TFT-LCD液晶显示器的驱动原理
tft lcd工作原理
tft lcd工作原理
TFT(薄膜晶体管)LCD(液晶显示器)是一种基于薄膜晶体
管技术的液晶显示器。
其工作原理如下:
1. 像素结构:TFT LCD由一系列的像素组成,每个像素都包
含了红、绿、蓝三个基色的液晶单元和一个薄膜晶体管。
液晶单元根据电压的变化来控制光的透过程度,从而实现颜色的显示。
薄膜晶体管则负责控制电流的开关。
每个像素中的液晶单元和薄膜晶体管都被附着在透明的玻璃基板上。
2. 薄膜晶体管的作用:薄膜晶体管是TFT LCD的核心部件,
它负责控制电流的开关。
当电流通过薄膜晶体管时,它会改变液晶单元的电场,从而改变其透光性质。
薄膜晶体管的开关控制是通过将其上的栅极电压调高或调低来实现的,进而控制液晶单元的透光程度。
3. 光的透过过程:当液晶单元处于关闭状态时,它不能透过光,显示为黑色。
当液晶单元处于开启状态时,根据电场的变化,液晶分子会重新排列,使光线通过透射,显示为不同的颜色和亮度。
4. 控制信号:为了控制TFT LCD的每个像素,需要向每个像
素提供控制信号。
这些控制信号是通过一些线路和电路驱动器传递的,以确保每个像素都能准确显示所需的颜色和亮度。
总结来说,TFT LCD的工作原理是通过控制薄膜晶体管来调
节液晶单元的透光性质,从而显示不同的颜色和亮度。
通过像
素的排列和控制信号的传递,TFT LCD可以呈现出清晰、亮丽的图像。
TFT LCD液晶显示器的驱动原理
TFT LCD液晶顯示器的驅動原理(一)謝崇凱前兩期針對液晶的特性與TFT LCD本身結構介紹了有關液晶顯示器操作的基本原理。
這次將針對TFT LCD的整體系統面,也就是對其驅動原理來做介紹,而其驅動原理仍然因為一些架構上差異的關係而有所不同。
首先將介紹由於Cs(storage capacitor)儲存電容架構不同,所形成不同驅動系統架構的原理。
Cs(storage capacitor)儲存電容的架構一般最常見的儲存電容架構有兩種,分別是Cs on gate與Cs on common這兩種。
顧名思義,兩者的主要差別在於儲存電容是利用gate走線或是common走線來完成。
在上一期文章中曾提到,儲存電容主要是為了讓充好電的電壓能保持到下一次更新畫面的時候之用,所以必須像在CMOS的製程之中,利用不同層的走線來形成平行板電容。
而在TFT LCD的製程中,則是利用顯示電極與gate走線或common走線所形成的平行板電容,來製作出儲存電容Cs。
<center><img src="/album/43/69/51466943/431163.jpg" border=0></center>如果圖不清楚,請看/album/43/69/51466943/431163.jpg圖1就是這兩種儲存電容架構,圖中可以很明顯地知道,Cs on gate由於不必像Cs on common需要增加一條額外的common走線,所以其開口率(Aperture ratio)比較大。
而開口率的大小是影響面板的亮度與設計的重要因素,所以現今面板的設計大多使用Cs on gate的方式。
但是由於Cs on gate方式的儲存電容是由下一條的gate走線與顯示電極之間形成的(請見圖2中Cs on gate與Cs on common的等效電路),<center><img src="/album/43/69/51466943/431250.jpg" border=0></center>而gate走線就是接到每一個TFT的gate端的走線,主要是作為gate driver送出信號來打開TFT,好讓TFT對顯示電極作充放電的動作。
TFT LCD工作原理
TFT LCD显示原理
原理图:
MOS管的栅极接在一起,构成扫描行;源极接在一起, 构成数据传输列
TFT LCD显示原理
剖面结构
TFT LCD显示原理
RGB三基色排列结构图
TFT LCD显示原理
存储电容架构
1.存储电容作用:为了让充好电的电压保持到下一次 更新画面
TFT LCD显示原理
主动矩阵驱动
大(视角+70度)(可观 赏角度)
最大(画面对比在150:1)
反应速度 显示品质
颜色
最慢(无法显示动画)
最差(无法显示较多像素、解 析度较差)
单色或黑色
中等(150ms) 中等
单色及彩色
最快(40ms) 最佳 彩色
价格
适合产品 各种汽车、电器
产品之
最便宜 电子表、电子计算机、 电子辞典、掌上型电脑、
LCD分类
按照LCD结构特性: TN型即扭曲向列型LCD ,STN型即超扭曲向列型
LCD ,DSTN型即双超扭曲向列型LCD ,FSTN型即
薄层扭曲向列型LCD,TFT LCD型即薄膜晶体管LCD
LCD分类
按照驱动方式:
1.静态驱动LCD:也叫段式驱动,适应于笔段式液晶 的驱动
LCD分类
LCD分类
1.Vcom不变方式,则需要source级的驱动电压比较 高 2.单就Vcom来讲,Vcom变化耗能比较高 3.Vcom变化方式产生feed through电压难于调整 4.一般采用Vcom不变方式较多
TFT LCD显示原理
极性变换和common电极驱动方式搭配
1.各种极性变换与Vcom固定方式都能搭配 2.只有Frame inversion和Row inversion能与Vcom变 化方式搭配 3.Frame inversion有Flick现象,除dot inversion,其 它的极性变换crosstalk现象比较明显
tft工作原理
tft工作原理
TFT(薄膜晶体管)是一种基于薄膜技术的半导体器件,常用
于液晶显示器(LCD)平面面板的驱动。
以下是TFT的工作
原理:
1. TFT结构:TFT是由多个薄膜层组成的结构。
其中包括透明导电层(一般为透明的氧化铟锡涂层,ITO层),绝缘层(一般为二氧化硅或硅氧化铝),以及半导体层(多晶硅或非晶硅)。
2. 偏压施加:在TFT中,电场通过透明导电层施加在半导体
层上,可以调节半导体层的导电性。
3. 管道形成:由于施加的电压,半导体层中部分区域的导电特性会发生变化,形成了导电通道。
这个导电通道可以控制液晶的透过性,从而控制显示器上的像素显示。
4. 控制信号:通过在透明导电层上施加不同的控制信号,可以调节TFT中的电场大小,从而控制液晶的偏振状态。
5. 灯光透过:控制液晶的偏振状态会影响灯光通过液晶显示层的方式。
通过透明的导电层和绝缘层,光线可以透射到显示面板中。
6. 显示亮度:液晶显示层通过调节透光性来控制像素的亮度。
当电压施加到TFT时,液晶分子会扭曲并影响光线的透过性。
这种扭曲可以通过不同的信号施加来控制,从而达到调节亮度
的效果。
综上所述,TFT通过控制透明导电层和半导体层之间的电场来调节液晶的偏振状态,从而控制显示器的像素亮度和透明性。
TFT_LCD_驱动原理
TFT_LCD_驱动原理TFT(薄膜晶体管)液晶显示屏是一种广泛应用于电子产品中的平面显示技术。
TFT液晶显示屏由液晶单元和薄膜晶体管阵列组成,每个像素都由一个液晶单元和一个薄膜晶体管控制。
TFT液晶显示屏的原理是利用液晶的电光效应来实现图像的显示。
液晶是一种介于固体和液体之间的有机化合物,具有光电效应。
通过在液晶材料中施加电场,可以改变液晶的折射率,从而控制光的透射或反射。
液晶的电光效应使得TFT液晶显示屏可以根据电信号来调节每个像素点的亮度和颜色。
TFT液晶显示屏的驱动原理主要包括以下几个步骤:1.数据传输:首先,需要将图像数据从输入设备(如计算机)传输到液晶显示屏的内部电路。
这通常是通过一种标准的视频接口(如HDMI或VGA)来完成的。
2.数据解码与处理:一旦数据传输到液晶显示屏内部,它会被解码和处理,以提取有关每个像素点的亮度和颜色信息。
这些信息通常以数字方式存储在显示屏的内部存储器中。
3.电压调节:在液晶显示屏中,每个像素是由一个液晶单元和一个薄膜晶体管组成。
薄膜晶体管通过控制液晶单元的电场来调节每个像素的亮度和颜色。
为了控制液晶单元的电场,需要施加不同电压信号到每个像素点上。
这些电压信号由驱动电路产生,并通过薄膜晶体管传递到液晶单元。
4.像素刷新:一旦电压信号被传递到液晶单元,液晶单元将会根据电场的变化来调节光的传输或反射,从而实现每个像素的亮度和颜色调节。
整个屏幕的像素都将按照这种方式进行刷新,以显示出完整的图像。
5.控制信号发生器:控制信号发生器是液晶显示屏的一个重要组成部分,用于生成各种控制信号,如行扫描和场扫描信号,以及重新刷新图像的同步信号。
这些控制信号保证了像素的正确驱动和图像的稳定显示。
总结起来,TFT液晶显示屏的驱动原理涉及数据传输、数据解码与处理、电压调节、像素刷新和控制信号发生器等多个步骤。
通过控制电压信号和液晶单元的电场变化,TFT液晶显示屏能够实现图像的显示,并且具有色彩鲜艳、高对比度和快速响应等优点,因此在各种电子产品中得到广泛应用。
TFT_LCD液晶显示器的驱动原理详解
TFT LCD液晶显示器的驱动原理TFT LCD液晶显示器的驱动原理(一)我们针对TFT LCD的整体系统面来做介绍, 也就是对其驱动原理来做介绍, 而其驱动原理仍然因为一些架构上差异的关系, 而有所不同. 首先我们来介绍由于Cs(storage capacitor)储存电容架构不同, 所形成不同驱动系统架构的原理.Cs(storage capacitor)储存电容的架构一般最常见的储存电容架构有两种, 分别是Cs on gate与Cs on common这两种. 这两种顾名思义就可以知道, 它的主要差别就在于储存电容是利用gate走线或是common走线来完成的. 在上一篇文章中, 我曾提到, 储存电容主要是为了让充好电的电压,能保持到下一次更新画面的时候之用. 所以我们就必须像在CMOS的制程之中, 利用不同层的走线, 来形成平行板电容. 而在TFT LCD的制程之中, 则是利用显示电极与gate走线或是common走线,所形成的平行板电容,来制作出储存电容Cs.图1就是这两种储存电容架构, 从图中我们可以很明显的知道, Cs on gate由于不必像Cs on common一样, 需要增加一条额外的common走线, 所以它的开口率(Aperture ratio)会比较大. 而开口率的大小, 是影响面板的亮度与设计的重要因素. 所以现今面板的设计大多使用Cs on gate的方式. 但是由于Cs on gate的方式, 它的储存电容是由下一条的gate走线与显示电极之间形成的.(请见图2的Cs on gate与Cs on common的等效电路) 而gate走线, 顾名思义就是接到每一个TFT的gate端的走线, 主要就是作为gate driver送出信号, 来打开TFT, 好让TFT对显示电极作充放电的动作. 所以当下一条gate走线, 送出电压要打开下一个TFT时 ,便会影响到储存电容上储存电压的大小. 不过由于下一条gate走线打开到关闭的时间很短,(以1024*768分辨率, 60Hz更新频率的面板来说. 一条gate走线打开的时间约为20us, 而显示画面更新的时间约为16ms, 所以相对而言, 影响有限.) 所以当下一条gate走线关闭, 回复到原先的电压, 则Cs储存电容的电压, 也会随之恢复到正常. 这也是为什么, 大多数的储存电容设计都是采用Cs on gate 的方式的原因.至于common走线, 我们在这边也需要顺便介绍一下. 从图2中我们可以发现, 不管您采用怎样的储存电容架构, Clc的两端都是分别接到显示电极与common. 既然液晶是充满在上下两片玻璃之间, 而显示电极与TFT都是位在同一片玻璃上, 则common电极很明显的就是位在另一片玻璃之上. 如此一来, 由液晶所形成的平行板电容Clc, 便是由上下两片玻璃的显示电极与common电极所形成. 而位于Cs储存电容上的common电极, 则是另外利用位于与显示电极同一片玻璃上的走线, 这跟Clc上的common电极是不一样的, 只不过它们最后都是接到相同的电压就是了.整块面板的电路架构从图3中我们可以看到整片面板的等效电路, 其中每一个TFT与Clc跟Cs所并联的电容, 代表一个显示的点. 而一个基本的显示单元pixel,则需要三个这样显示的点,分别来代表RGB三原色. 以一个1024*768分辨率的TFT LCD来说, 共需要1024*768*3个这样的点组合而成. 整片面板的大致结构就是这样, 然后再藉由如图3中 gate driver所送出的波形, 依序将每一行的TFT打开, 好让整排的source driver同时将一整行的显示点, 充电到各自所需的电压, 显示不同的灰阶. 当这一行充好电时, gate driver便将电压关闭, 然后下一行的gate driver便将电压打开, 再由相同的一排source driver对下一行的显示点进行充放电. 如此依序下去, 当充好了最后一行的显示点, 便又回过来从头从第一行再开始充电. 以一个1024*768 SVGA分辨率的液晶显示器来说, 总共会有768行的g ate走线, 而source走线则共需要1024*3=3072条. 以一般的液晶显示器多为60Hz的更新频率来说, 每一个画面的显示时间约为1/6 0=16.67ms. 由于画面的组成为768行的gate走线, 所以分配给每一条gate走线的开关时间约为16.67ms/768=21.7us. 所以在图3 g ate driver送出的波形中, 我们就可以看到, 这些波形为一个接着一个宽度为21.7us的脉波, 依序打开每一行的TFT. 而sourcedriver则在这21.7us的时间内, 经由source走线, 将显示电极充放电到所需的电压, 好显示出相对应的灰阶.面板的各种极性变换方式由于液晶分子还有一种特性,就是不能够一直固定在某一个电压不变, 不然时间久了, 你即使将电压取消掉, 液晶分子会因为特性的破坏, 而无法再因应电场的变化来转动, 以形成不同的灰阶. 所以每隔一段时间, 就必须将电压恢复原状, 以避免液晶分子的特性遭到破坏. 但是如果画面一直不动, 也就是说画面一直显示同一个灰阶的时候怎么办? 所以液晶显示器内的显示电压就分成了两种极性, 一个是正极性, 而另一个是负极性. 当显示电极的电压高于common电极电压时, 就称之为正极性. 而当显示电极的电压低于c ommon电极的电压时, 就称之为负极性. 不管是正极性或是负极性, 都会有一组相同亮度的灰阶. 所以当上下两层玻璃的压差绝对值是固定时, 不管是显示电极的电压高, 或是common电极的电压高, 所表现出来的灰阶是一模一样的. 不过这两种情况下, 液晶分子的转向却是完全相反, 也就可以避免掉上述当液晶分子转向一直固定在一个方向时, 所造成的特性破坏. 也就是说, 当显示画面一直不动时, 我们仍然可以藉由正负极性不停的交替, 达到显示画面不动, 同时液晶分子不被破坏掉特性的结果. 所以当您所看到的液晶显示器画面虽然静止不动, 其实里面的电压正在不停的作更换, 而其中的液晶分子正不停的一次往这边转, 另一次往反方向转呢!图4就是面板各种不同极性的变换方式, 虽然有这么多种的转换方式, 它们有一个共通点, 都是在下一次更换画面数据的时候来改变极性. 以60Hz的更新频率来说, 也就是每16ms, 更改一次画面的极性. 也就是说, 对于同一点而言, 它的极性是不停的变换的. 而相邻的点是否拥有相同的极性, 那可就依照不同的极性转换方式来决定了. 首先是frame inversion, 它整个画面所有相邻的点, 都是拥有相同的极性. 而row inversion与column inversion则各自在相邻的行与列上拥有相同的极性. 另外在dot inversion上, 则是每个点与自己相邻的上下左右四个点, 是不一样的极性. 最后是delta inversion, 由于它的排列比较不一样, 所以它是以RGB 三个点所形成的pixel作为一个基本单位, 当以pixel为单位时, 它就与dot inversion很相似了, 也就是每个pixel与自己上下左右相邻的pixel,是使用不同的极性来显示的.Common电极的驱动方式图5及图6为两种不同的Common电极的电压驱动方式, 图5中Common电极的电压是一直固定不动的, 而显示电极的电压却是依照其灰阶的不同, 不停的上下变动. 图5中是256灰阶的显示电极波形变化, 以V0这个灰阶而言, 如果您要在面板上一直显示V0这个灰阶的话, 则显示电极的电压就必须一次很高, 但是另一次却很低的这种方式来变化. 为什么要这么复杂呢? 就如同我们前面所提到的原因一样, 就是为了让液晶分子不会一直保持在同一个转向, 而导致物理特性的永久破坏. 因此在不同的frame中, 以V0这个灰阶来说, 它的显示电极与common电极的压差绝对值是固定的, 所以它的灰阶也一直不曾更动. 只不过位在Clc两端的电压, 一次是正的, 称之为正极性, 而另一次是负的, 称之为负极性. 而为了达到极性不停变换这个目的, 我们也可以让common电压不停的变动, 同样也可以达到让Clc两端的压差绝对值固定不变, 而灰阶也不会变化的效果, 而这种方法, 就是图6所显示的波形变化. 这个方法只是将common电压 一次很大, 一次很小的变化. 当然啦, 它一定要比灰阶中最大的电压还大, 而电压小的时候则要比灰阶中最小的电压还要小才行. 而各灰阶的电压与图5中的一样, 仍然要一次大一次小的变化.这两种不同的Common驱动方式影响最大的就是source driver的使用. 以图7中的不同Common电压驱动方式的穿透率来说, 我们可以看到, 当common电极的电压是固定不变的时候, 显示电极的最高电压, 需要到达common电极电压的两倍以上. 而显示电极电压的提供, 则是来自于source driver. 以图七中common电极电压若是固定于5伏特的话, 则source driver所能提供的工作电压范围就要到10伏特以上. 但是如果common电极的电压是变动的话, 假使common电极电压最大为5伏特, 则source driver的最大工作电压也只要为5伏特就可以了. 就source driver的设计制造来说, 需要越高电压的工作范围, 制程与电路的复杂度相对会提高, 成本也会因此而加高.面板极性变换与common电极驱动方式的选用并不是所有的面板极性转换方式都可以搭配上述两种common电极的驱动方式. 当common电极电压固定不变时, 可以使用所有的面板极性转换. 但是如果common电压是变动的话, 则面板极性转换就只能选用frame inversion与row inversion.(请见表1) 也就是说, 如果你想使用column inversion或是dot inversion的话, 你就只能选用 common电极电压固定不动的驱动方式. 为什么呢? 之前我们曾经提到 common电极是位于跟显示电极不同的玻璃上, 在实际的制作上时, 其实这一整片玻璃都是common电极. 也就是说, 在面板上所有的显示点, 它们的common电压是全部接在一起的. 其次由于gate driver的操作方式是将同一行的所有TFT打开,好让source driver去充电, 而这一行的所有显示点, 它的common电极都是接在一起的, 所以如果你是选用common电极电压是可变动的方式的话, 是无法在一行TFT上, 来同时做到显示正极性与负极性的. 而column inversion与dot inversion的极性变换方式, 在一行的显示点上, 是要求每个相邻的点拥有不同的正负极性的. 这也就是为什么 common电极电压变动的方式仅能适用于frame inv ersion与row inversion的缘故. 而common电极电压固定的方式, 就没有这些限制. 因为其common电压一直固定, 只要source dri ver能将电压充到比common大就可以得到正极性, 比common电压小就可以得到负极性, 所以common电极电压固定的方式, 可以适用于各种面板极性的变换方式.表1面板极性变换方式 可使用的common电极驱动方式Frame inversion固定与变动Row inversion固定与变动Column inversion只能使用固定的common电极电压Dot inversion只能使用固定的common电极电压各种面板极性变换的比较现在常见使用在个人计算机上的液晶显示器, 所使用的面板极性变换方式, 大部分都是dot inversion. 为什么呢? 原因无它, 只因为dot inversion的显示品质相对于其它的面板极性变换方式, 要来的好太多了. 表2是各种面板极性变换方式的比较表. 所谓F licker的现象, 就是当你看液晶显示器的画面上时, 你会感觉到画面会有闪烁的感觉. 它并不是故意让显示画面一亮一灭来做出闪烁的视觉效果, 而是因为显示的画面灰阶在每次更新画面时, 会有些微的变动, 让人眼感受到画面在闪烁. 这种情况最容易发生在使用frame inversion的极性变换方式, 因为frame inversion整个画面都是同一极性, 当这次画面是正极性时, 下次整个画面就都变成了是负极性. 假若你是使用common电压固定的方式来驱动, 而common电压又有了一点误差(请见图8),这时候正负极性的同一灰阶电压便会有差别, 当然灰阶的感觉也就不一样. 在不停切换画面的情况下, 由于正负极性画面交替出现,你就会感觉到Flicker的存在. 而其它面板的极性变换方式, 虽然也会有此flicker的现象, 但由于它不像frame inversion 是同时整个画面一齐变换极性, 只有一行或是一列, 甚至于是一个点变化极性而已. 以人眼的感觉来说, 就会比较不明显. 至于crosstalk 的现象, 它指的就是相邻的点之间, 要显示的资料会影响到对方, 以致于显示的画面会有不正确的状况. 虽然crosstalk的现象成因有很多种, 只要相邻点的极性不一样, 便可以减低此一现象的发生. 综合这些特性, 我们就可以知道, 为何大多数人都使用dot inve rsion了. 表2面板极性变换方式 Flicker的现象 Crosstalk的现象Frame inversion明显 垂直与水平方向都易发生Row inversion不明显 水平方向容易发生Column inversion不明显 垂直方向容易发生Dot inversion几乎没有 不易发生面板极性变换方式, 对于耗电也有不同的影响. 不过它在耗电上需要考量其搭配的common电极驱动方式. 一般来说 common电极电压若是固定, 其驱动common电极的耗电会比较小. 但是由于搭配common电压固定方式的source driver其所需的电压比较高, 反而在source driver的耗电会比较大. 但是如果使用相同的common电极驱动方式, 在source driver的耗电来说,就要考量其输出电压的变动频率与变动电压大小. 一般来说, 在此种情形下, source driver的耗电,会有 dot inversion > row inversion > column inversion > frame inversion的状况. 不过现今由于dot inversion的source driver多是使用PN型的OP, 而不是像row inversi on是使用rail to rail OP, 在source driver中OP的耗电就会比较小. 也就是说由于source driver在结构及电路上的改进, 虽然先天上它的输出电压变动频率最高也最大(变动电压最大接近10伏特,而row inversion面板由于多是使用common电极电压变动的方式,其source driver的变动电压最大只有5伏特,耗电上会比较小), 但dot inversion面板的整体耗电已经减低很多了. 这也就是为什么大多数的液晶显示器都是使用dot inversion的方式.TFT LCD液晶显示器的驱动原理(二)上次跟大家介绍液晶显示器的驱动原理中有关储存电容架构,面板极性变换方式,以及common电压的驱动方式.这次我们延续上次的内容,继续针对feed through电压,以及二阶驱动的原理来做介绍.简单来说Feed through电压主要是由于面板上的寄生电容而产生的,而所谓三阶驱动的原理就是为了解决此一问题而发展出来的解决方式,不过我们这次只介绍二阶驱动,至于三阶驱动甚至是四阶驱动则留到下一次再介绍.在介绍feed through电压之前,我们先解释驱动系统中gate driver 所送出波形的timing图.SVGA分辨率的二阶驱动波形我们常见的1024*768分辨率的屏幕,就是我们通常称之为SVGA分辨率的屏幕.它的组成顾名思义就是以1024*768=7864 32个pixel来组成一个画面的数据.以液晶显示器来说,共需要1024*768*3个点(乘3是因为一个pixel需要蓝色,绿色,红色三个点来组成.)来显示一个画面.通常在面板的规划,把一个平面分成X-Y轴来说,在X轴上会有1024*3=3072列.这3072列就由8颗384输出channel的source driver来负责推动.而在Y轴上,会有768行.这768行,就由3颗256输出channel 的gate driver来负责驱动.图1就是SVGA分辨率的gate driver输出波形的timing图.图中gate 1 ~ 768分别代表着76 8个gate driver的输出.以SVGA的分辨率,60Hz的画面更新频率来计算,一个frame的周期约为16.67 ms.对gate 1来说,它的启动时间周期一样为16.67ms.而在这16.67 ms之间,分别需要让gate 1 ~ 768共768条输出线,依序打开再关闭.所以分配到每条线打开的时间仅有16.67ms/768=21.7us而已.所以每一条gate driver打开的时间相对于整个frame是很短的,而在这短短的打开时间之内,source driver再将相对应的显示电极充电到所需的电压.而所谓的二阶驱动就是指gate driver的输出电压仅有两种数值,一为打开电压,一为关闭电压.而对于common电压不变的驱动方式,不管何时何地,电压都是固定不动的.但是对于common电压变动的驱动方式,在每一个frame开始的第一条gate 1打开之前,就必须把电压改变一次.为什么要将这些输出电压的timing介绍过一次呢?因为我们接下来要讨论的feed thr ough电压,它的成因主要是因为面板上其它电压的变化,经由寄生电容或是储存电容,影响到显示电极电压的正确性.在LCD 面板上主要的电压变化来源有3个,分别是gate driver电压变化,source driver电压变化,以及common电压变化.而这其中影响最大的就是gate driver电压变化(经由Cgd或是Cs),以及common电压变化(经由Clc或是Cs+Clc).Cs on common架构且common电压固定不动的feed through电压我们刚才提到,造成有feed through电压的主因有两个.而在common电压固定不动的架构下,造成feed through电压的主因就只有gate driver的电压变化了.在图2中,就是显示电极电压因为feed through电压影响,而造成电压变化的波形图.在图中,请注意到gate driver打开的时间,相对于每个frame的时间比例是不正确的.在此我们是为了能仔细解释每个f rame的动作,所以将gate driver打开的时间画的比较大.请记住,正确的gate driver打开时间是如同图1所示,需要在一个frame的时间内,依序将768个gate driver走线打开的.所以每个gate走线打开的时间,相对于一个frame的时间,是很短的.当gate走线打开或关闭的那一瞬间,电压的变化是最激烈的,大约会有30~40伏特,再经由Cgd的寄生电容,影响到显示电极的电压.在图3中,我们可以看到Cgd寄生电容的存在位置.其实Cgd的发生,跟一般的CMOS电路一样,是位于MOS的gate 与drain端的寄生电容.但是由于在TFT LCD面板上gate端是接到gate driver输出的走线,因此一但在gate driver输出走在线的电压有了激烈变化,便会影响到显示电极上的电压.在图2之中,当Frame N的gate走线打开时,会产生一个向上的feed through电压到显示电极之上.不过此时由于gate走线打开的缘故,source driver会对显示电极开始充电,因此即便一开始的电压不对(因为feed through电压的影响),source driver仍会将显示电极充电到正确的电压,影响便不会太大.但是如果当gate走线关闭的时候,由于source driver已经不再对显示电极充电,所以gate driver关闭时的电压压降(30~40伏特),便会经由Cgd寄生电容feed through到显示电极之上,造成显示电极电压有一个feed through的电压压降,而影响到灰阶显示的正确性.而且这个feed through电压不像gate走线打开时的feed through电压一样,只影响一下子,由于此时source driver已经不再对显示电极充放电,feed through电压压降会一值影响显示电极的电压,直到下一次gate driver走在线的电压再打开的时后.所以这个feed through电压对于显示画面的灰阶的影响,人眼是可以明确的感觉到它的存在的.而在Frame N+1的时候,刚开始当gate driver走线打开的那一瞬间,也会对显示电极产生一个向上的feed through电压,不过这时候由于gate已经打开的缘故,source driver会开始对显示电极充电,因此这个向上的feed through电压影响的时间便不会太长.但是当gate走线再度关闭的时候,向下的feed through电压便会让处在负极性的显示电极电压再往下降,而且受到影响的负极性显示电压会一直维持到下一次gate走线再打开的时候.所以整体来说,显示电极上的有效电压,会比source driver的输出电压要低.而减少的电压大小刚好为gate走线电压变化经由Cgd的feed through电压.这个电压有多大呢?在图4中,我们以电荷不灭定律,可以推导出feed through电压为 (Vg2 – Vg1) * Cgd / (Cgd + Clc + Cs) .假设Cg d=0.05pF,而Clc=0.1pF, Cs=0.5pF且gate走线从打开到关闭的电压为 –35伏特的话. 则feed through电压为 –35*0.0 5 / (0.05+0.1+0.5) = 2.69伏特. 一般一个灰阶与另一个灰阶的电压差约仅有30到50 mV而已(这是以6 bit的分辨率而言,若是8 bit分辨率则仅有3到5 mV而已).因此feed through电压影响灰阶是很严重的.以normal white的偏光板配置来说,会造成正极性的灰阶会比原先预期的来得更亮,而负极型的灰阶会比原先预期的来得更暗.不过恰好feed through电压的方向有一致性,所以我们只要将common电压向下调整即可.从图2中我们可以看到,修正后的common电压与原先的comm on电压的压差恰好等于feed through电压.Cs on common架构且common电压变动的feed through电压图5为Cs on common且common电压变动的电压波形,由于其common电压是随着每一个frame而变动的,因此跟common 电压固定的波形比较起来.其产生的feed through电压来源会再多增加一个,那就是common电压的变化.这个common电压的变化,经由Clc+Cs的电容,便会影响到显示电极的电压.且由于整个LCD面板上所有显示点的Clc与Cs都是接到common电压,所以一但common电压有了变化,受影响的就是整个面板的所有点.跟前面gate电压变化不一样的是,gate电压变化影响到的只是一整行的显示点而已.不过Common电压变化虽然对显示电极的电压有影响,但是对于灰阶的影响却没有像gate电压变化来的大.怎么说呢?如果我们使用跟前面一样的电容参数值,再套用图6所推导出来的公式,再假设Common电压由0伏特变到5伏特,则common电压变化所产生的feed through电压为(5 -0)*(0.1pF+ 0.5pF) / (0.05pF + 0.1pF +0.5pF) = 5 * 0.6 /0.65=4.62伏特.虽然显示电极增加这么多电压,但是common电极也增加了5伏特.因此在Clc两端,也就是液晶的两端,所看到的压差变化,就只有4.62-5=0.38伏特而已.跟之前gate走线电压变化所产生的feed through电压2.69伏特比较起来要小的多了,所以对灰阶的影响也小多了.且由于它所产生的feed through电压有对称性,不像Gate走线所产生的feedthrough电压是一律往下,所以就同一个显示点来说,在视觉对灰阶的表现影响会比较小.当然啦,虽然比较小,但是由于对整个LCD面板的横向的768行来说, common电压变化所发生的时间点,跟gate走线打开的时间间隔并不一致,所以对整个画面的灰阶影响是不一样的.这样一来,就很难做调整以便改进画面品质,这也是为什么common电压变动的驱动方式,越来越少人使用的缘故.Cs on gate架构且common电压固定不动的feed through电压图7是Cs on gate且common电压固定不动的电压波形图.它并没有common电压变化所造成的feed through电压,它只有由于gate电压变化所造成的feed through电压.不过它跟Cs on common不一样的是,由gate电压变化所造成的feed th rough电压来源有两个地方,一个是自己这一条gate走线打开经由Cgd产生的feed through电压,另一个则是上一条gate 走线打开时,经由Cs所产生的feed through电压.经由Cgd的feed through电压跟前面所讨论过的状况是一样的,在这边就不再提了.但是经由Cs的feed through电压,是因为Cs on gate的关系,如图3所示.Cs on gate的架构,它的储存电容另一端并不是接到common电压,而是接到前一条gate走线,因此在我们这一条gate走线打开之前,也就是前一条gate走线打开时,在前一条gate走线的电压变化,便会经由Cs对我们的显示电极造成feed through电压.依照图8的公式,同时套用前面的电容参数与gate电压变化值,我们可得到此一feed through电压约为 35*0.5pF/(0.5pF+0.1pF+0.05pF)=26.92伏特.这样的feed through电压是很大的,不过当前一条gate走线关闭时,这个feed through电压也会随之消失.而且前一条gat e走线从打开到关闭,以SVGA分辨率的屏幕来说,约只有21.7us的时间而已.相对于一个frame的时间16.67ms是很短的.再者当前一条gate走线的feed through电压影响显示电极后,我们这一条的gate走线也随之打开,source driver立刻将显示电极的电压充放电到所要的目标值.从这种种的结果看来,前一条gate走线的电压变化,对于我们的显示电极所表现的灰阶,几乎是没有影响的.因此对于Cs on gate且common电压固定不动的驱动方式来说,影响最大的仍然是gate走在线电压变化经由Cgd产生的feed through电压,而其解决方式跟前面几个一样,只需将common电压往下调整即可.Cs on gate架构且common电压变动的feed through电压图9是Cs on gate架构且common电压变动的feed through电压波形图.这样子的架构,刚好有了前面3种架构的所有缺点,那就是 gate走线经由Cgd的feed through电压,和前一条gate走线经由Cs的feed through电压,以及Common电压变化经由Clc的feed through电压.可想而知,在实际的面板设计上几乎是没有人使用这种架构的.而这4种架构中最常用的就是 Cs on gate架构且common电压固定不动的架构.因为它只需要考虑经由Cgd的feed through电压,而Cs on gate的架构可得到较大的开口率的缘故.。
经典:TFT-LCD-驱动原理(TN-mode)
Pulse離開 TFT Open
10
A switch controlled by scan line Voltage
G1
T= 0 sec
G2 t=0 t=1
time
Selected row
Non-
selected
row
11
A switch controlled by scan
❖Gate_Line:Scan
Scan line
19
即可產生一張美麗的畫面
20
簡單的驅動原理就介紹到此 接下來就為各位介紹真實驅動上產生
的兩個Issue
1.AC Driving 2.Flicker Introduce
21
AC Driving
Why ll cause LC damaged.
➢液晶就是依所受的電場 大小去控制光的穿透量
RG RG
13
那Data Line上面的電壓是….
V63
Gray Scale
V48
Voltage
V32
V16
V0
DC Bias of Common
V16
1 Frame / 1 Line
V32
100%
V48
Transmittance(%)
V63
Voltage
➢利用Pixel上電荷的多 寡由決此定可電知場,大真小正主宰Pixel
RG
充多少電荷的是
RG
➢液晶就Ga是te依_L所in受e與的D電at場a_Line
大小去控制光的穿透量
9
Gate_Line
• (一)利用pulse控制TFT開或關
voltage
pulse
TFT-LCD的结构与显示原理
② AS-IPS(Advanced Super-IPS)
优点:视角范围提高到170° ,响应速度提高,开口率提高,获得更高 亮度画面。 用途:适用于液晶电视。
23
TFT-LCD的结构与显示原理
四、模式结构与显示原理
③ MVA(Multi-domain VA)
优点:视野角度增加达160°以上,幵提高了液晶癿响应速度。 用途:适用于液晶电视,NB和监视器用得丌多。
同时光透过率最大。
共通电极:由ITO薄膜组成透过率要最大。一般CF基板癿ITO膜厚 为1500Å(IPS为釐属电极)。
33
TFT-LCD的结构与显示原理
六、LCD的应用
34
癿构造是在两片平行癿玻璃基板当中放置液晶盒,下基板 玻璃上设置TFT(薄膜晶体管),上基板玻璃上设置彩色 滤光片,通过TFT上癿信号不电压改发来控制液晶分子癿 转动方向,从而达到控制每个像素点偏振光出射不否而达
到显示目癿。现在LCD已经替代CRT成为主流,价格也已
经下降了很多,幵已充分癿普及。
2
TFT-LCD的结构与显示原理
18
TFT-LCD的结构与显示原理
四、模式结构与显示原理
丌同模式对比: TN<>IPS
19
TFT-LCD的结构与显示原理
四、模式结构与显示原理
丌同模式对比: TN<>VA
20
TFT-LCD的结构与显示原理
四、模式结构与显示原理
丌同模式对比:IPS<>FFS
21
TFT-LCD的结构与显示原理
二、LCD的分类
显示方式
透射型(有背光源) 直视型 液 晶 显 示 器 反射型(无背光源)
tft lcd 栅极驱动原理
tft lcd 栅极驱动原理TFT LCD栅极驱动原理TFT LCD(Thin Film Transistor Liquid Crystal Display)是一种采用薄膜晶体管驱动的液晶显示技术。
在TFT LCD中,栅极驱动是其中一种常见的驱动方式。
本文将介绍TFT LCD栅极驱动原理及其工作过程。
一、TFT LCD基本原理TFT LCD由若干个像素点组成,每个像素点由液晶分子和薄膜晶体管构成。
液晶分子通过改变其排列方式来控制光的透过程度,从而实现图像显示。
薄膜晶体管则充当信号开关,负责控制液晶分子的状态。
二、栅极驱动原理在TFT LCD中,栅极驱动是控制薄膜晶体管开关状态的关键。
栅极驱动通过一组栅极信号来控制液晶分子的排列方式,从而改变光的透过程度。
具体来说,栅极驱动将栅极信号转换成薄膜晶体管的控制信号,通过对薄膜晶体管的开关控制来实现像素点的亮灭。
三、栅极驱动工作过程栅极驱动的工作过程可以分为以下几个步骤:1. 输入信号处理:栅极驱动器接收来自图像处理器的输入信号,对信号进行处理和解码,以获取控制液晶分子排列的相关信息。
2. 信号放大:经过处理后的信号被放大,以提供足够的电压和电流来驱动液晶分子的排列变化。
3. 信号转换:放大后的信号被转换成适合薄膜晶体管控制的格式。
通常情况下,液晶显示器使用的是NMOS(n型金属氧化物半导体)或PMOS(p型金属氧化物半导体)薄膜晶体管。
4. 栅极信号输出:转换后的信号通过栅极驱动器输出到对应的栅极线上。
每个栅极线都与一组像素点相连,栅极信号会同时作用于这组像素点的薄膜晶体管。
5. 液晶分子排列控制:栅极信号作用于薄膜晶体管后,通过改变晶体管的导通状态,控制液晶分子的排列方式。
不同的排列方式会导致光的透过程度发生变化,从而实现图像的显示。
6. 图像刷新:栅极驱动器按照一定的刷新频率不断重复上述过程,以保持图像的稳定显示。
TFT LCD栅极驱动原理的核心是通过控制薄膜晶体管的开关状态来控制液晶分子的排列方式,从而实现图像的显示。
TFT-LCD显示原理及驱动介绍
主要内容
TFT LCD 簡介 TFT-LCD 面板介紹 TFT-LCD 显示原理 TFT-LCD 基本驅動方式及应用 TFT-LCD 驅動電路架構 補充: MVA显示原理介绍
TFT LCD 簡介
TFT LCD的相關知識
TFT LCD:Thin Film Transistor Liquid Crystal Display。 超薄膜晶体管液晶显示器 1、優點:
TFT-LCD 显示原理
圖像顯示原理
電腦顯示之圖像均是由一個個的像素(pixel)構成
dot
Pixel
每個像素均由三種 顏色紅(R) 綠(G) 藍(B) 的小光點 (dot)構成
混色效果 分別控制RGB dot亮度 ,自由組成各種圖案
三角形越大所能顯示的顏色越豐富
TFT LCD的顯示方式
TFT 結構
S1
S2
S3
Sn-1 Sn
G1
G2 G3 TFT Source 線 Gate 線 液晶電容 儲存電容
Gm-1
Gm
背光模組
背光模組主要是用來提供液晶面板均勻、高亮度的光 源,由於TFT-LCD之非自發光性,因此須利用外加光源如: 發光二極體、冷陰極射線管等。 主要功能:提供液晶面板平面光源,提供適當的 輝度、色度、均齊度、視角等
-Voltage
+Voltage
VCOM
VCOM
这两种不同的Common驱动方式影响最大的就是source driver的使用. 以不同Common电压驱动方式的穿透率来说, 我们 可以看到, 当common电极的电压是固定不变的时候, 显示电极的 最高电压, 需要到达common电极电压的两倍以上. 而显示电极电 压的提供, 则是来自于source driver. 以图中common电极电压若 是固定于5伏特的话, 则source driver所能提供的工作电压范围就 要到10伏特以上. 但是如果common电极的电压是变动的话, 假使 common电极电压最大为5伏特, 则source driver的最大工作电压 也只要为5伏特就可以了. 就source driver的设计制造来说, 需要 越高电压的工作范围, 制程与电路的复杂度相对会提高, 成本也 会因此而加高.
TFTLCD液晶显示器的驱动原理详解
TFTLCD液晶显示器的驱动原理详解1.TFT液晶显示器的像素控制TFT液晶显示器由很多个像素点组成,每个像素点由一个TFT晶体管和一个液晶单元组成。
驱动原理中的像素控制指的是对每个像素点的亮度和颜色进行控制。
首先,通过扫描线进行逐行的行选择,确定需要刷新的像素点的位置。
然后,通过控制每个像素点的TFT晶体管的门电压,来控制像素点是否导通,从而决定其亮度。
最后,通过改变液晶单元的偏振方向和强度,来调整像素点显示的颜色。
2.TFT液晶显示器的背光控制TFT液晶显示器需要背光来照亮像素点,使其显示出来。
背光控制是驱动原理中非常重要的一部分。
通常,TFT液晶显示器采用CCFL(冷阴极荧光灯)或LED(发光二极管)作为背光源。
背光的亮度可以通过控制背光源的电压或电流来实现。
在驱动原理中,通过在适当的时间段内给背光源供电,来控制背光的开关和亮度,进而实现对显示器亮度的控制。
3.TFT液晶显示器的数据传输TFT液晶显示器的驱动原理还涉及到数据的传输和刷新。
液晶显示器通常使用串行并行转换器将来自图形处理器(GPU)或其他输入源的图像信号转换为液晶显示器可接受的格式。
在驱动原理中,通过控制驱动芯片中的数据线和时钟线,将每个像素点对应的图像数据传输到相应的位置,从而实现图像的显示。
此外,TFT液晶显示器的驱动原理还包括时序控制和电压控制。
时序控制用于控制图像数据的传输速率和刷新频率,以确保图像的稳定和流畅;电压控制用于确定液晶单元的电压,以实现相应的亮度和颜色效果。
总结起来,TFT液晶显示器的驱动原理主要涉及像素控制、背光控制、数据传输、时序控制和电压控制。
每个像素点的亮度和颜色通过TFT晶体管和液晶单元的控制实现,背光通过背光源的控制实现,数据通过驱动芯片的控制传输到相应的位置。
通过精确的控制和调整,TFT液晶显示器能够呈现出清晰、鲜艳的图像。
TFT型LCD工作原理简述
TFT型LCD工作原理简述TFT型LCD的工作原理较为复杂,可以从以下5个方面加以理解:1.结构特点TFT型LCD主要由LCD控制模块和LCD面板两部分组成。
由于采用TFT(薄膜晶体管),因此又称为薄膜晶体管显示器。
TFT的作用是用来主动控制每一个像素的器件,这样就相当于在每一个像素点上设计了一个场效应开关管。
多个TFT构成一个TFT液晶板,如下图所示。
因此,TFT型LCD容易实现真彩色和高分辨率。
TFT型LCD是由两层玻璃基板夹住液晶组成的,形成一个平行板电容器,通过嵌入在下玻璃板上的TFT对这个电容器和内置的存储电容充电,来维持每幅图像所需要的电压直到下一幅图像更新。
由于LCD面板本身并不发光,因此还必须增设背光灯作为光源,并加上一个背光板来分布光线,从而提高屏幕亮度。
2.电路原理在TFT型LCD中使用的TFT是一个三端器件,其功能就是一个开关管。
在TFT型LCD的玻璃基板上制作半导体层,在两端有与之相连接的源极和漏极,并通过栅极绝缘膜与半导体相对应,利用施加于栅极的电压来控制源、漏电极间的电流。
显示屏上的每个像素从结构上可以看作为像素电极和公用电极之间夹有一层液晶,从电学的角度可以把它看作电容。
其等效电路如下图所示。
其工作原理是:要对 j行i列的像素点户(i、j)充电,就要把开关K(i,j)导通,对信号线D(i)施加目标电压,使数据线G(j)的数据信号加到像素P点。
当像素电极被充分充电后,即使开关断开,电容中的电荷也得到保存,电极间的液晶分子继续有电场作用。
数据线的作用是对信号线施加目标电压,而行驱动器的作用是起开关的导通和断开作用。
由于加在液晶上的电压可以存储,因此液晶层能稳定的工作。
3.彩色形成原理TFT型LCD中的红、绿、蓝三原色是由彩色滤光片产生的。
彩色滤光片是由红、绿、蓝三种颜色的滤片,有规律地制作在一块大玻璃基板上,每个像素(点)是由三种颜色的单元或称为子像素所组成。
如下图所示为彩色滤光片排列图,每个子像素的左上角(灰色矩形)为不透光的TFT。
TFT-LCD驱动原理_一目了然
当TFT OFF时, 形成高阷抗阷抗Roff,可防止信号数据泄露。
面板矩阵
8
③ 一般Ron大于Roff 至少105。
④ Panel是按照一定时序对液晶进行扫描充电的。 品保客服中心
2.驱动原理框图
Vdd(12V)DC/DC converter Interface connector AVDD(16.3V) Gamma
7
品保客服中心
1. 引言 – TFT 开关的工作原理
面板是由Gate Line与Data Line组成的一个矩阵结构。在Array基板上,矩阵的每一个交叉点对应一个TFT开关。
TFT开关
TFT等效电路图
① 扫描线连接同一列所有TFT栅极电极,而信号线连接 同一行所有TFT源极电极。
② 当TFT ON时,形成低阷抗Ron,信号线为液晶充电;
sth,cph,
Mini-LVDS load,mpol
AVDD, DVDD Source driver IC
DVDD (3.3V)
data LC Cs
LVDS data
Von(26.3V), Voff(-8V) DVDD (3.3V) Gate Timing stv,cpv driver Controller IC
1. 引言 – Color介绍
Color 介绍 ① R,G,B三基色组合形成各种颜色。 ②能显示的颜色数由RGB的数字信号的位数来决定。
TFT基板
N = 2n(R) * 2n(G) * 2n(B) = 23n N: 能显示的颜色数 n :数字数据的位数。
1Pixel
1Dot=R,G,B Sub-pixel
△ Y/Y=1/255=0.39%
255 254
TFT-LCD工作原理
Z SENSOR
三、光刻设备简介 Aligner
B 偏差补正设备 :
(1) MASKING BLADE ; (2) Plate / mask stage ; (3) ARC / X MAG ;
三、光刻设备简介 Aligner
(1) MASKING BLADE
X,Y mask blading 的作用一样,只说明Y mask blading
三、光刻设备简介 Aligner
Chamber外观
环境条件:
环境温度: 稳定性: 湿度: 洁净度: 18 to 25C < 0.1C . 45 to 55% RH 10.000级或以下
三、光刻设备简介 Aligner
Thermal Chamber定期点检项目
声音异常与震动 管道接口处的液体与气体泄漏 冷冻机的低/高压在正常范围 C-oil(冷却油)供给压力 冷却水流量 排气口处的温度
Y mask blading的主要作用是在曝光的过程中,在mask的下方遮光,以防止边缘出 现曝光不良。它主要是由两个挡板构成,在曝光的时候这两个挡板会移动到事先设 定的区域。它的初始位置由DEVICE DATA中的MB waiting进行设定。
三、光刻设备简介 Aligner
(2) Plate / mask stage
MASK STAGE:
Mask stage 就是装着mask的地方,它的 功能是在mask装着以后,对mask进行对 位,并且在曝光的时候与plate stage 同步
移动,为了保证mask的精确对位,上边设
有Mask set mark。为了限制Y方向的曝 光区域,在其下方设有Y MASK BLADE。
三、光刻设备简介 Aligner
TFTLCD显示驱动电路设计
TFTLCD显示驱动电路设计TFTLCD显示驱动电路设计是一种将数字信号转换为模拟信号并驱动液晶屏幕显示的电路设计。
TFTLCD显示屏是一种广泛应用于电子产品中的显示器,具有高分辨率、色彩鲜艳和快速响应的特点。
以下是关于TFTLCD显示驱动电路设计的一些关键内容。
首先,TFTLCD显示驱动电路设计需要选择适当的电源电压和电流。
通常,TFTLCD显示屏需要使用两种电源电压:逻辑电源电压和驱动电源电压。
逻辑电源电压一般为3.3V或5V,用于驱动显示屏的控制逻辑。
驱动电源电压一般为正负15V,用于驱动液晶屏显示像素。
电源的选取应该考虑到液晶屏的工作条件和驱动器的要求。
其次,TFTLCD显示驱动电路设计需要选择适当的驱动器芯片。
液晶屏的驱动器芯片是将数字信号转换为模拟信号并驱动液晶屏显示的核心部件。
驱动芯片的选取应该根据液晶屏的像素尺寸、分辨率和工作电压等参数进行匹配。
常见的TFTLCD显示驱动芯片有ILI9341、ILI9486、HX8357等。
第三,TFTLCD显示驱动电路设计需要实现像素点的控制和扫描。
像素的控制和扫描是通过驱动芯片的引脚与液晶屏的引脚进行连接来完成的。
通常,液晶屏的像素点是按行或按列扫描的方式进行显示。
在设计电路时,需要根据驱动芯片的扫描模式和引脚功能来确定像素点的控制和扫描方式。
第四,TFTLCD显示驱动电路设计还需要考虑接口协议和信号处理。
常见的接口协议有SPI、RGB、I2C等。
接口协议的选择应该基于具体的应用场景和驱动芯片的支持。
信号处理包括对输入信号进行滤波、放大、采样和控制等操作,以确保输入信号的质量和准确性。
第五,TFTLCD显示驱动电路设计还需要考虑电源管理和保护功能。
电源管理可以通过电源管理IC来实现,以提供电源的稳定性和效率。
保护功能包括过压保护、过流保护和短路保护等,以保护电路和液晶屏的安全性和稳定性。
最后,TFTLCD显示驱动电路设计需要进行模拟仿真和电路优化。
TFT-LCD Module 显示驱动原理
TFT-LCD时序控制器的发展
TTL/CMOS单口 TCON
降低时钟频率 降低EMI
TTL/CMOS双口 TCON
LDI 接口 TCON
Smart: 集成OSD、Scaling 和TCON
DVI 接口 TCON
TFT-LCD时序控制器
• TTL/CMOS接口的TCON被目前大多数产品所采用。 • LDI接口的TCON是时序控制器和LVDS接收器集成在 一起,提高了集成度,LVDS协议传送数据降低了EMI。 主要产品有TI的TFP7401、 国半的FPD85310、 FPD87310 以及Silicon Image的SIL223等。 • 自从TMDS通讯协议问世, 在数字显示领域产生了很大 的反响, 所以DVI接口用于TFT-LCD模块也成了模块发 展的趋势。将DVI接口和TCON集成的产品有Silicon Image的SIL243。
TFT-LCD Smart Panel 显示器
TFT-LCD的Smart Monitor结构
OSD Scaling Tcon
栅 驱 动 器 栅 驱 动 器
DC-DC电源 变换器
灰度等级电压
Monitor 接 口
源驱动器
源驱动器
TFT-LCD Panel
( 1024 x 768 )
电源
TFT-LCD Smart Monitor 模块
TMDS接口的数据格式
24/36 位 图像数据 数据通道 0 24/36 位图像数据 DE
发送器
图象控制器
DE
数据通道 1 数据通道 2
6 位 制 号 控 信 : Hsync, Vsync, CTL0~3
6 位 制 号 Hsync, 控 信 : Vsync, CTL0~3
手机制造行业中的屏幕驱动技术原理及应用
手机制造行业中的屏幕驱动技术原理及应用近年来,随着智能手机的普及与技术的不断提升,手机制造行业中屏幕驱动技术也得到了快速发展。
屏幕驱动技术是指将图像信号转化为电信号,并通过驱动电路控制液晶屏幕的亮暗变化,从而实现手机屏幕上显示各种图像、文字和视频等功能。
在手机制造行业中,主要有两种屏幕驱动技术:TFT-LCD(薄膜晶体管液晶显示器)和AMOLED(主动矩阵有机发光二极管)。
下面将分别介绍这两种技术的原理及应用。
TFT-LCD技术是目前手机市场上最为常见的屏幕驱动技术之一。
这种技术采用了薄膜晶体管作为电子开关,液晶屏中的每一个像素点都有一个对应的薄膜晶体管控制其亮度和颜色。
当输入信号进入显示器后,经过电路内的控制和放大处理,最终通过驱动电路将电信号传送到每个像素点的薄膜晶体管上,使其开启或关闭,从而控制像素点的亮暗变化。
TFT-LCD技术在手机制造行业中的应用非常广泛。
首先,TFT-LCD具有色彩鲜艳、显示稳定等优点,可以呈现出高清晰度的图像和视频。
其次,TFT-LCD具有快速响应时间、高刷新率等特点,使得手机屏幕能够在高速移动或切换图像时依然保持清晰流畅。
再者,TFT-LCD技术也具有较低的功耗,可以延长手机的续航时间。
因此,TFT-LCD技术已经成为目前手机市场上最主流的屏幕驱动技术。
除了TFT-LCD技术之外,AMOLED技术也在手机制造行业中得到了广泛应用。
AMOLED技术采用有机发光材料作为像素点的发光层,通过在像素点上加电产生电流驱动有机发光材料发光。
与TFT-LCD技术不同的是,AMOLED技术中每个像素点都可以独立发光,不需要背光源,因此屏幕更加薄和轻便。
AMOLED技术在手机制造行业中的应用越来越广泛。
首先,AMOLED屏幕具有无限对比度和快速响应时间等特点,能够呈现出极高的画质和色彩鲜艳的图像。
其次,AMOLED屏幕具有较低的功耗,使得手机在显示亮色图像时能够节约更多的电能。
此外,AMOLED屏幕还可以实现弯曲的设计,使得手机具有更高的灵活性和创新性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TFT-LCD液晶显示器的驱动原理LCD显示器在近年逐渐加快了替代CRT显示器的步伐,你打算购买一台LCD吗?你了解LCD吗?液晶显示器和传统的CRT显示器,在其发光的技术原理上有什么不同?传统的CRT 显示器主要是依靠显象管内的电子枪发射的电子束射击显示屏内侧的荧光粉来发光,在显示器内部人造磁场的有意干扰下,电子束会发生一定角度的偏转,扫描目标单元格的荧光粉而显示不同的色彩。
而TFT-LCD却是采用“背光(backlight)”原理,使用灯管作为背光光源,通过辅助光学模组和液晶层对光线的控制来达到较为理想的显示效果。
液晶是一种规则性排列的有机化合物,它是一种介于固体和液体之间的物质,目前一般采用的是分子排列最适合用于制造液晶显示器的nematic细柱型液晶。
液晶本身并不能构发光,它主要是通过因为电压的更改产生电场而使液晶分子排列产生变化来显示图像。
液晶面板主要是由两块无钠玻璃夹着一个由偏光板、液晶层和彩色滤光片构成的夹层所组成。
偏光板、彩色滤光片决定了有多少光可以通过以及生成何种颜色的光线。
液晶被灌在两个制作精良的平面之间构成液晶层,这两个平面上列有许多沟槽,单独平面上的沟槽都是平行的,但是这两个平行的平面上的沟槽却是互相垂直的。
简单的说就是后面的平面上的沟槽是纵向排列的话,那么前面的平面就是横向排列的。
位于两个平面间液晶分子的排列会形成一个Z轴向90度的逐渐扭曲状态。
背光光源即灯管发出的光线通过液晶显示屏背面的背光板和反光膜,产生均匀的背光光线,这些光线通过后层会被液晶进行Z 轴向的扭曲,从而能够通过前层平面。
如果给液晶层加电压将会产生一个电场,液晶分子就会重新排列,光线无法扭转从而不能通过前层平面,以此来阻断光线。
LCD由两块玻璃板构成,厚约1mm,其间由包含有液晶(LC)材料的5μm均匀间隔隔开。
因为液晶材料本身并不发光,所以在显示屏两边都设有作为光源的灯管,而在液晶显示屏背面有一块背光板(或称匀光板)和反光膜,背光板是由荧光物质组成的可以发射光线,其作用主要是提供均匀的背景光源。
背光板发出的光线在穿过第一层偏振过滤层之后进入包含成千上万水晶液滴的液晶层。
液晶层中的水晶液滴都被包含在细小的单元格结构中,一个或多个单元格构成屏幕上的一个像素。
在玻璃板与液晶材料之间是透明的电极,电极分为行和列,在行与列的交叉点上,通过改变电压而改变液晶的旋光状态,液晶材料的作用类似于一个个小的光阀。
在液晶材料周边是控制电路部分和驱动电路部分。
当LCD中的电极产生电场时,液晶分子就会产生扭曲,从而将穿越其中的光线进行有规则的折射,然后经过第二层过滤层的过滤在屏幕上显示出来。
液晶显示器的缺点在于亮度、画面均匀度、可视角度和反应时间上与CRT显示器有比较明显的差距。
其中反应时间和可视角度均取决于液晶面板的质量,画面均匀度和辅助光学模块有很大关系。
而液晶显示器的亮度主要取决于背光光源。
当然,整个模组的设计也是影响产品亮度的一个因素。
不少人在描述亮度单位时,都采用了“流明”,但这事实上是错误的。
事实上,“流明”是光通量的单位,而亮度的单位应该是cd/m2(上标)。
两者都是用于光学领域的技术参数。
发光体单位时间内发出的光量总和称为光通量(luminous flux),物理学上用符号。
发光体在特定方向单位立体角单位面积内的光通量称为亮度(luminace),物理学上用L表示,单位为坎德拉每平方米或称平方烛光cd/㎡。
亮度是衡量显示器发光强度的重要指标,对于液晶显示器来说,尤为重要。
高亮度也就意味着显示器对于其工作的周围环境的抗干扰能力更高,主要针对液晶显示器的TCO'03认证标准也作出了相当高的要求。
厂商也不约而同地以高亮度来作为各自产品的卖点之一。
一般来说,生产商主要通过增加灯管数量和优化显示屏的内部设计来提高液晶显示器的亮度。
由此,我们可以看到LCD的性能和面板原料有相当大的关系,面板的质量将直接决定LCD显示器的性能表现。
市面上,12ms、16ms、25ms等LCD显示器所采用的面板是不一样的。
但是,好的面板也就意味着更高的价格,夏普、三星、LG等厂商手中的高质量面板,价格也相当高。
台湾厂商也有友达等知名厂商,他们的产品性价比较高,市面上不少显示器均采用他们的产品。
纯净界EZX15F2就是其中一款。
它的亮度为亮度400cd/㎡,对比度达到了550:1;而一般的同类产品只有250cd/㎡的亮度和300:1的对比度。
而且其相应时间仅为16ms,完全能胜任各类应用。
其可视角度更是达到了水平163度/垂直135度,也超出同价格的其他品牌LCD显示器。
出色的面板原料,不凡的技术参数,高质的性能表现,你还等什么呢?➢TFT LCD液晶显示器的驱动原理(一)我们针对TFT LCD的整体系统面来做介绍, 也就是对其驱动原理来做介绍, 而其驱动原理仍然因为一些架构上差异的关系, 而有所不同. 首先我们来介绍由于Cs(storage capacitor)储存电容架构不同, 所形成不同驱动系统架构的原理。
1.Cs(storage capacitor)储存电容的架构一般最常见的储存电容架构有两种, 分别是Cs ongate与Cs on common这两种。
这两种顾名思义就可以知道, 它的主要差别就在于储存电容是利用gate走线或是common走线来完成的。
储存电容主要是为了让充好电的电压,能保持到下一次更新画面的时候之用。
所以我们就必须像在CMOS 的制程之中, 利用不同层的走线,来形成平行板电容。
而在TFT LCD的制程之中,则是利用显示电极与gate走线或是common走线,所形成的平行板电容,来制作出储存电容Cs。
图1 Cs on common与Cs on gate的架构图1就是这两种储存电容架构, 从图中我们可以很明显的知道, Cs on gate由于不必像Cs on common 一样, 需要增加一条额外的common走线, 所以它的开口率(Aperture ratio)会比较大。
而开口率的大小, 是影响面板的亮度与设计的重要因素。
所以现今面板的设计大多使用Cs on gate的方式。
但是由于Cs on gate的方式, 它的储存电容是由下一条的gate走线与显示电极之间形成的。
(请见图2的Cs on gate与Cs on common的等效电路) 而gate走线,顾名图2 Cs on common与Cs on gate的等效电路思义就是接到每一个TFT的gate端的走线,主要就是作为gate driver送出信号,来打开TFT, 好让TFT对显示电极作充放电的动作。
所以当下一条gate走线, 送出电压要打开下一个TFT时,便会影响到储存电容上储存电压的大小。
不过由于下一条gate走线打开到关闭的时间很短,(以1024*768分辨率, 60Hz更新频率的面板来说,一条gate走线打开的时间约为20us, 而显示画面更新的时间约为16ms, 所以相对而言, 影响有限。
) 所以当下一条gate走线关闭,回复到原先的电压, 则Cs储存电容的电压, 也会随之恢复到正常。
这也是为什么, 大多数的储存电容设计都是采用Cs on gate的方式的原因。
至于common走线, 我们在这边也需要顺便介绍一下。
从图2中我们可以发现, 不管您采用怎样的储存电容架构,C lc的两端都是分别接到显示电极与common。
既然液晶是充满在上下两片玻璃之间, 而显示电极与TFT都是位在同一片玻璃上, 则common电极很明显的就是位在另一片玻璃之上。
如此一来, 由液晶所形成的平行板电容C lc,便是由上下两片玻璃的显示电极与common电极所形成。
而位于Cs储存电容上的common电极,则是另外利用位于与显示电极同一片玻璃上的走线, 这跟C lc上的common电极是不一样的, 只不过它们最后都是接到相同的电压就是了。
2.整块面板的电路架构图3 整块液晶显示面板的电路架构从图3中我们可以看到整片面板的等效电路,其中每一个TFT与Clc跟Cs所并联的电容, 代表一个显示的点。
而一个基本的显示单元pixel,则需要三个这样显示的点,分别来代表RGB三原色。
以一个1024*768分辨率的TFT LCD来说, 共需要1024*768*3个这样的点组合而成。
整片面板的大致结构就是这样, 然后再藉由如图3中gate driver所送出的波形,依序将每一行的TFT打开, 好让整排的source driver同时将一整行的显示点,充电到各自所需的电压, 显示不同的灰阶。
当这一行充好电时, gate driver便将电压关闭, 然后下一行的gate driver便将电压打开, 再由相同的一排source driver对下一行的显示点进行充放电。
如此依序下去, 当充好了最后一行的显示点, 便又回过来从头从第一行再开始充电。
以一个1024*768 SVGA分辨率的液晶显示器来说, 总共会有768行的gate走线, 而source走线则共需要1024*3=3072条。
以一般的液晶显示器多为60Hz的更新频率来说, 每一个画面的显示时间约为1/60=16.67ms。
由于画面的组成为768行的gate走线, 所以分配给每一条gate走线的开关时间约为16.67ms/768=21.7us。
所以在图3 gate driver送出的波形中,我们就可以看到, 这些波形为一个接着一个宽度为21.7us的脉波, 依序打开每一行的TFT。
而source driver则在这21.7us的时间内, 经由source走线, 将显示电极充放电到所需的电压, 好显示出相对应的灰阶。
3.面板的各种极性变换方式由于液晶分子还有一种特性,就是不能够一直固定在某一个电压不变, 不然时间久了, 你即使将电压取消掉, 液晶分子会因为特性的破坏, 而无法再因应电场的变化来转动, 以形成不同的灰阶,所以每隔一段时间, 就必须将电压恢复原状, 以避免液晶分子的特性遭到破坏。
但是如果画面一直不动, 也就是说画面一直显示同一个灰阶的时候怎么办?所以液晶显示器内的显示电压就分成了两种极性, 一个是正极性, 而另一个是负极性. 当显示电极的电压高于common电极电压时, 就称之为正极性. 而当显示电极的电压低于common电极的电压时, 就称之为负极性. 不管是正极性或是负极性, 都会有一组相同亮度的灰阶。
所以当上下两层玻璃的压差绝对值是固定时, 不管是显示电极的电压高, 或是common电极的电压高, 所表现出来的灰阶是一模一样的。
不过这两种情况下, 液晶分子的转向却是完全相反, 也就可以避免掉上述当液晶分子转向一直固定在一个方向时, 所造成的特性破坏. 也就是说, 当显示画面一直不动时, 我们仍然可以藉由正负极性不停的交替, 达到显示画面不动, 同时液晶分子不被破坏掉特性的结果。