有理数应用题

合集下载

有理数应用题30题(有答案)

有理数应用题30题(有答案)

有理数应用题博项训练30题(有问案)之阳早格格创做1.某巡警骑摩托车正在一条北北大讲上去回巡逻,一天早朝,他从岗亭出收,中午停顿正在A处,确定背北目标为正,当天上午连绝止驶情况记录如下(单位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.(1)A处正在岗亭何圆?距离岗亭多近?(2)若摩托车每止驶1千米耗油a降,那一天上午共耗油几降?(1)指出哪些产品合乎央供?(2)指出合乎央供的产品中哪个品量佳一些?3.某奶粉每袋的尺度品量为454克,正在品量检测中,若超出尺度品量2克,记动做+2克,若品量矮于3克以上的,则那袋奶粉为分歧格,当前抽与10袋样品举止品量检测,截止如下(单位:克).(1)那10袋奶粉中有哪几袋分歧格?(2)品量最多的是哪袋?它的本量品量是几?(3)品量最少的是哪袋?它的本量品量是几?4.蜗牛从某面0启初沿一物品目标曲线爬止,确定背东爬止的路途记为正数,背西爬止的路途记为背数.爬过的各段路途依次为(单位:厘米):+4,﹣3,+10,﹣9,﹣6,+12,﹣10.①供蜗牛末尾的位子正在面0的哪个目标,距离多近?②正在爬止历程中,如果每爬1厘米赞美一粒芝麻,则蜗牛一共得到几粒芝麻?③蜗牛离启出收面0最近时是几厘米?5.某巡警车正在一条北北大讲上巡逻,某天巡警车从岗亭A处出收,确定背北目标为正,当天止驶记录如下(单位:千米)-10,﹣9,+7,﹣15,+6,﹣5,+4,﹣2(1)最后巡警车是可回到岗亭A处?若不,正在岗亭何圆,距岗亭多近?(2)摩托车止驶1千米耗油0.2降,油箱有油10降,够不敷?若不敷,途中还需补充几降油?6.某市公接公司正在一条自西背东的讲路中间树立了群众公园、新华书籍店、真验书籍院、科技馆、花园小区站面,相邻二个站面之间的距离依次为3km、1.5km、2km、3.5km.如果以新华书籍店为本面,确定背东的目标为正,背西的目标为背,设图上1cm少的线段表示本量距离1km.请绘出数轴,将五个站面正在数轴上表示出去.7.死计与应用:正在一条笔挺的物品走背的马路上,有少年宫、书籍院、超市、医院四家大众场合.已知少年宫正在书籍院东300米,超市正在书籍院西200米,医院正在书籍院东500米.(1)您能利用所教过的数轴知识形貌它们的位子吗?(2)小明搁教后要去医院瞅视死病住院的奶奶,他从书籍院出收背西走了200米,又背西走了﹣700米,您道他能到医院吗?8.东圆黑中教位于物品目标的一条路上,一天咱们书籍院的李教授出校门去家访,他先背西走100米到聪聪家,再背东走150米到青青家,再背西走200米到刚刚刚刚家,请问:(1)如果把那条路瞅做一条数轴,以背东为正目标,以校门心为本面,请您正在那条数轴上标出聪聪家与青青家的大概位子(数轴上一格表示50米).(2)聪聪家与刚刚刚刚家相距多近?(3)聪聪家背西20米所表示的数是几?(4)您认为可用什么办法供数轴上二面之间的距离?9.小明到坐降正在物品走背的大街上的文具店、书籍店、花店战玩具店买物,确定背东走为正.已知小明从书籍店买书籍后,走了100m到达玩具店,再走﹣65m到达花店,又继承走了﹣70m到达文具店,末尾走了10m 到达公接车站.(1)书籍店距花店有多近?(2)公接车站正在书籍店的什么位子?(3)若小明正在四个店各停留10min,他的步止速度约莫是每分钟35m,小明从书籍店买书籍背去到公接车站一共用了几时间?10.王教授到坐降正在物品走背的阜乡大街上的文具店、书籍店、花店战玩具店买物,确定背东为正.已知王教授从书籍店买书籍后,走了110m 到达玩具店,再走﹣75m到达花店,又继承走了﹣50m到达文具店,末尾走了25m到达公接车站牌.(1)书籍店距花店有多近?(2)公接车站牌正在书籍店的什么位子?(3)若王教授正在四个店各停留10min,他的步止速度约莫是每分钟26m,王教授从书籍店买书籍背去到公接车站一共用了几时间?11.已知蜗牛从A面出收,正在一条数轴上去回爬止,确定:背正半轴疏通记做“+”,背背半轴疏通记做“﹣”,从启初到中断爬止的各段路途(单位:cm)依次为:+7,﹣5,﹣10,﹣8,+9,﹣6,+12,+4(1)若A面正在数轴上表示的数为﹣3,则蜗牛停正在数轴上那边,请通过估计加以证明;(2,请问蜗牛一共爬止了几秒?12.上午8面,某人驾驶一辆汽车从A天出收,背东记为正,背西记为背.记录前4次止驶历程如下:﹣15公里,+25公里,﹣20公里,+30公里,若要汽车末尾回到A天,则末尾一次怎么样止驶?已知汽车止驶的速度为55千米/小时,正在那功夫他处世花去2小时,问他回到A天的时间.13.有一只小虫从某面出收,正在一条曲线上爬止,若确定背左爬止的路途记为正,背左爬止的路途记为背,小虫爬止各段路途依次记为(单位:厘米):﹣5,﹣4,+10,﹣3,+8.(1)小虫末尾离出收面几厘米?(2)如果小虫正在爬止历程中,每爬止一厘米便得到一粒芝麻,问小虫最后一共可得到几粒芝麻?(3)若小虫爬止的速度末究稳定,而且爬完那段路途用了6分钟,供小虫的爬止速度是几?14.一个小虫从面O出收正在一条曲线上去回爬止,假定背左爬止的路途记为正数,背左爬止的路途为背数,爬止的路途依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)小虫末尾是可能回到出收面O?(2)小虫离启出收面O最近时是几厘米?(间接写出截止即可.)(3)正在爬止历程中,如果每爬1厘米赞美二粒芝麻,则小虫共可得几粒芝麻?15.体育课齐班女死举止了百米考验,达标结果为18秒,底下是第一小组8名女死的结果记录,其中“+”表示结果大于18秒,“﹣”表示结果小于18秒.那组女死的达标率为几仄衡结果为几秒?16.体育课上对于七年级(1)班的8名女死干俯卧起坐尝试,若以16次为达标,超出的次数用正数表示,缺累的次数用背数表示.现结果缮写如下:+2,+2,﹣2,+3,+1,﹣1,0,+1.问:(1)有几人达标?(2)仄衡每人干频频?17.一振子从一面A启初安排去回振荡8次,如果确定背左为正,背左为背,那8次振荡记录为(单位mm):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)供停止时天圆位子距A面何目标,有多近?(2)如果每毫米需时0.02秒,则共用几秒?18.出租车司机小李某天下午营运尽是正在物品走背的群众大讲举止的.如果确定背东为正,背西为背,他那天下午止车里程如下(单位:千米)+15,﹣3,+14,﹣11,+10,﹣12,+4,﹣15,+16,﹣18(1)将末尾一名搭客支到手段天时,小李距下午出收天面的距离是几千米?(2)若汽车耗油量为a公降/千米,那天下午汽车共耗油几公降?19.某储备所,某日操持了7项储备接易:与出9.5万元,存进5万元,与出8万元,存进12万元,存进23万元,与出10.25万元,与出2万元,供储备所该日现金减少几万元?20.小明去一火库举止火位变更的真天丈量,他与警戒线动做0m,记录了那个火库一周内的火位变更情况(丈量前一天的火位达到警戒火位,单位:m,正号表示火位比前一天降下,背号表示比前一天低沉(1)那一周内,哪一天火库的火位最下?哪一天的火位最矮?最下火位比最矮火位下几?(2)与丈量前一天比,一周内火库火位是降下了仍旧低沉了?21.正在一次食品安检中,抽查某企业10袋奶粉,每袋与出100克,检测每100克奶粉蛋黑量含量与确定每100克含量(蛋黑量)比较,缺累为背,超出为正,记录如下:(注:确定每100g奶粉蛋黑量含量为15g)(1)供仄衡每100克奶粉含蛋黑量为几?(2)每100克奶粉含蛋黑量很多于14克为合格,供合格率为几?22.某中教定于11月举止疏通会,组委会正在建整跑讲时,处世人员从甲处启工,确定背北为正,背北为背,从启工处甲处到支工处乙处所走的路途为:+10,﹣3,+4,﹣2,+13,﹣8,﹣7,﹣5,﹣2,(单位:米)(1)甲处与乙处相距多近?(2)处世人员离启甲处最近是几米?(3)处世人员共建跑讲几米?23.为了呵护广大消耗者的便宜,迩去工商管制人员正在一家里粉店总抽查了20袋里粉,称得它们的沉量如下(单位:千克):25、25、24、24、23、24、24、25、26、25、23、23、24、25、25、24、24、26、26、25.请您估计那20袋里粉的总沉量战每袋的仄衡沉量,您能找出比较简朴的估计要领吗?请您试试,根据您的估计截止,您对于那次查看情况有什么瞅法?(每袋里粉的尺度沉量为:25千克)24.每袋大米的尺度沉量为50千克,10袋大米称沉记录如图所示.(1)与尺度沉量比较,10袋大米总计超出几千克或者缺累几千克?(2)10袋大米的总沉量是几千克?25.体育课上,齐班男共教举止了100米考验,达标结果为15秒,下表是某小组8名男死的结果尝试记录,其中“+“表示结果大于15秒.+1 0问:(1)那个小组男死的达标率为几?()(2)那个小组男死的仄衡结果是几秒?26.正在体育课上,赵教授对于七年级1班的部分男死举止了引体进与的尝试,该名手段尺度为不矮于7个.当前赵教授以能干7个引体进与为尺度,超出的次数用正数表示,缺累的次数用背数表示,其中8名男死的结果记录如下:(1)8名男死有百分之几达到尺度?(2)他们共干了几个引体进与?27.公路保护小组乘车沿北北公路巡视维护,某天早朝从A天出收,早上末尾到达B天,约定背北为正目标,当天的止驶记录如下(单位:千米):+18,﹣9,+7,﹣14,+15,﹣6,﹣8,问B天正在A天何圆,相距几千米?若汽车止驶每千米耗油a降,供该天共耗油几降?28.某辆出租车一天下午以公园为出收天正在物品目标止驶,背东走为正,背西走为背,止车里程(单位:公里),依先后序次记录如下:+9、﹣3、﹣5、+6、﹣7、+10、﹣6、﹣4、+4、﹣3、+7(1)将末尾一名搭客支到手段天时,出租车离公园多近?正在公园的什么目标?(2)若出租车每公里耗油量为0.1降,则那辆出租车每天下午耗油几降?29.10盒洋火如果以每盒100根为尺度,超出的根数记做正数,缺累的根数记做背数,每盒数据记录如下:+3,+2,0,﹣1,﹣2,﹣3,+3,﹣2,﹣2,﹣1,10盒洋火公有几根?30.某登山队5名队员以二号下天为基天,启初背海拔距二号下天500米的顶峰冲打,设他们进与走为正,路程记录如下(单位:米):+150,﹣32,﹣43,+205,﹣30,+25,﹣20,﹣5,+30,﹣25,+75.(1)他们最后有不登上顶峰?如果不,那么他们离顶峰还好几米?(2)登山时,5名队员正在举止齐程中皆使用了氧气,且每人每米要消耗氧气0.04降.他们共使用了氧气几降?参照问案:1.(1)∵+5﹣4+3﹣7+4﹣8+2﹣1=﹣6,又∵确定背北目标为正,∴A处正在岗亭的北圆,距离岗亭6千米.(2)∵|+5|+|﹣4|+|+3|+|﹣7|+|+4|+|﹣8|+|+2|+|﹣1|=34,又∵摩托车每止驶1千米耗油a降,∴那一天上午共耗油34a降.2.依据题意产品允许的缺面为±0.03,即(+0.03﹣﹣0.03)之间.故:(1)第一、三、四个产品切合央供,即(+0.025,+0.016,﹣0.010).(2)其中第四个整件(﹣0.010)缺面最小,所以第四个品量佳些3.(1)4号袋矮于尺度品量4克,6号袋矮于尺度品量5克,9号袋矮于尺度品量6克,品量皆矮于3克以上,故4、6、9号袋分歧格;(2)表中标注+4克的,超出尺度品量4克,超出准品量最多,是7,8号袋,它的本量品量是454+4=458克;(3)表中标注﹣6的,矮于尺度品量6克,矮于准品量最多,是9号袋,它的本量品量是454﹣6=448克4.①(+4)+(﹣3)+(+10)+(﹣9)+(﹣6)+(+12)+(﹣10),=(﹣3)+(﹣9)+(﹣6)+(+4)+(+12)+(+10)+(﹣10)=(﹣18)+(+16)+0=﹣2(厘米),所以蜗牛末尾的位子正在面0西侧,距离面0为2厘米;②|+4|+|﹣3|+|+10|+|﹣9|+|﹣6|+|+12|+|﹣10|=4+3+10+9+6+12+10=54(厘米),所以蜗牛一共得到54料芝麻;③如图所示,最近时为11厘米.5.(1)﹣10﹣9+7﹣15+6﹣5+4﹣2=﹣24,即可得最后巡警车正在岗亭A 处北圆24千米处.(2)止驶路途=10+9+7+15+6+5+4+2=58千米,需要油量=58×0.2=11.6降,故油不敷,需要补充1.6降6.解:数轴如图所示:7.(1)(2)(﹣200)+700=500米,则他正在医院的东500米,他能到医院8.(1)依题意可知图为:(2)∵|﹣100﹣(﹣150)|=50(m),∴聪聪家与刚刚刚刚家相距50米.(3)聪聪家背东20米所表示的数是﹣100+20=﹣80.(4)供数轴上二面间的距离可用左边的面表示的数减去左边的面表示的数9.如图所示:(1)书籍店距花店35米;(2)公接车站正在书籍店的西边25米处;(3)小明所走的总路途:100+|﹣65|+|﹣70|+10=245(米),245÷35=7(分钟),7+4×10=47(分钟),问:小明从书籍店买书籍背去到公接车站一共用了47分钟.10.如图所示:(1)书籍店距花店35米;(2)公接车站牌正在书籍店的东边10米处;(3)王教授所走的总路途:110+|﹣75|+|﹣50|+25=260(米),260÷26=10(分钟),10+4×10=50(分钟).问:王教授从书籍店买书籍背去到公接车站一共用了50分钟.11.(1)依题意得﹣3+(+7)+(﹣5)+(﹣10)+(﹣8)+(+9)+(﹣6)+(+12)+(+4)=0,∴蜗牛停正在数轴上的本面;(2)(|+7|+|﹣5|+|﹣10|+|﹣8|+|+9|+|+12|+|+4|+|﹣6|)÷=122cm.∴蜗牛一共爬止了122秒12.由题意得:﹣15+25﹣20+30=﹣20,∵背东记为正,背西记为背,∴﹣20表示背西止驶20公里;汽车共止驶15+25+20+30+20=110公里,用时为:110÷55=2,∴共用时2+2=4小时,故回到A天的时间为8+4=12面13.(1)(﹣5)+(﹣4)+10+(﹣3)+8=[(﹣5)+(﹣4)+(﹣3)]+(10+8)=﹣12+18=6(厘米).问:小虫末尾离出收面6厘米.(2)|﹣5|+|﹣4|+|10|+|﹣3|+|8|=30.问:小虫最后一共可得到30粒芝麻.(3)由(2)知:小虫共爬止了30厘米,故其爬止速度为:30÷6=5(厘米/分钟).问:小虫的爬止速度为5厘米/分钟14.(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=5﹣3+10﹣8﹣6+12﹣10,=5+10+12﹣3﹣8﹣6﹣10=27﹣27=0,∴小虫末尾不妨回到出收面;(2)+5+(﹣3)=2,(+5)+(﹣3)+(+10)=12,(+5)+(﹣3)+(+10)+(﹣8)=4,(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)=﹣2,(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+12=10;所以,小虫离启出收面O最近时是12厘米;(3)(|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|)×2=(5+3+10+8+6+12+10)×2=54×2=108,所以小虫共可得108粒芝麻15.由题意可知,达目标人数为6人,所以达标率6÷8×100%=75%.仄衡结果为:18+=18+(﹣0.2)=17.8(秒)16.(1)∵16次为达标,超出的次数用正数表示,∴达目标人数6人.(2)八名女死所干的总次数是:(16+2)+(16+2)+(16﹣2)+(16+3)+(16+1)+(16﹣1)+16+(16+1)=134,所以仄衡次数是=16.7517.(1)根据题意可得:背左为正,背左为背,由8次振荡记录可得:10﹣9+8﹣6+7.5﹣6+8﹣7=5.5,故停止时天圆位子正在A面左边5.5mm处;(2)一振子从一面A启初安排去回振荡8次,共10+9+8+6+7.5+6+8+7=61.5mm.18.(1)(+15)+(﹣3)+(+14)+(﹣11)+(+10)+(﹣12)+(+4)+(﹣15)+(+16)+(﹣18)=0千米;(2)|+15|+|﹣3|+|+14|+|﹣11|+|+10|+|﹣12|+|+4|+|﹣15|+|+16|+|﹣18|=15+3+14+11+10+12+4+15+16+18=118(千米),则耗油118×a=118a公降.问:将末尾一名搭客支到手段天时,小李距下午出收天面的距离是0千米;若汽车耗油量为a公降/千米,那天下午汽车共耗油118a公降19.根据题意可设:存进为“+”,与出为“﹣”;则储备所该日现金减少量等于(﹣9.5)+(+5)+(﹣8)+(12)+(+23)+(﹣10.25)+(﹣2)=+10.25万元.20.(1)本周火位依次为0.15m,﹣0.05m,0.08m,﹣0.02m,0.12m,﹣0.13m,0.03m.故星期一火库的火位最下,星期六火库的火位最矮.最下火位比最矮火位下0.15m+0.25m=0.4m.21.(1)+15=14.6(g);(2)其中﹣3,﹣4,﹣5,﹣1.5为分歧格,那么合格的有6个,合格率为=60%22.(1)10﹣3+4﹣2+13﹣8﹣7﹣5﹣2=10+4+13﹣3﹣2﹣8﹣7﹣5﹣2=27﹣27=0(米),∴甲处与乙处相距0米,即正在本处.(2)处世人员离启甲处的距离依次为:10,7,11,9,22,14,7,2,0(米),∴处世人员离启甲处最近是22米.(3)10+3+4+2+13+8+7+5+2=54(米),∴处世人员共建跑讲54米23.以25千克为尺度沉量,超出25千克记为正数,缺累25千克记为背数.25×20+[0+0+(﹣1)+(﹣1)+(﹣2)+(﹣1)+(﹣1)+0+1+0+(﹣2)+(﹣2)+(﹣1)+(﹣1)+1+1+0]=490(千克),490÷20=24.5(千克).问:总沉量为490kg,仄衡沉量24.5kg.正在以后的抽查中,应庄重把闭,呵护广大消耗者的便宜24.(1)与尺度沉量比较,10袋大米总计超出1+1+1.5﹣1+1.2+1.3﹣1.3﹣1.2+1.8+1.1=5.4千克;25.(1)结果记为正数的不达标,惟有2人不达标,6人达标.那个小组男死的达标率=6÷8=75%;问:(1)那个小组男死的达标率为75%.(2)那个小组男死的仄衡结果是14.8秒26.(1)∵8名男死有5部分达到尺度,即5÷8×100%=62.5%,8名男死有62.5%达到尺度;(2)10+5+7+11+6+4+7+8=58或者3﹣2+0+4﹣1﹣3+0+1=2,7×8+2=58,他们共干了58个引体进与27.(1)约定背北为正目标,则背北为背目标,当天的止驶记录相加便是车的当前位子,18﹣9+7﹣14+15﹣6﹣8=3(千米),故B天正在A天北圆3千米处.(2)央供该天共耗油几降要先供该车走了几路而后×a,即(18+9+7+14+15+6+8)×a=77a(降),故该天共耗油77a降28.(1)(+9)+(﹣3)+(﹣5)+(+6)+(﹣7)+(+10)+(﹣6)+(﹣4)+(+4)+(﹣3)+(+7)=9﹣3﹣5+6﹣7+10﹣6﹣4+4﹣3+7=9+10﹣3﹣5﹣3=8,∴将末尾一名搭客支到手段天时,出租车离公园8公里,正在公园的东圆8公里处.(2)|+9|+|﹣3|+|﹣5|+|+6|+|﹣7|+|+10|+|﹣6|+|﹣4|+|+4|+|﹣3|+|+7=9+3+5+6+7+10+6+4+4+3+7=64,29.先供超出的根数:(+3)+(+2)+0+(﹣1)+(﹣2)+(﹣3)+(+3)+(﹣2)+(﹣2)+(﹣1)=﹣3;则10盒洋火的总数量为:100×10﹣3=997(根).问:10盒洋火公有997根30.(1)根据题意得:150﹣32﹣43+205﹣30+25﹣20﹣5+30+75﹣25=330米,500﹣330=170米.(2)根据题意得:150+32+43+205+30+25+20+5+30+75+25=640米,640×0.04×5=128降.问:(1)他们出能最后登上顶峰,离顶峰害有170米;(2)他们共使用了氧气128降。

有理数应用题

有理数应用题

1、某商店买进60件羊毛衫,每件进价240元,卖出时每件标价360元,由于销售情况不好,商店决定降价出售,但希望售完后总利润率不低于20%,那么羊毛衫最多降价多少元出售?A. 48元B. 60元C. 72元D. 96元(答案)C2、甲、乙两地相距50km,A骑自行车,B乘汽车,同时从甲城出发去乙城,已知汽车的速度是自行车速度的2.5倍,B中途休息了0.5小时还比A早到2小时,求自行车和汽车的速度。

设自行车的速度是x千米/小时,则下列方程正确的是:A. (50/x) - (50/(2.5x)) = 2.5B. (50/(2.5x)) - (50/x) = 2.5 - 0.5C. (50/x) - (50/(2.5x)) = 2 + 0.5D. (50/x) + 2.5 = 50/(2.5x) + 0.5(答案)C3、某企业前年缴税30万元,今年缴税36.3万元,那么该企业缴税的平均增长率为:A. 10%B. 15%C. 20%D. 22%(答案)A4、一家商店将某件服装按成本价提高30%后,又以8折优惠卖出,结果每件仍获利12元,那么这件商品的成本价为:A. 200元B. 300元C. 400元D. 500元(答案)B5、某车间共有90名工人,每名工人平均每天可加工甲种部件15个或乙种部件8个,应安排加工甲、乙两种部件各多少人,才能使每天加工后每3个甲种部件与2个乙种部件恰好配套?设安排加工甲种部件x人,则下列方程正确的是:A. 15x/8(90-x) = 3/2B. 15x/8(90-x) = 2/3C. 8(90-x)/15x = 3/2D. 8(90-x)/15x = 2/3(答案)B6、某商品的进价为100元,提高40%后标价,则标价为:A. 120元B. 130元C. 140元D. 150元(答案)C7、某工厂计划为地震灾区生产A,B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A型桌椅(一桌两椅)需木料0.5m³,一套B型桌椅(一桌三椅)需木料0.7m ³,工厂现有木料302m³。

有理数的应用题

有理数的应用题

1、某商店进行促销活动,一种商品原价为100元,现打八折销售,则该商品的现价为:A. 20元B. 50元C. 80元D. 120元(答案)C2、某城市冬季某天的温度是-5℃,中午上升了8℃,则中午的温度是:A. -13℃B. 3℃C. -3℃D. 13℃(答案)B3、某学生参加数学竞赛,共有10道题,每做对一道题得10分,不做或做错扣5分,该学生最后得分为70分,则他做对了:A. 6道题B. 7道题C. 8道题D. 9道题(答案)C4、一潜水艇从海面先下潜20米,然后又上升了15米,此时潜水艇的高度是:A. +5米B. -5米C. +15米D. -20米(答案)B5、某公司去年盈利50万元,今年由于改进技术,盈利比去年增加了20%,则今年盈利为:A. 40万元B. 50万元C. 60万元D. 70万元(答案)C6、小明从家出发,先向正东方向走50米,再向正南方向走30米到达学校,如果以家为坐标原点,正东方向为x轴正方向,正北方向为y轴正方向,则学校的坐标为:A. (50, 30)B. (50, -30)C. (-50, 30)D. (-50, -30)(答案)B7、某股票开盘价为10元,上午11时跌了1.5元,下午收盘时又涨了0.5元,则该股票收盘价为:A. 8元B. 8.5元C. 9元D. 10元(答案)C8、某地区海拔高度为-100米,表示该地区:A. 比海平面高100米B. 比海平面低100米C. 与海平面相平D. 无法确定(答案)B9、某班级进行数学测试,满分为100分,及格分数为60分,小明得了75分,则小明的成绩:A. 低于及格线B. 刚好及格C. 高于及格线但低于满分D. 满分(答案)C10、某商品原价为a元,第一次降价10%,第二次又降价10%,则两次降价后的价格为:A. 0.8a元B. 0.9a元C. 0.81a元D. 0.99a元(答案)C。

有理数应用题

有理数应用题

有理数应用题1.某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃。

若该地地面温度为21℃,高空某处温度为-39℃,求此处的高度是多少千米?2、某工厂生产一批零件,根据要求,圆柱体的内径可以有0.03毫米的误差,抽查5个零件,超过规定内径的记作正数,不足的记作负数,检查结果如下:+0.025,﹣0.035,+0.016,﹣0.010,+0.041 (1)指出哪些产品合乎要求?(2)指出合乎要求的产品中哪个质量好一些?3、蜗牛从某点0开始沿一东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬过的各段路程依次为(单位:厘米):+4,﹣3,+10,﹣9,﹣6,+12,﹣10.①求蜗牛最后的位置在点0的哪个方向,距离多远?②在爬行过程中,如果每爬1厘米奖励一粒芝麻,则蜗牛一共得到多少粒芝麻?③蜗牛离开出发点0最远时是多少厘米?4、在一条东西走向的马路旁,有青少年宫、党校、商场、医院四家公共场所.已知青少年宫在学校东300m处,商场在学校西200m 处,医院在学校东500m处,若将马路近似地看作一条直线,以学校为原点,向东为正方向,用1个单位长度表示100m.(1)在数轴上表示四家公共场所的位置.(2)列式计算青少年宫与商场之间的距离.5、柳州出租车司机小李,一天下午以白沙客站为出发点,在南北走向的跃进路上营运,如果规定向北为正,向南为负,他这天下午行车里程(单位:千米)如下:+15,-2,+5,-13,+10,-7,-8,+12,+4,-5,+6(1)将最后一名乘客送到目的地时,小李距下午出车时的出发白沙客站多远? 在白沙客站的什么方向?(2)若每千米的价格为3.5元,这天下午小李的营业额是多少?6、某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下+8,-3,+12,-7,-10,-3,-8,+1,0,+10.(1)这10名同学中最高分是多少?最低分是多少?(2)10名同学的平均成绩是多少?7、电视台的体育频道经常播放篮球比赛,张明同学在收看比赛时,当解说员介绍每个队员的身高后,张明同学能用简便方法很快的把这个球队的队员平均身高计算出来.你行吗?请做出下题:某球队10名队员的身高如下(单位:cm):173,171,175,177,180,178,179,174,184,190.求这10名队员的平均身高.8、某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数)(1)本周三生产了多少辆摩托车?(2)本周总生产量与计划生产量相比,是增加还是减少?(3)产量最多的一天比产量最少的一天多生产了多少辆?9、某儿童服装店老板以32元的价格买进30件连衣裙,针对不同的顾客,30件连衣裙的售价完全不相同,若以47元为标准,将超过的钱数记为正,不足的钱数记为负,记录结果如下表:请问,该服装店售完这30件连衣裙后,赚了多少钱?10、在“十·一”黄金周期间,淮北市风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):(1)请判断七天内游客人数最多的是哪天?最少的是哪天?它们相差多少万人?(2)若9月30日的游客人数为2万人,求这7天的游客总人数是多少万人?11、小明去一水库进行水位变化的实地测量,他取警戒线作为0m,记录了这个水库一周内的水位变化情况(测量前一天的水位达到警戒水位,单位:m,正号表示水位比前一天上升,负号表示比前一天下降(1)这一周内,哪一天水库的水位最高?哪一天的水位最低?最高水位比最低水位高多少?(2)与测量前一天比,一周内水库水位是上升了还是下降了?12、某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为128个,则这个过程要经过多长时间?13、观察下列一组数:,,,,,…… ,它们是按一定规律排列的,那么这一组数的第n 个数是____. 14、同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少颗黑色棋子? (2)第几个图形有2013颗棋子?说明理由。

含有理数原理的实际应用题

含有理数原理的实际应用题

含有理数原理的实际应用题题目一:购物计算假设你去超市购物,购买了以下商品:•牛奶:14元•面包:6元•鸡蛋:12元请计算你购买这些商品的总价格。

解答:不难发现,购物的总价格等于各种商品的价格之和。

我们可以用数学中的加法来表示这个关系。

所以,购物的总价格 = 牛奶的价格 + 面包的价格 + 鸡蛋的价格将每个商品的价格代入公式:购物的总价格 = 14元 + 6元 + 12元 = 32元所以,购买这些商品的总价格是32元。

题目二:温度转换假设现在的室外温度是摄氏30度,要将它转换为华氏温度,请计算。

解答:温度的转换关系有一个转换公式,我们可以使用这个公式来计算。

华氏温度 = 摄氏温度 × 1.8 + 32将摄氏30度代入公式进行计算:华氏温度 = 30 × 1.8 + 32 = 86所以,将摄氏30度转换为华氏温度是86度。

题目三:速度计算假设一辆汽车以每小时60公里的速度行驶,经过3个小时,它行驶了多远?请计算。

解答:速度的计算公式是:距离 = 速度 × 时间将题目中给出的速度和时间代入公式进行计算:距离 = 60公里/小时 × 3小时 = 180公里所以,经过3个小时,汽车行驶了180公里。

题目四:货币兑换假设你去国外旅行,想要将100美元兑换为人民币,汇率是1美元兑换为6.5人民币,请计算你可以得到多少人民币。

解答:货币兑换的计算公式是:兑换获得的货币 = 要兑换的货币 × 汇率将题目中给出的数据代入公式进行计算:兑换获得的人民币 = 100美元 × 6.5人民币/美元 = 650人民币所以,你可以得到650人民币。

题目五:面积计算假设一个正方形的边长是5米,求其面积。

请计算。

解答:正方形的面积计算公式是:面积 = 边长²将题目中给出的边长代入公式进行计算:面积 = 5米 × 5米 = 25平方米所以,这个正方形的面积是25平方米。

有理数应用题经典30题(学生版)

有理数应用题经典30题(学生版)

有理数应用题经典30题(学生版)一、题目:有理数应用题经典30题(学生版)1. 均匀缩小小明购买了一副长方形的相框,长和宽的比例是3:2。

如果将宽缩小10%,那么长也需要缩小多少才能保持原来的比例?解析:设原来宽为x,则长为1.5x。

缩小10%后的宽为0.9x,新的长应为1.5x*0.9=1.35x。

所以,长需要缩小15%。

2. 装满水壶一个16升的水壶和一个9升的水壶都是空的。

现在需要得到恰好4升的水,问如何操作才能实现?解析:首先,将9升水壶装满水,再倒入16升水壶中,此时9升水壶中剩余5升水。

然后,倒空16升水壶,将9升水壶中的5升水倒入16升水壶中。

最后,将9升水壶重新装满水,再倒入16升水壶中,此时16升水壶中已经有4升水。

3. 倒水比例小明用相同的速度向两个相同容积的杯子中倒水,第一个杯子先倒水,第二个杯子稍后开始倒水,小明一直保持恒定的速度进行倒水。

如果要使两个杯子中的水量一直保持比例3:5,那么第二个杯子开始倒水的时间点在第一个杯子开始倒水后的多久?解析:设第一个杯子开始倒水后经过t时间,第二个杯子开始倒水。

根据题意可得:水量比例=倒水时间比例。

即3/(3+t) = 5/t,解方程可得t=5/2,所以第二个杯子开始倒水的时间点在第一个杯子开始倒水后的2.5分钟。

4. 数字排列将1、2、3、4、5、6、7、8、9这九个数字分别填入以下的方框中,使得相邻的两个数字之和为偶数。

每个数字只能使用一次。

□□□□□□□□□解析:填入以下数字即可满足条件:1234567895. 数轴运动一只蚂蚁在数轴上从0点开始向右爬,并且每次只能移动1个单位。

如果这只蚂蚁每次以等概率向左或向右爬,那么在第5次移动后,它距离0点的期望距离是多少?解析:蚂蚁在第1次、第3次、第5次移动时一定是在偶数点上,而第2次、第4次移动时一定是在奇数点上。

所以在第5次移动后,它距离0点的期望距离为0。

6. 周长比较一个矩形的长和宽之比是3:2,另一个矩形的长和宽之比是2:3。

有理数应用题经典例题

有理数应用题经典例题

有理数应用题经典例题一、温度变化问题1. 例题- 某地一天中午12时的气温是7℃,过5小时气温下降了4℃,又过7小时气温又下降了4℃,第二天0时的气温是多少?2. 解析- 中午12时过5小时后的气温为7 - 4=3℃。

- 再过7小时(此时是第二天0时)后的气温为3-4 = - 1℃。

二、海拔高度问题1. 例题- 某一矿井的示意图如下,以地面为基准,A点的高度是+4.2米,B、C两点的高度分别是 - 15.6米与 - 30.5米。

A点比B点高多少?比C点呢?2. 解析- A点比B点高的高度为A - B=( + 4.2)-(-15.6)=4.2 + 15.6 = 19.8米。

- A点比C点高的高度为A - C=( + 4.2)-(-30.5)=4.2+30.5 = 34.7米。

三、行程问题(正负数表示方向)1. 例题- 一辆汽车沿着一条南北方向的公路来回行驶。

某一天早晨从A地出发,晚上到达B地。

约定向北为正,向南为负,当天记录如下(单位:千米):+18.3, - 9.5,+7.1, - 14, - 6.2,+13, - 6.8, - 8.5。

- (1)B地在A地何处,相距多少千米?- (2)若汽车行驶每千米耗油0.2升,那么这一天共耗油多少升?2. 解析- (1)将所有数相加:( + 18.3)+(-9.5)+( + 7.1)+(-14)+(-6.2)+( + 13)+(-6.8)+(-8.5)- =18.3 - 9.5+7.1 - 14 - 6.2 + 13 - 6.8 - 8.5- =(18.3+7.1 + 13)-(9.5 + 14+6.2+6.8 + 8.5)- =38.4 - 45- =- 6.6千米。

- 所以B地在A地正南方向,相距6.6千米。

- (2)汽车行驶的总路程为|+18.3|+|-9.5|+|+7.1|+|-14|+|-6.2|+|+13|+|-6.8|+|-8.5|- =18.3 + 9.5+7.1+14+6.2 + 13+6.8+8.5- =83.4千米。

有理数应用题

有理数应用题

2、下列是我校七年级5名学生的体重情况, 姓名 体重(千克) 体重与平均体 重的差 A 34 -7 B 44 +3 C 45 +4 D E
37 41 -4 0
(2)谁最重?谁最轻? (3)最重的与最轻的相差多少?
行程问题:
1. 某一出租车一天下午以A地为出发地,在东西方向 营运,向东为正,向西为负,依先后次序记录如下: (单位:km)
2、-3、-5、+7、-6、-2、+8
(1)将最后一名乘客送到目的地,出租车离A地多 远?在学校的什么方向?
(2)若每千米的价格为2.4元,司机一个下午的营 业额是多少? (3)出租车离A点最远的距离是多少?
2、某产品的标准质量是100kg,现抽查6袋该 产品,超出记为“+”,不足记为“-”,(单 位:kg)
-3,+2,+4,-1,-3.5,+2.6
哪袋与标准偏差最大? 质量最重与最轻的相差多少?
3、某食品抽查20袋样品,超过或不足的部分分别 用正、负数来表示,记录如下表:
与标准质量的差值/g 袋数 -5 -2 1 4 0 3 1 4 3 5 6 3
练习:李老师在学校西面的南北路上从某点A
出发来回检查学生的植树情况,设定向北的路程 记为正数,向南的路程记为负数,所行路程依次 为(单位:百米)
+12,-l0,+10,-8,-6,-5, -3
(1)千米? (2)李老师离开出发点A最远时有多少千米?
1、这批样品的总质量比总的标准质量多还是 少? 多或少几克? 2、若每袋标准质量为450克,则抽样检测的 总质量是多少?
练习:今抽查10袋盐,每袋盐的标准质量是100克,
超出部分记为正,不足记为负,统计成下表: 与标准质量的差值/g 袋数 +1 1 -0.5 4 0 3 1.5 4 3 5

有理数应用题30题(有答案).docx

有理数应用题30题(有答案).docx

有理数应用题专项练习30 题(有答案)1.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在 A 处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):+5,﹣ 4, +3 ,﹣ 7, +4,﹣ 8, +2,﹣ 1.(1) A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶 1 千米耗油 a 升,这一天上午共耗油多少升?2.某工厂生产一批零件,根据要求,圆柱体的内径可以有0.03 毫米的误差,抽查 5 个零件,超过规定内径的记作正数,不足的记作负数,检查结果如下:+0.025 ,﹣ 0.035, +0.016 ,﹣ 0.010, +0.041(1)指出哪些产品合乎要求?(2)指出合乎要求的产品中哪个质量好一些?3.某奶粉每袋的标准质量为454 克,在质量检测中,若超出标准质量 2 克,记作为 +2 克,若质量低于 3 克以上的,则这袋奶粉为不合格,现在抽取10 袋样品进行质量检测,结果如下(单位:克).袋号12345678910记作﹣ 203﹣ 4﹣ 3﹣5+4+4﹣ 6﹣3(1)这 10 袋奶粉中有哪几袋不合格?(2)质量最多的是哪袋?它的实际质量是多少?(3)质量最少的是哪袋?它的实际质量是多少?4.蜗牛从某点 0 开始沿一东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬过的各段路程依次为(单位:厘米): +4,﹣ 3, +10 ,﹣ 9,﹣ 6, +12 ,﹣ 10.①求蜗牛最后的位置在点0 的哪个方向,距离多远?②在爬行过程中,如果每爬 1 厘米奖励一粒芝麻,则蜗牛一共得到多少粒芝麻?③蜗牛离开出发点0 最远时是多少厘米?5.某巡警车在一条南北大道上巡逻,某天巡警车从岗亭 A 处出发,规定向北方向为正,当天行驶纪录如下(单位:千米)-10,﹣ 9, +7,﹣ 15,+6,﹣ 5,+4,﹣ 2(1)最终巡警车是否回到岗亭A 处?若没有,在岗亭何方,距岗亭多远?(2)摩托车行驶 1 千米耗油 0.2 升,油箱有油 10 升,够不够?若不够,途中还需补充多少升油?6.某市公交公司在一条自西向东的道路旁边设置了人民公园、新华书店、实验学校、科技馆、花园小区站点,相邻两个站点之间的距离依次为 3km、 1.5km 、 2km 、3.5km .如果以新华书店为原点,规定向东的方向为正,向西的方向为负,设图上 1cm 长的线段表示实际距离 1km .请画出数轴,将五个站点在数轴上表示出来.7.生活与应用:在一条笔直的东西走向的马路上,有少年宫、学校、超市、医院四家公共场所.已知少年宫在学校东在学校西200 米,医院在学校东500 米.( 1)你能利用所学过的数轴知识描述它们的位置吗?( 2)小明放学后要去医院看望生病住院的奶奶,他从学校出发向西走了200 米,又向西走了﹣医院吗?300 米,超市700 米,你说他能到8.东方红中学位于东西方向的一条路上,一天我们学校的李老师出校门去家访,他先向西走100 米到聪聪家,再向东走 150 米到青青家,再向西走200 米到刚刚家,请问:( 1)如果把这条路看作一条数轴,以向东为正方向,以校门口为原点,请你在这条数轴上标出聪聪家与青青家的大概位置(数轴上一格表示50 米).(2)聪聪家与刚刚家相距多远?(3)聪聪家向西 20 米所表示的数是多少?(4)你认为可用什么办法求数轴上两点之间的距离?9.小明到坐落在东西走向的大街上的文具店、书店、花店和玩具店购物,规定向东走为正.已知小明从书店购书后,走了100m 到达玩具店,再走﹣65m 到达花店,又继续走了﹣70m 到达文具店,最后走了10m 到达公交车站.(1)书店距花店有多远?(2)公交车站在书店的什么位置?(3)若小明在四个店各逗留 10min ,他的步行速度大约是每分钟 35m,小明从书店购书一直到公交车站一共用了多少时间?10.王老师到坐落在东西走向的阜城大街上的文具店、书店、花店和玩具店购物,规定向东为正.已知王老师从书店购书后,走了110m 到达玩具店,再走﹣75m 到达花店,又继续走了﹣50m 到达文具店,最后走了25m 到达公交车站牌.(1)书店距花店有多远?(2)公交车站牌在书店的什么位置?(3)若王老师在四个店各逗留 10min ,他的步行速度大约是每分钟 26m,王老师从书店购书一直到公交车站一共用了多少时间?11.已知蜗牛从 A 点出发,在一条数轴上来回爬行,规定:向正半轴运动记作“+”,向负半轴运动记作始到结束爬行的各段路程(单位:cm)依次为: +7,﹣ 5,﹣ 10,﹣ 8, +9,﹣ 6,+12 , +4“﹣”,从开(1)若 A 点在数轴上表示的数为﹣ 3,则蜗牛停在数轴上何处,请通过计算加以说明;(2)若蜗牛的爬行速度为每秒,请问蜗牛一共爬行了多少秒?12.上午 8 点,某人驾驶一辆汽车从 A 地出发,向东记为正,向西记为负.记录前 4 次行驶过程如下:﹣+25 公里,﹣ 20 公里, +30 公里,若要汽车最后回到 A 地,则最后一次如何行驶?已知汽车行驶的速度为小时,在这期间他办事花去 2 小时,问他回到 A 地的时间.15 公里,55 千米 /13.有一只小虫从某点出发,在一条直线上爬行,若规定向右爬行的路程记为正,向左爬行的路程记为负,小虫爬行各段路程依次记为(单位:厘米):﹣ 5,﹣ 4,+10 ,﹣ 3, +8.(1)小虫最后离出发点多少厘米?(2)如果小虫在爬行过程中,每爬行一厘米就得到一粒芝麻,问小虫最终一共可得到多少粒芝麻?( 3)若小虫爬行的速度始终不变,并且爬完这段路程用了 6 分钟,求小虫的爬行速度是多少?14.一个小虫从点 O 出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程为负数,爬行的路程依次为(单位:厘米):+5,﹣ 3,+10 ,﹣ 8,﹣ 6, +12,﹣ 10.( 1)小虫最后是否能回到出发点O?( 2)小虫离开出发点O 最远时是多少厘米?(直接写出结果即可.)( 3)在爬行过程中,如果每爬 1 厘米奖励两粒芝麻,则小虫共可得多少粒芝麻?15.体育课全班女生进行了百米测验,达标成绩为18 秒,下面是第一小组8 名女生的成绩记录,其中“+”表示成绩大于 18 秒,“﹣”表示成绩小于18 秒.﹣ 1+0.80﹣ 1.2﹣0.10+0.5﹣ 0.6这组女生的达标率为多少平均成绩为多少秒?16.体育课上对七年级( 1)班的 8 名女生做仰卧起坐测试,若以 16 次为达标,超过的次数用正数表示,不足的次数用负数表示.现成绩抄录如下:+2, +2,﹣ 2, +3, +1,﹣ 1, 0, +1 .问:(1)有几人达标?(2)平均每人做几次?17.一振子从一点 A 开始左右来回振动8 次,如果规定向右为正,向左为负,这8 次振动记录为(单位mm):+10,﹣ 9,+8,﹣ 6,+7.5 ,﹣ 6, +8,﹣ 7.( 1)求停止时所在位置距 A 点何方向,有多远?( 2)如果每毫米需时0.02 秒,则共用多少秒?18.出租车司机小李某天下午营运全是在东西走向的人民大道进行的.如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米)+15,﹣ 3,+14 ,﹣ 11, +10,﹣ 12, +4,﹣ 15, +16,﹣ 18(1)将最后一名乘客送到目的地时,小李距下午出发地点的距离是多少千米?(2)若汽车耗油量为 a 公升 /千米,这天下午汽车共耗油多少公升?19.某储蓄所,某日办理了 7 项储蓄业务:取出 9.5 万元,存入 5 万元,取出8 万元,存入12 万元,存入23 万元,取出 10.25 万元,取出 2 万元,求储蓄所该日现金增加多少万元?20.小明去一水库进行水位变化的实地测量,他取警戒线作为0m,记录了这个水库一周内的水位变化情况(测量前一天的水位达到警戒水位,单位:m,正号表示水位比前一天上升,负号表示比前一天下降星期一二三四五六日水位变化( m)+0.15﹣0.2+0.13﹣0.1+0.14﹣0.25+0.16(1)这一周内,哪一天水库的水位最高?哪一天的水位最低?最高水位比最低水位高多少?(2)与测量前一天比,一周内水库水位是上升了还是下降了?21.在一次食品安检中,抽查某企业10 袋奶粉,每袋取出100 克,检测每 100 克奶粉蛋白质含量与规定每100 克含量(蛋白质)比较,不足为负,超过为正,记录如下:(注:规定每100g 奶粉蛋白质含量为15g)﹣ 3,﹣ 4,﹣ 5, +1,+3 , +2,0,﹣ 1.5, +1, +2.5( 1)求平均每 100 克奶粉含蛋白质为多少?( 2)每 100 克奶粉含蛋白质不少于14 克为合格,求合格率为多少?22.某中学定于11 月举行运动会,组委会在修整跑道时,工作人员从甲处开工,规定向南为正,向北为负,从开工处甲处到收工处乙处所走的路程为:+10 ,﹣ 3, +4,﹣ 2, +13 ,﹣ 8,﹣ 7,﹣ 5,﹣ 2,(单位:米)(1)甲处与乙处相距多远?(2)工作人员离开甲处最远是多少米?(3)工作人员共修跑道多少米?23.为了保护广大消费者的利益,最近工商管理人员在一家面粉店总抽查了20 袋面粉,称得它们的重量如下(单位:千克):25、 25、 24、 24、 23、 24、 24、25、 26、25、 23、23、 24、 25、 25、 24、 24、 26、 26、 25.请你计算这20 袋面粉的总重量和每袋的平均重量,你能找出比较简单的计算方法吗?请你试试,根据你的计算结果,你对这次检查情况有什么看法?(每袋面粉的标准重量为:25 千克)24.每袋大米的标准重量为50 千克, 10 袋大米称重记录如图所示.(1)与标准重量比较, 10 袋大米总计超过多少千克或不足多少千克?(2) 10 袋大米的总重量是多少千克?25.体育课上,全班男同学进行了100 米测验,达标成绩为示成绩大于15 秒.﹣ 0.8 +1﹣ 1.2 0﹣0.7 +0.6﹣0.4﹣0.115 秒,下表是某小组8 名男生的成绩测试记录,其中“+“表问:( 1)这个小组男生的达标率为多少?()( 2)这个小组男生的平均成绩是多少秒?26.在体育课上,赵老师对七年级 1 班的部分男生进行了引体向上的测试,该项目的标准为不低于7 个.现在赵老师以能做7 个引体向上为标准,超过的次数用正数表示,不足的次数用负数表示,其中8 名男生的成绩记录如下:3﹣204﹣1﹣301(1) 8 名男生有百分之几达到标准?(2)他们共做了多少个引体向上?27.公路养护小组乘车沿南北公路巡视维护,某天早晨从 A 地出发,晚上最后到达天的行驶记录如下(单位:千米): +18,﹣ 9, +7,﹣ 14,+15 ,﹣ 6,﹣ 8,问 B 若汽车行驶每千米耗油 a 升,求该天共耗油多少升?B地在地,约定向北为正方向,当A 地何方,相距多少千米?,28.某辆出租车一天下午以公园为出发地在东西方向行驶,向东走为正,向西走为负,行车里程(单位:公里)依先后次序记录如下: +9、﹣ 3、﹣ 5、+6、﹣ 7、 +10 、﹣ 6、﹣ 4、 +4、﹣ 3、 +7 ( 1)将最后一名乘客送到目的地时,出租车离公园多远?在公园的什么方向?( 2)若出租车每公里耗油量为 0.1 升,则这辆出租车每天下午耗油多少升?29. 10 盒火柴如果以每盒 100 根为标准,超过的根数记作正数,不足的根数记作负数,每盒数据记录如下:+3,+2, 0,﹣ 1,﹣ 2,﹣ 3, +3,﹣ 2,﹣ 2,﹣ 1, 10 盒火柴共有多少根?30.某登山队 5 名队员以二号高地为基地,开始向海拔距二号高地500 米的顶峰冲击,设他们向上走为正,行程记录如下(单位:米): +150 ,﹣ 32,﹣ 43, +205,﹣ 30, +25,﹣ 20,﹣ 5, +30,﹣ 25,+75 .( 1)他们最终有没有登上顶峰?如果没有,那么他们离顶峰还差多少米?( 2)登山时, 5 名队员在进行全程中都使用了氧气,且每人每米要消耗氧气0.04 升.他们共使用了氧气多少升?参考答案:1.( 1)∵+5﹣ 4+3﹣ 7+4 ﹣ 8+2﹣ 1= ﹣ 6,又∵规定向北方向为正,∴ A处在岗亭的南方,距离岗亭 6 千米.(2)∵ |+5|+|﹣4|+|+3|+|﹣ 7|+|+4|+|﹣ 8|+|+2|+|﹣ 1|=34,又∵摩托车每行驶 1 千米耗油 a 升,∴这一天上午共耗油 34a 升.2.依据题意产品允许的误差为±0.03,即( +0.03﹣﹣ 0.03)之间.故:( 1)第一、三、四个产品符合要求,即(+0.025, +0.016,﹣ 0.010).( 2)其中第四个零件(﹣ 0.010)误差最小,所以第四个质量好些3.( 1) 4 号袋低于标准质量 4 克, 6 号袋低于标准质量 5 克, 9 号袋低于标准质量 6 克,质量都低于 3 克以上,故 4、 6、 9 号袋不合格;( 2)表中标注 +4 克的,超过标准质量 4 克,超过准质量最多,是7, 8 号袋,它的实际质量是454+4=458 克;( 3)表中标注﹣ 6 的,低于标准质量 6 克,低于准质量最多,是9 号袋,它的实际质量是454﹣ 6=448 克4.①( +4)+(﹣ 3)+( +10) +(﹣ 9)+(﹣ 6)+( +12) +(﹣ 10),=(﹣ 3)+(﹣ 9)+(﹣ 6)+( +4)+( +12 )+( +10 )+(﹣ 10)=(﹣ 18) +( +16 )+0= ﹣ 2(厘米),所以蜗牛最后的位置在点0 西侧,距离点0 为 2 厘米;② |+4|+|﹣ 3|+|+10|+|﹣ 9|+|﹣ 6|+|+12|+|﹣10|=4+3+10+9+6+12+10=54 (厘米),所以蜗牛一共得到54 料芝麻;③如图所示,最远时为11 厘米.5.( 1)﹣ 10﹣ 9+7 ﹣15+6﹣ 5+4﹣ 2=﹣ 24,即可得最终巡警车在岗亭 A 处南方 24 千米处.( 2)行驶路程 =10+9+7+15+6+5+4+2=58千米,需要油量 =58×0.2=11.6 升,故油不够,需要补充 1.6 升6.解:数轴如图所示:7.( 1)( 2)(﹣ 200) +700=500 米,则他在医院的东500 米,他能到医院8.( 1)依题意可知图为:(2)∵ |﹣ 100﹣(﹣ 150) |=50(m),∴聪聪家与刚刚家相距50 米.(3)聪聪家向东 20 米所表示的数是﹣ 100+20= ﹣80.(4)求数轴上两点间的距离可用右边的点表示的数减去左边的点表示的数9.如图所示:( 1)书店距花店35 米;( 2)公交车站在书店的西边25 米处;( 3)小明所走的总路程:100+|﹣ 65|+|﹣ 70|+10=245(米),245÷35=7(分钟),7+4×10=47(分钟),答:小明从书店购书一直到公交车站一共用了47 分钟.10.如图所示:( 1)书店距花店35 米;(2)公交车站牌在书店的东边10 米处;(3)王老师所走的总路程: 110+|﹣ 75|+|﹣ 50|+25=260(米),260÷26=10(分钟), 10+4×10=50 (分钟).答:王老师从书店购书一直到公交车站一共用了50 分钟.11.(1)依题意得﹣3+(+7) +(﹣ 5) +(﹣ 10) +(﹣ 8) +(+9) +(﹣ 6) +( +12) +( +4) =0,∴ 蜗牛停在数轴上的原点;( 2)( |+7|+|﹣ 5|+|﹣ 10|+|﹣ 8|+|+9|+|+12|+|+4|+|﹣ 6|)÷ =122cm .∴蜗牛一共爬行了122 秒12.由题意得:﹣15+25﹣ 20+30=﹣ 20,∵向东记为正,向西记为负,∴ ﹣20表示向西行驶20 公里;汽车共行驶15+25+20+30+20=110 公里,用时为:110÷55=2,∴共用时 2+2=4 小时,故回到 A 地的时间为8+4=12 点13.( 1)(﹣ 5) +(﹣ 4) +10+(﹣ 3)+8=[ (﹣ 5) +(﹣ 4) +(﹣ 3) ]+ ( 10+8) =﹣12+18=6(厘米).答:小虫最后离出发点 6 厘米.( 2) | ﹣ 5|+| ﹣ 4|+|10|+|﹣3|+|8|=30.答:小虫最终一共可得到30 粒芝麻.( 3)由( 2)知:小虫共爬行了30 厘米,故其爬行速度为:30÷ 6=5(厘米 / 分钟).答:小虫的爬行速度为 5 厘米 / 分钟14.( 1)∵( +5 ) +(﹣ 3) +(+10 ) +(﹣ 8) +(﹣ 6) +(+12 ) +(﹣ 10) =5﹣ 3+10﹣8﹣ 6+12﹣10, =5+10+12 ﹣3﹣ 8﹣ 6﹣10=27 ﹣27=0 ,∴ 小虫最后可以回到出发点;(2) +5+ (﹣ 3) =2,(+5) +(﹣ 3) +( +10) =12,(+5) +(﹣ 3) +( +10) +(﹣ 8) =4,(+5) +(﹣ 3) +( +10) +(﹣ 8) +(﹣ 6) =﹣ 2,(+5) +(﹣ 3) +( +10) +(﹣ 8) +(﹣ 6) +12=10;所以,小虫离开出发点O 最远时是12 厘米;(3)( |+5|+|﹣ 3|+|+10|+|﹣ 8|+|﹣ 6|+|+12|+|﹣ 10|)×2=( 5+3+10+8+6+12+10 )×2=54×2=108,所以小虫共可得108 粒芝麻15.由题意可知,达标的人数为 6 人,所以达标率6÷8×100%=75% .平均成绩为:18+=18+(﹣ 0.2) =17.8 (秒)161166(2)八名女生所做的总次数是:( 16+2)+(16+2 )+( 16﹣2)+( 16+3)+(16+1)+( 16﹣1)+16+( 16+1 )=134,所以平均次数是=16.7517.( 1)根据题意可得:向右为正,向左为负,由8 次振动记录可得:10﹣9+8 ﹣ 6+7.5﹣ 6+8 ﹣ 7=5.5,故停止时所在位置在 A 点右边 5.5mm 处;( 2)一振子从一点 A 开始左右来回振动8 次,共 10+9+8+6+7.5+6+8+7=61.5mm .如果每毫米需时0.02 秒,故共用61.5×0.02=1.23 秒18.( 1)( +15) +(﹣ 3) +( +14) +(﹣ 11) +( +10) +(﹣ 12)+( +4)+(﹣ 15)+( +16 )+(﹣ 18) =0 千米;(2)|+15|+|﹣ 3|+|+14|+|﹣ 11|+|+10|+|﹣ 12|+|+4|+|﹣ 15|+|+16|+|﹣ 18|=15+3+14+11+10+12+4+15+16+18=118 (千米),则耗油 118×a=118a 公升.答:将最后一名乘客送到目的地时,小李距下午出发地点的距离是0 千米;若汽车耗油量为 a 公升 / 千米,这天下午汽车共耗油118a 公升19.根据题意可设:存入为“+”,取出为“﹣”;则储蓄所该日现金增加量等于(﹣9.5) +( +5)+(﹣ 8)+( 12)+( +23 )+(﹣ 10.25) +(﹣ 2) =+10.25 万元.故储蓄所该日现金增加10.25 万元20.( 1)本周水位依次为0.15m,﹣ 0.05m, 0.08m,﹣ 0.02m, 0.12m,﹣ 0.13m, 0.03m.故星期一水库的水位最高,星期六水库的水位最低.最高水位比最低水位高0.15m+0.25m=0.4m .(2)上升了,上升了 0.15﹣ 0.2+0.13 ﹣ 0.1+0.14﹣ 0.25+0.16=0.18m21.( 1)+15=14.6 ( g);( 2)其中﹣3,﹣ 4,﹣ 5,﹣ 1.5为不合格,那么合格的有 6 个,合格率为=60%22.( 1) 10﹣ 3+4 ﹣2+13﹣ 8﹣7﹣ 5﹣ 2=10+4+13 ﹣3﹣ 2﹣8﹣ 7﹣ 5﹣ 2=27﹣ 27=0(米),∴甲处与乙处相距0 米,即在原处.( 2)工作人员离开甲处的距离依次为:10, 7, 11, 9,22, 14,7, 2, 0(米),∴工作人员离开甲处最远是22 米.( 3) 10+3+4+2+13+8+7+5+2=54 (米),∴工作人员共修跑道54 米23.以 25 千克为标准重量,超过25 千克记为正数,不足25 千克记为负数.25× 20+[0+0+(﹣1)+(﹣1)+(﹣2)+(﹣1)+(﹣1)+0+1+0+(﹣2)+(﹣2)+(﹣1)+(﹣1)+1+1+0]=490(千克), 490÷ 20=24.5 (千克).答:总重量为490kg,平均重量24.5kg .在今后的抽查中,应严格把关,保护广大消费者的利益24.( 1)与标准重量比较,10 袋大米总计超过1+1+1.5 ﹣ 1+1.2+1.3 ﹣1.3﹣ 1.2+1.8+1.1=5.4 千克;( 2) 10 袋大米的总重量是50×10+5.4=505.4 千克25.( 1)成绩记为正数的不达标,只有 2 人不达标, 6 人达标.这个小组男生的达标率=6÷8=75% ;( 2)﹣ 0.8+1 ﹣ 1.2+0﹣ 0.7+0.6﹣ 0.4﹣0.1=﹣ 1.615﹣1.6÷8=14.8 秒答:( 1)这个小组男生的达标率为75%.( 2)这个小组男生的平均成绩是14.8 秒26.( 1)∵8 名男生有5 个人达到标准,即5÷8×100%=62.5% , 8 名男生有62.5%达到标准;( 2) 10+5+7+11+6+4+7+8=58 或 3﹣ 2+0+4﹣ 1﹣ 3+0+1=2 , 7×8+2=58 ,他们共做了58 个引体向上27.( 1)约定向北为正方向,则向南为负方向,当天的行驶记录相加就是车的现在位置,18﹣ 9+7 ﹣14+15 ﹣ 6﹣ 8=3(千米),故 B 地在 A 地北方 3 千米处.( 2)要求该天共耗油多少升要先求该车走了多少路然后×a,即(18+9+7+14+15+6+8)×a=77a(升),故该天共耗油77a 升28.( 1)( +9) +(﹣ 3) +(﹣ 5) +( +6) +(﹣ 7) +( +10) +(﹣ 6) +(﹣ 4) +( +4)+(﹣ 3)+( +7)=9﹣ 3﹣5+6 ﹣ 7+10﹣ 6﹣ 4+4﹣ 3+7=9+10 ﹣ 3﹣5﹣ 3=8 ,∴将最后一名乘客送到目的地时,出租车离公园8 公里,在公园的东方8 公里处.( 2) |+9|+|﹣ 3|+|﹣5|+|+6|+|﹣ 7|+|+10|+|﹣ 6|+|﹣ 4|+|+4|+|﹣ 3|+|+7=9+3+5+6+7+10+6+4+4+3+7=64 ,∵ 64×0.1=6.4 (升),∴这辆出租车每天下午耗油 6.4 升29.先求超过的根数:( +3 ) +( +2) +0+(﹣ 1)+(﹣ 2) +(﹣ 3) +( +3) +(﹣ 2) +(﹣ 2) +(﹣ 1) =﹣ 3;则 10 盒火柴的总数量为:100×10﹣ 3=997 (根).答: 10 盒火柴共有997 根30.( 1)根据题意得:150﹣32﹣ 43+205 ﹣ 30+25﹣ 20﹣ 5+30+75 ﹣ 25=330 米, 500﹣ 330=170 米.(2)根据题意得: 150+32+43+205+30+25+20+5+30+75+25=640 米, 640×0.04×5=128 升.答:( 1)他们没能最终登上顶峰,离顶峰害有170 米;( 2)他们共使用了氧气128 升。

有理数应用题

有理数应用题

有理数应用题1. 小明家收入和支出小明的父母每个月的收入为7500元。

他们每个月的支出包括房租、水电费、食品和交通费等共计5200元。

请问小明的家庭每个月的结余是多少?解答:收入:7500元支出:5200元结余 = 收入 - 支出 = 7500 - 5200 = 2300元因此,小明的家庭每个月结余2300元。

2. 温度变化问题某城市的气温从早晨的-6℃上升到中午的12℃,再下降到晚上的-3℃。

请问一天中气温变化的总和为多少?解答:早晨气温:-6℃中午气温:12℃晚上气温:-3℃气温变化总和 = 中午气温 - 早晨气温 + 晚上气温 - 中午气温= 12 - (-6) + (-3) - 12= 18 - 15= 3℃因此,一天中气温变化的总和为3℃。

3. 数轴上的有理数问题将数轴上的点A、B、C、D依次标记为-3、-1、0、5,求线段AB 和线段CD的长度之和。

解答:线段AB的长度 = |-1 - (-3)| = 2线段CD的长度 = |5 - 0| = 5长度之和 = 线段AB的长度 + 线段CD的长度 = 2 + 5 = 7因此,线段AB和线段CD的长度之和为7。

4. 银行存款问题小玲在银行存款10000元,年利率为3%,计算存款一年后的本息和为多少?解答:存款金额:10000元年利率:3%本息和 = 存款金额 + 存款金额 ×年利率 = 10000 + 10000 × 0.03 = 10000 + 300 = 10300元因此,存款一年后的本息和为10300元。

5. 比例问题某班级男生数与女生数的比例为3:5,班级共有48名学生。

求该班级男生和女生各有多少人?解答:男生数:3x女生数:5x男生数 + 女生数 = 483x + 5x = 488x = 48x = 6男生人数 = 3x = 3 × 6 = 18人女生人数 = 5x = 5 × 6 = 30人因此,该班级男生有18人,女生有30人。

有理数应用题30题有答案

有理数应用题30题有答案

. .. .有理数应用题专项练习30题(有答案)1.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.(1)A处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油a升,这一天上午共耗油多少升?2.某工厂生产一批零件,根据要求,圆柱体的径可以有0.03毫米的误差,抽查5个零件,超过规定径的记作正数,不足的记作负数,检查结果如下:+0.025,﹣0.035,+0.016,﹣0.010,+0.041(1)指出哪些产品合乎要求?(2)指出合乎要求的产品中哪个质量好一些?3.某奶粉每袋的标准质量为454克,在质量检测中,若超出标准质量2克,记作为+2克,若质量低于3克以上的,则这袋奶粉为不合格,现在抽取10袋样品进行质量检测,结果如下(单位:克).袋号 1 2 3 4 5 6 7 8 9 10记作﹣2 0 3 ﹣4 ﹣3 ﹣5 +4 +4 ﹣6 ﹣3(1)这10袋奶粉中有哪几袋不合格?(2)质量最多的是哪袋?它的实际质量是多少?(3)质量最少的是哪袋?它的实际质量是多少?4.蜗牛从某点0开始沿一东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬过的各段路程依次为(单位:厘米):+4,﹣3,+10,﹣9,﹣6,+12,﹣10.①求蜗牛最后的位置在点0的哪个方向,距离多远?②在爬行过程中,如果每爬1厘米奖励一粒芝麻,则蜗牛一共得到多少粒芝麻?③蜗牛离开出发点0最远时是多少厘米?5.某巡警车在一条南北大道上巡逻,某天巡警车从岗亭A处出发,规定向北方向为正,当天行驶纪录如下(单位:千米)-10,﹣9,+7,﹣15,+6,﹣5,+4,﹣2(1)最终巡警车是否回到岗亭A处?若没有,在岗亭何方,距岗亭多远?(2)摩托车行驶1千米耗油0.2升,油箱有油10升,够不够?若不够,途中还需补充多少升油?6.某市公交公司在一条自西向东的道路旁边设置了人民公园、新华书店、实验学校、科技馆、花园小区站点,相邻两个站点之间的距离依次为3km、1.5km、2km、3.5km.如果以新华书店为原点,规定向东的方向为正,向西的方向为负,设图上1cm长的线段表示实际距离1km.请画出数轴,将五个站点在数轴上表示出来.7.生活与应用:在一条笔直的东西走向的马路上,有少年宫、学校、超市、医院四家公共场所.已知少年宫在学校东300米,超市在学校西200米,医院在学校东500米.(1)你能利用所学过的数轴知识描述它们的位置吗?(2)小明放学后要去医院看望生病住院的奶奶,他从学校出发向西走了200米,又向西走了﹣700米,你说他能到医院吗?8.红中学位于东西方向的一条路上,一天我们学校的老师出校门去家访,他先向西走100米到聪聪家,再向东走150米到青青家,再向西走200米到刚刚家,请问:(1)如果把这条路看作一条数轴,以向东为正方向,以校门口为原点,请你在这条数轴上标出聪聪家与青青家的大概位置(数轴上一格表示50米).(2)聪聪家与刚刚家相距多远?(3)聪聪家向西20米所表示的数是多少?(4)你认为可用什么办法求数轴上两点之间的距离?9.小明到坐落在东西走向的大街上的文具店、书店、花店和玩具店购物,规定向东走为正.已知小明从书店购书后,走了100m到达玩具店,再走﹣65m到达花店,又继续走了﹣70m到达文具店,最后走了10m到达公交车站.(1)书店距花店有多远?(2)公交车站在书店的什么位置?(3)若小明在四个店各逗留10min,他的步行速度大约是每分钟35m,小明从书店购书一直到公交车站一共用了多少时间?10.王老师到坐落在东西走向的阜城大街上的文具店、书店、花店和玩具店购物,规定向东为正.已知王老师从书店购书后,走了110m到达玩具店,再走﹣75m到达花店,又继续走了﹣50m到达文具店,最后走了25m到达公交车站牌.(1)书店距花店有多远?(2)公交车站牌在书店的什么位置?(3)若王老师在四个店各逗留10min,他的步行速度大约是每分钟26m,王老师从书店购书一直到公交车站一共用了多少时间?11.已知蜗牛从A点出发,在一条数轴上来回爬行,规定:向正半轴运动记作“+”,向负半轴运动记作“﹣”,从开始到结束爬行的各段路程(单位:cm)依次为:+7,﹣5,﹣10,﹣8,+9,﹣6,+12,+4(1)若A点在数轴上表示的数为﹣3,则蜗牛停在数轴上何处,请通过计算加以说明;(2)若蜗牛的爬行速度为每秒,请问蜗牛一共爬行了多少秒?12.上午8点,某人驾驶一辆汽车从A地出发,向东记为正,向西记为负.记录前4次行驶过程如下:﹣15公里,+25公里,﹣20公里,+30公里,若要汽车最后回到A地,则最后一次如何行驶?已知汽车行驶的速度为55千米/小时,在这期间他办事花去2小时,问他回到A地的时间.13.有一只小虫从某点出发,在一条直线上爬行,若规定向右爬行的路程记为正,向左爬行的路程记为负,小虫爬行各段路程依次记为(单位:厘米):﹣5,﹣4,+10,﹣3,+8.(1)小虫最后离出发点多少厘米?(2)如果小虫在爬行过程中,每爬行一厘米就得到一粒芝麻,问小虫最终一共可得到多少粒芝麻?(3)若小虫爬行的速度始终不变,并且爬完这段路程用了6分钟,求小虫的爬行速度是多少?14.一个小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程为负数,爬行的路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)小虫最后是否能回到出发点O?(2)小虫离开出发点O最远时是多少厘米?(直接写出结果即可.)(3)在爬行过程中,如果每爬1厘米奖励两粒芝麻,则小虫共可得多少粒芝麻?15.体育课全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒.﹣1 +0.8 0 ﹣1.2 ﹣0.1 0 +0.5 ﹣0.6这组女生的达标率为多少平均成绩为多少秒?16.体育课上对七年级(1)班的8名女生做仰卧起坐测试,若以16次为达标,超过的次数用正数表示,不足的次数用负数表示.现成绩抄录如下:+2,+2,﹣2,+3,+1,﹣1,0,+1.问:(1)有几人达标?(2)平均每人做几次?17.一振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位mm):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求停止时所在位置距A点何方向,有多远?(2)如果每毫米需时0.02秒,则共用多少秒?18.出租车司机小某天下午营运全是在东西走向的人民大道进行的.如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米)+15,﹣3,+14,﹣11,+10,﹣12,+4,﹣15,+16,﹣18(1)将最后一名乘客送到目的地时,小距下午出发地点的距离是多少千米?(2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?19.某储蓄所,某日办理了7项储蓄业务:取出9.5万元,存入5万元,取出8万元,存入12万元,存入23万元,取出10.25万元,取出2万元,求储蓄所该日现金增加多少万元?20.小明去一水库进行水位变化的实地测量,他取警戒线作为0m,记录了这个水库一周的水位变化情况(测量前一天的水位达到警戒水位,单位:m,正号表示水位比前一天上升,负号表示比前一天下降星期一二三四五六日水位变化(m)+0.15 ﹣0.2 +0.13 ﹣0.1 +0.14 ﹣0.25 +0.16(1)这一周,哪一库的水位最高?哪一天的水位最低?最高水位比最低水位高多少?(2)与测量前一天比,一周水库水位是上升了还是下降了?21.在一次食品安检中,抽查某企业10袋奶粉,每袋取出100克,检测每100克奶粉蛋白质含量与规定每100克含量(蛋白质)比较,不足为负,超过为正,记录如下:(注:规定每100g奶粉蛋白质含量为15g)﹣3,﹣4,﹣5,+1,+3,+2,0,﹣1.5,+1,+2.5(1)求平均每100克奶粉含蛋白质为多少?(2)每100克奶粉含蛋白质不少于14克为合格,求合格率为多少?22.某中学定于11月举行运动会,组委会在修整跑道时,工作人员从甲处开工,规定向南为正,向北为负,从开工处甲处到收工处乙处所走的路程为:+10,﹣3,+4,﹣2,+13,﹣8,﹣7,﹣5,﹣2,(单位:米)(1)甲处与乙处相距多远?(2)工作人员离开甲处最远是多少米?(3)工作人员共修跑道多少米?23.为了保护广大消费者的利益,最近工商管理人员在一家面粉店总抽查了20袋面粉,称得它们的重量如下(单位:千克):25、25、24、24、23、24、24、25、26、25、23、23、24、25、25、24、24、26、26、25.请你计算这20袋面粉的总重量和每袋的平均重量,你能找出比较简单的计算方法吗?请你试试,根据你的计算结果,你对这次检查情况有什么看法?(每袋面粉的标准重量为:25千克)24.每袋大米的标准重量为50千克,10袋大米称重记录如图所示.(1)与标准重量比较,10袋大米总计超过多少千克或不足多少千克?(2)10袋大米的总重量是多少千克?25.体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩测试记录,其中“+“表示成绩大于15秒.﹣0.8 +1 ﹣1.20 ﹣0.7+0.6﹣0.4﹣0.1问:(1)这个小组男生的达标率为多少?()(2)这个小组男生的平均成绩是多少秒?26.在体育课上,老师对七年级1班的部分男生进行了引体向上的测试,该项目的标准为不低于7个.现在老师以能做7个引体向上为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩记录如下:3 ﹣2 04 ﹣1 ﹣3 0 1 (1)8名男生有百分之几达到标准?(2)他们共做了多少个引体向上?27.公路养护小组乘车沿南北公路巡视维护,某天早晨从A地出发,晚上最后到达B地,约定向北为正方向,当天的行驶记录如下(单位:千米):+18,﹣9,+7,﹣14,+15,﹣6,﹣8,问B地在A地何方,相距多少千米?若汽车行驶每千米耗油a升,求该天共耗油多少升?28.某辆出租车一天下午以公园为出发地在东西方向行驶,向东走为正,向西走为负,行车里程(单位:公里),依先后次序记录如下:+9、﹣3、﹣5、+6、﹣7、+10、﹣6、﹣4、+4、﹣3、+7(1)将最后一名乘客送到目的地时,出租车离公园多远?在公园的什么方向?(2)若出租车每公里耗油量为0.1升,则这辆出租车每天下午耗油多少升?29.10盒火柴如果以每盒100根为标准,超过的根数记作正数,不足的根数记作负数,每盒数据记录如下:+3,+2,0,﹣1,﹣2,﹣3,+3,﹣2,﹣2,﹣1,10盒火柴共有多少根?30.某登山队5名队员以二号高地为基地,开始向海拔距二号高地500米的顶峰冲击,设他们向上走为正,行程记录如下(单位:米):+150,﹣32,﹣43,+205,﹣30,+25,﹣20,﹣5,+30,﹣25,+75.(1)他们最终有没有登上顶峰?如果没有,那么他们离顶峰还差多少米?(2)登山时,5名队员在进行全程中都使用了氧气,且每人每米要消耗氧气0.04升.他们共使用了氧气多少升?有理数应用题30题参考答案:1.(1)∵+5﹣4+3﹣7+4﹣8+2﹣1=﹣6,又∵规定向北方向为正,∴A处在岗亭的南方,距离岗亭6千米.(2)∵|+5|+|﹣4|+|+3|+|﹣7|+|+4|+|﹣8|+|+2|+|﹣1|=34,又∵摩托车每行驶1千米耗油a升,∴这一天上午共耗油34a升.2.依据题意产品允许的误差为±0.03,即(+0.03﹣﹣0.03)之间.故:(1)第一、三、四个产品符合要求,即(+0.025,+0.016,﹣0.010).(2)其中第四个零件(﹣0.010)误差最小,所以第四个质量好些3.(1)4号袋低于标准质量4克,6号袋低于标准质量5克,9号袋低于标准质量6克,质量都低于3克以上,故4、6、9号袋不合格;(2)表中标注+4克的,超过标准质量4克,超过准质量最多,是7,8号袋,它的实际质量是454+4=458克;(3)表中标注﹣6的,低于标准质量6克,低于准质量最多,是9号袋,它的实际质量是454﹣6=448克4.①(+4)+(﹣3)+(+10)+(﹣9)+(﹣6)+(+12)+(﹣10),=(﹣3)+(﹣9)+(﹣6)+(+4)+(+12)+(+10)+(﹣10)=(﹣18)+(+16)+0=﹣2(厘米),所以蜗牛最后的位置在点0西侧,距离点0为2厘米;②|+4|+|﹣3|+|+10|+|﹣9|+|﹣6|+|+12|+|﹣10|=4+3+10+9+6+12+10=54(厘米),所以蜗牛一共得到54料芝麻;③如图所示,最远时为11厘米.5.(1)﹣10﹣9+7﹣15+6﹣5+4﹣2=﹣24,即可得最终巡警车在岗亭A处南方24千米处.(2)行驶路程=10+9+7+15+6+5+4+2=58千米,需要油量=58×0.2=11.6升,故油不够,需要补充1.6升6.解:数轴如图所示:7.(1)(2)(﹣200)+700=500米,则他在医院的东500米,他能到医院8.(1)依题意可知图为:(2)∵|﹣100﹣(﹣150)|=50(m),∴聪聪家与刚刚家相距50米.(3)聪聪家向东20米所表示的数是﹣100+20=﹣80.(4)求数轴上两点间的距离可用右边的点表示的数减去左边的点表示的数9.如图所示:(1)书店距花店35米;(2)公交车站在书店的西边25米处;(3)小明所走的总路程:100+|﹣65|+|﹣70|+10=245(米),245÷35=7(分钟),7+4×10=47(分钟),答:小明从书店购书一直到公交车站一共用了47分钟.10.如图所示:(1)书店距花店35米;(2)公交车站牌在书店的东边10米处;(3)王老师所走的总路程:110+|﹣75|+|﹣50|+25=260(米),260÷26=10(分钟),10+4×10=50(分钟).答:王老师从书店购书一直到公交车站一共用了50分钟.11.(1)依题意得﹣3+(+7)+(﹣5)+(﹣10)+(﹣8)+(+9)+(﹣6)+(+12)+(+4)=0,∴蜗牛停在数轴上的原点;(2)(|+7|+|﹣5|+|﹣10|+|﹣8|+|+9|+|+12|+|+4|+|﹣6|)÷=122cm.∴蜗牛一共爬行了122秒12.由题意得:﹣15+25﹣20+30=﹣20,∵向东记为正,向西记为负,∴﹣20表示向西行驶20公里;汽车共行驶15+25+20+30+20=110公里,用时为:110÷55=2,∴共用时2+2=4小时,故回到A地的时间为8+4=12点13.(1)(﹣5)+(﹣4)+10+(﹣3)+8=[(﹣5)+(﹣4)+(﹣3)]+(10+8)=﹣12+18=6(厘米).答:小虫最后离出发点6厘米.(2)|﹣5|+|﹣4|+|10|+|﹣3|+|8|=30.答:小虫最终一共可得到30粒芝麻.(3)由(2)知:小虫共爬行了30厘米,故其爬行速度为:30÷6=5(厘米/分钟).答:小虫的爬行速度为5厘米/分钟14.(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=5﹣3+10﹣8﹣6+12﹣10,=5+10+12﹣3﹣8﹣6﹣10=27﹣27=0,∴小虫最后可以回到出发点;(2)+5+(﹣3)=2,(+5)+(﹣3)+(+10)=12,(+5)+(﹣3)+(+10)+(﹣8)=4,(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)=﹣2,(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+12=10;所以,小虫离开出发点O最远时是12厘米;(3)(|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|)×2=(5+3+10+8+6+12+10)×2=54×2=108,所以小虫共可得108粒芝麻15.由题意可知,达标的人数为6人,所以达标率6÷8×100%=75%.平均成绩为:18+=18+(﹣0.2)=17.8(秒)16.(1)∵16次为达标,超过的次数用正数表示,∴达标的人数6人.(2)八名女生所做的总次数是:(16+2)+(16+2)+(16﹣2)+(16+3)+(16+1)+(16﹣1)+16+(16+1)=134,所以平均次数是=16.7517.(1)根据题意可得:向右为正,向左为负,由8次振动记录可得:10﹣9+8﹣6+7.5﹣6+8﹣7=5.5,故停止时所在位置在A点右边5.5mm处;(2)一振子从一点A开始左右来回振动8次,共10+9+8+6+7.5+6+8+7=61.5mm.如果每毫米需时0.02秒,故共用61.5×0.02=1.23秒18.(1)(+15)+(﹣3)+(+14)+(﹣11)+(+10)+(﹣12)+(+4)+(﹣15)+(+16)+(﹣18)=0千米;(2)|+15|+|﹣3|+|+14|+|﹣11|+|+10|+|﹣12|+|+4|+|﹣15|+|+16|+|﹣18|=15+3+14+11+10+12+4+15+16+18=118(千米),则耗油118×a=118a公升.答:将最后一名乘客送到目的地时,小距下午出发地点的距离是0千米;若汽车耗油量为a公升/千米,这天下午汽车共耗油118a公升19.根据题意可设:存入为“+”,取出为“﹣”;则储蓄所该日现金增加量等于(﹣9.5)+(+5)+(﹣8)+(12)+(+23)+(﹣10.25)+(﹣2)=+10.25万元.故储蓄所该日现金增加10.25万元20.(1)本周水位依次为0.15m,﹣0.05m,0.08m,﹣0.02m,0.12m,﹣0.13m,0.03m.故星期一水库的水位最高,星期六水库的水位最低.最高水位比最低水位高0.15m+0.25m=0.4m.(2)上升了,上升了0.15﹣0.2+0.13﹣0.1+0.14﹣0.25+0.16=0.18m21.(1)+15=14.6(g);(2)其中﹣3,﹣4,﹣5,﹣1.5为不合格,那么合格的有6个,合格率为=60%22.(1)10﹣3+4﹣2+13﹣8﹣7﹣5﹣2=10+4+13﹣3﹣2﹣8﹣7﹣5﹣2=27﹣27=0(米),∴甲处与乙处相距0米,即在原处.(2)工作人员离开甲处的距离依次为:10,7,11,9,22,14,7,2,0(米),∴工作人员离开甲处最远是22米.(3)10+3+4+2+13+8+7+5+2=54(米),∴工作人员共修跑道54米23.以25千克为标准重量,超过25千克记为正数,不足25千克记为负数.25×20+[0+0+(﹣1)+(﹣1)+(﹣2)+(﹣1)+(﹣1)+0+1+0+(﹣2)+(﹣2)+(﹣1)+(﹣1)+1+1+0]=490 (千克),490÷20=24.5(千克).答:总重量为490kg,平均重量24.5kg.在今后的抽查中,应严格把关,保护广大消费者的利益24.(1)与标准重量比较,10袋大米总计超过1+1+1.5﹣1+1.2+1.3﹣1.3﹣1.2+1.8+1.1=5.4千克;(2)10袋大米的总重量是50×10+5.4=505.4千克25.(1)成绩记为正数的不达标,只有2人不达标,6人达标.这个小组男生的达标率=6÷8=75%;(2)﹣0.8+1﹣1.2+0﹣0.7+0.6﹣0.4﹣0.1=﹣1.6 15﹣1.6÷8=14.8秒答:(1)这个小组男生的达标率为75%.(2)这个小组男生的平均成绩是14.8秒26.(1)∵8名男生有5个人达到标准,即5÷8×100%=62.5%,8名男生有62.5%达到标准;(2)10+5+7+11+6+4+7+8=58或3﹣2+0+4﹣1﹣3+0+1=2,7×8+2=58,他们共做了58个引体向上27.(1)约定向北为正方向,则向南为负方向,当天的行驶记录相加就是车的现在位置,18﹣9+7﹣14+15﹣6﹣8=3(千米),故B地在A地北方3千米处.(2)要求该天共耗油多少升要先求该车走了多少路然后×a,即(18+9+7+14+15+6+8)×a=77a(升),故该天共耗油77a升28.(1)(+9)+(﹣3)+(﹣5)+(+6)+(﹣7)+(+10)+(﹣6)+(﹣4)+(+4)+(﹣3)+(+7)=9﹣3﹣5+6﹣7+10﹣6﹣4+4﹣3+7=9+10﹣3﹣5﹣3=8,∴将最后一名乘客送到目的地时,出租车离公园8公里,在公园的8公里处.(2)|+9|+|﹣3|+|﹣5|+|+6|+|﹣7|+|+10|+|﹣6|+|﹣4|+|+4|+|﹣3|+|+7=9+3+5+6+7+10+6+4+4+3+7=64,∵64×0.1=6.4(升),∴这辆出租车每天下午耗油6.4升29.先求超过的根数:(+3)+(+2)+0+(﹣1)+(﹣2)+(﹣3)+(+3)+(﹣2)+(﹣2)+(﹣1)=﹣3;则10盒火柴的总数量为:100×10﹣3=997(根).答:10盒火柴共有997根30.(1)根据题意得:150﹣32﹣43+205﹣30+25﹣20﹣5+30+75﹣25=330米,500﹣330=170米.(2)根据题意得:150+32+43+205+30+25+20+5+30+75+25=640米,640×0.04×5=128升.答:(1)他们没能最终登上顶峰,离顶峰害有170米;(2)他们共使用了氧气128升。

七年级有理数应用题50道

七年级有理数应用题50道

七年级有理数应用题50道一、温度相关(5道)1. 某天,哈尔滨的最高气温是 -12℃,最低气温是 -22℃,这天哈尔滨的温差是多少?解析:温差就是最高气温减去最低气温,即公式。

2. 已知某地区早晨的气温为 -5℃,中午上升了8℃,傍晚又下降了6℃,求傍晚的气温。

解析:早晨气温是 -5℃,中午上升8℃后,气温变为公式,傍晚又下降6℃,则傍晚气温为公式。

3. 若甲地温度为20℃,乙地温度比甲地低15℃,丙地温度比乙地低10℃,求丙地温度。

解析:乙地温度为公式,丙地温度比乙地低10℃,所以丙地温度为公式。

4. 某冷库的温度是零下10℃,下降 -3℃后又下降5℃,此时冷库的温度是多少?解析:零下10℃即 -10℃,下降 -3℃,实际是上升3℃,此时温度为公式,又下降5℃后,温度为公式。

5. 一天中,最高气温是6℃,最低气温是 -10℃,若以0℃为基准,最高气温比最低气温高多少度?解析:以0℃为基准,最高气温6℃比0℃高6℃,最低气温 -10℃比0℃低10℃,所以最高气温比最低气温高公式。

二、海拔高度相关(5道)1. 某山峰的海拔高度为1500米,山脚的海拔高度为 -200米,山峰与山脚的相对高度是多少?解析:相对高度是山峰海拔高度减去山脚海拔高度,即公式米。

2. 甲地海拔高度为 -30米,乙地海拔高度比甲地高20米,丙地海拔高度比乙地低15米,求丙地海拔高度。

解析:乙地海拔高度为公式米,丙地海拔高度为公式米。

3. 飞机在海拔8000米的高空飞行,潜艇在海拔 -500米的海底航行,飞机与潜艇的高度差是多少?解析:高度差为飞机的海拔高度减去潜艇的海拔高度,即公式米。

4. 一座山的山顶海拔为2000米,山腰处的海拔为1200米,山底的海拔为 -300米,山腰与山底的相对高度是多少?解析:相对高度为山腰海拔减去山底海拔,即公式米。

5. 某高原的平均海拔为3000米,某盆地的平均海拔为 -200米,高原比盆地高多少米?解析:高原比盆地高的高度为高原平均海拔减去盆地平均海拔,即公式米。

有理数典型应用题

有理数典型应用题

1、某摩托车厂本周计划每天生产250辆摩托车,实际每天生产量与计划量相比情况如下(增加的辆数为正,减少的辆数为负数)
(1)本周三生产了多少辆摩托车?
(2)本周总生产量与计划生产量相比,是增加了还是减少了?是多少?
(3)产量最多的一天比产量最少的一天多生产了多少辆?
(4)工厂实行每周计件工资制,每生产一辆可得工资40元,每多生产一辆再奖20元,每少生产一辆扣30元,则本周工人可得多少元?
2、某公路养护车沿南北方向公路巡视维修,某天早晨他们从A地出发,晚上最后到达B地,约定向北为正方向,当天
的行驶记录如下(单位:千米):18,-9,+7,-14,-6,+13,-6,-8
问:(1)B地在A地何方?相距多少千米?
(2)若汽车行驶每千米耗油0.5升,求:该天耗油多少升?
3、小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)
根据上表回答问题:
(1)星期二收盘时,该股票每股多少元?
(2)本周内该股票收盘时的最高价,最低价分别是多少?
(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.卖出时还要付成交额的千分之1的手续费,若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?。

有理数的应用题

有理数的应用题

有理数的应用题1.某车间生产一批圆形机器零件,从中抽取6件进行检验,比规定直径长的毫米数2.矿井下A,B,C三处的高度分别为-37.4m,-129.8m,-71.3m,A处比B处高多少米?C处比B处高多少米?A处比C处呢?3.小红与小莉利用温差测山峰高度,小红在山顶测得温度是-1℃,小莉在山脚测得温度是5℃,已知该地区每增加100米,气温大约降低0.8℃,这个山峰高度大约是多少米?4.有一批食品罐头,标准质量为每听454克。

现抽取10听样品进行检测,结果如(1)本周哪一天水位最高?有多少米?哪一天水拉最低?(2)与上周末相比,本周末河流水位是上升了还是下降了?上升或下降了多少米?6.某种细胞每过30分钟便由1个分裂成2个,经过3时,这种细胞由1个能分裂成多少个?7.10月1日这一天下午,警车司机小张在东西走向的世纪大道上值勤.如果规定向东为正,警车的所有行程如下(单位:千米):+5,-4,+3,-6,-2,+10,-3,-7 (1)最后,警车司机小张在距离出发点的什么位置?(2)若警车每行驶10千米的耗油量为0.8升,那么这一天下午警车共耗油多少升?8.有图为某股票一周内股指变化折线统计图①若上周五股指收于1900点(周六、周日不开市)则本周股指最高点点9080706050403020100 星期一二三四五6、点A为数轴上表示-2的点,当点A沿数轴移动4个单位长度到点B时,点B所表示的数为7、相反数和绝对值都是它本身的数是,平方和立方都等于本身的数是,比它的相反数大,比它的相反数小。

若|y-3|与(2x-4)2互为相反数,则3x+y=23、两个有理数相加,和小于其中一个加数,而大于另一个加数,需满足()A、两个数都是正数B、两个数都是负数C、一个数是正数,另一个数是负数D、至少有一个数是零。

有理数应用题

有理数应用题

有理数应用题有理数是数学中的一类数,包括整数、分数和小数。

它们都可以表示为有限或无限循环的数字。

有理数在实际生活中有很多应用,比如计算、测量和建模等。

在本文中,我们将讨论一些关于有理数的应用题。

1. 银行储蓄小明在银行存入了1000元,年利率为5%。

每年他都会向银行存入相同数额的钱。

在5年后,他的存款总额是多少?解析:我们可以将小明每年存入的钱表示为有理数。

由于他每年存入相同数额的钱,所以这个有理数是一个循环小数。

假设每年存入的金额为x 元,那么:第一年:1000 + 0.05x第二年:(1000 + 0.05x) + 0.05x = 1000 + 0.1x第三年:(1000 + 0.1x) + 0.05x = 1000 + 0.15x第四年:(1000 + 0.15x) + 0.05x = 1000 + 0.2x第五年:(1000 + 0.2x) + 0.05x = 1000 + 0.25x所以,5年后小明的存款总额为1000 + 0.25x元。

2. 温度计一支温度计的刻度范围是-20℃到40℃。

如果当前的温度是-10℃,那么与正零度相差多少?解析:温度的正负可以用有理数来表示,其中负数表示低于零度的温度,正数表示高于零度的温度。

刻度范围是-20℃到40℃,所以与正零度相差的温度范围是-20℃到0℃,也就是20℃。

因此,当前温度是-10℃,与正零度相差20℃。

3. 旅行小王乘坐出租车去旅行,起步价是10元,每公里收费2元。

如果他乘坐了15公里的距离,他需要支付多少钱?解析:乘车费用可以用有理数来表示。

起步价是10元,表示为有理数+10。

每公里收费2元,表示为有理数+2x(x为乘坐的公里数)。

小王乘坐了15公里的距离,所以需要支付的费用为(+10)+2x15=(+10)+30=40元。

4. 面积计算某个方形地块的边长是3.5米。

求这个地块的面积。

解析:方形地块的面积可以用有理数来表示。

边长是3.5米,所以地块的面积为3.5乘以3.5,即3.5²。

有理数运算应用题

有理数运算应用题

有理数运算应用题1、妈妈买回3千克菜花,她付出5元,找回了0.5元,每千克菜花多少元?2、五一班图书有故事书50本,是艺术类书的2倍还多4本,艺术类的书有多少本?3、一块三角形地,面积是280平方米,底是80米,高是多少米?4、一块梯形的面积是450平方米,高30米,上底是15米,下底是多少米?5、山坡上有羊80只,其中白羊是黑羊的4倍,山坡上黑羊、白羊各多少只?6、商店里卖出两筐柑橘,第一筐重26千克,第二筐重29千克,第二筐比第一筐多卖了9元钱,平均每千克柑橘多少元?7、一块梯形麦田,面积是540平方米,高18米,上底是20米,下底是多少米?8、甲乙两车从相距750千米的两地同时开出,相向而行,5小时相遇,甲车每小时行80千米,乙车每小时行多少千米?9、两辆汽车同时从同地开出,行驶4.5小时后,甲车落在乙车的后面13.5千米,已知甲车每小时行35千米,乙车每小时行多少千米?10、加工一批零件,甲乙合作5小时完成,甲独做9形式完成。

已知甲每小时比乙多加工2个零件,这批零件共有多少个?11、体育场买来16个篮球和12个足球,共付出760元。

已知篮球与足球的单价比是5:6,体育场买篮球和足球各付出多少元12、某商店购进一批皮凉鞋,每双售出价比购进价多15%。

如果全部卖出,则可获利120元;如果只卖80双,则差64元才够成本。

皮凉鞋的购进价每双多少元?13、张师傅要利用两张铁皮(见下图)做一个圆柱体,选用其中一张剪出两个底面,然后用另一张做侧面。

要求做成的圆柱的体积尽可能大,那么张师傅做成的这个圆柱体的表面积是多少?体积是多少?(不考虑接缝,pi;取⒊14)14、甲从东城走向西城,每时走5千米,乙从西城走向东城,每时走4千米,如果乙比甲早1时出发,那么两人恰好在两城中间地方相遇,问东西两城的距离是多少千米?15、某经营公司有两个仓库储存彩电,甲乙两仓库储存之比为7∶3,如果从甲仓库调出30台到乙仓库,那么甲、乙两仓库之比为3∶2,问这两个仓库原来储存电视机共多少台?16、一列快车由甲城开到乙城需要10时,一列慢车从乙城开到甲城需要15时,两车同时从两城相对开出,相遇时快车比慢车多行120 千米,两城相距多少千米?17、拖拉机5台24天耕地12000亩,问18天耕完54000亩,需增加拖拉机多少台?18、一块边长84米的正方形蕉园,蕉树的株距是2米,行距是8米,如果每棵蕉树收蕉果65千克,每千克0.45元,这个蕉园一年可收入多少元?19、东风牌货车的运输率是拖拉机的2.5倍,大型集装车的运输率是东风牌货车的3倍,现有一堆货物,用东风车运,要6小时,如果改用拖拉机运一半,再用大型集装车运另一半,一共要用多少小时?20、甲乙两人卖鸡蛋,甲的鸡蛋比乙多10个,可是全部卖出后的收入都是15元,如果甲的鸡蛋按乙的价格出售可卖18元,那么甲、乙各有多少个鸡蛋?实数的性质实数的故事专题推荐:北京精锐教育初中一对一辅导专题。

有理数应用题

有理数应用题

有理数应用题1、某水泥厂仓库6天内进出水泥的吨数如下:+50、-45、-33、+48、-49、-36.经过这6天,仓库里的水泥减少了多少吨?答案是-65吨。

如果仓库里还存200吨水泥,那么6天前,仓库里存有水泥265吨。

如果进出仓库的水泥装卸费都是每吨5元,那么这6天要付130元装卸费。

2、某高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下:+17,-9,+7,-15,-3,+11,-6,-8,+5,+6.养护小组最后到达的地方在出发点的南方,距出发点24千米。

养护过程中,最远处离出发点17千米。

若汽车耗油量为0.5升/千米,则这次养护共耗油105升。

3、某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入。

如表是某周的生产情况:星期一+5,星期二-2,星期三-4,星期四+13,星期五-10,星期六+16,星期日-9.根据记录可知前三天共生产了9辆自行车;产量最多的一天比产量最少的一天多生产了23辆自行车;该厂工人这一周的工资总额是元。

4、10袋小麦以每袋150千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:+2,-3,+5,-6,+1,+4,-2,-7,+3,-1.与标准质量相比较,这10袋小麦总计不足6千克,总质量是1500千克。

5、某儿童服装店老板以32元的价格买进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的钱数记为负,记录结果如下表:售出件数7,售价(元)+2,6,+2,3,+1,54,-1,5,-2.该服装店售完这30件连衣裙后,赚了174元。

6、在刚刚过去的国庆假期中,全国高速公路免费通行,各地景区游人如织。

在昆明世博园景区游客甚至“攻陷”了售票处,10月1日的游客人数约为5万人,接下来的六天中,每天的游客人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):+3万,-1.5万,+2.8万,-2.2万,+1.6万,-1.8万。

有理数的应用题

有理数的应用题

1、有一些分别标有数字5、10、15、20、25、30、……的卡片,后一张卡片上的数字比前一张卡片的数字大5,小华拿到4张数字相邻的卡片,它们的和是170,则小华拿到哪4张卡片?请你说明一下,你能拿到4张卡片,使得到的卡片上的数字之和是82吗?
2、某文艺团体组织了一场义演为“希望工程”募捐,共售出1000张门票,已知成人票每张8元,学生票每张5元,共得票款6950元,成人票和学生票各几张?
3、某车间有技工85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?
4、某车间有技工85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?
5、有A、B两种原料,其中A种原料每千克50元,B种原料每千克40元,据最新消息,这两种原料过几天要调价,A种原料上涨10%,B种原料下降15%,这两种原料共重11000千克,经核算,调价削后两种原料的销售总收入不变,问A、B两种原料各需多少?
6、一个两位数,十位上的数字与个位上的数字和为11,如果把十位上的数字与个位上的数字对调,则所得新数比原数大63,求原两位数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数应用题一、有理数加减法1)温度问题1、如图是某地方春季一天的气温随时间的变化图象:请根据上图回答:(1)、何时气温最低?最低气温是多少?(2)、当天的最高气温是多少?这一天最大温差是多少?2、某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃。

若该地地面温度为21℃,高空某处温度为-39℃,求此处的高度是多少千米?3.一天,甲乙两人利用温差测量山峰的高度,甲在山顶测得温度是-1ºC,乙此时在山脚测得温度是5ºC,已知该地区每增加100米,气温大约降低0.6ºC,这个山峰的高度大约是多少米?4、已知水结成冰的温度是 0C,酒精冻结的温度是–117℃。

现有一杯酒精的温度为12℃,放在一个制冷装置里、每分钟温度可降低1.6℃,要使这杯酒精冻结,需要几分钟?(精确到0.1分钟)2)时差问题1.下表列出了国外几个大城市与北京的时差(带正号的数表示同一时刻比北京时间早的时数)(1)如果现在是北京时间上午8:00,那么东京时间是多少?(2)如果小强在北京时间下午15:00打电话给远在纽约的姑姑,你认为合适吗?试说明你的理由。

3)路程问题1.柳州出租车司机小李,一天下午以白沙客站为出发点,在南北走向的跃进路上营运,如果规定向北为正,向南为负,他这天下午行车里程(单位:千米)如下:+15,-2,+5,-13, +10,-7,-8,+12,+4,-5,+6(1)将最后一名乘客送到目的地时,小李距下午出车时的出发白沙客站多远? 在白沙客站的什么方向?(2)若每千米的价格为3.5元,这天下午小李的营业额是多少?2. 某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、-3、-5、+4、-8、+6、-3、-6、-4、+10。

(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?3.李老师在学校西面的南北路上从某点A出发来回检查学生的植树情况,设定向南的路程记为正数.向北的路程记为负数,那么李老师所行路程依次为(单位:百米):+12,-l0,+10,-8,-6,-5,-3.(1)求李老师最后是否回到出发点A?(2)李老师离开出发点A最远时有多少千米? (3)李老师共走了多少千米?4.在一条东西走向的马路旁,有青少年宫、党校、商场、医院四家公共场所.已知青少年宫在学校东300m处,商场在学校西200m处,医院在学校东500m处,若将马路近似地看作一条直线,以学校为原点,向东为正方向,用1个单位长度表示100m.(1)在数轴上表示四家公共场所的位置.(2)列式计算青少年宫与商场之间的距离.5.检修组乘汽车,沿公路检修线路,约定向东为正.向西为负,某天自A出发,到收工时,行走记录为(单位:千米):+8、-9、+4、+7、-2、-10、+18、-3、+7、+5 回答下列问题:(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?6. 某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行-+-++--驶为负,一天中七次行驶纪录如下。

(单位:km)4,7,9,8,6,5,21)求收工时距A地多远?2)在第次纪录时距A地最远。

3)若每千米耗油0.3升,问共耗油多少升?7.某检修小组乘一辆汽车沿检修路约定向东走为正,某天从A地出发到收工是行走记录(单位:km):+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6,求:(1)问收工是检修小组在A地的哪一边,距A地多远?(2)若每千米汽车耗油3升,开工是储存180升汽油,回到收工是中途是否需要加油,若加油最少加多少升?若不需要加油到收工时,还剩多少升汽油?8.小虫从某点O出发在一直线上来回爬行,假定向右爬行的路程记整数为正数,向左爬行的路程记为负数,爬行的各段路程依次为(单位:cm):+5,-3,+10,-8,-6,+12,-10.求:(1)小虫最后是否回到出发点O?(2)小虫离出发点O最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫一共得到多少粒芝麻?4) 身高、体重、成绩等问题1.电视台的体育频道经常播放篮球比赛,张明同学在收看比赛时,当解说员介绍每个队员的身高后,张明同学能用简便方法很快的把这个球队的队员平均身高计算出来.你行吗?请做出下题:某球队10名队员的身高如下(单位:cm):173,171,175,177,180,178,179,174,184,190.求这10名队员的平均身高.2、下列是我校七年级5名学生的体重情况,(2)谁最重?谁最轻?(3)最重的与最轻的相差多少?3.体育课上,某中学对七年级男生进行了引体向上测试,以能做7个为标准,超过的次数记为正数,不足的次数记为负数,其中8名男生的成绩为+2,-1,+3,0,-2,-3,+1,0(1)这8名男生的百分之几达到标准?(2)他们共做了多少次引体向上?4、七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分?5.某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下+8,-3,+12,-7,-10,-3,-8,+1,0,+10.(1)这10名同学中最高分是多少?最低分是多少?(2)10名同学中,低于80分的所占的百分比是多少?(3)10名同学的平均成绩是多少?5)销售问题1、某商店营业员每月的基本工资为300元,奖金制度是:每月完成规定指标10000元营业额的,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%,该商店的一名营业员九月份完成营业额13200元,问他九月份的收入为多少元?2、某商场老板对今年上半年每月的利润作了如下记录:1、2、5、6月盈利分别是13万元、12万元、12.5万元、10万元,3、4月亏损分别是0.7万元和0.8万元。

试用正、负数表示各月的利润,并算出该商场上半年的总利润额。

3、小红和小明在游戏中规定:长方形表示加,圆形表示减,结果小者获。

列式计算,小明和小红谁为胜者?4、淮海商场经理对今年上半年每月的利润作了如下记录:1、2、5、6月盈利分别是33万元、32万元、52.5万元、28万元,3、4月亏损分别是17.7万元和17.8万元。

试用正、负数表示各月的利润,并算出该商场上半年的总利润额。

6) 水位问题1、在“十·一”黄金周期间,淮北市风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):(1) 请判断七天内游客人数最多的是哪天?最少的是哪天?它们相差多少万人? (2) 若9月30日的游客人数为2万人,求这7天的游客总人数是多少万人?小红:小明:4.5-6-7-823.2 1.11.42、下表记录的是流花河今年某一周内的水位变化情况,上周末(星期六)的水位已达到警戒水位33米。

(正号表示水位比前一天上升,负号表示水位比前一天下降)⑴本周哪一天河流的水位最高?哪一天河流的水位最低?它们位于警戒水位之上还是之下?⑵与上周末相比,本周末河流的水位是上升了还是下降了? ⑶以警戒水位作为零点,用折线统计图表示本周的水位情况。

水位变化(米)解:星期14.一个病人每天下午需要测量血压,下表为病人周一到周五收缩压的变化情况,该病人上周日的收缩压为160单位.问:(1)本周哪一天血压最高?哪一天最低?(2)与上周日相比,病人周五的血压是上升了还是下降了?5.某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为(1) 本周三生产了多少辆摩托车?(2) 本周总生产量与计划生产量相比,是增加还是减少?(3) 产量最多的一天比产量最少的一天多生产了多少辆?有理数乘除法1. 10袋小麦以每袋150千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:-6,-3,-1,-2,+7,+3,+4,-3,-2,+1与标准重量相比较,10袋小麦总计超过或不足多少千克?10袋小麦总重量是多少千克?2. 火车在东西方向的直行道上运行,规定自车站向东为正,向西为负,进站以前的时间为负,进站以后的时间为正。

如果v= 60 km/h, t= 3h,火车在何处?如果v =65 km/h, t = -3.4h,火车又在何处?3. 如果记上升为正,下降为负。

如果一架直升机从高度为450米的位置开始,先以20米/秒的速度上升60秒,后以12米/秒的速度下降120秒,这时直升机所在的高度是多少?4. 某儿童服装店老板以32元的价格买进30件连衣裙,针对不同的顾客,30件连衣裙的售价完全不相同,若以47元为标准,将超过的钱数记为正,不足的钱数记为负,记录结果如请问,该服装店售完这30件连衣裙后,赚了多少钱?问:这10袋盐一共有多重?5.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不450克,则抽样检测的总质量是多少?有理数乘方1、有一张厚度是0.2毫米的纸,如果将它连续对折10次,那么它会有多厚?2、某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为16个,则这个过程要经过多长时间?3、你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?。

相关文档
最新文档