计算机组成原理实验6
计算机组成原理实验
计算机组成原理实验一、实验目的本实验旨在通过实际操作,加深对计算机组成原理的理解,掌握计算机硬件的基本原理和工作方式。
二、实验设备和材料1. 计算机主机:型号为XXX,配置了XXX处理器、XXX内存、XXX硬盘等。
2. 显示器:型号为XXX,分辨率为XXX。
3. 键盘和鼠标:标准配置。
4. 实验板:包括CPU、内存、存储器、输入输出接口等模块。
5. 逻辑分析仪:用于分析和调试电路信号。
6. 示波器:用于观测电路信号的波形。
三、实验内容1. 实验一:CPU的工作原理a. 将实验板上的CPU模块插入计算机主机的CPU插槽中。
b. 连接逻辑分析仪和示波器,用于观测和分析CPU的工作信号和波形。
c. 打开计算机主机,启动操作系统。
d. 运行一段简单的程序,观察CPU的工作状态和指令执行过程。
e. 通过逻辑分析仪和示波器的数据分析,了解CPU的时钟信号、数据总线、地址总线等工作原理。
2. 实验二:内存的存储和读写a. 将实验板上的内存模块插入计算机主机的内存插槽中。
b. 打开计算机主机,启动操作系统。
c. 编写一个简单的程序,将数据存储到内存中。
d. 通过逻辑分析仪和示波器的数据分析,观察内存的写入和读取过程,了解内存的存储原理和读写速度。
3. 实验三:存储器的工作原理a. 将实验板上的存储器模块插入计算机主机的存储器插槽中。
b. 打开计算机主机,启动操作系统。
c. 编写一个简单的程序,读取存储器中的数据。
d. 通过逻辑分析仪和示波器的数据分析,观察存储器的读取过程,了解存储器的工作原理和数据传输速度。
4. 实验四:输入输出接口的工作原理a. 将实验板上的输入输出接口模块插入计算机主机的扩展插槽中。
b. 打开计算机主机,启动操作系统。
c. 编写一个简单的程序,通过输入输出接口实现数据的输入和输出。
d. 通过逻辑分析仪和示波器的数据分析,观察输入输出接口的工作过程,了解数据的传输和控制原理。
四、实验结果分析1. 实验一:通过观察CPU的工作状态和指令执行过程,可以验证CPU的时钟信号、数据总线、地址总线等工作原理是否正确。
计算机组成原理实验报告
3)在增大合法码的码距时,所有码的码距应尽量均匀增大,以保证对所有码的检错能力平衡提高。
下面具体看一下对一个字节进行海明编码的实现过程。
只实现一位纠错两位检错,由前面的表可以看出,8位数据位需要5位校验位,可表示为H13H12…H2H1。
0
0
1
1
0
0
1
1
0
S1
0
0
1
0
1
0
1
0
1
0
1
0
1
由此可得校验后的数据位表达式为:
D1=D1 (S1•S2• • •S5)
D2=D2 (S1• •S3• •S5)
D3=D3 ( •S2•S3• •S5)
D4=D4 (S1•S2•S3• •S5)
D5=D5 (S1• • •S4•S5)
D6=D6 ( •S2• •S4•S5)
答:我们认为16位数据位的编码原理与8位数据位的hamming编码原理基本相同。即:,在k个数据位之外加上r个校验位,从而形成一个k+r位的新的码字,使新的码字的码距比较均匀地拉大。把数据的每一个二进制位分配在几个不同的偶校验位的组合中,当某一位出错后,就会引起相关的几个校验位的值发生变化,这不但可以发现出错,还能指出是哪一位出错,为进一步自动纠错提供了依据。
《计算机组成原理》
实验报告
实验室名称:S402
任课教师:邹洋
小组成员:王娜任芬
学号:2010212121 2010212119
实验一_Hamming码2
实验二_乘法器7
计算机组成原理实验报告
计算机组成原理实验报告实验目的,通过本次实验,深入了解计算机组成原理的相关知识,掌握计算机硬件的基本组成和工作原理。
实验一,逻辑门电路实验。
在本次实验中,我们学习了逻辑门电路的基本原理和实现方法。
逻辑门电路是计算机中最基本的组成部分,通过逻辑门电路可以实现各种逻辑运算,如与门、或门、非门等。
在实验中,我们通过搭建逻辑门电路并进行实际操作,深入理解了逻辑门的工作原理和逻辑运算的实现过程。
实验二,寄存器和计数器实验。
在本次实验中,我们学习了寄存器和计数器的原理和应用。
寄存器是计算机中用于存储数据的重要部件,而计数器则用于实现计数功能。
通过实验操作,我们深入了解了寄存器和计数器的内部结构和工作原理,掌握了它们在计算机中的应用方法。
实验三,存储器实验。
在实验三中,我们学习了存储器的原理和分类,了解了不同类型的存储器在计算机中的作用和应用。
通过实验操作,我们进一步加深了对存储器的认识,掌握了存储器的读写操作和数据传输原理。
实验四,指令系统实验。
在本次实验中,我们学习了计算机的指令系统,了解了指令的格式和执行过程。
通过实验操作,我们掌握了指令的编写和执行方法,加深了对指令系统的理解和应用。
实验五,CPU实验。
在实验五中,我们深入了解了计算机的中央处理器(CPU)的工作原理和结构。
通过实验操作,我们学习了CPU的各个部件的功能和相互之间的协作关系,掌握了CPU的工作过程和运行原理。
实验六,总线实验。
在本次实验中,我们学习了计算机的总线结构和工作原理。
通过实验操作,我们了解了总线的分类和各种总线的功能,掌握了总线的数据传输方式和时序控制方法。
结论:通过本次实验,我们深入了解了计算机组成原理的相关知识,掌握了计算机硬件的基本组成和工作原理。
通过实验操作,我们加深了对逻辑门电路、寄存器、计数器、存储器、指令系统、CPU和总线的理解,为进一步学习和研究计算机组成原理奠定了坚实的基础。
希望通过不断的实践和学习,能够更深入地理解和应用计算机组成原理的知识。
计算机组成原理 实验报告
计算机组成原理实验报告计算机组成原理实验报告引言计算机组成原理是计算机科学与技术专业中的一门重要课程,通过实验学习可以更好地理解和掌握计算机的基本原理和结构。
本实验报告将介绍我在学习计算机组成原理课程中进行的实验内容和实验结果。
实验一:二进制与十进制转换在计算机中,数据以二进制形式存储和处理。
通过这个实验,我们学习了如何将二进制数转换为十进制数,以及如何将十进制数转换为二进制数。
通过实际操作,我更深入地了解了二进制与十进制之间的转换原理,并且掌握了转换的方法和技巧。
实验二:逻辑门电路设计逻辑门电路是计算机中的基本组成部分,用于实现不同的逻辑运算。
在这个实验中,我们学习了逻辑门的基本原理和功能,并通过电路设计软件进行了实际的电路设计和模拟。
通过这个实验,我深入理解了逻辑门电路的工作原理,并且掌握了电路设计的基本方法。
实验三:组合逻辑电路设计组合逻辑电路是由多个逻辑门组合而成的电路,用于实现复杂的逻辑功能。
在这个实验中,我们学习了组合逻辑电路的设计原理和方法,并通过实际的电路设计和模拟,实现了多个逻辑门的组合。
通过这个实验,我进一步掌握了逻辑电路设计的技巧,并且了解了组合逻辑电路在计算机中的应用。
实验四:时序逻辑电路设计时序逻辑电路是由组合逻辑电路和触发器组合而成的电路,用于实现存储和控制功能。
在这个实验中,我们学习了时序逻辑电路的设计原理和方法,并通过实际的电路设计和模拟,实现了存储和控制功能。
通过这个实验,我进一步了解了时序逻辑电路的工作原理,并且掌握了时序逻辑电路的设计和调试技巧。
实验五:计算机指令系统设计计算机指令系统是计算机的核心部分,用于控制计算机的操作和运行。
在这个实验中,我们学习了计算机指令系统的设计原理和方法,并通过实际的指令系统设计和模拟,实现了基本的指令功能。
通过这个实验,我深入了解了计算机指令系统的工作原理,并且掌握了指令系统设计的基本技巧。
实验六:计算机硬件系统设计计算机硬件系统是由多个模块组成的,包括中央处理器、存储器、输入输出设备等。
机综实验报告
一、实验模块计算机组成原理实验二、实验标题计算机组成原理实验报告三、实验内容本次实验主要围绕计算机组成原理展开,通过实际操作和理论分析,加深对计算机硬件组成和工作原理的理解。
四、实验目的1. 理解计算机硬件的基本组成,包括CPU、内存、I/O接口等。
2. 掌握计算机各组成部分之间的数据传输和通信方式。
3. 了解计算机的基本工作原理,包括指令的执行过程和中断处理等。
4. 通过实验,提高动手能力和问题解决能力。
五、实验环境实验地点:学校机房实验设备:计算机组成原理实验箱(EL-JY-II型)实验软件:相关实验软件六、实验步骤及实验结果1. CPU实验(1)实验连线:将CPU、内存、I/O接口等设备按照实验要求进行连接。
(2)写数据:向内存写入数据,通过CPU读取数据并输出。
(3)实验结果:观察数据是否正确传输,分析CPU的工作原理。
2. 内存实验(1)实验连线:将内存与CPU、I/O接口等设备连接。
(2)往存储器写数据:向内存写入数据。
(3)从存储器读数据:从内存读取数据,观察数据是否正确。
(4)实验结果:分析内存的工作原理,验证内存读写功能。
3. I/O接口实验(1)实验连线:将I/O接口与CPU、内存等设备连接。
(2)实验步骤:通过I/O接口进行数据传输。
(3)实验结果:观察数据是否正确传输,分析I/O接口的工作原理。
4. 中断实验(1)实验连线:将中断设备与CPU、内存等设备连接。
(2)实验步骤:模拟中断发生,观察CPU如何响应中断。
(3)实验结果:分析中断处理过程,理解中断在计算机中的作用。
七、实验结果的分析与总结1. 通过本次实验,我们深入了解了计算机硬件的基本组成和工作原理,掌握了CPU、内存、I/O接口等设备的工作方式。
2. 实验过程中,我们学会了如何进行实验连线、数据传输和中断处理等操作,提高了动手能力和问题解决能力。
3. 实验结果表明,计算机硬件各部分之间协同工作,共同完成指令的执行和数据的处理。
计算机组成原理——存储器和总线实验精选全文完整版
可编辑修改精选全文完整版实验六存储器和总线实验一、实验目的熟悉存储器和总线组成的硬件电路。
二、实验要求按照实验步骤完成实验项目,利用存储器和总线传输数据三、实验内容实验原理图如下(省略图):(1)实验原理按照实验所用的半导体静态存储器电路图进行操作,该静态存储器由一片6116(2K x 8)构成,其数据线(D0-D7)已和数据总线(BUS-DISP UNIT)相连接,地址线由地址锁存器(74LS273)给出,该锁存器的输入已连接至数据总线。
地址A0-A7与地址总线相连,显示地址内容。
数据开关经一三态门(74LS245)已连接至数据总线,分时给出地址和数据。
因为地址寄存器为8位,接入6116的地址A7-A0,而高三位A8-A10本实验装置已接地,其容量为256字节。
6116有三根控制线:/CS(片选线)、OE(读线)、WE(写线)。
当片选有效(/CS=0)时,同时OE=0时,(WE=0)时进行读操作。
本实验中将OE引脚接地,在此情况下,当/CS=0、WE=1时进行写操作,/CS=0、WE=0时进行读操作,其写时间与T3脉冲宽度一致。
实验时T3脉冲由“单步”命令键产生,其他电平控制信号由二进制开关模拟,其中/CE(存储器片选信号)为低电平有效,WE为写/读(W/R)控制信号,当WE=0时进行读操作、当WE=1时为写操作。
(2)实验步骤1、控制信号连接:位于实验装置右侧边缘的RAM片选端(/CE)、写/读线、(WE)、地址锁存信号(LDAR)与位于实验装置左上方的控制信号(/CE、WE、LDAR)之间对应相连接。
位于实验装置左上方CTR-OUT 的控制信号(/SW-B)与左下方INPUT-UNIT(/SW-B)对应相连接。
具体信号连接:/CW,WE,LDAR,/SW-B2、完成上述连接,仔细检查无误后方可进入本实验。
在闪动上的“P.”状态下按动增址命令键,使LED显示自左向右第一位显示提示符“H”,表示本装置已进入手动单元实验状态。
计算机组成原理综合实验报告
计算机组成原理综合实验报告一、实验目的本次计算机组成原理综合实验旨在深入理解计算机组成的基本原理,通过实际操作和设计,巩固所学的理论知识,并培养实践动手能力和创新思维。
二、实验设备本次实验所使用的设备包括计算机硬件实验平台、数字逻辑实验箱、示波器、万用表等。
三、实验内容1、运算器实验设计并实现一个简单的运算器,能够完成加法、减法、乘法和除法运算。
通过实验,深入理解运算器的工作原理,包括数据的输入、运算过程和结果的输出。
2、控制器实验构建一个基本的控制器,实现指令的读取、译码和执行过程。
了解控制器如何控制计算机的各个部件协同工作,以完成特定的任务。
3、存储系统实验研究计算机的存储系统,包括主存和缓存的工作原理。
通过实验,掌握存储单元的读写操作,以及如何提高存储系统的性能。
4、输入输出系统实验了解计算机输入输出系统的工作方式,实现与外部设备的数据传输。
四、实验步骤1、运算器实验步骤(1)确定运算器的功能和架构,选择合适的逻辑器件。
(2)连接电路,实现加法、减法、乘法和除法运算的逻辑。
(3)编写测试程序,输入不同的数据进行运算,并观察结果。
2、控制器实验步骤(1)分析控制器的工作流程和指令格式。
(2)设计控制器的逻辑电路,实现指令的译码和控制信号的生成。
(3)编写测试程序,验证控制器的功能。
3、存储系统实验步骤(1)连接存储单元,设置地址线、数据线和控制线。
(2)编写读写程序,对存储单元进行读写操作,观察数据的存储和读取情况。
(3)通过改变缓存策略,观察对存储系统性能的影响。
4、输入输出系统实验步骤(1)连接输入输出设备,如键盘、显示器等。
(2)编写程序,实现数据的输入和输出。
(3)测试输入输出系统的稳定性和可靠性。
五、实验结果1、运算器实验结果通过测试程序的运行,运算器能够准确地完成加法、减法、乘法和除法运算,结果符合预期。
2、控制器实验结果控制器能够正确地译码指令,并生成相应的控制信号,使计算机各个部件按照指令的要求协同工作。
计算机组成原理实验报告精品9篇
计算机组成原理实验报告课程名称计算机组成原理实验学院计算机专业班级学号学生姓名指导教师20年月日实验一:基础汇编语言程序设计实验1实验目的●学习和了解TEC-XP+教学实验监控命令的用法;●学习和了解TEC-XP+教学实验系统的指令系统;●学习简单的TEC-XP+教学实验系统汇编程序设计。
2实验设备及器材●工作良好的PC机;●TEC-XP+教学实验系统和仿真终端软件PCEC。
3实验说明和原理实验原理在于汇编语言能够直接控制底层硬件的状态,通过简单的汇编指令查看、显示、修改寄存器、存储器等硬件内容。
实验箱正如一集成的开发板,而我们正是通过基础的汇编语言对开发板进行使用和学习,过程中我们不仅需要运用汇编语言的知识,还需要结合数字逻辑中所学的关于存储器、触发器等基本器件的原理,通过串口通讯,实现程序的烧录,实验箱与PC端的通讯。
4实验内容1)学习联机使用TEC-XP+教学实验系统和仿真终端软件PCEC;2)学习使用WINDOWS界面的串口通讯软件;3)使用监控程序的R命令显示/修改寄存器内容、D命令显示存储内容、E命令修改存储内容;4)使用A命令写一小段汇编程序,U命令反汇编输入的程序,用G命令连续运行该程序,用T、P命令单步运行并观察程序单步执行情况。
5实验步骤1)准备一台串口工作良好的PC机器;2)将TEC-XP+放在实验台上,打开实验箱的盖子,确定电源处于断开状态;3)将黑色的电源线一段接220V交流电源,另一端插在TEC-XP+实验箱的电源插座里;4)取出通讯线,将通讯线的9芯插头接在TEC-XP+实验箱上的串口"COM1"或"COM2"上,另一端接到PC机的串口上;5)将TEC-XP+实验系统左下方的六个黑色的控制机器运行状态的开关置于正确的位置,再找个实验中开关应置为001100(连续、内存读指令、组合逻辑、联机、16位、MACH),6)控制开关的功能在开关上、下方有标识;开关拨向上方表示"1",拨向下方表示"0","X"表示任意,其他实验相同;7)打开电源,船型开关盒5V电源指示灯亮;8)在PC机上运行PCEC16.EXE文件,根据连接的PC机的串口设置所用PC机的串口为"1"或"2",其他的设置一般不用改动,直接回车即可; (8)按一下"RESET"按键,再按一下"START"按键,主机上显示:6实验截图及思考题【例3】计算1到10的累加和。
计算机组成原理实验总报告
计算机组成原理实验报告班级:0411202学号:2012211xxx姓名: kelory_lee2014年12月7日目录1.实验一Hamming码2.实验二乘法器3.实验三时序部件4.实验四CPU_算术逻辑单元5.实验五CPU_指令译码器6.实验六CPU_微程序控制器7.实验七-八CPU_无流水无cache实验1 Hamming码一.实验目的(1)对容错技术有初步了解,理解掌握海明码的原理(2)掌握海明码的编码以及校验方法二.实验内容(1)先连接JTAG线和USB线(CPU实验时才用接此线),然后接实验箱电源线,最后才可以打开电源。
(切记:不能带电插拔Jtag口,否则会损坏实验设备)(2)安装ByteBlaster:Quartus→tools→>programmer→HardwareSetup(在打开programmer窗口的左上角或从Edit菜单—> HardwareSetup 亦可打开)→选Hardware Settings→点击Add Hardware→Hardware type →Altera ByteBlaster→ok即可;Mode选Jtag。
(3)打开Quartus→tools→programmer→AddFile,将hamming.sof(在C盘的相应目录下)下载到FPGA中。
注意进行programmer时,应在program/configure下的方框中打勾,然后下载。
(4)在实验台上通过模式开关选择FPGA独立调试模式010。
首先输入的8位操作数对应开关SD15~SD8,编码后的hamming码在灯A0~A12上体现。
其次开关SA0是控制位,待校验的13位数据对应SD7~SD0与SA5~SA1。
最后比较的结果在灯R4~R0上体现。
观察实验现象并记录相应数据如对8位数据10101100进行hamming编码和校验。
第一,先手工计算校验位P5~P1=_10111__,编码后的hamming码为__1101001101011。
计算机组成原理实验
计算机组成原理实验计算机组成原理实验报告1. 引言计算机组成原理实验是计算机类专业学生进行的重要实践课程之一。
通过实验,学生可以深入了解计算机系统的各个组成部分以及它们的功能和工作原理。
2. 实验目的本次实验的主要目的是探究计算机中的主要组成部分,包括中央处理器(CPU)、内存、输入输出设备以及硬盘等,并了解它们的相互连接与调度方式。
3. 实验装置和材料本实验使用了一台计算机,配备有Intel Core i7处理器、8GB 内存和500GB硬盘。
实验中还使用了键盘、鼠标和显示器等输入输出设备。
4. 实验过程及结果4.1 CPU实验在这个实验中,我们通过编写汇编语言程序来实现简单的数值运算。
实验结果显示,CPU能够根据程序逐条执行指令,并正确计算出结果。
4.2 内存实验通过编写C语言程序,我们对内存进行读写操作。
实验结果显示,内存可以正确存储和读取数据,并且能够保持数据的一致性。
4.3 输入输出设备实验在这个实验中,我们测试了键盘和鼠标的输入功能以及显示器的输出功能。
实验结果显示,输入设备能够正确识别用户的输入,而输出设备能够正确显示结果。
4.4 硬盘实验通过读写文件的操作,我们测试了硬盘的存储和检索功能。
实验结果显示,硬盘能够正确存储和读取文件,并且能够在短时间内进行大量的数据传输。
5. 结论通过本次实验,我们深入了解了计算机系统的各个组成部分以及它们的功能和工作原理。
实验结果表明,计算机的各个组件能够正常工作,并且能够协同工作以完成复杂的任务。
6. 参考文献[1] 《计算机组成原理实验指导书》[2] Smith, J.E., & Jones, P. 《Computer Organization and Design: The Hardware/Software Interface》. Morgan Kaufmann, 2014.。
计算机组成原理实验报告
计算机组成原理实验报告
实验目的:
本实验的目的是通过进行计算机组成原理实验,深入理解计算机的基本组成和工作原理,掌握计算机硬件与软件之间的协同工作方式。
实验设备:
1. 计算机主机
2. 键盘
3. 鼠标
4. 显示器
实验步骤:
1. 打开计算机主机,并接通电源。
2. 等待计算机启动完毕,进入操作系统界面。
3. 输入用户名和密码,登录系统。
4. 在桌面上打开文本编辑器,并新建一个文档。
5. 在文档中输入一段文字,并保存文件。
6. 打开浏览器,进入互联网页面。
7. 在浏览器中输入搜索词语,并点击搜索按钮。
8. 查看搜索结果,并点击其中一个链接。
9. 在打开的页面上点击按钮或链接,进行相应操作。
10. 关闭浏览器。
11. 关闭文本编辑器,保存文档。
12. 关闭计算机主机。
实验结果:
通过完成以上步骤,我们成功地进行了计算机组成原理实验。
在电脑启动后,我们登录系统并使用了各种软件和外部设备。
计算机可以顺利地接收我们的指令,并作出相应的操作。
我们也能够通过互联网浏览页面,并进行搜索和点击链接操作。
实验总结:
通过本次实验,我们更加深入地理解了计算机的组成和工作原理。
计算机是由硬件和软件组成,硬件包括主机、键盘、鼠标、显示器等,软件包括操作系统、文本编辑器、浏览器等。
计算机的各个组件通过协同工作,实现了我们对计算和信息的处理。
掌握计算机组成原理对于我们更好地使用计算机和理解计算机科学的发展趋势具有重要意义。
计算机组成原理实验报告_6
计算机组成原理实习报告本学期我们开设了计算机组成原理这门课, 主要学习计算机的主要部件以及这些部件组成的原理和如何运行。
除了平时的课堂学习, 我们还有实验课帮助我们更好的了解这门课程。
用于我们实验的机器是TEC-XP, 它是由清华大学计算机系和清华大学科教仪器厂联合研制的适用于计算机组成原理课程的实验系统, 主要用于计算机组成原理和数字电路等的硬件教学实验, 同时还支持监控程序、汇编语言程序设计、BASIC高级语言程序设计等软件方面的教学实验。
它的功能设计和实现技术, 都紧紧地围绕着对课程教学内容的覆盖程度和所能完成的教学实验项目的质量与水平来进行安排。
其突出特点是硬、软件基本配置比较完整, 能覆盖相关课程主要教学内容, 支持的教学实验项目多且水平高。
其组成和实现的功能如图1所示。
图1.硬件实现的实际计算机系统图一.微程序实验步骤1.接通教学机电源。
2.将教学机左下方的5个拨动开关置为11010(单步、手动置指令、微程序、联机、16 位)。
3.按一下“RESET”按键。
4.通过16 位的数据开关SWH、SWL置入指令操作码。
5.在单步方式下, 通过指示灯观察各类基本指令的微码。
(1) 选择基本指令的A组指令中的ADD指令, 观察其节拍流程1) 置拨动开关SW=00000000 00000001;(表示指令ADD R0, R1 )2) 按RESET按键;指示灯Microp亮(只要选择微程序, 该灯在指令执行过程中一直亮),其它灯全灭;3) 按START按键;指示灯CI3~0、SCC3~0显示1110 0000, 微址和下址的指示灯全灭;(本拍完成公共操作0→PC.DI#=0)4) 按START按键;指示灯CI3~0、SCC3~0显示1110 0000, 微址指示灯显示0000 0001, 下址的指示灯全灭;(本拍完成公共操作PC→AR、PC+1→PC)5) 按START按键;指示灯CI3~0、SCC3~0显示1110 0000, 微址指示灯显示0000 0010, 下址的指示灯全灭;(本拍完成公共操作MEM→IR)6) 以上三步为公共操作, 其它指令同;7) 按START按键;指示灯CI3~0、SCC3~0显示0010 0000, 微址指示灯显示0000 0011, 下址的指示灯显示0000 0100;(本拍完成/MAP操作功能)8) 按START按键;指示灯CI3~0、SCC3~0显示0011 0000, 微址指示灯显示0000 0100, 下址的指示灯显示0011 0000 (本拍执行ADD指令, DR←DR+SR 操作)。
计算机组成原理实验报告
计算机组成原理实验报告实验名称:计算机组成原理实验报告摘要:本实验旨在通过对计算机组成原理的实际操作,加深对计算机硬件组成和工作原理的理解。
通过实验,我们深入学习了计算机的基本组成部分,包括中央处理器(CPU)、存储器(内存和外存)、输入输出设备等,并通过实际操作和数据收集,探究了这些组成部分的工作原理和性能评估。
1. 引言计算机组成原理是计算机科学与技术专业中的一门重要课程,它涉及到计算机硬件的基本组成和工作原理。
通过实验,我们可以更深入地了解计算机的内部结构和工作原理,加深对计算机组成原理的理解。
2. 实验目的本实验的目的是通过实际操作,加深对计算机组成原理的理解,具体目标包括:- 理解计算机的基本组成部分,包括中央处理器(CPU)、存储器(内存和外存)、输入输出设备等;- 掌握计算机组成部分的工作原理,包括指令执行过程、数据传输过程等;- 学习使用性能评估工具,对计算机组成部分进行性能评估;- 分析实验结果,总结实验中的问题和经验。
3. 实验设备和材料- 计算机硬件:包括主机、显示器、键盘、鼠标等;- 实验软件:计算机组成原理实验软件;- 实验材料:实验指导书、实验报告模板等。
4. 实验方法4.1 实验步骤本实验分为以下几个步骤:1) 打开计算机并登录操作系统;2) 启动计算机组成原理实验软件;3) 根据实验指导书的要求,完成实验任务;4) 记录实验过程中的关键数据和观察结果;5) 关闭计算机组成原理实验软件;6) 关机并退出操作系统。
4.2 实验内容本实验包括以下几个内容:1) CPU性能评估:通过实验软件模拟CPU的运行过程,使用性能评估工具记录CPU的运行时间、指令执行速度等关键数据,并进行分析和比较。
2) 存储器性能评估:通过实验软件模拟存储器的读写过程,使用性能评估工具记录存储器的读写速度、延迟等关键数据,并进行分析和比较。
3) 输入输出设备性能评估:通过实验软件模拟输入输出设备的工作过程,使用性能评估工具记录输入输出设备的响应时间、传输速度等关键数据,并进行分析和比较。
计算机组成原理实验报告
计算机组成原理实验报告计算机组成原理实验报告引言:计算机组成原理是计算机科学与技术专业的重要课程之一,通过实验可以更好地理解和掌握计算机的组成原理。
本篇实验报告将介绍我们在计算机组成原理实验中所进行的实验内容和实验结果。
实验一:逻辑门电路设计在这个实验中,我们学习了逻辑门电路的设计和实现。
通过使用门电路,我们可以实现与门、或门、非门等基本逻辑运算。
我们首先学习了逻辑门电路的真值表和逻辑代数的基本运算规则,然后根据实验要求,使用逻辑门电路设计了一个简单的加法器电路,并通过仿真软件进行了验证。
实验结果表明,我们设计的加法器电路能够正确地进行二进制数的加法运算。
实验二:数字逻辑电路实现在这个实验中,我们进一步学习了数字逻辑电路的实现。
通过使用多路选择器、触发器等数字逻辑元件,我们可以实现更复杂的逻辑功能。
我们首先学习了多路选择器的原理和使用方法,然后根据实验要求,设计了一个4位二进制加法器电路,并通过数字逻辑实验板进行了搭建和测试。
实验结果表明,我们设计的4位二进制加法器能够正确地进行二进制数的加法运算。
实验三:存储器设计与实现在这个实验中,我们学习了存储器的设计和实现。
存储器是计算机中用于存储和读取数据的重要组成部分。
我们首先学习了存储器的基本原理和组成结构,然后根据实验要求,设计了一个简单的8位存储器电路,并通过实验板进行了搭建和测试。
实验结果表明,我们设计的8位存储器能够正确地存储和读取数据。
实验四:计算机硬件系统设计与实现在这个实验中,我们学习了计算机硬件系统的设计和实现。
计算机硬件系统是计算机的核心部分,包括中央处理器、存储器、输入输出设备等。
我们首先学习了计算机硬件系统的基本原理和组成结构,然后根据实验要求,设计了一个简单的计算机硬件系统,并通过实验板进行了搭建和测试。
实验结果表明,我们设计的计算机硬件系统能够正确地进行指令的执行和数据的处理。
结论:通过这些实验,我们深入学习了计算机组成原理的相关知识,并通过实践掌握了计算机组成原理的基本原理和实现方法。
计算机组成原理的实验报告
计算机组成原理的实验报告一、实验目的本次实验的主要目的是深入理解计算机组成原理中的关键概念和组件,通过实际操作和观察,增强对计算机硬件系统的认识和掌握能力。
具体包括:1、了解计算机内部各部件的工作原理和相互关系。
2、熟悉计算机指令的执行流程和数据的传输方式。
3、掌握计算机存储系统的组织和管理方法。
4、培养分析和解决计算机硬件相关问题的能力。
二、实验设备本次实验使用的设备包括计算机、逻辑分析仪、示波器以及相关的实验软件和工具。
三、实验内容1、运算器实验进行了简单的算术运算和逻辑运算,如加法、减法、与、或等操作。
观察运算结果在寄存器中的存储和变化情况。
2、控制器实验模拟了指令的取指、译码和执行过程。
分析不同指令对计算机状态的影响。
3、存储系统实验研究了内存的读写操作和地址映射方式。
考察了缓存的工作原理和命中率的计算。
4、总线实验观察数据在总线上的传输过程和时序。
分析总线竞争和仲裁的机制。
四、实验步骤1、运算器实验步骤连接实验设备,将运算器模块与计算机主机相连。
打开实验软件,设置运算类型和操作数。
启动运算,通过逻辑分析仪观察运算过程中的信号变化。
记录运算结果,并与预期结果进行比较。
2、控制器实验步骤连接控制器模块到计算机。
输入指令序列,使用示波器监测控制信号的产生和变化。
分析指令执行过程中各个阶段的状态转换。
3、存储系统实验步骤搭建存储系统实验电路。
进行内存读写操作,改变地址和数据,观察存储单元的内容变化。
分析缓存的替换策略和命中率的影响因素。
4、总线实验步骤连接总线模块,配置总线参数。
多个设备同时发送数据,观察总线的仲裁过程。
测量数据传输的时序和带宽。
五、实验结果与分析1、运算器实验结果加法、减法等运算结果准确,符合预期。
逻辑运算的结果也正确无误。
观察到在运算过程中,寄存器的值按照预定的规则进行更新。
分析:运算器的功能正常,能够准确执行各种运算操作,其内部的电路和逻辑设计合理。
2、控制器实验结果指令能够正确取指、译码和执行,控制信号的产生和时序符合指令的要求。
计算机组成原理实验报告
计算机组成原理实验报告一、实验目的本次计算机组成原理实验的主要目的是深入理解计算机的内部结构和工作原理,通过实际操作和观察,巩固和拓展课堂上学到的理论知识,培养实践动手能力和解决问题的能力。
二、实验设备本次实验所使用的设备包括计算机主机、逻辑分析仪、示波器、面包板、各种芯片(如 74LS 系列、8255 芯片等)、导线若干。
三、实验内容1、算术逻辑运算单元(ALU)实验通过使用芯片搭建一个简单的算术逻辑运算单元,实现加法、减法、与、或等基本运算,并观察运算结果。
2、存储单元实验构建一个存储单元,了解存储器的读写操作和存储原理,包括随机存储器(RAM)和只读存储器(ROM)。
3、控制器实验设计一个简单的控制器,实现指令的译码和执行,理解计算机如何按照指令序列进行工作。
4、总线结构实验研究计算机内部的总线结构,包括数据总线、地址总线和控制总线,了解它们在信息传输中的作用。
四、实验原理1、算术逻辑运算单元算术逻辑运算单元是计算机中进行算术和逻辑运算的核心部件。
它通常由加法器、减法器、逻辑门等组成。
通过对输入的操作数进行相应的运算操作,产生输出结果。
2、存储单元存储器用于存储程序和数据。
随机存储器(RAM)可以随时读写,但其数据在断电后会丢失;只读存储器(ROM)中的数据在制造时就已确定,只能读取不能修改,且断电后数据不会丢失。
3、控制器控制器是计算机的指挥中心,负责从存储器中取出指令,对指令进行译码,并产生控制信号,控制各个部件的操作。
4、总线结构总线是计算机内部各个部件之间传输信息的公共通道。
数据总线用于传输数据,地址总线用于传输地址信息,控制总线用于传输控制信号。
五、实验步骤(1)按照实验电路图,在面包板上正确连接 74LS 系列芯片,如74LS181 等,构建加法器和逻辑运算电路。
(2)通过改变输入信号的值,使用逻辑分析仪观察输出结果,验证运算的正确性。
2、存储单元实验(1)使用芯片搭建随机存储器(RAM)和只读存储器(ROM)电路。
计算机组成原理实验(接线、实验步骤)
实验一运算器[实验目的]1.掌握算术逻辑运算加、减、乘、与的工作原理;2.熟悉简单运算器的数据传送通路;3.验证实验台运算器的8位加、减、与、直通功能;4.验证实验台4位乘4位功能。
[接线]功能开关:DB=0 DZ=0 DP=1 IR/DBUS=DBUS接线:LRW:GND(接地)IAR-BUS# 、M1、M2、RS-BUS#:接+5V控制开关:K0:SW-BUS# K1:ALU-BUSK2:S0 K3:S1 K4:S2K5:LDDR1 K6:LDDR2[实验步骤]一、(81)H与(82)H运算1.K0=0:SW开关与数据总线接通K1=0:ALU输出与数据总线断开2.开电源,按CLR#复位3.置数(81)H:在SW7—SW0输入10000001→LDDR2=1,LDDR1=0→按QD:数据送DR2置数(82)H:在SW7—SW0输入10000010→LDDR2=0,LDDR1=1→按QD:数据送DR1 4.K0=1:SW开关与数据总线断开K1=1:ALU输出与数据总线接通5. S2S1S0=010:运算器做加法(观察结果在显示灯的显示与进位结果C的显示)6.改变S2S1S0的值,对同一组数做不同的运算,观察显示灯的结果。
二、乘法、减法、直通等运算1.K0K1=002.按CLR#复位3.分别给DR1和DR2置数4.K0K1=115. S2S1S0取不同的值,执行不同的运算[思考]M1、M2控制信号的作用是什么?运算器运算类型选择表选择操作S2 S1 S00 0 0 A&B0 0 1 A&A(直通)0 1 0 A+B0 1 1 A-B1 0 0 A(低位)ΧB(低位)完成以下表格ALU-BUS SW-BUS# 存储器内容S2S1S0 DBUS C输入时:计算时:DR1:01100011DR2:10110100(与)DR1:10110100DR2:01100011(直通)DR1:01100011DR2:01100011(加)DR1:01001100DR2:10110011(减)DR1:11111111DR2:11111111(乘)实验二双端口存储器[实验目的]1.了解双端口存储器的读写;2.了解双端口存储器的读写并行读写及产生冲突的情况。
计算机组成原理实验报告(4个)
上海建桥学院本科实验报告课程名称:计算机组成原理学号:姓名:专业:班级:指导教师:课内实验目录及成绩序号实验名称页码成绩1 八位算术逻辑运算 12 静态随机存取存储器实验63 数据通路114 微程序控制器的实现16总成绩信息技术学院2014年03 月20 日上海建桥学院实验报告课程名称:计算机组成原理实验类型:验证型实验项目名称:八位算术逻辑运算实验地点:实验日期:年月日一、实验目的和要求1、掌握运算器的基本组成结构;2、掌握运算器的工作原理。
二、实验原理和内容实验采用的运算器数据通路如图1-1所示,ALU逻辑功能表如表1-1所示。
图1-1运算器原理图ALU部件由一片 CPLD实现,内部含有三个独立的运算部件,分别为算术、逻辑和移位运算部件。
输入数据IN[7..0](由插座JP22引出)通过拨动开关sK7..sK0产生(开关由插座JP97引出)。
数据存于暂存器A或暂存器 B中(暂存器A和B的数据可在 LED灯上实时显示),三个部件可同时接受来自暂存器 A和 B的数据。
各部件对操作数进行何种运算由控制信号S3…S0和CN_I来决定(S3…S0由插座JP18引出;CN_I由插座JP19引出),可通过拨动开关sK23..sK20和sK12设置(开关由插座JP89、JP19引出)。
运算结果由三选一多路开关选择,任何时候,多路开关只选择三个部件中的一个部件的运算结果作为ALU的输出。
ALU的输出ALU_D7..ALU_D0通过三态门74LS245送至CPU内部数据总线(iDBus)上(由插座JP25引出),并通过扩展区单元的的二位数码管和DS94..DS101LED灯显示(LED灯由插座JP62引出)。
如果运算影响进位标志FC、零标志FZ、正负标志FS,则在T3状态的下降沿,相应状态分别锁存到FC、FZ、FS触发器中,实验仪设有LED灯显示各标志位状态。
操作控制信号wA(允许写暂存器A)、wB(允许写暂存器B)、rALU(允许ALU结果输出到内部数据总线(iDBus)上)由JP19引出,都为低电平有效,实验时可通过连接开关sK15..sK13设置(开关由插座JP92引出)。
计算机组成原理实验六程序计数器
洛阳理工学院实验报告6系别计算机系班级学号姓名课程名称计算机组成与系统结构实验日期2015.5.18 实验名称程序计数器成绩实验目的:掌握模型机中程序计数器PC的工作原理及其控制方法。
实验条件:CPTH 实验仪实验内容:1、实验要求利用CPTH 实验仪上的K16..K23 开关做为DBUS 的数据,其它开关做为控制信号,实现程序计数器PC的写入及加1 功能。
2、实验原理PC 是由两片74HC141构成的八位带预置记数器,预置数据来自数据总线。
记数器的输出通过74HC245(PCOE)送到地址总线。
PC 值还可以通过74HC245(PCOE_D)送回数据总线。
PC原理图由图13所示。
图13 寄存器W原理图在CPTH 中,PC+1 由PCOE 取反产生。
当RST = 0 时,PC 记数器被清0。
当LDPC = 0 时,在CK 的上升沿,预置数据被打入PC 记数器。
当PC+1 = 1 时,在CK 的上升沿,PC 记数器加1。
当PCOE = 0 时,PC 值送地址总线。
PC 打入控制电路由一片74HC151构成(isp1016实现)。
原理图如图14所示。
功能表见下表。
当ELP=1 时,LDPC=1,不允许PC 被预置。
当ELP=0 时,LDPC 由IR3,IR2,Cy ,Z 确定。
当IR3 IR2 = 1 X 时,LDPC=0,PC 被预置。
当IR3 IR2 = 0 0 时,LDPC=非Cy ,当Cy=1时,PC 被预置。
当IR3 IR2 = 0 1 时,LDPC=非Z ,当Z=1 时,PC 被预置。
图14 PC 打入控制原理图3、实验步骤(1)按照下表连接线。
(2)按照下表设置控制信号。
按一次STEP脉冲键,CK产生一个上升沿,数据PC 被加1。
(3)二进制开关K23-K16用于DBUS[7:0]的数据输入,置数据12H:置控制信号为:每置控制信号后,按一下STEP键,观察PC的变化。
实验结果及分析:结果根据实验步骤连接好实际电路,按内容要求利用CPTH 实验仪上的K16..K23 开关做为DBUS 的数据,其它开关做为控制信号,实现程序计数器PC的写入及加1 功能。
计算机组成原理实验(TEC-6)
⑷进行加法运算 微地址指示灯µA5—µA0 显示 24H。信号 SEL1=0、SEL0=1,将 R1 中的数据送 B 总线。信 号 SEL1、SEL0 选择送 B 总线的寄存器,选择方式如下: SEL1 SEL0 对应信号的值 送 B 总线的寄存器 0 0 无 无 0 1 RS1#=0 R1 1 0 RS2#=0 R2 1 1 RS3#=0 R3 信号 M=0、S3=1、S2=0、S1=0、S0=1,指示进行加法运算。ALUBUS=1,指示将运算数据 结果送数据总线 DBUS。信号 LDC=1,指示将运算后得到的进位 C 保存;信号 LDZ=1,指示将 运算后得到的结果为 0 标志保存。 这时 A 总线指示灯 A7—A0 显示被加数 A,B 总线指示灯显示加数 B,数据总线 DBUS 指 示灯 D7—D0 显示运算结果 A+B。按一次 QD 按钮,进入下一步。
【实验步骤】
1.实验准备 ⑴将TEC-6实验台上的下列信号连接,以便控制信号能够对寄存器组和运算器进行控制。 信号SWBUS#-O和信号SWBUS#-I连接, 信号ALUBUS#-O和信号ALUBUS#-I连接, 信号RAMBUS#-O和信号RAMBUS#-I连接。 ⑵将控制器转换开关设置为微程序状态,使用微程序控制器产生的控制信号对寄存 器组组和运算器进行控制。 ⑶打开电源 下述实验中,信号指示灯亮代表对应信号为1,信号指示灯灭代表对应信号为0。实 验时要对照图2-2察看每一步骤的相应信号的值。
T1 T2
T3
•
对于运算器操作来说,在T1期间,读取微指令,产生控制运算的信号, 并将控制信号保持到T3结束;在T2期间,根据控制信号,完成运算功能; 在T3的上升沿,保存运算结果。
图2-2,运算器实验的电路图。
• 在TEC-6模型计算机中,寄存器组由4个寄存器R0(U50)、R1(U51)、R2(U45)、R3(U46)以及2个三3输入正与门组成 (U33和U38)。4个寄存器R0、R1、R2和R3都是74LS374。R0是累加器,它的输出通过A总线送运算器的A端口;R1、R2和R3 是通用寄存器,它们的输出通过B总线送运算器的B端口。R0、R1、R2和R3从数据总线DBUS接收数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六节 CPU组成与机器指令执行实验
一、实验目的
(1)将微程序控制器同执行部件(整个数据通路)联机,组成一台模型计算机;
(2)用微程序控制器控制模型机数据通路;
(3)通过CPU运行九条机器指令(排除中断指令)组成的简单程序,掌握机器指令与微指令的关系,牢固建立计算机的整机概念。
二、实验电路
本次实验用到前面四个实验中的所有电路,包括运算器、存储器、通用寄存器堆、程序计数器、指令寄存器、微程序控制器等,将几个模块组合成为一台简单计算机。
因此,在基本实验中,这是最复杂的一个实验,也是最能得到收获的一个实验。
在前面的实验中,实验者本身作为“控制器”,完成数据通路的控制。
而在本次实验中,数据通路的控制将由微程序控制器来完成。
CPU从内存取出一条机器指令到执行指令结束的一个机器指令周期,是由微指令组成的序列来完成的,即一条机器指令对应一个微程序。
三、实验设备
(1)TEC-9计算机组成原理实验系统一台
(2)双踪示波器一台
(3)直流万用表一只
(4)逻辑测试笔一支
四、实验任务
(1)对机器指令系统组成的简单程序进行译码。
(2)按照下面框图,参考前面实验的电路图完成连线,控制器是控制部件,数据通路(包括上面各模块)是执行部件,时序产生器是时序部件。
连线包括控制台、时序部分、数据通路和微程序控制器之间的连接。
其中,为把操作数传送给通用寄存器组RF,数据通路上的RS1、RS0、RD1、RD0应分别与IR3至IR0连接,WR1、WR0也应接到IR1、IR0上。
开关控制
控制台时序发生器
时序信号
开关控制指示灯信号控制信号时序信号
控制信号
微程序控制器数据通路
指令代码、条件信号
(3)将上述任务(1)中的程序机器代码用控制台操作存入内存中,并根据程序的需要,用数码开关SW7—SW0设置通用寄存器R2、R3及内存相关单元的数据。
注意:由于设置通用寄存器时会破坏内存单元的数据,因此一般应先设置寄存器的数据,再设置内存数据。
也可以使用上端软件或实验台监控系统用PS2键盘写入内容。
(4)用单拍(DP)方式执行一遍程序,列表记录通用寄存器堆RF中四个寄存器的数据,以及由STA指令存入RAM中的数据(程序结束后从RAM的相应单元中读出),与理论分析值作对比。
单拍方式执行时注意观察微地址指示灯、IRBUS指示灯、DBUS指示灯、AR2指示灯、AR1指示灯和判断字段指示灯的值,以跟踪程序中取指令和执行指令的详细过程(可观察到每一条微指令)。
(5)以单指(DZ)方式重新执行程序一遍,注意观察IR/DBUS指示灯、AR2/AR1指示灯的值(可观察到每一条机器指令)。
执行结束后,记录RF中四个寄存器的数据,以及由STA指令存入RAM中的数据,与理论分析值作对比。
注意:单指方式执行程序时,四个通用寄存器和RAM中的原始数据与第一遍执行程序的结果有关。
(6)以连续方式(DB、DP、DZ都设为0)再次执行程序。
这种情况相当于计算机正常运行程序。
由于程序中有停机指令STP,程序执行到该指令时自动停机。
执行结束后,记录RF中四个寄存器的数据,以及由STA指令存入RAM中的数据,与理论分析值作对比。
同理,程序执行前的原始数据与第二遍执行结果有关。
五、实验步骤和实验结果
1、对机器指令系统组成的简单程序进行译码并填入下表中。
2、接线
微程序控制器与数据通路之间的线可以通过选择开关直接选择。
将开关设置为“微程序”。
只需连接数据通路部分的线。
a、数据通路的LDIR接CER、LDPC接LDR4、LDDR1接LDDR2、M1接M2、LDAR1接LDAR2。
b
、指令寄存器IR的输出IR0接双端口寄存器堆的RD0、WR0,IR1接RD1、WR1,IR2
选择模式开关拔=“微程序”
3、实验步骤
(1)、设置通用寄存器R2、R3的值。
在本操作中,使R2 = 60H,R3 = 61H。
令DP = 0,DB = 0,DZ =0,使实验系统处于连续运行状态。
令SWC = 0、SWB = 1、SWA = 1,使实验系统处1)、于寄存器加载工作方式KLD。
按CLR#按钮,使实验系统处于初始状态。
2)、在SW7—SW0上设置一个存储器地址,该存储器地址供设置通用寄存器使用。
该存储器地址最好是不常用的一个地址,以免设置通用寄存器操作破坏重要的存储器单元的内容。
例如可将该地址设置为0FFH。
3)、按一次QD按钮,将0FFH写入AR0和AR1。
4)、在SW7—SW0上设置02H,作为通用寄存器R2的寄存器号。
按一次QD按钮,则将02H 写入IR。
5)、在SW7—SW0设置60H,作为R2的值。
按一次QD按钮,将60H写入IR指定的R2寄存器。
6)、在SW7—SW0上设置03H,作为通用寄存器R3的寄存器号。
按一次QD按钮,将03H 写入IR。
7)、在SW7—SW0设置61H,作为R3的值。
按一次QD按钮,将61H写入R3。
设置R2、R3结束,按CLR#按钮,使实验系统恢复到初始状态。
或用实验台监控系统或系统上端软件直接写入内容
(2)、存程序机器代码。
本操作中,我们从00地址开始依次存10个机器代码:58H,5DH,04H,94H,3EH,1BH,4BH, 60H,84H。
在60H存入24H,用于给R0置初值;在61H存入83H,用于给R0置初值。
令DP = 0,DB = 0,DZ =0,使实验系统处于连续运行状态。
令SWC = 0、SWB = 1、SWA = 0,使实验系统处于写双端口存储器工作方式KWE。
按CLR#按钮,使实验系统处于初始状态。
1)、置SW7—SW0为00H,按QD按钮,将00H写入AR1。
2)、置SW7—SW0 为58H,按QD按钮,将58H写入存储器00H单元。
AR1自动加1,变为01H。
3)、置SW7—SW0为5DH,按QD按钮,将5DH写入存储器01H单元。
AR1自动加1,变为02H。
重复进行下去,一直到将84H写入存储器09H单元。
按CLR#按钮,使实验系统恢复到初始状态。
4)、置SW7—SW0为60H,按QD按钮,将60H写入AR1。
5)、置SW7—SW0 为24H,按QD按钮,将24H写入存储器60H单元。
AR1自动加1,变为61H。
6)、置SW7—SW0为83H,按QD按钮,将83H写入存储器61H单元。
按CLR#按钮,使实验系统恢复到初始状态。
或用实验台监控系统或系统上端软件直接写入内容
(3)用单拍(DP)方式执行一遍程序。
(SWC=0,SWB=0,SWA==0;DP=1,DZ=0,DB=0)在单拍执行过程中,首先要随时监测AR2的值和IR的值,以判定程序执行到何处,正在执行哪条指令。
监测微地址指示灯和判断字段指示灯,对照微程序流程图,可以判断出微指令的地址和正在进行的微操作。
程序执行的结果如下:
初值:R0未定,R1未定,R2 = 60H,R3 = 61H。
存储器60H单元的内容是24H,61H
单元的内容是83H。
(4)、用单指(DZ=1)方式执行程序。
1)、按步骤(1)写寄存器内容。
使R2 = 60H,R3 = 61H。
2)、按步骤(2)写存储器内容。
从00地址开始依次存10个机器代码:58H,5DH,04H,95H,3EH,1BH,4BH,60H,84H。
在60H存入24H,用于给R0置初值;在61H 存入83H,用于给R0置初值。
3)、单指执行程序(SWC=0,SWB=0,SWA==0;DP=0,DZ=1,DB=0)
初值:R0未定,R1未定,R2 = 60H,R3 = 61H。
存储器60H单元的内容是24H,61H单元的内容是83H。
按一次QD,执行一条指令,观察寄存器的值:
(5)、用连续方式执行程序。
1)、按步骤(1)写寄存器内容。
使R2 = 60H,R3 = 61H。
2)、按步骤(2)写存储器内容。
从00地址开始依次存10个机器代码:58H,5DH,04H,94H,3EH,1BH,4BH,60H,84H。
在60H存入24H,用于给R0置初值;在61H 存入83H,用于给R0置初值。
3)、单连续方式执行程序(SWC=0,SWB=0,SWA==0;DP=0,DZ=0,DB=0)
执行结果为:PC地址停在07H。
观察执行结果R0=A7H;R1=83H;R2=60H;R3=01H
存储器60单元:01H。