天津市2018年中考数学试题(解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长郡中学史李东
2018年天津市初中毕业生学业考试试卷
数学
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1. 计算的结果等于()
A. 5
B.
C. 9
D.
【答案】C
【解析】分析:根据有理数的乘方运算进行计算.
详解:(-3)2=9,
故选C.
点睛:本题考查了有理数的乘方,比较简单,注意负号.
2. 的值等于()
A. B. C. 1 D.
【答案】B
【解析】分析:根据特殊角的三角函数值直接求解即可.
详解:cos30°=.
故选:B.
点睛:本题考查特殊角的三角函数值的记忆情况.特殊角三角函数值计算在中考中经常出现,要熟练掌握.
3. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()
A. B. C. D.
【答案】B
【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
详解:将77800用科学记数法表示为:.
故选B.
点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4. 下列图形中,可以看作是中心对称图形的是()
A. B. C. D.
【答案】A
【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.
详解:A、是中心对称图形,故本选项正确;
B、不是中心对称图形,故本选项错误;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误;
故选:A.
点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.
5. 下图是一个由5个相同的正方体组成的立体图形,它的主视图是()
A. B. C. D.
【答案】A
【解析】分析:画出从正面看到的图即可得到它的主视图.
详解:这个几何体的主视图为:
故选:A.
点睛:本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.
6. 估计的值在()
A. 5和6之间
B. 6和7之间
C. 7和8之间
D. 8和9之间
【答案】D
【解析】分析:利用“夹逼法”表示出的大致范围,然后确定答案.
详解:∵64<<81,
∴8<<9,
故选:D.
点睛:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题
7.计算的结果为()
A. 1
B. 3
C.
D.
【答案】C
【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案.
详解:原式=.
故选:C.
点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
8. 方程组的解是()
A. B. C. D.
【答案】A
【解析】分析:根据减消元法,可得方程组的解.
详解:,
①-②得
x=6,
把x=6代入①,得
y=4,
原方程组的解为.
故选.
点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.
9. 若点,,在反比例函数的图像上,则,,的大小关系是()
A. B. C. D.
【答案】B
【解析】分析:先根据反比例函数的解析式判断出函数象所在的象限,再根据、B、C三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答.
详解:∵反比例函数y=中,k=12>0,
∴此函数的图象在一、三象限,在每一象限内y随x的增大而减小,
∵y1<y2<0<y3,
∴.
故选:B.
点睛:本题比较简单,考查的是反比例函数图象上点的坐标特点,解答此题的关键是熟知反比例函数的增减性.
1. 如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()
A. B.
C. D.
【答案】D
【解析】分析:由折叠的性质知,BC=BE.易得.
详解:由折叠的性质知,BC=BE.
∴..
故选:D.
点睛:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
11. 如图,在正方形中,,分别为,的中点,为对角线上的一个动点,则下列线段的长等于最小值的是()
A. B. C. D.
【答案】D
【解析】分析:点E关于BD的对称点E′在线段CD上,得E′为CD中点,连接AE′,它与BD的交点即为点P,PA+PE的最小值就是线段AE′的长度;通过证明直角三角形ADE′≌直角三角形ABF即可得解.
详解:过点E作关于BD的对称点E′,连接AE′,交BD于点P.
∴PA+PE的最小值AE′;
∵E为AD的中点,
∴E′为CD的中点,
∵四边形ABCD是正方形,
∴AB=BC=CD=DA,∠ABF=∠AD E′=90°,
∴DE′=BF,
∴ΔABF≌ΔAD E′,
∴AE′=AF.
故选D.
点睛:本题考查了轴对称--最短路线问题、正方形的性质.此题主要是利用“两点之间线段最