳二模】25.如图,△ABC 中,∠A =45°,D 是AC 边上一点,⊙O 过D 、A 、B 三点,OD ∥BC .(1)求证:直线BC 是⊙O 的切线;(2)OD , AB 相交于点E ,若AB =AC ,OD =r ,写出求AE 长的思路.5【2017丰台二模】26.如图,AB 为半圆的直径,O 为圆心,C 为圆弧上一点,AD 垂直于过点C 的切线,垂足为点D ,AB的延长线交切线CD 于点E .(1)求证:AC 平分∠DAB ;(2)若AB =4,B 为OE 的中点,CF ⊥AB ,垂足为点F ,求CF 的长.6【2017石景山二模】25.如图,AB 为⊙O 的直径,弦BC ,DE 相交于点F ,且DE ⊥AB 于点G ,过点C作⊙O 的切线交DE 的延长线于点H . (1)求证:HC HF =; (2)若⊙O 的半径为5,点F 是BC 的中点,tan HCF m ∠=,写出求线段BC 长的 思路.7【2017房山二模】25.如图,△ ABC 中,AC =BC =a ,AB =b .以 BC 为直径作 ⊙O 交 AB 于点 D ,交 AC 于点E ,过点D 作⊙O 的切线MN ,交 CB 的延长线于点M ,交 AC 于点N .(1)求证: MN ⊥AC ;(2) 连接 BE ,写出求 BE 长的思路.8【2017通州二模】24.如图,AB 是⊙O 的直径,PC 切⊙O 于点C ,AB 的延长线与PC 交于点P ,PC 的延长线与AD 交于点D ,AC 平分∠DAB . (1)求证:AD ⊥PC ; (2)连接BC ,如果∠ABC =60°,BC =2,求线段PC 的长.9【2017门头沟二模】P A10【2017昌平二模】25. 如图,AB 为⊙O 的直径,点D ,E 为⊙O 上的两个点,延长AD 至C ,使∠CBD=∠BED .(1)求证:BC 是⊙O 的切线;(2)当点E 为弧AD 的中点且∠BED=30°时,⊙O 半径为2,求DF 的长度.11【2017顺义二模】25.如图,在Rt △ABC 中,∠CAB =90 ,以AB 为直径的⊙O 交BC 于点D ,点E 是AC 的中点,连接DE .(1)求证:DE 是⊙O 的切线;(2)点P 是BD 上一点,连接AP ,DP ,若BD :CD=4:1,求sin ∠APD 的值.12【2017平谷二模】25.如图,已知△ABC 内接于⊙O ,AB 是⊙O 的直径,点F 在⊙O 上,且点C 是BF 的中点,过点C 作⊙O 的切线交AB 的延长线于点D ,交AF 的延长线于点E .(1)求证:AE ⊥DE ;(2)若∠BAF =60°,AF=4,求CE 的长.13【2017怀柔二模】14【2017燕山二模】15【2017大兴二模】 F B O C D E A BD E O。
2017年宝山初三数学二模(手打)带答案
2016学年宝山区第二学期期中考试九年级数学试卷(满分150分,考试时间100分钟)2017.4考生注意:1. 本试卷含三个大题,共25题;2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.5的相反数是(▲)(A) 2; (B)﹣5; (C)5; (D)51. 2.方程01232=+-x x 实数根的个数是(▲)(A)0; (B)1; (C)2; (D)3.3.下列函数中,满足y 的值随x 的值增大而增大的是(▲) (A)x y 2-=; (B)3-=x y ; (C)xy 1=; (D)2x y =. 4.某老师在试卷分析中说:参加这次考试的41位同学中,考121分的人数最多,虽然最高的同学获得了满分150分,但是十分遗憾最低的同学仍然只得了56分,其中分数居第21位的同学获得116分。
这说明本次考试分数的中位数是(▲) (A)21; (B)103; (C)116; (D)121. 5.下列命题为真命题的是(▲)(A)有两边及一角对应相等的两三角形全等;(B) 两个相似三角形的面积比等于其相似比; (C) 同旁内角相等; (D)两组对边分别相等的四边形是平行四边形. 6.如图1,△ABC 中,点D 、F 在边AB 上,点E 在边AC 上, 如果DE ∥BC ,EF ∥CD ,那么一定有(▲)(A) AE AD DE ⋅=2; (B)AB AF AD ⋅=2;(C)AD AF AE ⋅=2; (D)AC AE AD ⋅=2.B图1二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】7.计算:=÷-3165 ▲ . 8.计算:2)2(b a -= ▲ .9.计算:321x x ⋅= ▲ . 10.方程0=+x x 的解是 ▲ .11.如果正比例函数x k y )1(-=的图像经过原点和第一、第三象限,那么k ▲ . 12.二次函数x x y 22-=图像的对称轴是直线 ▲ .13. 一枚(形状为正方体的)骰子可以掷出1、2、3、4、5、6这六个数中的任意一个,用这个骰子随机掷出的一个数替代二次根式3-x 中的字母x ,使该二次根式有意义的概率是 ▲ .14.为了解某中学九年级学生的上学方式,从该校九年级全体300名学生中,随机抽查了60名学生,结果显示有5名学生“骑共享单车上学”.由此,估计该校九年级全体学生中约有___▲ 名学生“骑共享单车上学”. 15.已知在△ABC 中,点M 、N 分别是边AB 、AC 的中点,如果a AB =,b AC =,那么向量MN = ▲ (结果用a 、b 表示). 16.如图2,在□ABCD 中,,5,3==BC AB 以点B 为圆心,以任意长为半径作弧,分别交BC BA 、于 点Q P 、,再分别以Q P 、为圆心,以大于PQ 21的长为半径作弧,两弧在ABC ∠内交于点M ,连接BM 并延长交AD 于点E ,则DE 的长为_________. 17.已知一条长度为10米的斜坡两端的垂直高度差为6米,那么该斜坡的坡角度数约为 ▲ (备用数据:tan31cot590.6,sin37cos530.6︒=︒≈︒=︒≈). 18.如图3,E 、F 分别为正方形ABCD 的边AB 、AD 上的点,且 AE=AF ,联接EF ,将△AEF 绕点A 逆时针旋转45°,使E落在E 1,F 落在F 1,联接BE 1并延长交DF 1于点G ,如果 AB=22,AE=1,则DG= ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)化简,再求值:22482++-x x ,其中5=x .F BCADE图2图320.(本题满分10分)解方程组:21.(本题满分10分)如图4,在△ABC 中,∠B =45°,点D 为△ABC 的边AC 上一点,且AD :CD=1:2.过D 作DE ⊥AB 于E ,C 作CF ⊥AB 于F ,联接BD ,如果AB =7,BC= 24、求线段CF 和BE 的长度.22.(本题满分10分,每小题满分各5分)如图5,由正比例函数x y -=沿y 轴的正方向平移4个单位而成的一次函数b x y +-= 的图像与反比例函数xky =(0≠k )在第一象限的图像交于A (1,n )和B 两点. (1)求一次函数b x y +-=和反比例函数的解析式;(2)求△ABO 的面积.23.(本题满分12分,每小题满分各6分)如图6,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF , (1)求证:CF =2AF ; (2)求tan ∠CFD 的值.F DACEB图4图6图5 CA BFD E24. (本题满分12分,每小题满分各4分) 如图7,已知直线221-=x y 与x 轴交于点B ,与y 轴交于点C ,抛物线2212-+=bx x y 与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C. (1)求抛物线的解析式;(2)点M 是上述抛物线上一点,如果△ABM 和△ABC 相似,求点M 的坐标;(3)连接AC ,求顶点D 、E 、F 、G 在△ABC 各边上的矩形DEFC 面积最大时,写出该矩形在AB 边上的顶点的坐标.25. (本题满分14分,每小题满分分别为5分、5分、4分)如图8,在△ABC 中,∠ACB 为直角,AB=10,30=∠A °,半径为1的动圆Q 的圆心从点C 出发,沿着CB 方向以1个单位长度/秒的速度匀速运动,同时动点P 从点B 出发,沿着BA 方向也以1个单位长度/秒的速度匀速运动,设运动时间为t 秒(0<t ≤5)以P 为圆心,PB 长为半径的⊙P 与AB 、BC 的另一个交点分别为E 、D ,连结ED 、EQ . (1)判断并证明ED 与BC 的位置关系,并求当点Q 与点D 重合时t 的值; (2)当⊙P 和AC 相交时,设CQ 为x ,⊙P 被AC 截得的弦长为y ,求y 关于x 的函数; 并求当⊙Q 过点B 时⊙P 被AC 截得的弦长; (3)若⊙P 与⊙Q 相交,写出t 的取值范围.图8图7ED B CAQ P2016学年第二学期期中考试九年级数学试卷评分参考一、选择题:(本大题共6题,每题4分,满分24分) 1、B ; 2、A ; 3、B ; 4、C ; 5、D ; 6、B ; 二、填空题:(本大题共12题,每题4分,满分48分)7、25-; 8、2244b ab a +-; 9、2x ; 10、0=x ; 11、1>k ; 12、1=x ;13、32; 14、25; 15、a b 2121-; 16、2; 17、37; 18、554.三、解答题:(本大题共7题,满分78分) 19.解: 原式=4)2(24822--+-x x x …………………………3分=4422-+x x ……………………………………………3分 =22-x……………………………………………2分 当5=x 时,原式=452252+=-…………2分说明:分式的通分、加法、约分、二次根式分母有理化等每一步各2---3分,代入(或约分或分母有利化方法不限)得出答案可以分别为1分.20.解:0)4)(4(16222=--+-=-+-y x y x y xy x)3)(3(922y x y x y x -+=-=0, ………………………2分 则原方程可化为:错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题:2017年二模25题
1.已知:以O 为圆心的扇形AOB 中,90AOB ∠=
,点C 为 AB 上一动点,射线AC 交射线OB 于点D ,过点D 作OD 的垂线交射线OC 于点E ,联结AE .
(1)如图1,当四边形AODE 为矩形时,求ADO ∠的度数;
(2)当扇形的半径长为5,且6AC =时,求线段DE 的长;
(3)联结BC ,试问:在点C 运动的过程中,BCD ∠的大小是否确定?若是,请求出它的度数;若不是,请说明理由.
2.如图,在梯形ABCD 中,AD ∥BC ,∠B =90°,AB =4,BC =9,AD =6,点E 、F 分别在边AD 、BC 上,且BF =2DE ,联结FE 。
FE 的延长线与CD 的延长线相交于点P 。
设DE =x ,
EF
PE =y .(1)求y 关于x 的函数解析式,并写出函数的定义域;
(2)当以ED 为半径的○E 与以FB 为半径的○F 外切时,求x 的值;
(3)当△AEF ∽△PED 时,求x 的值。
3.已知:如图9,线段4AB =,以AB 为直径作半圆O ,点C 为弧AB 的中点,点P 为直径AB 上一点,联结PC ,过点C 作CD //AB ,且CD PC =,过点D 作DE //PC ,交射线PB 于点E ,PD 与CE 交于点Q .
(1)若点P 与点A 重合,求BE 的长;
(2)设PC x =,PD y CE
=,当点P 在线段AO 上时,求y 关于x 的函数关系式及定义域;(3)当点Q 在半圆O 上时,求PC 的长.
4.如图11,已知△ABC 中,,6,5===BC AC AB 点O 是边BC 上的动点,以点O 为圆心,OB 为半径作圆O ,交AB 边于点D ,过点D 作∠ODP =∠B ,交边AC 于点P ,交圆O 与点E 。
设x OB =。
(1)当点P 与点C 重合时,求PD 的长;
(2)设y EP AP =-,求y 关于x 的解析式及定义域;
(3)联结OP ,当OD OP ⊥时,试判断以点P 为圆心,PC 为半径的圆P 与圆O 的位置关系。
5.已知:Rt ABC 斜边AB 上点D 、E ,满足45DCE ∠=︒.
(1)如图1,当1AC =,3BC =,且点D 与A 重合时,求线段BE 的长;
(2)如图2,当ABC 是等腰直角三角形时,求证:222AD BE DE +=;
(3)如图3,当3AC =,4BC =时,设AD x =,BE y =,求y 关于x 的函数关系式,并写出定义域.
6.如图,梯形ABCD 中,//,ABC 90,6,8,tan 2AB CD AB BC D ∠====
,点E 是射线CD 上一动点(不与点C 重合)
,将△BCE 沿着BE 进行翻折,点C 对应点记为点F .(1)如图1,当点F 落在梯形ABCD 的中位线MN 上时,求CE 的长;
(2)如图2,当点E 在线段CD 上时,设,
,BFC EFC
S CE x y S ==△△求y 与x 之间的函数关系式,并写出定义域;
(3)如图3,联结AC ,线段BF 与射线CA 交于点G ,当△CBG 是等腰三角形时,求CE 的长
.
7.如图,已知在Rt △ABC 中,90ACB ∠=︒,3cos 5B =,3BC =,P 是射线AB 上的一个动点,以P 为圆心,PA 为半径的⊙P 与射线AC 的另一个交点为D ,直线PD 交直线
BC 于点E .
(1)当1PA =时,求CE 的长;
(2)如果点P 在边AB 的上,当⊙P 与以点C 为圆心,CE 为半径的⊙C 内切时,求⊙P 的半径;
(3)设线段BE 的中点为Q ,射线PQ 与⊙P 相交于点F ,点P 在运动过程中,当PE //CF 时,求AP 的长.
8.如图,△ABC 的边AB 是⊙O 的直径,点C 在⊙O 上,已知6AC =cm ,8BC =cm ,点P 、Q 分别在边AB 、BC 上,
且点P 不与点A 、B 重合,(0)BQ k AP k =⋅>,联接PC 、PQ .
(1)求⊙O 的半径长;
(2)当2k =时,设AP x =,△CPQ 的面积为y ,求y 关于x 的函数关系式,并写出定义域;
(3)如果△CPQ 与△ABC 相似,且ACB CPQ ∠=∠,求k 的值.
9.如图10,半圆O的直径AB=10,有一条定长为6的动弦CD在弧AB上滑动(点C、点D 分别不与点A、点B重合),点E、F在AB上,EC⊥CD,FD⊥CD.
=;
(1)求证:EO OF
(2)联结OC,如果△ECO中有一个内角等于45 ,求线段EF的长;
(3)当动弦CD在弧AB上滑动时,设变量CE x=,四边形CDFE面积为S,周长为l,问:S与l是否分别随着x的变化而变化?试用所学的函数知识直接写出它们的函数解析式及函数定义域,以说明你的结论.
图10
10.如图,已知⊙O 的半径OA 的长为2,点B 是⊙O 上的动点,以AB 为半径的⊙A 与线段OB 相交于点C ,AC 的延长线与⊙O 相交于点D .设线段AB 的长为x ,线段OC 的长为y .
(1)求y 关于x 的函数解析式,并写出定义域;
(2)当四边形ABDO 是梯形时,求线段OC 的长.
A B
D
O C
AB=,⊙O经过点A、B以AB为一边画平行四边形ABCD,另一边CD经11.已知:8
过点O(如图8),以点B为圆心,BC为半径画弧,交线段OC于点E(点E不与点O、点C重合).
=;
(1)求证:OD OE
=,求y关于x的函数解析式,(2)如果⊙O的半径长为5(如图9),设OD x=,BC y
并写出它的定义域;
⊥时,求OD的长.
(3)如果⊙O的半径长为5,联结AC,当BE AC
12.如图8,在△ABC 中,ACB ∠为直角,10AB =,30A ∠=︒,半径为1的动圆Q 的圆心从点C 出发,沿着CB 方向以1个单位长度/秒的速度匀速运动,同时动点P 从点B 出发,沿着BA 方向也以1个单位长度/秒的速度匀速运动,设运动时间为t 秒(05t <≤)以P 为圆心,PB 长为半径的⊙P 与AB 、BC 的另一个交点分别为E 、D ,连结ED 、EQ .
(1)判断并证明ED 与BC 的位置关系,并求当点Q 与点D 重合时t 的值;
(2)当⊙P 和AC 相交时,设CQ 为x ,⊙P 被AC 截得的弦长为y ,求y 关于x 的函数;
(3)若⊙P 与⊙Q 相交,写出t 的取值范围.
13.如图,在△ABC 中,45,cosB ,5
AB AC ===点P 为边BC 上一动点,过点P 作射线PE 交射线BA 于点,D BPD BAC ∠=∠,以点P 为圆心,PC 长为半径作P 交射线PD 于点E 。
联结CE ,设,BD x CE y ==.
(1)当P 与AB 相切时,求P 的半径;
(2)当点D 在BA 的延长线上时,求y 关于x 的函数解析式,并写出定义域;
(3)如果O 与P 相交于点,E C ,且O 经过点B ,当54
OP =时,求AD 的长.
14.如图所示,45MON ︒∠=,点P 是MON ∠内一点,过点P 作PA OM ⊥于点A 、
PB ON ⊥于点B ,且PB =,取OP 的中点C ,联结AC 并延长,交OB 于点D .
(1)求证:ADB OPB ∠=∠;
(2)设PA x =,OD y =,求y 关于x 的函数解析式;
(3)分别联结AB 、BC ,当△ABD 与△CPB 相似时,求PA 的长.。