初中数学 线性规划.ppt
线性规划PPT课件
线性规划的基本定理
线性规划的解存在性
对于任何线性规划问题,都存在至少一个最优解。
最优解的唯一性
在某些情况下,线性规划问题的最优解是唯一的,这取决于目标函 数和约束条件的形状和位置。
解的稳定性
线性规划问题的最优解是稳定的,即使目标函数或约束条件略有变 化,最优解也不会发生大的变化。
03
线性规划的求解方法
优缺点:内点法具有全局收敛性和对初始点不敏 感的优点,但计算量较大,需要较高的计算资源 。
椭球法
01
总结词:几何方法
02
03
04
详细描述:椭球法是一种基 于几何方法的线性规划算法。 它将可行解的边界表示为椭 球,通过迭代移动椭球中心
来逼近最优解。
算法步骤:椭球法的基本步 骤包括初始化、构建椭球和 迭代更新。在每次迭代中, 根据当前椭球的位置和方向 来更新中心和半径,直到满
运输问题
总结词
运输问题是线性规划在物流和供应链管理中的重要应用,旨在优化运输成本、 运输时间和运输量等目标。
详细描述
运输问题通常需要考虑多个出发地、目的地、运输方式和运输成本等因素。通 过线性规划方法,可以找到最优的运输方案,使得总运输成本最低、运输时间 最短,同时满足运输量和运输路线的限制。
投资组合优化问题
03
单纯形法
单纯形法是线性规划的标 准算法,通过迭代和优化, 找到满足约束条件的最大 或最小目标函数值。
初始解
在应用单纯形法之前,需 要先找到一个初始解,这 可以通过手动计算或使用 软件工具来实现。
迭代过程
单纯形法通过不断迭代和 优化,逐步逼近最优解, 每次迭代都需要重新计算 目标函数值和最优解。
线性规划的几何意义
4.2线性规划ppt课件
目录
• 线性规划简介 • 线性规划的求解方法 • 线性规划的软件实现 • 线性规划案例分析 • 线性规划的优化策略
01
线性规划简介
线性规划的定义
线性规划是数学优化技术的一种 ,它通过将问题转化为线性方程 组,并寻找满足一定约束条件的 解,以实现目标函数的最优解。
线性规划问题通常由决策变量、 约束条件和目标函数三部分组成
运输问题
总结词
运输问题是在物流和供应链管理中常见的线性规划应用,旨在优化运输成本和时 间。
详细描述
运输问题通常涉及多个起点、终点和运输方式,需要考虑运输成本、时间、容量 和路线等约束条件。通过线性规划方法,可以找到最优的运输方案,使得总运输 成本最低或运输时间最短。
投资组合优化问题
总结词
投资组合优化问题是在金融领域中常见的线性规划应用,旨 在实现风险和收益之间的平衡。
对偶问题在理论研究和实际应用中都 具有重要的意义,可以用于求解一些 特殊类型的问题,如运输问题、分配 问题等。
对偶问题具有一些特殊的性质,如对 偶变量的非负性、对偶问题的最优解 与原问题的最优解之间的关系等。
初始解的确定
初始解的确定是线性规划求解过程中的 一个重要步骤,一个好的初始解可以大
大减少迭代次数,提高求解效率。
。
决策变量是问题中需要求解的未 知数,约束条件是限制决策变量 取值的条件,目标函数是要求最
大或最小的函数。
线性规划的数学模型
线性规划的数学模型通常由一 组线性不等式和等式约束以及 一个线性目标函数组成。
线性不等式和等式约束条件可 以用来表示各种资源和限制条 件。
目标函数是决策变量的线性函 数,表示要优化的目标。
二元一次不等式组与简单线性规划问题
二元一次不等式(组)与简单线性规划问题课堂巩固1.若222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则目标函数z x y =-的取值范围是A .[1,1]-B .[2,0]-C .[0,2]D .[2,2]-2.在平面直角坐标系中,若不等式组101010x y x ax y +-≥⎧⎪-≤⎨⎪-+≥⎩(α为常数)所表示的平面区域内的面积等于2,则a的值为A. -5B. 1C. 2D. 33.已知D 是由不等式组2030x y x y -≥⎧⎨+≥⎩,所确定的平面区域,则圆 224x y +=在区域D 内的弧长为[ ]A4π B 2πC 34πD 32π4.设,x y 满足24,1,22,x y x y x y +≥⎧⎪-≥⎨⎪-≤⎩则z x y =+(A )有最小值2,最大值3 (B )有最小值2,无最大值 (C )有最大值3,无最小值 (D )既无最小值,也无最大值5.不等式组222232320x x x x x x ⎧-->--⎪⎨+-<⎪⎩的解集为__________________。
课后检测一、选择题1.若变量,x y 满足210201x y x y x -+≤⎧⎪-≥⎨⎪≤⎩,则点(2,)P x y x y -+表示区域的面积为( )A .34 B. 43 C. 12D. 11,01(),03x x x x ⎧<⎪⎪⎨⎪-≥⎪⎩2.设x ,y 满足约束条件360200,0x y x y x ⎧⎪⎨⎪⎩--≤-+≥y ≥y ≥,若目标函数z =ax +by (a >0,b>0)的最大值为12,则2a +3b 的最小值为A .256 B .83 C .113D .4 3.已知O 为直角坐标系原点,P ,Q 的坐标均满足不等式组4325022010x y x y x +-≤⎧⎪-+≤⎨⎪-≥⎩,则cos POQ ∠的最小值为A .12B .22C .32D .14.在如图所示的坐标平面的可行域(阴影部分且包括边界)内,目标函数ay x z -=2取得最大值的最优解有无 数个,则a 为A .-2B .2C .-6D .6二、填空题5.设220240330x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则目标函数22z x y =+取得最大值时,x y +=6.若函数()f x = 则方程1()3f x =-的解集为 .7.已知函数2lg ,(0)()1,(0)x x f x x x ->⎧=⎨-≤⎩则不等式()0f x >的解集为______________。
线性规划ppt课件
a11x1+a12x2++a1nxn=b1
a21x1+a22x2++a2nxn=b2
(*)
am1x1+am2x2++amnxn=bm
x1, x2, , xn≥0
其中,bi≥0 (i=1,2,,m)
或者更简洁的,利用矩阵与向量记为
max z CT x
s.t. Ax b
(**)
x0
其中C和x为n维列向量,b为m维列向量, b≥0,A为m×n矩阵,m<n且rank(A)=m
⑵约束条件为 a11x1+a12x2++a1nxn≤b1 加入非a1负1x1变+a量12xx2n++1,+称a为1nx松n+弛xn+变1=量b1,有
⑶约束条件为 a11x1+a12x2++a1nxn≥b1 减去非a1负1x1变+a量12xx2n++1,+称a为1nx剩n -余xn变+1=量b1,有
⑷变量xj无约束。
令xj= xj - xj,对模型中的进行变量代换。
1.2 线性规划问题的求解——单纯形法 1.2.1 基本概念
可行解 满足约束条件(包括非负条 件)的一组变量值,称可行解。
所有可行解的集合称为可行域。
最优解 使目标函数达到最大的可行解 称为最优解。
基本解 对于有n个变量、m个约束方程的标准 型线性规划问题,取其m个变量。若这些变量在约 束方程中的系数列向量线性无关,则它们组成一组 基变量。确定了一组基变量后,其它n-m个变量称 为非基变量。
x0 必非最优解。
证 (1)显然
江苏省靖江市第一高级中学高中数学必修五苏教版课件:3.3.3 简单的线性规划问题(2)
一、问题情景
某校办工厂有方木料90m3,五合板600m2,正准备为外校新生加工 新桌椅和书橱出售.已知生产每张书桌需要方木料0.1m3,五合板2m2 ,生产每个书橱需要方木料0.2m3,五合板1m2,出售一张书桌可获 利润80元,出售一张书橱可获利润120元.
(1)假设你是工厂的生产科长,请你按要求设计出工厂的生产方案。 方案一:若只生产书桌,用完五合板,可生产书桌300张,可获得利 润80×300=24000元,但方木料没有用完. 方案二:若只生产书橱,用完方木料,可生产450张书橱,可获得利 润120×450=54000元,但五合板没有用完.
学段
初中 高中
班级学生数 配备教师数
45
2
40
3
硬件建设 (万元)
26/班 54/班
教师年薪 (万元)
2/人 2/人
分别用数学关系式和图形表示上述限制条件.若根据有关部门的规 定,初中每人每年可收学费1600元,高中每人每年可收学费2700元.因 生源和环境等条件限制,办学规模以20至30个班为宜(含20个与30个) 那么开设初中班和高中班多少个?每年收费的学费总额最多?
xN
y N
目标函数为: z 80x 120y
(3)如果你是厂长,为使工厂原料充分利用,问怎么安排能 够使资源最大限度的利用,且可获得最大利润? 方案三、生产书桌100张,书橱400张,有最大利润为56000元.
二、线性规划在实际中的应用
线性规划的理论和方法主要在两类问题中得到应用,
一是在人力、物力、资金等资源一定的条件下,如何使用它们来完 成最多的任务;
二是给定一项任务,如何合理安排和规划,能以最少的人力、 物力、资金等资源来完成该项任务.
运筹学线性规划数学模型PPT课件
• 两个重要人物:
• 1.利奥尼德·康托洛维奇(1912-1986)
• 苏联数学家,对经济学的主要贡献在于:建 立和发展了线性规划方法,并运用于经济分析, 对线性规划方法的建立和发展做出了开创新贡献。
• 2.G.B.丹齐克(Dantzing,1914-2005)
• 美国数学家,因创造了单纯形法,被称为 “线性规划之父”。1982年,为表彰丹齐克, 国际数学规划协会设立丹齐克奖。表彰在数学规 划有突出贡献的人
如何合理使用有限的人力,物力和资金, 使得收到最好的经济效益。
如何合理使用有限的人力,物力和资金, 以达到最经济的方式,完成生产计划的要求。
第3页/共31页
一、线性规划数学模型的建立
建立线性规划数学模型是解决线性规划问题 的一个重要步骤。
建立的线性规划数学模型是否真正的反映客 观实际,数学模型本身是否正确,都直接影响 求解结果,从而影响决策结果,所以,建立正 确的线性规划模型尤为重要。下面举例说明线 性规划数学模型的建立。
第4页/共31页
例1:(产品组合问题)
某厂利用A、B两种原料,生产甲、乙两种产品,有关数据如下:
单位产品 消耗原料
产品名称
原料名称
A B
产品售价 (千元/吨)
甲乙
12 21 32
可供利用的原料 数量(吨/日)
6 8
根据市场调查,有如下资料: 1.乙产品的需求量至多 2 吨/日; 2.乙产品的需求量比甲产品的需求量至多大 1 吨/日。 求该厂产值最大的生产方案。
第1页/共31页
• 几个重大历史事件:
• 1939年,前苏联数学家康托洛维奇出版《生产组织和计划 中的数学方法》一书
• 1947年,美国数学家丹齐克提出单纯形算法(Simpler) • 1951年美国经济学家库普曼斯出版《生产与配置的活动分
运筹学课件
Formulate a mathematical model of the company that can be used to maximize weekly profit: Profit = revenues - costs
最优解 optimal solution; Z =180, x1 =20,x2 =60 =20,
Operations Research
工作研究
1
运 筹 学
Operations Research
数学规划 Mathematical programming
数学规划) 运 筹 学(数学规划)
1. Introduction to Operations Research 绪论 2. Introduction to Linear Programming 线性规划 3. The Simplex Algorithm 单纯形法 4. Sensitivity Analysis and Duality 灵敏度分析与对偶 5. Integer Programming 整数规划 6. Advanced Topics in Linear Programming 7. Nonlinear Programming 非线性规划 8. Deterministic Dynamic Programming 动态规划
•
•
•
运筹学( Research)概况简述4 运筹学(Operations Research)概况简述4
Operations Research
工作研究
9
四、运筹学分支
• 图与网络理论 • 存储论 • 排队论 • 决策论
• 排序与统筹方法 • 对策论 • 可靠性理论等
Operations Research
线性规划课件ppt
详细描述
在选择线性规划模型时,应根据实际问题的特点进行选择。例如,对于简单的最优化问题,可以使用标准型线性规划模型;对于需要约束条件或特殊处理的问题,可以选择扩展型线性规划模型。在建立模型后,还可以使用优化软件对模型进行优化,以提高求解效率和准确性。
CHAPTER
线性规划的求解方法
总结词
最常用的方法
要点一
要点二
详细描述
单纯形法是一种迭代算法,用于求解线性规划问题。它通过不断地在可行解域内寻找新的解,直到找到最优解或确定无解为止。单纯形法的主要步骤包括建立初始单纯形、确定主元、进行基变换和更新单纯形等。该方法具有简单易行、适用范围广等优点,但在某些情况下可能会出现迭代次数较多、计算量大等问题。
在选择变量时,应考虑其物理意义、数据的可靠性和敏感性等因素。
选择变量时,首先要考虑变量的物理意义和实际背景,以便更好地理解模型和求解结果。同时,要重视数据的可靠性,避免使用不可靠的数据导致模型失真或错误。敏感度分析可以帮助我们了解变量对目标函数的影响程度,从而更好地选择变量。
总结词
详细描述
总结词
线性规划在工业生产中的应用已经非常广泛,未来将会进一步拓展其应用领域。
工业生产
线性规划在物流运输领域中的应用也将会有更广阔的前景,例如货物的合理配载、车辆路径规划等。
物流运输
线性规划在金融管理中的应用也将逐渐增多,例如投资组合优化、风险控制等。
金融管理
非线性优化
将线性规划拓展到非线性优化领域是一个具有挑战性的研究方向,但也为线性规划的应用提供了更广阔的发展空间。
软件特点
Lingo具有强大的求解能力,可以高效地解决大规模线性规划问题,同时具有友好的用户界面,方便用户进行模型输入和结果输出。
数学 沪教版 课件ppt课件ppt课件
解析几何的基本概念包括坐标系、点、向量、矩阵等基 本元素,以及它们的性质和运算规则。
解析几何的应用非常广泛,例如在物理、工程、计算机 等领域都有应用。
04
概率与统计
概率论
01
概率的基本性质
概率论是研究随机现象的数学分支,它定义了随机事件、样本空间、概
率空间等基本概念,并探讨了概率的基本性质,如非负性、规范性、可
加性等。
02
离散概率模型
离散概率模型是概率论中的一种重要类型,它涉及到离散随机变量的概
率分布,如二项分布、泊松分布等。这些分布在实际问题中有着广泛的
应用,如统计学、计算机科学、物理学等领域。
03
连续概率模型
连续概率模型是另一种重要的概率模型,它涉及到连续随机变量的概率
分布,如正态分布、指数分布等。这些分布在实际问题中也有着广泛的
回归分析
回归分析是统计学中的一种重要分析方法,它通过建立数学模型,分析变量之间的关系, 并预测未来的趋势。线性回归分析是最常见的回归分析方法之一,它通过最小二乘法等方 法求解最优的回归系数,并评估模型的预测精度和稳定性。
随机过程
随机过程的定义与性质
随机过程是概率论中的一种重要概念,它描述了一个随机现 象在时间或空间上的变化过程。随机过程具有多种性质,如 平稳性、遍历性、独立增量等,这些性质在实际问题中有着 广泛的应用。
代数方程的应用
代数方程在日常生活和科 学研究中有着广泛的应用 ,如物理、工程、经济等 领域。
函数
函数的定义
函数是数学中描述两个变量之间 关系的一种方法,它表示一个变 量随着另一个变量的变化而变化
的关系。
函数的性质
函数的性质包括奇偶性、单调性、 周期性等,这些性质描述了函数的 变化规律。
3.3.2 简单的线性规划问题(二)
巩固练习一
咖啡馆配制两种饮料.甲种饮料每杯含奶粉9g 、咖啡4g、糖 3g,乙种饮料每杯含奶粉4g 、咖啡5g、糖10g.已知每天原料 的使用限额为奶粉3600g ,咖啡2000g 糖3000g,如果甲种饮 料每杯能获利0.7元,乙种饮料每杯能获利1.2元,每天在原料 的使用限额内饮料能全部售出,每天应配制两种饮料各多少 杯能获利最大? 解:将已知数据列为下表:
教师年薪 万元
2/人
2/人
初中
高中
分别用数学关系式和图形表示上述限制条件。若 根据有关部门的规定,初中每人每年可收学费1600 元,高中每人每年可收学费2700元。那么开设初中 班和高中班多少个?每年收费的学费总额最多?
解:设开设初中班x个,高中班y个。因办学规模以 20~30个班为宜,所以, 20≤x+y≤30
小结
巩固练习二
某厂拟生产甲、乙两种适销产品,每件销售收入分 别为3000元、2000元,甲、乙产品都需要在A、B两 种设备上加工,在每台A、B上加工1件甲所需工时分 别为1h、2h,A、B两种设备每月有效使用台数分别 为400h和500h。如何安排生产可使收入最大? 设每月生产甲产品x件,生产乙产品y件,每月收 入为z,目标函数为Z=3x+2y,满足的条件是
y _
目标函数为:z =0.7x +1.2y
把直线l向右上方平移至l1的位置时, _00 4 直线经过可行域上的点C,且与原点 3 _00 距 离最大, 此时z =0.7x +1.2y取最大值 7 _ x + 12 y = 0 解方程组
C _ ( 200 , 240 ) 3 _ x + 10 y = 3000
由图可以看出,当直线经过可行域上的点M时, 截距2z最大,即z最大。 容易求得M点的坐标为 (2,2),则Zmin=3
趣味数学初中ppt课件
优美曲线是指那些具有美感和良好性质的曲线,如圆、椭圆、双曲线等。这些曲线在数学上具有重要的地位 ,同时也被广泛应用于生活和艺术中。
图形变换的基本类型与性质
图形变换是指对图形进行某种操作而不改变其本质特征的过程。常见的图形变换包括平移、旋转、缩放等。 这些变换具有保持图形形状和大小不变的性质。
趣味数学初中ppt课件
• 数学之美 • 趣味算术与代数 • 几何图形奥秘 • 数学游戏与竞赛 • 数学在现实生活中的应用 • 拓展视野:数学与其他领域交叉点
01
数学之美
黄金分割与斐波那契数列
黄金分割的定义与性质
黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较 大部分的比值,其比值约为0.618。这个比例被公认为是最能引起美感的比例 。
THANK YOU
数据分析
统计学方法可应用于收集 、整理和分析数据,从而 揭示数据背后的规律和趋 势。
风险评估
概率统计在风险评估领域 有广泛应用,如保险、金 融和投资等,用于量化潜 在风险和制定相应策略。
线性规划在资源分配中应用
资源优化
线性规划是一种数学方法 ,用于在给定约束条件下 最大化或最小化目标函数 ,实现资源的最优配置。
多种证明方法
介绍勾股定理的多种证明方法,如赵 爽弦图、面积法、向量法等,拓展学 生的数学视野和思维深度。
相似三角形性质及应用
1 2
相似三角形的定义和性质
介绍相似三角形的定义、性质和判定方法,引导 学生理解相似三角形的本质和特征。
相似三角形的应用
通过实例和练习题,展示相似三角形在解决实际 问题中的应用,如测量高度、计算面积等。
不等式应用
掌握不等式的性质和解法,了解不等 式在实际问题中的应用。
线性规划完整ppt课件
若 x、 y 满足
y 1
y
2 x -1
x y m
若目标函数 zxy最小值-1,则m的值.
可编辑课件
15结束
变式训练(四)
x y 1
若 x、 y 满足 x y 4
x
y
2
x y 2
可编辑课件
6
问题(四)
用什么方法解决这个问题呢? 根据什么判断这是一个线性规划问题呢?
可编辑课件
7
解:设每天吃x百克苹果,y百克桔子,花 钱z元,则 50x 25y 75
0.2x 0.4y 1 x0 y0
z 0.75x y
可编辑课件
8
M
M
可编辑课件
9
当直线z=0.75x+y经过可行域上的点M时,z有最小值
巩固练习
x y 1
若点M( x , y ) 在平面区域 x y 4 上
x
y
2
x y 2
向量a (1, 2),则 OM a 的最大值.
可编辑课件
12
变式训练(一)
x y 1
若 x、 y
满足
x
x
y y
4 2
x y 2
则 z | x2y| 最大值.
可编辑课件
13
变式训练(二)
解方程组500.2xx++205.y4=y=751
得M的坐标为(1,7) 33
所以,zmin
0.75x
y
31 12
2.6
答:最少可以花约2.6元.
可编辑课件
10
问题(五)
解决线性规划实际问题的步骤: