实习:Matlab作业hermite插值
插值运算的matlab函数

插值运算的matlab函数1一维插值函数interp1()命令格式:yi=interp1(x,y,xi,’method’)x为插值节点构成的向量,y为插值节点函数值构成的向量,yi是被插值点xi的插值结果,‘method‘是采用的插值方法,缺省时表示分线段性插值,’nearest‘为最邻近插值;’linear‘为分线段性插值;’spline’为三次样条插值;’pchip’为分段Hermite插值;’cubic’为分段Hermite插值例子:画出y=sin(x)在区间[0 10]的曲线,并在曲线上插值节点xk=k,k=0,1 (10)及函数值,画出分段线性插值折线图x=0:10;y=sin(x);xi=0:0.25:10;yi1=interp1(x,y,xi,'nearest');yi2=interp1(x,y,xi,'linear');yi3=interp1(x,y,xi,'spline');yi4=interp1(x,y,xi,'pchip');yi5=interp1(x,y,xi,'cubic');subplot(1,5,1)plot(x,y,'o',xi,yi1,'k--',xi,sin(xi),'k:');title('\bfNearest');subplot(1,5,2)plot(x,y,'o',xi,yi2,'k--',xi,sin(xi),'k:');title('\bfLinear');subplot(1,5,3)plot(x,y,'o',xi,yi3,'k--',xi,sin(xi),'k:');title('\bfSpline');subplot(1,5,4)plot(x,y,'o',xi,yi4,'k--',xi,sin(xi),'k:');title('\bfPchip');subplot(1,5,1)plot(x,y,'o',xi,yi5,'k--',xi,sin(xi),'k:');title('\bfCubic');spline()为三次样条函数命令格式1:yi=spline(x,y,xi),意义等同于yi=interp1(x,y,xi,'spline')命令格式2:pp=spline(x,y) ,输出三次样条函数分段表示的结构pchip()命令格式与spline()完全相同csape()为可输入边界条件的三次样条函数命令格式:pp=csape(x,y,conds,valconds),x为插值节点构成的向量,y为插值节点函数值构成的向量;conds为边界类型,缺省为非扭结边界条件;valconds表示边界值。
课程设计---Hermite 插值法的程序设计及应用

课程设计说明书题目:Hermite 插值法的程序设计及应用学生姓名:学院:班级:指导教师:2012年 1月 5日摘要Hermite 插值是数值分析中的一个重要内容,在相同的节点下得到比拉格朗日插值更高次的插值多项式,而且,相应的曲线在部分节点处也更光滑.在我们所学课程中,只给出了当所有节点处一阶导数均已知时的Hermite 插值.但在实际应用中,并不是所有节点处的一阶导数都是已知的.为此,通过查阅文献、学习总结,给出了更具一般性的Hermite 插值公式.已有的Hermite 插值公式成为本文所得结果的一个特例.本次课程设计,对Hermite 插值法进行了总结,包括Hermit插值法的理论推导,不同情形下的例,以及在解决实际问题中的应用.同时也给出了Hermite插值公式的Matlab算法.关键词Hermite 插值;Matlab 实现;数值分析引言 (1)第一章 Hermite插值 (2)§1.1 Hermite插值的概念 (2)§1.2 Hermite插值简单情形 (3)§1.2.1简单情形解的存在性 (3)§1.2.2 简单情形解的存在唯一性 (5)§1.2.3插值余项 (5)§1.3 Hermite插值其他情形................................ . (5)第二章 Hermite插值的Matlab实现 (9)§2.1 导数完全情形Hermite插值的Matlab实现................... ..9 §2.2导数不完全情形Hermite插值的Matlab实现.. (10)§2.3 Hermite插值在实际问题中的应用 (13)参考文献 (15)附录A (16)附录B (17)附录C (19)在实际工作中, 人们得到的一些数据通常是一些不连续的点, 在土木工程、流体力学、经济学和空气动力学等学科中经常要遇到这样的问题. 此时, 这些数据如果不加以处理, 就难以发现其内在的规律性. 如果用户想得到这些分散点外的其他数值, 就必须运用这些已知的点进行插值.因此,对近似公式的构造产生了插值问题.在实际问题中,两个变量的关系)(x f y =经常要靠实验和观测来获得,而在通常的情况下只能得到)(x f 在有限个点上的值.,,1,0),(n i x f y i ==人们希望找到)(x f 的一个近似函数)(x y φ=,使得i i y x =)(φ,.,,1,0n i = ○1 此时,)(x f 称为被插值函数,点n i x x x ,,,0 称为插值结点,)(x φ称为插值函数,○1为插值条件. 常用的插值法有Lagrange 插值、Newton 插值、最近邻插值、Hermite 插值和三次样条插值插值法等. Lagrange 插值在向量X 区域内的插值较准确, 但向量X 区域之外则不太准确.Newton 插值仅适用于等距节点下的牛顿向前(后) 插值. 最近邻插值是最简便的插值, 在这种算法中, 每一个插值输出像素的值就是在输入图像中与其最临近的采样点的值, 当图像中包含像素之间灰度级变化的细微结构时, 最近邻插值法会在图像中产生人工的痕迹. 最近邻插值的特点是简单、快速, 缺点是误差较大; 三次样条插值一阶和二阶连续可导, 插值曲线光滑, 插值效果比较好, 应用较广Newton 插值和Lagrange 插值虽然构造比较简单,但都存在插值曲线在节点处有尖点、不光滑、插值多项式在节点处不可导等缺点.为了保证插值多项式)(x p n 能更好地逼近)(x f , 对)(x p n 增加一些约束条件, 例如要求)(x p n 在某些结点处与)(x f 的微商相等, 这样就产生了切触插值问题.切触插值即为Hermite 插值.它与被插函数一般有更高的密合度.本课程设计主要对Hermite 插值法进行总结,对其一般情况,特殊情况进行更进一步的学习,尽量实现其在Matlab 及C++上的程序运行.第一章 Hermite 插值实际问题中应用较广为Newton 插值和Lagrange 插值,虽然这辆种插值法构造比较简单, 但都存在插值曲线在节点处有尖点、不光滑、插值多项式在节点处不可导等缺点.为了克这些缺点,我们引入了Hermite 插值.§1.1 Hermite 插值的概念定义1.1 许多实际插值问题中,为使插值函数能更好地和原来的函数重合,不但要求二者在节点上函数值相等,而且还要求相切,对应的导数值也相等,甚至要求高阶导数也相等.这类插值称作切触插值,或埃尔米特(Hermite)插值.该定义给出了Hermite 插值的概念,由此得出Hermite 插值的几何意义,如图1.1.定义1.2 满足上述要求的插值多项式是埃尔米特插值多项式.记为H (x ). 定义1.3 求一个次数不大于1++r n 的代数多项式 H(x) ,满足:).(,,2,1),()(.,,2,1),()(n r r i x f x H n i x f x H i i i i ≤='='== (1-1) 则(1-1)为Hermite 插值条件.定义1.4 令 ),(22y x ),(33y x ),(44y x),(11y x),(00y x xy图1.1 Hermite 插值多项式的几何意义含义.)()()()()(00∑∑=='+=rk k k n k k k x f x x f x x H βα (1-2)其中,),,1,0)(x (),,1,0)((k n k n k x k ==βα和都是1++r n 次待定多项式并且它们满足如下条件:⎩⎨⎧=01)(i k x α k i k i ≠= .,,1,0,n k i = .,,1,0,,,1,0,0)('r i n k x i k ===α⎩⎨⎧='01)(i k x β k i k i ≠= .,,1,0,r k i = .,,1,0,,,1,0,0)(n i r k x i k ===β称(1-2)为Hermite 插值公式.解决Hermite 插值问题,就是在给定结点处函数值与导数值的基础上根据插值公式构造Hermite 插值多项式,并根据已知条件解出多项式系数.§1.2 Hermite 插值简单情形已知函数表: x0x 1x 2x … m x … n x )(x f0y 1y 2y … m y … n y )(x f ' 0'y 1'y 2'y … m y ' … n y '求一个插值多项式,使其满足条件数表.由于数表中包含22+n 个条件,所以能够确定次数不大于12+n 的代数多项式 )(12x H n +.此情形为导数个数与函数值个数相等的情形,即 Hermite 插值问题的最简单也是最常用情形.1.2.1简单情形解的存在性由于Hermite 插值公式(1-2)已给出,接下来只需构造出)(x k α及)(x k β,即认为其存在.在此简介Lagrange-Hermite 插值法构造插值多项式.Step1 构造)(x k α(n k ,,1,0 =)由条件)(0)(')(k i x x i k i k ≠==αα知),,,1,0(k i r i x i ≠= 是)(x k α的二重零点.已知Lagrange 插值基函数)(x l k 是n 次多项式,且具有性质⎩⎨⎧=≠==i k i k x l ki i k ,1,0)(δ, 则2n 次多项式[]2)(x k k 也具有性质[]ki i k x l δ=2)(,而[]2)(x l k 的一阶导数在)(k i x i ≠处的值[]()0)()(2)(2='='i k i k i k x l x l x l 所以当k i ≠时,i x 也都是[]2)(x k k的两重零点.注意到)(x h k 是12+n 次多项式,而[]2)(x l k 是n 2次多项式,因此可设),,2,1,0)(()()(2n k x l b ax x k k =+=α其中b a ,为待定常数.显然k i ≠时满足0)(')(==i k i k x x αα,现只要求出b a ,满足k i =时,满足0)(',1)(==k k k k x x αα即可.由此得到确定b a ,的两个方程:)(2)())(()(2)(1)()()()(22=+'=++'='=+=+=a x l x al b ax x l x l x b ax x l b ax x k k k k k k k k k k k k k k k k k αα解出 k k kk k x x l b x l a ⋅'+='-=)(21)(2 于是[])())((21)(2x l x x x l x k k k kk -'-=α. Step2 构造)(x k β ),,1,0(n k =由条件)(0)(')(k i x x i k i k ≠==ββ知),,,1,0(k i r i x i ≠= 是)(x k β的二重零点.因此可设)(x k β也含因子)(2x l k ,又0)(=k k x β,所以)(x k β还含有因式)(k x x -,因此设)()()(2x l x x A x k k k -=β,其中A 为待定常数.显然)(x k β是12+n 次多项式,且当k i ≠时满足0)(')(==i k i k x x αα,由,1)(='k kx β可确定A 如下: 1)()(2)()()(2=='⋅⋅-+='A x l x l x x A x Al x k kk k k k k k k β所以 )()()(2x l x x x k k k -=β.到此为止,Hermite 插值问题的解)(12x H n +为[],)()()())((21)(2020k k nk k k kn k k k k f x l x x f x l x x x l x H '-+-'-=∑∑== 特别地,当=n 1时,满足113003113003)(,)(,)(,)(y x H y x H y x H y x H '=''='==的三阶Hermite 插值多项式为+⎪⎪⎭⎫ ⎝⎛--⎥⎦⎤⎢⎣⎡'-+⎪⎪⎭⎫ ⎝⎛--+=21010000103)(21)(x x x x y x x y x x x x x H 2010111101)(21⎪⎪⎭⎫ ⎝⎛--⎥⎦⎤⎢⎣⎡'-+⎪⎪⎭⎫ ⎝⎛--+x x x x y x x y x x x x .§1.2.2 简单情形解的存在唯一性为了简便理解,下面用流程图来说明解的存在唯一性.详见附录A.§1.2.3 插值余项定理 1.1 设)(x f 在包含1+n 个插值结点的最小区间[b a ,]上22+n 次连续可微,则存在与x 有关的ξ,b a <<ξ,使得),()!22()()()(222x w n f x H x f n +=-+ξ 其中∏=-=n0j )()(j x x x w .由此可得到三阶Hermite 插值多项式的误差为:,)()(!4)()()()(212043x x x x f x H x f x R --=-=ξ ξ在0x 与1x 之间.§1.3 Hermite 插值其他情形已知函数表:x 0x1x … m x … n x y0y 1y … m y … n yy ' 0y ' 1y ' … m y '求一个插值多项式,使其满足条件数表.该问题中,导数个数与函数值个数不相等.我们称之为Hermite 插值中其他情形.在此简介Newton-Hermite 插值法构造插值多项式.先分析插值条件的个数:2++m n 个,那么,所构造的多项式的次数一般不能超1++m n .于是,按牛顿差值的思想,可设);())(()(),()()()(1011n n n m n x x x x x x x x x P x N x H ---=+=++ ωω其中,)(x N n 为n 次牛顿差值多项式;)(x P m 为待定的次数不超过m 次的多项式. 显然:n i x f x N x H i i n i ,,2,1,0),()()( ===为确定)(x P m ,对)(x H 求导:)()()()()()(11x x P x x P x N x H n m n m n++'+'+'='ωω 根据插值条件)()(i i x f x H '=',有)()()()()()()()()(111i n i m i ni n i m i n i m i n i x x P x N x x P x x P x N x H +++'+'='+'+'='ωωω 得到m i x x N x f x P i ni n i i m ,,2,1,0,)()()()(1 =''-'=+ω 于是,把求)(x P m 的问题转化为又一个插值问题已知)(x P m 的函数表 x1x 2x … m x )(x P m )(1x P m )(2x P m … )(m m x P确定一个次数不超过m 的插值多项式)(x L m ,使其满足)()(i m i m x P x L =. 根据牛顿差值公式.)())(](,,[)](,[)()(10000100----++-+=m m m m m m x x x x x x x x P x x x x P x P x P将上式带回,即得到满足条件;,,2,1,0),()(;,,2,1,0),()(m k x f x H n k x f x H k k k k ='='==的Newton-Hermite 插值多项式.例1.1 已知函数表: x 0x1x y 0y1y y ' 0'y求一个插值多项式H (x ),使其满足条件:),()(),()(),()(001100x f x H x f x H x f x H '='==该问题中,导数个数与函数值个数不相等.我们称之为Hermite 插值中其他情形.在此简介Newton-Hermite 插值法构造插值多项式.先由函数表xx 0 x 1 yy 0 y 1作线性插值,即为 []()01001,)()(x x x x f x f x P -+= 再注意到H (x )与P 1 (x )在节点x 0, x 1上函数值相同,即:11110010)()()()(y x P x H y x P x H ====于是,它们的差可以设为 ))(()()(101x x x x K x P x H --=-其中K 为待定常数,上式又可记为:))(()()(101x x x x K x P x H --+= (1-3)为确定K ,对上式求导:)()()(101x x x x K x P x H -+-+'='令x = x 0,代入上式,并且注意到插值条件00)(y x H '='得: []010*******)(,)()()(y x x K x x f x x K x P x H '=-+=-+'='于是有[]01010x x y x x f K -'--=将上式代入(1-3)得[]))(()()(10010101x x x x x x y x x f x P x H ---'--+=[][]))(()(,)(10010100100x x x x x x y x x f x x x x f x f ---'--+-+= (1-4)可以验证(1-4)所确定的H (x )确实满足插值条件(1-1).同时也可以看到,构造牛顿——埃米尔特插值多项式,完全采用牛顿插值的构造思想.最后,也可以把(1-4)式整理成拉格朗日形式:1001112010001101010)()(y x x xx x x y xx x x y xx x x x x x x x x x H '-⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛----+-=插值余项为()()120)3(2!3)()(x x x x f X R --=ξ, ξ在0x 与1x 之间.第二章 Hermite 插值的Matlab 实现§2.1 导数完全情形Hermite 插值的Matlab 实现在实际应用中,应用最广也是最简单的Hermite 插值情形即为导数完全的情况下,Hermite 插值多项式的拟合.我们首先讨论该情形下的Matlab 程序.在给出程序之前,我们首先给出该公式所应用的Hermite 插值公式. 定理2.1 设在节点b x x x a n ≤<<≤≤ 21上,,)(,)(j j j j y x f y x f '='=,其中n j ≤≤1,则函数)(x f 在结点处n x x x ,,,21 处的Hermite 插值多项式为∑=+--=ni i i i i i i y y y a x x h x y 1])2)([()(其中 ∑∏≠=≠=-=--=nij j ji i nij j ji j i x x a x x x x h 1211;)(.该定理的证明详见文献.该情形下对应的Matlab 程序及流程图详见附录B . 为验证该程序的正确性与有效性,下面给出例2.1. 例2.1 设有如下数据表:x0 0.5 1 1.5 2 2.5 3 3.5)sin(x y = 0 0.4794 0.8145 0.9975 0.9093 0.5985 0.1411 -0.3508 )cos(x y =' 1 0.8776 0.5403 0.0707 -0.4161 -0.8011 -0.9900 -0.9365在Matlab 工作台输入如下命令:>> x0=[0,0.5,1,1.5,2,2.5,3,3.5];y0=[0,0.4794,0.8415,0.9975,0.9093,0.5985,0.1411,- 0.3508]; y1=[1,0.8776,0.5403,0.0707,-0.4161,-0.8011,-0.9900,-0.9365]; x=x0;y=hermite(x0,y0,y1,x); yplot(x,y) y2=sin(x); hold onplot(x,y2,'*r') 则输出结点处的插值:y =0 0.4794 0.8415 0.9975 0.9093 0.5985 0.1411 -0.3508)sin(x y =的Hermite 插值多项式的拟合图像如图:§2.2导数不完全情形Hermite 插值的Matlab 实现在实际应用中,并不是所有节点处的一阶导数都是已知的,为此,我们给出了更具一般性的Hermite 插值公式及其算法实现,已有的Hermite 插值公式成为本文所得结果的一个特例.在此首先给出求解Hermite 插值问题的一般性公式。
Hermite插值方法

数值分析实验报告五一、实验目的理解Hermite插值方法,掌握Hermite插值算法设计二、实验内容使用vc++编程,实现该方法,即Hermite插值法三、实验步骤#include <iostream.h>double herm(double x0,double x1,double y0,double y1,double h0,double g0,double g1,double x) {double alp0,alp1,bta0,bta1,t;double s;t=h0*h0;alp0=(x-x1)*(x-x1)*(h0+2*(x-x0))/t/h0;alp1=(x-x0)*(x-x0)*(h0-2*(x-x1))/t/h0;bta0=(x-x0)*(x-x1)*(x-x1)/t;bta1=(x-x1)*(x-x0)*(x-x0)/t;s=y0*alp0+y1*alp1+g0*bta0+g1*bta1;return(s);}void main(){int n=7;double p0;double pn; double aa[8],bb[8],s=0;double xx[8]={0.5,0.7,0.9,1.1,1.3,1.5,1.7,1.9};double yy[8]={0.4794,0.6442,0.7833,0.8912,0.9636,0.9975,0.9917,0.9463};double g[8];int i;double a[8],c[8],h[8];cout<<"Please input p0 and pn"<<endl;cin>>p0;cin>>pn;for(i=0;i<=n-1;i++){h[i]=xx[i+1]-xx[i];cout<<"h["<<i<<"]="<<h[i]<<endl;}c[0]=1;g[0]=3*(yy[1]-yy[0])/h[0]-p0*h[0]/2;for( i=1;i<=n-1;i++){a[i]=h[i]/(h[i]+h[i-1]);c[i]=1-a[i];}for(i=1;i<n;i++){cout<<"a["<<i<<"]="<<a[i]<<endl;cout<<"c["<<i<<"]="<<c[i]<<endl;}for( i=1;i<=n-1;i++){g[i]=3*(c[i]*(yy[i+1]-yy[i])/h[i]+a[i]*(yy[i]-yy[i-1])/h[i-1]);}a[n]=1;g[n]=3*(yy[n]-yy[n-1])/h[n-1]+pn*h[n-1]/2;for(i=0;i<=n;i++)cout<<"g["<<i<<"]="<<g[i]<<endl;aa[0]=2;bb[0]=c[0]/aa[0];g[0]=g[0]/aa[0];for(i=1;i<=n-1;i++){aa[i]=2-a[i]*bb[i-1];bb[i]=c[i]/aa[i];g[i]=(g[i]-a[i]*g[i-1])/aa[i];}aa[n]=2-a[n]*bb[n-1];g[n]=(g[n]-a[n]*g[n-1])/aa[n];for(i=n-1;i>=0;i--){g[i]=g[i]-bb[i]*g[i+1];}cout<<endl;for(i=0;i<=n;i++)cout<<"g["<<i<<"]="<<g[i]<<endl;double ss;double c0,c1,d0,d1,g0,g1,h1;double x0;cout<<"Please input interpolation point x0:"<<endl;cin>>x0;if(x0>=0.5 && x0<0.7){c0=xx[0];c1=xx[1];d0=yy[0];d1=yy[1];h1=h[0];g0=g[0];g1=g[1];ss=herm(c0,c1,d0,d1,h1,g0,g1,x0);cout<<ss<<endl;}else if(x0>=0.7 && x0<0.9){c0=xx[1];c1=xx[2];d0=yy[1];d1=yy[2];h1=h[1];g0=g[1];g1=g[2];ss=herm(c0,c1,d0,d1,h1,g0,g1,x0);cout<<ss<<endl;}else if(x0>=0.9 && x0<=1.1){c0=xx[2];c1=xx[3];d0=yy[2];d1=yy[3];h1=h[2];g0=g[2];g1=g[3];ss=herm(c0,c1,d0,d1,h1,g0,g1,x0);cout<<ss<<endl;}else if(x0>=1.1 && x0<=1.3){c0=xx[3];c1=xx[4];d0=yy[3];d1=yy[4];h1=h[3];g0=g[3];g1=g[4];ss=herm(c0,c1,d0,d1,h1,g0,g1,x0);cout<<ss<<endl;}else if(x0>=1.3 && x0<=1.5){c0=xx[4];c1=xx[5];d0=yy[4];d1=yy[5];h1=h[4];g0=g[4];g1=g[5];ss=herm(c0,c1,d0,d1,h1,g0,g1,x0);cout<<ss<<endl;}else if(x0>=1.5 && x0<=1.7){c0=xx[5];c1=xx[6];d0=yy[5];d1=yy[6];h1=h[5];g0=g[5];g1=g[6];ss=herm(c0,c1,d0,d1,h1,g0,g1,x0);cout<<ss<<endl;}else if(x0>=1.7 && x0<=1.9){c0=xx[6];c1=xx[7];d0=yy[6];d1=yy[7];h1=h[6];g0=g[6];g1=g[7];ss=herm(c0,c1,d0,d1,h1,g0,g1,x0);cout<<ss<<endl;}elsecout<<"The data error,please input again!"<<endl;}四、运行结果。
埃尔米特(Hermite)插值

实验二埃尔米特(Hermite)插值一、实验目的:1.掌握埃尔米特插值算法原理;2.使用C语言编程实现埃尔米特插值算法。
二、实验准备:阅读《数值分析》2.4节二、实验要求:某人从甲地开车去乙地,每隔一段时间对行车距离和速率进行一次采样,得到在n+1 个采样时刻点t i 的里程s i和速率v i(i=0, 1, ..., n)。
要求编程构造埃尔米特插值多项式H2n+1(t),满足H2n+1(t i)=s i,H'2n+1(t i)=v i,对所有i=0, 1, ..., n成立,并据此计算m个给定时刻的里程和速率。
函数接口定义:void Hermite_Interpolation( int N, double t[], double s[], double v[], int m, double ht[], double hs[], double hv[] );其中N为采样点个数(注意这个N不是公式中的最大下标n,而是等于n+1),采样时刻点t i、里程s i、速率v i分别通过t、s、v传入;m是需要估算的给定时刻的个数,ht传入给定的时刻点,相应计算出的里程和速率应分别存储在hs和hv中。
裁判程序如下:裁判输入数据:20.0 1.00.0 1.00.0 0.050.0 0.2 0.5 0.8 1.030.0 0.5 1.0100.0 170.0 200.030.0 150.0 0.050.0 0.25 0.5 0.75 1.050.0 1.0 2.0 3.0 4.00.0 60.0 160.0 260.0 300.05.0 70.0 100.0 120.0 20.0100.5 1.0 1.5 2.0 2.5 3.0 3.5 3.8 3.95 4.0标准输出数据:0.0000 0.1040 0.5000 0.8960 1.00000.0000 0.9600 1.5000 0.9600 0.0000100.0000 127.9297 170.0000 195.9766 200.000030.0000 165.4688 150.0000 52.9688 0.000030.2222 60.0000 105.9303 160.0000 206.3438 260.0000 307.9764 305.7687 299.9796 300.000062.6024 70.0000 109.0488 100.0000 92.9745 120.0000 41.2374 -44.8421 -16.2783 20.0000#include<stdio.h>#define MAXN 5 /* 最大采样点个数 */#define MAXM 10 /* 最大估算点个数 */void Hermite_Interpolation( int N, double t[], double s[], double v[], int m, double ht[], double hs[], double hv[] ){double l[10],p[10],h1[10],h2[10],x,ll[10],pp[10];int kk;for(kk=0;kk<m;kk++){x=ht[kk];hs[kk]=0;hv[kk]=0;int i;for(i=0;i<N;i++){l[i]=1;ll[i]=1;int j;for(j=0;j<N;j++){if(i!=j){l[i]=l[i]*(x-t[j])/(t[i]-t[j]);}}p[i]=0;pp[i]=0;int k;for(k=0;k<N;k++){if(i!=k){p[i]=p[i]+l[i]/(x-t[k]);pp[i]=pp[i]+ll[i]/(t[i]-t[k]);}}h1[i]=(1-2*pp[i]*(x-t[i]))*l[i]*l[i];h2[i]=(x-t[i])*l[i]*l[i];hs[kk]=hs[kk]+s[i]*h1[i]+v[i]*h2[i];int kkk;for(kkk=0;kkk<N;kkk++){if(x==t[kkk])break;}if(x==t[kkk])hv[kk]=v[kkk];elsehv[kk]=hv[kk]+s[i]*(2*p[i]*l[i]-4*l[i]*p[i]*(x-t[i])*pp[i]-2*pp[i]*l[ i]*l[i])+v[i]*(l[i]*l[i]+2*l[i]*p[i]*(x-t[i]));}}}int main(){int N, m;double t[MAXN], s[MAXN], v[MAXN]; /* 用于构造的数据 */double ht[MAXM], hs[MAXM], hv[MAXM]; /* 用估算的数据 */int i;while ( scanf("%d", &N) != EOF ) {for ( i=0; i<N; i++ )scanf("%lf", &t[i]);for ( i=0; i<N; i++ )scanf("%lf", &s[i]);for ( i=0; i<N; i++ )scanf("%lf", &v[i]);scanf("%d", &m);for ( i=0; i<m; i++ )scanf("%lf", &ht[i]);Hermite_Interpolation( N, t, s, v, m, ht, hs, hv );for ( i=0; i<m; i++ )printf("%.4lf ", hs[i]);printf("\n");for ( i=0; i<m; i++ )printf("%.4lf ", hv[i]);printf("\n\n");}return 0; }。
Hermite_插值法

, x0]
lim
xi x0
f [x0, x1,
,
xn ]
1 n!
f
(n) ( x0 )
重节点Newton插值
在 Newton 插值公式中,令 xi x0 , i = 1, … , n, 则
Nn( x) f ( x0 ) f [ x0 , x1]( x x0 )
f ( x0 ) f '( x0 )( x x0 )
( x1 x0 )( x1 x2 )
三点三次Hermite 插值
余项公式
由于 x0 , x1 , x2 是 R(x) 的零点,且 x1 是二重零点,故可设 R( x) f ( x) P( x) k( x)( x x0 )( x x1 )2 ( x x2 )
与 Lagrange 插值余项公式的推导过程类似,可得
x
x0
)
x x0
x1 x1
2
1(
x)
(
x
x1
)
x x1
x0 x0
两点三次Hermite 插值
满足插值条件
P(x0) = f(x0) = y0,P’(x0) = f’(x0) = m0 P(x1) = f(x1) = y1,P’(x1) = f’(x1) = m1
的三次 Hermite 插值多项式为
三点三次Hermite 插值
三点三次 Hermite 插值
插值节点:x0 , x1 , x2
插值条件:P(xi) = f(xi),i = 0, 1, 2,P’(x1) = f’(x1) 设 P( x) f ( x0 ) f [x0, x1]( x x0 )
f [ x0, x1, x2]( x x0 )( x x1) A( x x0 )( x x1 )( x x2 ) 将 P’(x1) = f’(x1) 代入可得 A f '( x1 ) f [ x0 , x1] f [ x0, x1, x2]( x1 x0 )
matlab插值(详细 全面)

Matlab中插值函数汇总和使用说明MATLAB中的插值函数为interp1,其调用格式为: yi= interp1(x,y,xi,'method')其中x,y为插值点,yi为在被插值点xi处的插值结果;x,y为向量, 'method'表示采用的插值方法,MATLAB提供的插值方法有几种: 'method'是最邻近插值, 'linear'线性插值; 'spline'三次样条插值; 'cubic'立方插值.缺省时表示线性插值注意:所有的插值方法都要求x是单调的,并且xi不能够超过x的范围。
例如:在一天24小时内,从零点开始每间隔2小时测得的环境温度数据分别为12,9,9,10,18 ,24,28,27,25,20,18,15,13,推测中午12点(即13点)时的温度.x=0:2:24;y=[12 9 9 10 18 24 28 27 25 20 18 15 13];a=13;y1=interp1(x,y,a,'spline')结果为: 27.8725若要得到一天24小时的温度曲线,则:xi=0:1/3600:24;yi=interp1(x,y,xi, 'spline');plot(x,y,'o' ,xi,yi)命令1 interp1功能一维数据插值(表格查找)。
该命令对数据点之间计算内插值。
它找出一元函数f(x)在中间点的数值。
其中函数f(x)由所给数据决定。
x:原始数据点Y:原始数据点xi:插值点Yi:插值点格式(1)yi = interp1(x,Y,xi)返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y 的内插值决定。
参量x 指定数据Y 的点。
若Y 为一矩阵,则按Y 的每列计算。
yi是阶数为length(xi)*size(Y,2)的输出矩阵。
埃尔米特(Hermite)插值

实验二埃尔米特(Hermite)插值一、实验目的:1.掌握埃尔米特插值算法原理;2.使用C语言编程实现埃尔米特插值算法。
二、实验准备:阅读《数值分析》2.4节二、实验要求:某人从甲地开车去乙地,每隔一段时间对行车距离和速率进行一次采样,得到在n+1 个采样时刻点t i 的里程s i和速率v i(i=0, 1, ..., n)。
要求编程构造埃尔米特插值多项式H2n+1(t),满足H2n+1(t i)=s i,H'2n+1(t i)=v i,对所有i=0, 1, ..., n成立,并据此计算m个给定时刻的里程和速率。
函数接口定义:void Hermite_Interpolation( int N, double t[], double s[], double v[], int m, double ht[], double hs[], double hv[] );其中N为采样点个数(注意这个N不是公式中的最大下标n,而是等于n+1),采样时刻点t i、里程s i、速率v i分别通过t、s、v传入;m是需要估算的给定时刻的个数,ht传入给定的时刻点,相应计算出的里程和速率应分别存储在hs和hv中。
裁判程序如下:裁判输入数据:20.0 1.00.0 1.00.0 0.050.0 0.2 0.5 0.8 1.030.0 0.5 1.0100.0 170.0 200.030.0 150.0 0.050.0 0.25 0.5 0.75 1.050.0 1.0 2.0 3.0 4.00.0 60.0 160.0 260.0 300.05.0 70.0 100.0 120.0 20.0100.5 1.0 1.5 2.0 2.5 3.0 3.5 3.8 3.95 4.0标准输出数据:0.0000 0.1040 0.5000 0.8960 1.00000.0000 0.9600 1.5000 0.9600 0.0000100.0000 127.9297 170.0000 195.9766 200.000030.0000 165.4688 150.0000 52.9688 0.000030.2222 60.0000 105.9303 160.0000 206.3438 260.0000 307.9764 305.7687 299.9796 300.000062.6024 70.0000 109.0488 100.0000 92.9745 120.0000 41.2374 -44.8421 -16.2783 20.0000#include<stdio.h>#define MAXN 5 /* 最大采样点个数 */#define MAXM 10 /* 最大估算点个数 */void Hermite_Interpolation( int N, double t[], double s[], double v[], int m, double ht[], double hs[], double hv[] ){double l[10],p[10],h1[10],h2[10],x,ll[10],pp[10];int kk;for(kk=0;kk<m;kk++){x=ht[kk];hs[kk]=0;hv[kk]=0;int i;for(i=0;i<N;i++){l[i]=1;ll[i]=1;int j;for(j=0;j<N;j++){if(i!=j){l[i]=l[i]*(x-t[j])/(t[i]-t[j]);}}p[i]=0;pp[i]=0;int k;for(k=0;k<N;k++){if(i!=k){p[i]=p[i]+l[i]/(x-t[k]);pp[i]=pp[i]+ll[i]/(t[i]-t[k]);}}h1[i]=(1-2*pp[i]*(x-t[i]))*l[i]*l[i];h2[i]=(x-t[i])*l[i]*l[i];hs[kk]=hs[kk]+s[i]*h1[i]+v[i]*h2[i];int kkk;for(kkk=0;kkk<N;kkk++){if(x==t[kkk])break;}if(x==t[kkk])hv[kk]=v[kkk];elsehv[kk]=hv[kk]+s[i]*(2*p[i]*l[i]-4*l[i]*p[i]*(x-t[i])*pp[i]-2*pp[i]*l[ i]*l[i])+v[i]*(l[i]*l[i]+2*l[i]*p[i]*(x-t[i]));}}}int main(){int N, m;double t[MAXN], s[MAXN], v[MAXN]; /* 用于构造的数据 */double ht[MAXM], hs[MAXM], hv[MAXM]; /* 用估算的数据 */int i;while ( scanf("%d", &N) != EOF ) {for ( i=0; i<N; i++ )scanf("%lf", &t[i]);for ( i=0; i<N; i++ )scanf("%lf", &s[i]);for ( i=0; i<N; i++ )scanf("%lf", &v[i]);scanf("%d", &m);for ( i=0; i<m; i++ )scanf("%lf", &ht[i]);Hermite_Interpolation( N, t, s, v, m, ht, hs, hv );for ( i=0; i<m; i++ )printf("%.4lf ", hs[i]);printf("\n");for ( i=0; i<m; i++ )printf("%.4lf ", hv[i]);printf("\n\n");}return 0; }。
matlab实现newton差值和hermite差值

(一)实验目的掌握并能够利用newton差值和hermite差值方法解决问题。
(二)问题描述问题四插值。
上述函数的导数为采用三种方法中最好的方法计算这一积分(1)利用数值积分的方法给出在(可以直接计算精确值的,用精确值),用Newton插值方法得到5个椭圆的周长(2)利用数值积分的方法给出在(可以直接计算精确值的,用精确值),用Hermite插值方法得到5个椭圆的周长(3) 选做题:利用以及导数更多的值来进行插值,插值误差会有什么变化?(4)选做题:采用其它的插值方法改进插值的效果。
(三)算法介绍a确定,对于给定的b值都对应着一个椭圆,在本问题中用newton插值法和hermite得到的多项式代替椭圆周长公式中的进行积分,首先画出图像,选择初始点。
图像的实现代码见picture1.m。
newton插值法迭代公式:;Hermite法迭代公式:。
(四)程序建立picture.m文件画出和其导数图像。
(注:此图像为b=0.5时)x=0:0.1:2;y=sqrt(1+(0.5^2-1).*cos(x).^2);yyy=.750./(1-.75.*cos(x).^2).^(1/2).*cos(x).*sin(x);plot(x,y,'r');hold on;plot(x,yyy);hold off;legend('sqrt(1+(0.5^2-1).*cos(x).^2)','.750./(1-.75.*cos(x).^2).^(1/2).*cos(x).*sin(x)');所画图像为:我们选取0,0.3,0.6,0.9,1.2,1.5为初始点。
问题四(1)建立newtondedai1.m文件。
function z=newtondedai1(f,n)syms xia=zeros(n,n);x=[0 0.3 0.6 0.9 1.2 1.5];y=feval(f,x);a(:,1)=y;for i=2:nfor j=2:ia(i,j)=(a(i,j-1)-a(i-1,j-1))/(x(1,i)-x(1,i-j+1)); endendt=xi-x(1,1);p=a(1,1);for i=2:np=p+a(i,i)*t;t=t*(xi-x(1,i));endp=collect(vpa(p))问题四(2)建立hermite3.m文件。
(整理)matlab插值计算.

插值方法晚上做一个曲线拟合,结果才开始用最小二乘法拟合时,拟合出来的东西太难看了!于是尝试用其他方法。
经过一番按图索骥,终于发现做曲线拟合的话,采用插值法是比较理想的方法。
尤其是样条插值,插完后线条十分光滑。
方法付后,最关键的问题是求解时要积分,放这里想要的时候就可以直接过来拿,不用死去搜索啦。
呵呵插值方法的Matlab实现一维数据插值MATLAB中用函数interp1来拟合一维数据,语法是YI = INTERP1(X,Y,XI,方法)其中(X,Y)是已给的数据点,XI 是插值点,其中方法主要有'linear' -线性插值,默认'pchip' -逐段三次Hermite插值'spline' -逐段三次样条函数插值其中最后一种插值的曲线比较平滑例:x=0:.12:1; x1=0:.02:1;%(其中x=0:.12:1表示显示的插值点,x1=0:.02:1表示插值的步长)y=(x.^2-3*x+5).*exp(-5*x).*sin(x);plot(x,y,'o'); hold on;y1=interp1(x,y,x1,'spline');plot(x1,y1,':')如果要根据样本点求函数的定积分,而函数又是比较光滑的,则可以用样条函数进行插值后再积分,在MATLAB中可以编写如下程序:function y=quadspln(x0,y0,a,b)f=inline('interp1(x0,y0,x,''spline'')','x','x0','y0');y=quadl(f,a,b,1e-8,[],x0,y0);现求sin(x)在区间[0,pi]上的定积分,只取5点x0=[0,0.4,1,2,pi];y0=sin(x0);I=quadspln(x0,y0,0,pi)结果得到的值为2.01905,精确值为2求一段matlab插值程序悬赏分:20 - 解决时间:2009-12-26 19:57已知5个数据点:x=[0.25 0.5 0.75 1] y=[0 0.3104 0.6177 0.7886 1] ,求一段matlab插值程序,求过这5个数据点的插值多项式,并在x-y坐标中画出y=f(x)图形,并且求出f (x)与x轴围成图形的面积(积分),不胜感激!使用Lagrange 插值多项式的方法:首先把下面的代码复制到M文件中,保存成lagranfunction [C,L]=lagran(X,Y)% input - X is a vector that contains a list of abscissas% - Y is a vector that contains a list of ordinates% output - C is a matrix that contains the coefficients of the lagrange interpolatory polynomial%- L is a matrix that contains the lagrange coefficients polynomialw=length(X);n=w-1;L=zeros(w,w);for k=1:n+1V=1;for j=1:n+1if k~=jV=conv(V,poly(X(j)))/(X(k)-X(j));endendL(k,:)=V;endC=Y*L;然后在命令窗口中输入以下内容:x=[0 0.25 0.5 0.75 1];y=[0 0.3104 0.6177 0.7886 1];lagran(x,y)ans =3.3088 -6.3851 3.3164 0.7599 0得到的数据就是多项式各项的系数,注意最后一个是常数项,即x^0,所以表达式为:f=3.3088*x.^4-6.3851*x.^3+3.3164*x.^2 +0.7599*x求面积就是积分求解>> f=@(x)3.3088*x.^4-6.3851*x.^3+3.3164*x.^2 +0.7599*x;>> quad(f,0,1)ans =0.5509这些点肯定是通过这个多项式的!MATLAB插值与拟合§1曲线拟合实例:温度曲线问题气象部门观测到一天某些时刻的温度变化数据为:试描绘出温度变化曲线。
数值分析实验报告Hermite插值法、Runge现象,比较Language插值、分段线性插值、分段三次Hermie插值

山东师范大学数学科学学院实验报告x 0.1 0.5 1 1.5 2 2.5 3y 0.95 0.84 0.86 1.06 1.5 0.72 1.9y' 1 1.5 2 2.5 3 3.5 4求质点在时刻1.8时的速度,并画出插值多项式的图像。
1)运用Hermite插值法画出图像,如图4-1,并求质点在时刻1.8时的速度。
>>clear>>clc>>X=[0.1 0.5 1 1.5 2 2.5 3;0.95 0.84 0.86 1.06 1.5 0.72 1.9;1 1.5 2 2.5 3 3.5 4];>> x=0.1:0.01:3;>> H=Hermite1(X,x);>> plot(x,H)>> hold on>> plot(X(1,:),X(2,:),'r*')>> H1_8=Hermite(X,1.8);>> plot(1.8,H1_8,'go')>> legend('插值图像','原始点','目标点');图4-1二、验证高次插值的Runge现象问题分析和算法设计(一)Language插值代码function [Ln] =Lagrange(X,x)%请输入2*n+1矩阵X,X中第一行每个元素都是插值节点,X中第二行每个元素都是插值节点对应的函数值;%第二章P24例一拉格朗日插值n=size(X,2);d=0;for m=1:1:nif x==X(1,m);d=m;breakendend运行结果和总结 运行结果 例:给定函数55,11)(2≤≤-+=x xx f ; (1) 验证表2-10的误差结果(高次插值的Runge 现象);(2) 以0.1为步长分别进行Language 插值、分段线性插值、分段三次Hermite插值,画出三种插值函数以及f(x)的图像,比较三种插值结果。
埃尔米特(Hermite)插值

i0
i0
i0
n
H 2n1(x) i (x) y i (x) y ´
i0
H 2n1(x j )
n
i(x j ) f (x j )
n
i (x j ) f (x j )
n
i(x j ) f (x j )
i0
i0
i0
n
n
i (x j ) f (x j ) 0 0 ij f (x j ) 0 f (x j )
j0
x
j
)l
2 j
(
x)
f
(x j )
H2n+1(x)为满足条件 H (xi ) f (xi ), H (xi ) f (xi ) (i 0,1,,n) 的2n+1次Hermite插值多项式。
定理5.3 满足插值条件
H (xi ) f (xi ), H (xi ) f (xi ) (i 0,1,, n)
定理的证明可仿照Lagrange插值余项的证明方 法请同学们自行证明
实际中使用最广泛的是三次Hermite插值多项式,即
n=1的情况
1
1
H3 (x) j (x) f (x j ) j (x) f (x j )
j0
j0
0
Hale Waihona Puke (x)(1
2
x x0 x0 x1
)(
x x0
x1 x1
)
2
1
上式给出了2n+2个条件,可惟一确定一个次数不超过 2n+1的多项式H2n+1(x),采用类似于求Lagrange插值多 项式的基函数方法求埃尔米特(Hermite)插值多项式 H2n+1(x)
分段Hermite插值

6.6 分段埃尔米特插值及其MATLAB 程序6.6.2 分段埃尔米特插值的MATLAB 程序调用格式一:YI=interp1(X,Y,XI,'pchip')调用格式二:YI=interp1(X,XI,'pchip')例6.6.5 试用MA TLAB 程序计算例6.6.1中在各小区间中点处分段三次埃尔米特插值)(2/1+i n x H 及其相对误差.解 在MATLAB 工作窗口输入程序>> h=0.2;x0=-1:h:1;y0=1./(1+25.*x0.^2); xi=-0.9:h:0.9; fi=1./(1+25.*xi.^2); yi=interp1(x0,y0,xi,'pchip'); Ri=abs((fi-yi)./fi); xi,fi,yi,Ri,i=[xi',fi',yi',Ri'] 运行后屏幕显示各小区间中点x i 处的函数值f i ,插值s i ,相对误差值R i (略).6.6.3 作有关分段埃尔米特插值图形的MATLAB 程序作有关分段埃尔米特插值图形的MATLAB 主程序function H=hermitetx(x0,y0,xi,x,y)H= interp1(x0,y0,xi,'pchip');Hn= interp1(x0,y0,x,'pchip');plot(x0,y0,'o',x,Hn,'-',xi,H,'*',x,y,'-.')legend('节点(xi,yi)', '分段埃尔米特插值函数','插值点(x,H)','被插值函数y')我们也可以直接在在MATLAB 工作窗口编程序,例如,>> x0 =-6:6; y0 =sin(x0); xi = -6:.25:6;yi = interp1(x0,y0,xi,'pchip');x=-6:0.001:6; y=sin(x); plot(x0,y0,'o',xi,yi,x,y,':'), legend('节点(xi,yi)','分段埃尔米特插值函数','被插值函数y=sinx') title(' y=sinx 及其分段埃尔米特插值函数和节点的图形')>> x0 =-6:6; y0 =cos(x0);xi = -6:.25:6;yi = interp1(x0,y0,xi,'pchip');x=-6:0.001:6; y=cos(x); plot(x0,y0,'o',xi,yi,x,y,':'), legend('节点(xi,yi)','分段埃尔米特插值函数','被插值函数y=cosx') title(' y=cosx 及其分段埃尔米特插值函数和节点的图形')例6.6.6 设函数211)(x x f +=定义在区间]5,5[-上,节点(X (i ),f (X (i )))的横坐标向量X 的元素是首项a =-5,末项b =5,公差h =1.5的等差数列,构造三次分段埃尔米特插值函数)(3,x H n .把区间]5,5[-分成20等份,构成20个小区间,用MA TLAB 程序计算各小区间中点i x 处)(3,x H n 的值,并作出节点,插值点,)(x f 和)(3,x H n 的图形.解 在MATLAB 工作窗口输入程序>>x0=-5:1.5:5;y0=1./(1+x0.^2); x1=-4.75:0.5:4.75;x=-5:0.001:5; y=1./(1+x.^2); H= hermitetx(x0,y0,x1,x,y) title('函数y=1/(1+x^2)及其分段埃尔米特插值函数,插值,节点(xi,yi) 的图形')运行后屏幕显示各小区间中点i x 处)(3,x H n 的值,出现节点,插值点,)(x f 和)(3,x H n 的图形(略).例6.6.7 设函数x x x f cos 5.0)(-=定义在区间],[ππ-上,取7=n ,按等距节点构造分段埃尔米特插值函数)(3,7x H ,用MA TLAB 程序计算各小区间中点i x 处)(3,7x H 的值,作出节点,插值点,)(x f 和)(3,7x H 的图形.解 记节点的横坐标7,,2,1,0,7/2, =π=+π-=i h ih x i 插值点)(21121+++=i i i x x x,6,,2,1,0 =i .在MA TLAB 工作窗口输入程序>> h=2*pi/7; x0=-pi:h:pi;y0=0.5.*x0-cos(x0); xi=-pi+h/2:h:pi-h/2;b=max(x0); a=min(x0); x=a:0.001:b;y=0.5.*x-cos(x); H= hermitetx(x0,y0,xi,x,y)title('函数y=0.5x-cos(x)及其分段埃尔米特插值函数,插值,节点(xi,yi) 的图形')运行后屏幕显示各小区间中点i x 处)(3,7x H 的值,出现节点,插值点,)(x f 和)(3,7x H 的图形(略).6.6.4 用MATLAB 计算有关分段埃尔米特插值的误差例6.6.8 设函数22511)(x x f +=定义在区间]1,1[-上,取10=n ,按等距节点构造分段埃尔米特插值函数)(3,x H n ,用MA TLAB 程序在]1,1[-上计算)(max )4(11x fx ≤≤-和)(3,x H n 的误差公式和误差限. 解 在MATLAB 工作窗口输入程序>> syms h,x=-1:0.0001:1;yxxxx=150000000./(1+25.*x.^2).^5.*x.^4-4500000./(1+25.*x.^2).^4.*x.^2+15000./(1+25.*x.^2).^3;myxxxx=max(yxxxx), R=(h^4)* abs(myxxxx/384)运行后输出)(x f 的4阶导数在区间]1,1[-上绝对值的最大值myxxxx 和)(3,x H n 在区间]1,1[-上的误差公式myxxxx 为myxxxx = R =15000 625/16*h^4(4)在MATLAB 工作窗口输入程序>> h=0.2; R =625/16*h^4运行后输出误差限为R =0.06250000000000例6.6.9 设函数))432sin 3tan(cos()(2x x x f ++=定义在区间],[ππ-上,取9=n ,按等距节点构造分段埃尔米特插值函数)(3,x H n .(1)用MA TLAB 程序计算各小区间中点i x 处)(3,x H n 的值,作出节点,插值点,)(x f 和)(3,x H n 的图形; (2) 并用MA TLAB 程序计算各小区间中点处)(3,x H n 的值及其相对误差;(3) 用MA TLAB 程序求)(max )4(x f x ππ≤≤-和)(3,x H n 在区间],[ππ-上的误差公式和各插值的误差限.解 (1)记节点的横坐标9,,2,1,0,9/2, =π=+π-=i h ih x i ,插值点)(21121+++=i i i x x x,8,,2,1,0 =i .在MATLAB 工作窗口输入程序>>h=2*pi/9; x0=-pi:h:pi;y0=tan(cos((sqrt(3)+sin(2*x0))./(3+4*x0.^2)));xi=-pi+h/2:h:pi-h/2;fi=tan(cos((3^(1/2)+sin(2*xi))./(3+4*xi.^2)));b=max(x0); a=min(x0); x=a:0.001:b;y=tan(cos((3^(1/2)+sin(2.*x))./(3+4*x.^2)));Hi= hermite tx (x0,y0,xi,x,y);Ri=abs((fi-Hi)./fi); xi,fi,Hi,Ri,i=[xi',fi',Hi',Ri']title('函数y=tan(cos((sqrt(3)+sin(2x))/(3+4x^2)))及其分段埃尔米特插值函数,插值,节点(xi,yi) 的图形')运行后屏幕显示各小区间中点x i 处的函数值f i ,插值H i ,相对误差值R i ,并且作出节点,插值点,)(x f 和)(3,x H n 的图形(略).(2)在MATLAB 工作窗口输入程序>> syms xy=tan(cos((3^(1/2)+sin(2*x))/(3+4*x^2)));yxxxx=diff(y,x,4),%simple(yxxxx)运行后屏幕显示函数)(x f 的4阶导数)()4(x f,然后将输出的)()4(x f 编程求)(m a x )4(x f x ππ≤≤-和)(3,x H n 及其在区间],[ππ-上的误差限的MA TLAB 程序如下>>syms h,x=-pi:0.0001:pi;yxxxx=-12.*(1.+tan(cos((3.^(1./2)+sin(2.*x))./(3.+4.*x.^2))).^2).^2.*sin((3.^(1./2)+sin(2.*x))./(3.+4.*x.^2)).^3.*(2.*cos(2.*x)./(3.+4.*x.^2)-8.*(3.^(1./2)+sin(2.*x))./(3.+4.*x.^2).^2.*x).^2.*(-4.*sin(2.*x)./(3.+4.*x.^2)-32.*cos(2.*x)./(3.+4.*x.^2).^2.*x+128.*(3.^(1./2)+sin(2.*x))./(3.+4.*x.^2).^3.*x.^2.-8.*(3.^(1./2)+sin(2.*x))./(3.+4.*x.^2).^2)+16.*(1.+tan(cos((3.^(1./2)+sin(2.*x))./(3.+4.*x.^2))).^2).^2.*sin((3.^(1./2)+sin(2.*x))./(3.+4.*x.^2)).^4.*(2.*cos(2.*x)./(3.+4.*x.^2)-8.*(3.^(1./2)+sin(2.*x))./(3.+4.*x.^2).^2.*x).^4.*tan(cos((3.^(1./2)+sin(2.*x))./(3.+4.*x.^2)))+8.*tan(cos((3.^(1./2)+sin(2.*x))./(3.+4.*x.^2))).^3.*(1.+tan(co s((3.^(1./2)+sin(2.*x))./(3.+4.*x.^2))).^2).*sin((3.^(1./2)+sin(2.*x))./(3+4.*x.^2)).^4.*(2.*cos(2.*x)./(3+4.*x.^2)-8.*(3.^(1./2)+sin(2.*x))./(3.+4.*x.^2).^2.*x).^4-8.*tan(cos((3.^(1./2)+sin(2.*x ))./(3.+4.*x.^2))).*(1.+tan(cos((3.^(1./2)+sin(2.*x))./(3.+4*x.^2))).^2).*sin((3.^(1./2)+sin(2.*x))./(3.+4.*x.^2)).^2.*(2.*cos(2.*x)./(3.+4.*x.^2)-8*(3.^(1./2)+sin(2.*x))./(3.+4*x.^2).^2.*x).^4+6.*(1+tan(cos((3.^(1./2)+sin(2.*x))./(3+4.*x.^2))).^2).*sin((3.^(1./2)+sin(2.*x))./(3+4.*x.^2)).*(2.*cos(2.*x)./(3+4.*x.^2)-8.*(3.^(1./2)+sin(2.*x))./(3+4.*x.^2).^2.*x).^2.*(-4.*sin(2.*x)./(3+4.*x .^2)-32.*cos(2.*x)./(3+4.*x.^2).^2.*x+128.*(3.^(1./2)+sin(2.*x))./(3+4.*x.^2).^3.*x.^2-8.*(3.^(1./2)+sin(2.*x))./(3+4.*x.^2).^2)+(1+tan(cos((3.^(1./2)+sin(2.*x))./(3+4.*x.^2))).^2).*cos((3.^(1./2)+sin(2.*x))./(3+4.*x.^2)).*(2.*cos(2.*x)./(3+4.*x.^2)-8.*(3.^(1./2)+sin(2.*x))./(3+4.*x.^2).^2.*x).^4-3.*(1+tan(cos((3.^(1./2)+si n(2.*x))./(3+4.*x.^2))).^2).*cos((3.^(1./2)+sin(2.*x))./(3+4.*x.^2)).*(-4.*sin(2.*x)./(3+4.*x.^2)-32.*cos(2.*x)./(3+4.*x.^2).^2.*x +128.*(3.^(1./2)+sin(2.*x))./(3+4.*x.^2).^3.*x.^2-8.*(3.^(1./2)+s in(2.*x))./(3+4.*x.^2).^2).^2-4.*(1+tan(cos((3.^(1./2)+sin(2.*x))./(3+4.*x.^2))).^2).*cos((3.^(1./2)+sin(2.*x))./(3+4.*x.^2)).*(2.*cos(2.*x)./(3+4.*x.^2)-8.*(3.^(1./2)+sin(2.*x))./(3+4.*x.^2).^2.*x).*(-8.*cos(2.*x)./(3+4.*x.^2)+96.*sin(2.*x)./(3+4.*x.^2).^2.*x +768.*cos(2.*x)./(3+4.*x.^2).^3.*x.^2-48.*cos(2.*x)./(3+4.*x.^2).^2-3072.*(3.^(1./2)+sin(2.*x))./(3+4.*x.^2).^4.*x.^3+384.*(3.^(1./2)+sin(2.*x))./(3+4.*x.^2).^3.*x)-(1+tan(cos((3.^(1./2)+sin(2.*x ))./(3+4.*x.^2))).^2).*sin((3.^(1./2)+sin(2.*x))./(3+4.*x.^2)).*(16.*sin(2.*x)./(3+4.*x.^2)+256.*cos(2.*x)./(3+4.*x.^2).^2.*x-3072.*sin(2.*x)./(3+4.*x.^2).^3.*x.^2+192.*sin(2.*x)./(3+4.*x.^2).^2-24576.*cos(2.*x)./(3+4.*x.^2).^4.*x.^3+3072.*cos(2.*x)./(3+4.*x.^2).^3.*x+98304.*(3.^(1./2)+sin(2.*x))./(3+4.*x.^2).^5.*x.^4-18432.*(3.^(1./2)+sin(2.*x))./(3+4.*x.^2).^4.*x.^2+384.*(3.^(1./2)+sin(2.*x))./(3+4.*x.^2).^3)-12.*(1+tan(cos((3.^(1./2)+sin(2.*x))./(3+4.*x.^2))).^2).^2*sin((3.^(1./2)+sin(2.*x))./(3+4.*x.^2)).^2.*(2.*cos(2.*x)./(3+4.*x.^2)-8.*(3.^(1./2)+sin(2.*x))./(3+4.*x.^2).^2.*x).^4.*cos((3.^(1./2)+sin(2.*x))./(3+4.*x.^2))-24.*tan(cos((3.^(1./2)+sin(2.*x))./(3+4.*x.^2))).^2.*(1+tan(cos((3.^(1./2)+sin(2.*x))./(3+4.*x.^2))).^2).*sin((3.^(1./2)+sin(2.*x))./(3+4.*x.^2)).^3.*(2.*cos(2.*x)./(3+4.*x.^2)-8.*(3.^(1./2)+sin(2.*x))./(3+4.*x.^2).^2.*x).^2.*(-4.*sin(2.*x)./(3+4.*x.^2)-32.*cos(2.*x)./(3+4.*x .^2).^2.*x+128.*(3.^(1./2)+sin(2.*x))./(3+4.*x.^2).^3.*x.^2-8.*(3.^(1./2)+sin(2.*x))./(3+4.*x.^2).^2)-24.*tan(cos((3.^(1./2)+sin(2.*x))./(3+4.*x.^2))).^2.*(1+tan(cos((3.^(1./2)+sin(2.*x))./(3+4.*x.^2))).^2).*sin((3.^(1./2)+sin(2.*x))./(3+4.*x.^2)).^2.*(2.*cos(2.*x)./(3+4.*x.^2)-8.*(3.^(1./2)+sin(2.*x))./(3+4.*x.^2).^2.*x).^4.*cos((3.^(1./2)+sin(2.*x))./(3+4.*x.^2))+36.*tan(cos((3.^(1./2)+sin(2.*x))./(3+4.*x.^2))).*(1+tan(cos((3.^(1./2)+sin(2.*x))./(3+4.*x.^2))).^2).*sin((3.^(1./2)+sin(2.*x))./(3+4.*x.^2)).*(2.*cos(2.*x)./(3+4.*x.^2)-8.*(3.^(1./2)+sin(2.*x))./(3+4.*x.^2).^2.*x).^2.*cos((3.^(1./2)+sin(2.*x))./(3+4.*x.^2)).*(-4.*sin(2.*x)./(3+4.*x.^2)-32.*cos(2.*x)./(3+4.*x.^2).^2.*x+128.*(3.^(1./2)+sin(2.*x))./(3+4.*x.^2).^3.*x.^2-8.*(3.^(1./2)+sin(2.*x))./(3+4.*x.^2).^2)+6.*tan(cos((3.^(1./2)+sin(2.*x))./(3+4.*x.^2))).*(1+tan(cos((3.^(1./2)+sin(2.*x))./(3+4.*x.^2))).^2).*cos((3.^(1./2)+sin(2.*x))./(3+4.*x.^2)).^2.*(2.*cos(2.*x)./(3+4.*x.^2)-8.*(3.^(1./2)+sin(2.*x))./(3+4.*x.^2).^2.*x).^4+6.*tan(cos((3.^(1./2)+sin(2.*x))./(3+4.*x.^2))).*(1+tan(cos((3.^(1./2)+sin(2.*x))./(3+4.*x.^2))).^2).*s in((3.^(1./2)+sin(2.*x))./(3+4.*x.^2)).^2.*(-4.*sin(2.*x)./(3+4.*x.^2)-32.*cos(2.*x)./(3+4.*x.^2).^2.*x+128.*(3.^(1./2)+sin(2.*x))./(3+4.*x.^2).^3.*x.^2-8.*(3.^(1./2)+sin(2.*x))./(3+4.*x.^2).^2).^2+8.*tan(cos((3.^(1./2)+sin(2.*x))./(3+4.*x.^2))).*(1+tan(cos((3.^(1./2)+sin(2.*x))./(3+4.*x.^2))).^2).*sin((3.^(1./2)+sin(2.*x))./(3+4.*x.^2)).^2.*(2.*cos(2.*x)./(3+4.*x.^2)-8.*(3.^(1./2)+sin(2.*x))./(3+4.*x.^2).^2.*x).*(-8.*cos(2.*x)./(3+4.*x.^2)+96.*sin(2.*x)./(3+4.*x.^2).^2.*x+768.*cos(2.*x)./(3+4.*x.^2).^3.*x.^2-48.*c os(2.*x)./(3+4.*x.^2).^2-3072.*(3.^(1./2)+sin(2.*x))./(3+4.*x.^2).^4.*x.^3+384.*(3.^(1./2)+sin(2.*x))./(3+4.*x.^2).^3.*x)myxx=max(yxxxx), R=(h.^4).* abs(myxx./384)将其保存为名为myxx.m 的M 文件,然后在MATLAB 工作窗口输入该文件名>> myxx运行后屏幕显示myxx =)(max )4(x f x π≤≤π-和)(3,x H n 在区间],[ππ-上的误差公式)(max384)4(4x f h R x π≤≤π-=如下myxx = R =73.94706841647552 1734520780029061/9007199254740992*h^4最后在MATLAB 工作窗口输入>>h=2*pi/9; R =1734520780029061/9007199254740992*h^4运行后屏幕显示)(3,x H n 在区间],[ππ-上的误差限R =0.04574453029948。
数值分析实验,用程序实现Hermite插值法

《数值分析》实验报告实验序号:实验六 实验名称: Hermite 插值法1. 实验目的:学会Hermite 插值法,并应用该算法于实际问题.2. 实验内容:求一个函数ϕ(x )用来近似函数f (x ),用分段三次Hermit 插值的方法来求解近似函数ϕ(x )并画出近似函数图像及原函数图像。
设在区间[a,b]上,给定n+1个插值节点b x x x x a n =<<<<=...210和相应的函数值n y y y ,...,,10以及一阶导数值''1'0,...,,ny y y ,求一个插值函数)(x H ,满足以下条件: (1)),...,2,1,0()(,)(''n i y x H y x H i i i i === (2) )(x H 在每一个小区间[1,+j j x x ]上是三次多项式。
对于给定函数11-,2511)(2≤≤+=x x x f 。
在区间[]11-,上画出f (x )和分段三次Hermit 插值函数)(x H 的函数图像。
3. 实验分析:算法分析:1. 分段三次Hermit 插值的算法思想:分段三次Hermit 插值的做法是在每一个小区间上作三次Hermit 插值,因此在每一个插值节点上都需要构造两个插值基函数)(),(x H x h i i ,然后再作它们的线性组合。
分段三次Hermit 插值基函数如下:⎪⎩⎪⎨⎧≤≤----+=其它 0 ))(21()(1021010100x x x x x x x x x x x x h ⎪⎩⎪⎨⎧≤≤---=其它 0 ))(()(10210100x x x x x x x x x x H1,...,2,1 0 ))(21( ))(21()(1211112111-=⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<----+≤≤----+=++++---n i x x x x x x x x x x x x x x x x x x x x x x x h i i i i i i i i i i-i i i i i i i 其它1,...,2,1 0 ))(( ))(()(12111211-=⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<---≤≤---=+++--n i x x x x x x x x x x x x x x x x x x x H i i i i i i i i-i i i i i 其它⎪⎩⎪⎨⎧≤<----+=---其它 0 ))(21()(1-n 2111n n n n n n n n x x x x x x x x x x x x h ⎪⎩⎪⎨⎧≤<---=--其它 0 ))(()(1-n 211n n n n n n x x x x x x x x x x H 分段三次Hermit 插值函数是:∑=+=n i i i i i x H y x h y x H 0'))()(()( 4. 实验代码:// LDlg.cpp : implementation file//#include "stdafx.h"#include "L.h"#include "LDlg.h"#ifdef _DEBUG#define new DEBUG_NEW#undef THIS_FILEstatic char THIS_FILE[] = __FILE__;#endif/////////////////////////////////////////////////////////////////////////////// CAboutDlg dialog used for App Aboutclass CAboutDlg : public CDialog{public:CAboutDlg();// Dialog Data//{{AFX_DATA(CAboutDlg)enum { IDD = IDD_ABOUTBOX };//}}AFX_DATA// ClassWizard generated virtual function overrides//{{AFX_VIRTUAL(CAboutDlg)protected:virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support //}}AFX_VIRTUAL// Implementationprotected://{{AFX_MSG(CAboutDlg)//}}AFX_MSGDECLARE_MESSAGE_MAP()};CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD){//{{AFX_DATA_INIT(CAboutDlg)//}}AFX_DATA_INIT}void CAboutDlg::DoDataExchange(CDataExchange* pDX){CDialog::DoDataExchange(pDX);//{{AFX_DATA_MAP(CAboutDlg)//}}AFX_DATA_MAP}BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)//{{AFX_MSG_MAP(CAboutDlg)// No message handlers//}}AFX_MSG_MAPEND_MESSAGE_MAP()///////////////////////////////////////////////////////////////////////////// // CLDlg dialogCLDlg::CLDlg(CWnd* pParent /*=NULL*/): CDialog(CLDlg::IDD, pParent){//{{AFX_DATA_INIT(CLDlg)// NOTE: the ClassWizard will add member initialization here//}}AFX_DATA_INIT// Note that LoadIcon does not require a subsequent DestroyIcon in Win32m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);}void CLDlg::DoDataExchange(CDataExchange* pDX){CDialog::DoDataExchange(pDX);//{{AFX_DATA_MAP(CLDlg)// NOTE: the ClassWizard will add DDX and DDV calls here//}}AFX_DATA_MAP}BEGIN_MESSAGE_MAP(CLDlg, CDialog)//{{AFX_MSG_MAP(CLDlg)ON_WM_SYSCOMMAND()ON_WM_PAINT()ON_WM_QUERYDRAGICON()ON_BN_CLICKED(IDC_LARGRI, OnLargri)ON_BN_CLICKED(IDC_BUTTON2, OnButton2)ON_BN_CLICKED(IDC_HERMITE, OnHermite)//}}AFX_MSG_MAPEND_MESSAGE_MAP()///////////////////////////////////////////////////////////////////////////// // CLDlg message handlersBOOL CLDlg::OnInitDialog(){CDialog::OnInitDialog();// Add "About..." menu item to system menu.// IDM_ABOUTBOX must be in the system command range.ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);ASSERT(IDM_ABOUTBOX < 0xF000);CMenu* pSysMenu = GetSystemMenu(FALSE);if (pSysMenu != NULL){CString strAboutMenu;strAboutMenu.LoadString(IDS_ABOUTBOX);if (!strAboutMenu.IsEmpty()){pSysMenu->AppendMenu(MF_SEPARATOR);pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);}}// Set the icon for this dialog. The framework does this automatically // when the application's main window is not a dialogSetIcon(m_hIcon, TRUE); // Set big iconSetIcon(m_hIcon, FALSE); // Set small icon// TODO: Add extra initialization herereturn TRUE; // return TRUE unless you set the focus to a control}void CLDlg::OnSysCommand(UINT nID, LPARAM lParam){if ((nID & 0xFFF0) == IDM_ABOUTBOX){CAboutDlg dlgAbout;dlgAbout.DoModal();}else{CDialog::OnSysCommand(nID, lParam);}// If you add a minimize button to your dialog, you will need the code below // to draw the icon. For MFC applications using the document/view model, // this is automatically done for you by the framework.void CLDlg::OnPaint(){if (IsIconic()){CPaintDC dc(this); // device context for paintingSendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);// Center icon in client rectangleint cxIcon = GetSystemMetrics(SM_CXICON);int cyIcon = GetSystemMetrics(SM_CYICON);CRect rect;GetClientRect(&rect);int x = (rect.Width() - cxIcon + 1) / 2;int y = (rect.Height() - cyIcon + 1) / 2;// Draw the icondc.DrawIcon(x, y, m_hIcon);}else{CDialog::OnPaint();}}// The system calls this to obtain the cursor to display while the user drags // the minimized window.HCURSOR CLDlg::OnQueryDragIcon(){return (HCURSOR) m_hIcon;}void CLDlg::OnOK(){int x00=300,y00=350,i,j;double x;CDC *pDC=GetDC();pDC->SetMapMode(MM_LOMETRIC);pDC->SetViewportOrg(x00,y00);//画坐标轴与原函数for(i=-700; i<=700; i++){pDC->SetPixel(i,0,RGB(0,0,0));pDC->SetPixel(0,i,RGB(0,0,0));}for(x=-1; x<=1; x+=0.001){double j=400.0/(1+25*x*x);pDC->SetPixel(x*500,j,RGB(255,0,0));}pDC->TextOut(-30,-10,"0");pDC->TextOut(-30,430,"1");pDC->TextOut(490,-10,"1");pDC->TextOut(-490,-10,"-1");pDC->MoveTo(-10,680); //x箭头pDC->LineTo(0,700);pDC->MoveTo(0,700);pDC->LineTo(10,680);pDC->MoveTo(680,10); //y箭头pDC->LineTo(700,0);pDC->MoveTo(700,0);pDC->LineTo(680,-10);pDC->TextOut(-30,700,"y");pDC->TextOut(700,-10,"x");}void CLDlg::OnLargri(){int x00=300,y00=350,i,j;double x;CDC *pDC=GetDC();pDC->SetMapMode(MM_LOMETRIC);pDC->SetViewportOrg(x00,y00);//画坐标轴for(i=-700; i<=700; i++){pDC->SetPixel(i,0,RGB(0,0,0));pDC->SetPixel(0,i,RGB(0,0,0));}double yx[]={-1,-0.8,-0.6,-0.4,-0.2,0,0.2,0.4,0.6,0.8,1}; pDC->TextOut(-30,-10,"0");pDC->TextOut(-30,430,"1");pDC->TextOut(490,-10,"1");pDC->TextOut(-490,-10,"-1");pDC->MoveTo(-10,680); //x箭头pDC->LineTo(0,700);pDC->MoveTo(0,700);pDC->LineTo(10,680);pDC->MoveTo(680,10); //y箭头pDC->LineTo(700,0);pDC->MoveTo(700,0);pDC->LineTo(680,-10);pDC->TextOut(-30,700,"y");pDC->TextOut(700,-10,"x");// 拉格朗日差值的函数double yy[12],lx[12],ly[12];double l_fenzi[12],l_fenmu[12];double l_x,l_y;for(i=0; i<=10; i++){yy[i]=1.0/(1+25*yx[i]*yx[i]);for(i=0; i<=10; i++){l_fenmu[i]=1.0;for(j=0; j<=10; j++){if(i!=j)l_fenmu[i]=l_fenmu[i]*(yx[i]-yx[j]);}}double qq,pp;for(qq=-1; qq<=1; qq+=0.0003){for(i=0; i<=10; i++){l_fenzi[i]=1.0;for(j=0; j<=10; j++){if(i!=j)l_fenzi[i]=l_fenzi[i]*(qq-yx[j]);}}pp=0;for(i=0; i<=11; i++){pp=pp+1.0/(1+25*yx[i]*yx[i])*l_fenzi[i]/l_fenmu[i];}pDC->SetPixel(qq*500,pp*390+5,RGB(132,112,225));}void CLDlg::OnButton2(){int x00=300,y00=350,i,j;double x;CDC *pDC=GetDC();pDC->SetMapMode(MM_LOMETRIC);pDC->SetViewportOrg(x00,y00);//画坐标轴与原函数for(i=-700; i<=700; i++){pDC->SetPixel(i,0,RGB(0,0,0));pDC->SetPixel(0,i,RGB(0,0,0));}double yx[]={-1,-0.8,-0.6,-0.4,-0.2,0,0.2,0.4,0.6,0.8,1}; double yy[14];for(i=0; i<=10; i++){yy[i]=1.0/(1+25*yx[i]*yx[i]);}pDC->TextOut(-30,-10,"0");pDC->TextOut(-30,430,"1");pDC->TextOut(490,-10,"1");pDC->TextOut(-490,-10,"-1");pDC->MoveTo(-10,680); //x箭头pDC->LineTo(0,700);pDC->MoveTo(0,700);pDC->LineTo(10,680);pDC->MoveTo(680,10); //y箭头pDC->LineTo(700,0);pDC->MoveTo(700,0);pDC->LineTo(680,-10);pDC->TextOut(-30,700,"y");pDC->TextOut(700,-10,"x");// 线性分段差值的图像CPen pen;CPen*oldpen;pen.CreatePen(PS_SOLID,5,RGB(0,0,0));oldpen=pDC->SelectObject(&pen);for(i=0; i<10; i++){pDC->MoveTo(yx[i]*480,yy[i]*400);pDC->LineTo(yx[i+1]*480,yy[i+1]*400); }}void CLDlg::OnHermite(){int x00=300,y00=350,i,j;double x;CDC *pDC=GetDC();pDC->SetMapMode(MM_LOMETRIC);pDC->SetViewportOrg(x00,y00);//画坐标轴与原函数for(i=-700; i<=700; i++){pDC->SetPixel(i,0,RGB(0,0,0));pDC->SetPixel(0,i,RGB(0,0,0));}double yx[]={-1,-0.8,-0.6,-0.4,-0.2,0,0.2,0.4,0.6,0.8,1};double yy[12];for(i=0; i<=10; i++){yy[i]=1.0/(1+25*yx[i]*yx[i]);}pDC->TextOut(-30,-10,"0");pDC->TextOut(-30,430,"1");pDC->TextOut(490,-10,"1");pDC->TextOut(-490,-10,"-1");pDC->MoveTo(-10,680); //x箭头pDC->LineTo(0,700);pDC->MoveTo(0,700);pDC->LineTo(10,680);pDC->MoveTo(680,10); //y箭头pDC->LineTo(700,0);pDC->MoveTo(700,0);pDC->LineTo(680,-10);pDC->TextOut(-30,700,"y");pDC->TextOut(700,-10,"x");//分段三次Hermite差值的函数double x0,x1,yd1,yd0,y1,y0;for(i=0; i<10; i++){x0=yx[i],x1=yx[i+1];y0=1.0/(1+25*x0*x0);y1=1.0/(1+25*x1*x1);yd0=-(50*x0)*1.0/((1+25*x0*x0)*(1+25*x0*x0));yd1=-(50*x1)*1.0/((1+25*x1*x1)*(1+25*x1*x1));for(double qq=x0; qq<x1; qq+=0.005){double pp= y0*(1+2*(qq-x0)/(x1-x0)) * (qq-x1)/(x0-x1) * (qq-x1)/(x0-x1)+y1*(1+2*(qq-x1)/(x0-x1)) * (qq-x0)/(x1-x0) * (qq-x0)/(x1-x0)+yd0*(qq-x0) * (qq-x1)/(x0-x1) * (qq-x1)/(x0-x1)+yd1*(qq-x1) * (qq-x0)/(x1-x0) * (qq-x0)/(x1-x0);pDC->SetPixel(qq*500,pp*400,RGB(225,185,15));}}}5.实验截图6. 实验结果分析:通过本次实验我对分段三次Hermit插值有了更深刻更全面的掌握,它在给定了节点处的函数值和导数值以后,构造了一个整体上具有一阶连续微商的插值函数。
Hermite插值法

i = 0 ,1
x0 , x1均为R3 ( x )的二重零点,因此可设
R3 ( x ) = K ( x )( x − x0 )2 ( x − x1 )2
其中K (x )待定
10
构造辅助函数
ϕ (t ) = f (t ) − H 3 (t ) − K ( x )(t − x0 )2 (t − x1 )2
求一个次数不超过2n+1次的多项式H(x)使 求一个次数不超过2n+1次的多项式H(x)使 2n+1次的多项式H(x)
H ( xi ) = f ( xi ) = yi H ′( xi ) = f ′( xi ) = yi′
i = 0 ,1,L , n i = 0 ,1,L , n
这种带有导 数的多项式 问题, 插值 问题, 称为 Hermite插 Hermite插 值问题。 值问题。 1
′ ′ H 3 ( x) = y0α 0 ( x) + y1α1 ( x) + y0 β 0 ( x) + y1β1 ( x)
线性插值基函数代入定理1.5 将Lagrange线性插值基函数代入定理 线性插值基函数代入定理 中的基函数求得三次Hermite插值的基 中的基函数求得三次 插值的基 函数! 函数
x − x1 l0 ( x) = x0 − x1 x − x0 l1 ( x) = x1 − x0
基函数具有 什么表达式? 什么表达式?
4
x − x0 x − x1 α 0 ( x) = 1 + 2 x1 − x0 x0 − x1
2
x − x1 x − x0 α1 ( x ) = 1 + 2 x0 − x1 x1 − x0
实习:Matlab作业hermite插值

题目:利用Matlab实现数据的Hermite插值和分段三次Hermite插值小组成员:王晓波(38)蔡明宇(20)一、程序实现意义:一般的,从各种试验得来的数据总有一定的数量,而利用插值技术能够从有限的数据中获取整体的状态。
而Hermite插值不仅保证了插值函数与原函数在给定数据点处得拟合,同时保证了在相应点处导数的相同,从而在很大程度上保证了曲线的“光滑性”。
因此,通过Matlab实现Hermite插值具有很普遍的意义。
二、实现过程:1、Hermite插值由于并不是所有的Matlab版本都提供现有的Hermite插值函数包,故我们首先编写了实现给定五个观测点的Hermite插值的M程序,代码如下:function [f,f0] = Hermite1(x,y,y_1)syms t;f = ;!if(length(x) == length(y))if(length(y) == length(y_1))n = length(x);elsedisp('y和y的导数的维数不相等');return;endelsedisp('x和y的维数不相等! ');return;end*for i=1:nh = ;a = ;for j=1:nif( j ~= i)h = h*(t-x(j))^2/((x(i)-x(j))^2);a = a + 1/(x(i)-x(j));endendf = f + h*((x(i)-t)*(2*a*y(i)-y_1(i))+y(i));<endf0 = subs(f,'t');其中x为给定点横坐标数组,y为给定点纵坐标数组,y_1为原函数在给定点处的导数数组。
测试证明该程序可以实现,例如输入如下数组:x=1::;y_1=[ ];y=[1 ];>> [f,f0] = Hermite1(x,y,y_1);运行结果如下:f =$(390625*((3972231*t)/35 - 28321/0000)*(t - 1)^2*(t - 7/5)^2*(t - 8/5)^2*(t - 9/5)^2)/36 - (390625*(t - 1)^2*(t - 6/5)^2*(t - 7/5)^2*(t - 9/5)^2*((28557*t)/28 - 23/2000))/36 + (390625*((64*t)/3 - 61/3)*(t - 6/5)^2*(t - 7/5)^2*(t - 8/5)^2*(t - 9/5)^2)/576 + (390625*((763*t)/1984 + 043/6240000)*(t - 1)^2*(t - 6/5)^2*(t - 8/5)^2*(t - 9/5)^2)/16 - (390625*((77623*t)/28 - 931/60000)*(t - 1)^2*(t - 6/5)^2*(t - 7/5)^2*(t - 8/5)^2)/576f0 =.利用matlab绘制图像:2、程序的窗口化:利用Matlab提供的GUIDE工具以及callback函数实现相应函数的窗口化,GUI代码如下:function varargout = untitled(varargin)?% UNTITLED M-file for% UNTITLED, by itself, creates a new UNTITLED or raises the existing% singleton*.%% H = UNTITLED returns the handle to a new UNTITLED or the handle to% the existing singleton*.%% UNTITLED('CALLBACK',hObject,eventData,handles,...) calls the local% function named CALLBACK in with the given input arguments.%% UNTITLED('Property','Value',...) creates a new UNTITLED or raises the,% existing singleton*. Starting from the left, property value pairs are% applied to the GUI before untitled_OpeningFcn gets called. An% unrecognized property name or invalid value makes property application% stop. All inputs are passed to untitled_OpeningFcn via varargin.%% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one% instance to run (singleton)".%% See also: GUIDE, GUIDATA, GUIHANDLES% Edit the above text to modify the response to help untitled%% Last Modified by GUIDE 15-Sep-2011 22:24:48% Begin initialization code - DO NOT EDITgui_Singleton = 1;gui_State = struct('gui_Name', mfilename, ...'gui_Singleton', gui_Singleton, ...'gui_OpeningFcn', @untitled_OpeningFcn, ...'gui_OutputFcn', @untitled_OutputFcn, ...'gui_LayoutFcn', [] , ...'gui_Callback', []);】if nargin && ischar(varargin{1})= str2func(varargin{1});endif nargout[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); elsegui_mainfcn(gui_State, varargin{:});end% End initialization code - DO NOT EDIT<% --- Executes just before untitled is made visible.function untitled_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn.% hObject handle to figure% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% varargin command line arguments to untitled (see VARARGIN)% Choose default command line output for untitled= hObject;>% Update handles structureguidata(hObject, handles);% UIWAIT makes untitled wait for user response (see UIRESUME)% uiwait;% --- Outputs from this function are returned to the command line.function varargout = untitled_OutputFcn(hObject, eventdata, handles)% varargout cell array for returning output args (see VARARGOUT);…% hObject handle to figure% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% Get default command line output from handles structurevarargout{1} = ;function edit1_Callback(hObject, eventdata, handles)% hObject handle to edit1 (see GCBO)…% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% Hints: get(hObject,'String') returns contents of edit1 as text% str2double(get(hObject,'String')) returns contents of edit1 as a double guidata(hObject, handles);% --- Executes during object creation, after setting all properties.function edit1_CreateFcn(hObject, eventdata, handles)% hObject handle to edit1 (see GCBO)(% eventdata reserved - to be defined in a future version of MATLAB% handles empty - handles not created until after all CreateFcns called% Hint: edit controls usually have a white background on Windows.% See ISPC and COMPUTER.if ispc && isequal(get(hObject,'BackgroundColor'),get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');end¥function edit2_Callback(hObject, eventdata, handles)% hObject handle to edit2 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% Hints: get(hObject,'String') returns contents of edit2 as text% str2double(get(hObject,'String')) returns contents of edit2 as a double guidata(hObject, handles);% --- Executes during object creation, after setting all properties.、function edit2_CreateFcn(hObject, eventdata, handles)% hObject handle to edit2 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles empty - handles not created until after all CreateFcns called% Hint: edit controls usually have a white background on Windows.% See ISPC and COMPUTER.if ispc && isequal(get(hObject,'BackgroundColor'),get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');end—function edit3_Callback(hObject, eventdata, handles)% hObject handle to edit3 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% Hints: get(hObject,'String') returns contents of edit3 as text% str2double(get(hObject,'String')) returns contents of edit3 as a double guidata(hObject, handles);·% --- Executes during object creation, after setting all properties.function edit3_CreateFcn(hObject, eventdata, handles)% hObject handle to edit3 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles empty - handles not created until after all CreateFcns called% Hint: edit controls usually have a white background on Windows.% See ISPC and COMPUTER.if ispc && isequal(get(hObject,'BackgroundColor'),get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');·endfunction edit4_Callback(hObject, eventdata, handles)% hObject handle to edit4 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% Hints: get(hObject,'String') returns contents of edit4 as text% str2double(get(hObject,'String')) returns contents of edit4 as a double '% --- Executes during object creation, after setting all properties.function edit4_CreateFcn(hObject, eventdata, handles)% hObject handle to edit4 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles empty - handles not created until after all CreateFcns called% Hint: edit controls usually have a white background on Windows.% See ISPC and COMPUTER.if ispc && isequal(get(hObject,'BackgroundColor'),get(0,'defaultUicontrolBackgroundColor'));set(hObject,'BackgroundColor','white');end% --- Executes on button press in pushbutton1.function pushbutton1_Callback(hObject, eventdata, handles)% hObject handle to pushbutton1 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)x=str2num(get,'string'));y=str2num(get,'string'));<y_1=str2num(get,'string'));x0=str2num(get,'string'));syms t;f = ;if(length(x) == length(y))if(length(y) == length(y_1))n = length(x);elsedisp('yºÍyµÄµ¼ÊýµÄάÊý²»ÏàµÈ');return;end—elsedisp('xºÍyµÄάÊý²»ÏàµÈ£¡ ');return;endfor i=1:nh = ;a = ;for j=1:nif( j ~= i)h = h*(t-x(j))^2/((x(i)-x(j))^2);a = a + 1/(x(i)-x(j));、endendf = f + h*((x(i)-t)*(2*a*y(i)-y_1(i))+y(i));endf0 = subs(f,'t',x0);plot,x,y,'*');^function edit5_Callback(hObject, eventdata, handles)% hObject handle to edit5 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% Hints: get(hObject,'String') returns contents of edit5 as text% str2double(get(hObject,'String')) returns contents of edit5 as a doubleguidata(hObject, handles);{% --- Executes during object creation, after setting all properties.function edit5_CreateFcn(hObject, eventdata, handles)% hObject handle to edit5 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles empty - handles not created until after all CreateFcns called% Hint: edit controls usually have a white background on Windows.% See ISPC and COMPUTER.if ispc && isequal(get(hObject,'BackgroundColor'),get(0,'defaultUicontrolBackgroundColor'))~set(hObject,'BackgroundColor','white');end程序运行结果:其中左上方纵列的三个对话框从上到下分别输入给定点的横坐标x,纵坐标y以及导数值y_1,右侧空白框输入维数,下方坐标图显示插值函数图像,例如仍插入上面所给定的点列,得出结果:从图上看拟合程度还是比较不错的。
分段低次插值及三次样条函数插值MATLAB实验报告

分段低次插值及三次样条函数插值MATLAB实验报告1、 问题描述:自己编写程序或者用interp1(),及样条函数来实现分段低次插值及三次样条函数插值。
利用插值函数的图像来分析插值效果。
2、 实验步骤(过程):clc,clear;syms t;x=0:0.1:3;y=1/(1+t^2);df=diff(y);n=length(x);for i=1:ny(i)=1/(1+x(i)^2);m(i)=subs(df,t,x(i));endfor h=1:n-1x0(h)=(x(h)+x(h+1))/2;a(h)=fix(x0(h));b(h)=ceil(x0(h));k(h)=find(x==a(h));w(h)=find(x==b(h));I(h)=(x0(h)-b(h))/(a(h)-b(h))*y(k(h))+(x0(h)-a(h))/(b(h)-a(h))*y(w(h));S(h)=(1+2*(x0(h)-a(h)))*(x0(h)-b(h))^2*y(k(h))+(1-2*(x0(h)-b(h)))*(x0(h)-a(h))^2*y(w(h))+(x0(h)-a(h))*(x0(h)-b(h))^2*m(k(h))+(x0(h)-b(h))*(x0(h)-a(h))^2*m(w(h));endI=eval(I);S=eval(S);y=eval(y);plot(x,y,'k')hold onplot(x0,I,'r',x0,S,'b')hold onZ=interp1(x,y,x0,'spline');plot(x0,Z,'g')3、 结论:由图像可以得出相应的结论:分段线性插值的插值效果没有3次Hermite插值和3次样条插值的效果好,且3次Hermite插值和3次样条插值与原函数的误差相对较小,插值效果好。
当x值取值越大时,这三种方法的插值效果并不会有太大区别。
“Hermie”插值

一、科学计算的算法及其举例应用和利用MATLAB 自带函数实现hermite 插值算法说明:已知n 个插值节点x 1,x 2,…,x n 及其对应的函数值y 1,y 2,...,y n 和一阶导数值y 1',y 2',...,y n '。
则计算插值区域内任意x 的函数值y 的Hermite 插值公式:])2)([()('1i i ni i i i i y y y a x x h x y +--=∑= 其中 ∑∏≠=≠=-=--=n ij i j i i ni j j j i j i x x a x x x x h 1211;)( 源代码: hermite.mfunction y=hermite(x0,y0,y1,x) n=length(x0);m=length(x); for k=1:m yy=0.0; for i=1:n h=1.0; a=0.0; for j=1:n if j~=ih=h*((x(k)-x0(j))/(x0(i)-x0(j)))^2; a=1/(x0(i)-x0(j))+a; end endyy=yy+h*((x0(i)-x(k))*(2*a*y0(i)-y1(i))+y0(i)); end y(k)=yy; end流程图:开始y=hermite(x0,y0,y1,x)n=length(x0) m=length (x) k=1:myy=0.0i=1:nh=1.0 a=0.0j=1:ny(k)=yyyy=yy+h*((x0(i)-x(k))*(2*a*y0(i)-y1(i))+y0(i))h=h*((x(k)-x0(j))/(x0(i)-x0(j)))^2 a=1/(x0(i)-x0(j))+aj~=i结束FalseFalseFalseTrueTrueTrue举例应用:对给定数据表,试构造Hermite多项式,并给出sin0.34的近似值。
x 0.30 0.32 0.35 sinx 0.29552 0.31457 0.34290 cosx 0.95534 0.94924 0.93937流程图:源代码:在MATLAB命令窗中输入>> x0=[0.3 0.32 0.35];>> y0=[0.29552 0.31457 0.34290]; >> y1=[0.95534 0.94924 0.93937]; >> x=[0.3: 0.005: 0.35];>> y=hermite(x0,y0,y1,x);>> plot (x,y)>> y=hermite(x0,y0,y1,0.34)y =输出图形和y值结束plot(x,y) 开始x0=[0.3 0.32 0.35];y0=[0.29552 0.314570.34290]; y1=[0.95534 0.94924 0.93937];x=[0.3: 0.005: 0.35]y=hermite(x0,y0,y1,x)y=hermite(x0,y0,y1,0.34)0.3335>> sin(0.34)ans =0.3335>> y2=sin(x); >> hold on>> plot (x,y2,'--r') 运行结果:二、科学计算和工程实际问题和举例1、求导弹轨迹及加速度流程图:源代码: %构建方程 work1f.mfunction rprime=work1f(t,r) global vt vm rprime=[0;0];% 给出t0之前rprime 初值rprime(1)=-vt-vm*r(1)/sqrt(r(1)^2+r(2)^2); rprime(2)=-vm*r(2)/sqrt(r(1)^2+r(2)^2); %绘制曲线 work1.m global vt vmvt=input('vt=');vm=input('vm='); %输入共用的参数 r0=input('[x0;y0]=');%输入数值积分需要的参数tspan=input('tspan=[t0,tfinal]='); [t,r] = ode45('work1f',tspan,r0); %进行数值积分 plot(r(:,1),r(:,2));%绘图%求加速度:M 点位置的导数是相对速度,二次导数则为绝对加速度dt=diff(t); Ldt=length(dt); %为了求导数先求t 的增量 x=r(:,1);y=r(:,2);% 把r 写成x,y 两个分量形式 vx=diff(r(:,1))./dt;vy=diff(r(:,2))./dt;开始构建方程 数值积分输入全局参数输出图形求2次导数求加速度输出加速度数值解结束wx=diff(vx)./dt(1:Ldt-1);wy=diff(vy)./dt(1:Ldt-1); %二次导数[t(2:Ldt),x(2:Ldt),y(2:Ldt),wx,wy] %显示数据在命令行输入>>work1>>vt=500;vm=1000;>>[x0;y0]=[3000;4000];>>tspan=[t0,tfinal]=[0,4.5]>>hold on>>work1>>vt=500;vm=800;>>[x0;y0]=[3000;4000];>>tspan=[t0,tfinal]=[0,6]运行结果:分别获得两组解,获得轨迹图如下两组绝对加速度的数值解按列以对应的时间、相对位置的x、y投影距离和x、y方向绝对加速度输出Vm=800ans =1.0e+003 *0.0002 2.8536 3.9036 0.0539 -0.03940.0003 2.7084 3.8062 0.0569 -0.0405 0.0005 2.5645 3.7080 0.0600 -0.0415 0.0006 2.4219 3.6088 0.0635 -0.0426 0.0008 2.2808 3.5087 0.0672 -0.0437 0.0009 2.1411 3.4076 0.0713 -0.0448 0.0011 2.0031 3.3055 0.0757 -0.0459 0.0012 1.8668 3.2023 0.0806 -0.0469 0.0014 1.7323 3.0981 0.0859 -0.0480 0.0015 1.5997 2.9929 0.0917 -0.0490 0.0017 1.4692 2.8865 0.0982 -0.0499 0.0018 1.3409 2.7790 0.1052 -0.0507 0.0020 1.2149 2.6703 0.1130 -0.0514 0.0021 1.0915 2.5605 0.1217 -0.0518 0.0023 0.9709 2.4495 0.1313 -0.0520 0.0024 0.8532 2.3374 0.1419 -0.0517 0.0026 0.7387 2.2241 0.1538 -0.0510 0.0027 0.6276 2.1096 0.1671 -0.0496 0.0029 0.5203 1.9941 0.1819 -0.0473 0.0030 0.4172 1.8774 0.1983 -0.0439 0.0032 0.3184 1.7598 0.2168 -0.0391 0.0033 0.2246 1.6413 0.2373 -0.0322 0.0035 0.1360 1.5221 0.2599 -0.0228 0.0036 0.0534 1.4023 0.2843 -0.0106 0.0038 -0.0229 1.2824 0.3122 0.0058 0.0039 -0.0921 1.1625 0.3415 0.0277 0.0041 -0.1537 1.0433 0.3711 0.0555 0.0042 -0.2069 0.9253 0.3996 0.0890 0.0044 -0.2511 0.8094 0.4317 0.1348 0.0045 -0.2856 0.6964 0.4570 0.1894 0.0047 -0.3099 0.5877 0.4692 0.2489 0.0048 -0.3235 0.4847 0.4184 0.2734 0.0049 -0.3269 0.4086 0.4678 0.3750 0.0050 -0.3237 0.3378 0.4514 0.4339 0.0052 -0.3144 0.2730 0.4110 0.4739 0.0053 -0.2993 0.2147 0.2959 0.40420.0053 -0.2874 0.1822 0.3379 0.53260.0054 -0.2738 0.1524 0.3056 0.54840.0055 -0.2585 0.1256 0.2653 0.54620.0056 -0.2419 0.1016 0.1991 0.46920.0056 -0.2285 0.0854 0.2022 0.53930.0057 -0.2146 0.0709 0.1770 0.53450.0057 -0.2001 0.0579 0.1483 0.51250.0058 -0.1852 0.0465 0.1062 0.41920.0058 -0.1741 0.0392 0.1085 0.48110.0059 -0.1629 0.0326 0.0940 0.46890.0059 -0.1516 0.0267 0.0783 0.44410.0059 -0.1401 0.0216 0.0458 0.29130.0060 -0.1357 0.0198 0.0606 0.41610.0060 -0.1313 0.0181 0.0562 0.40800.0060 -0.1268 0.0165 0.0518 0.3991Vm=1000ans =1.0e+003 *0.0001 2.8767 3.9097 0.0668 -0.04920.0002 2.7542 3.8188 0.0699 -0.05040.0003 2.6326 3.7272 0.0731 -0.05160.0004 2.5119 3.6350 0.0766 -0.05290.0006 2.3922 3.5421 0.0804 -0.05430.0007 2.2735 3.4485 0.0844 -0.05560.0008 2.1558 3.3542 0.0888 -0.05700.0009 2.0393 3.2592 0.0935 -0.05850.0010 1.9240 3.1635 0.0986 -0.06000.0011 1.8099 3.0670 0.1042 -0.06150.0012 1.6972 2.9697 0.1102 -0.06300.0014 1.5858 2.8716 0.1168 -0.06450.0015 1.4759 2.7727 0.1241 -0.06600.0016 1.3676 2.6730 0.1320 -0.06750.0017 1.2610 2.5724 0.1408 -0.0690 0.0018 1.1561 2.4710 0.1504 -0.0703 0.0019 1.0532 2.3686 0.1611 -0.0716 0.0020 0.9523 2.2654 0.1730 -0.0727 0.0021 0.8535 2.1612 0.1863 -0.0735 0.0022 0.7572 2.0561 0.2011 -0.0739 0.0024 0.6634 1.9501 0.2177 -0.0740 0.0025 0.5723 1.8431 0.2366 -0.0733 0.0026 0.4842 1.7352 0.2578 -0.0717 0.0027 0.3994 1.6264 0.2817 -0.0690 0.0028 0.3182 1.5167 0.3093 -0.0648 0.0029 0.2408 1.4062 0.3411 -0.0581 0.0030 0.1678 1.2950 0.3772 -0.0483 0.0032 0.0996 1.1831 0.4175 -0.0349 0.0033 0.0366 1.0708 0.4670 -0.0157 0.0034 -0.0204 0.9583 0.5238 0.0125 0.0035 -0.0708 0.8460 0.5857 0.0508 0.0036 -0.1138 0.7343 0.6459 0.0949 0.0037 -0.1487 0.6238 0.7458 0.1799 0.0038 -0.1740 0.5156 0.8446 0.2962 0.0039 -0.1887 0.4112 0.9078 0.4245 0.0041 -0.1919 0.3121 0.6878 0.3993 0.0041 -0.1895 0.2699 1.0184 0.7163 0.0042 -0.1844 0.2296 1.0405 0.8403 0.0042 -0.1767 0.1914 1.0333 0.9575 0.0043 -0.1664 0.1556 0.8512 0.8941 0.0043 -0.1579 0.1327 1.0076 1.1994 0.0043 -0.1481 0.1112 0.9850 1.3162 0.0044 -0.1372 0.0913 0.9290 1.3989 0.0044 -0.1252 0.0731 0.7705 1.2960 0.0044 -0.1148 0.0597 0.8337 1.6027 0.0044 -0.1038 0.0476 0.7886 1.7331 0.0045 -0.0923 0.0368 0.6839 1.72432、用周期样条求曲线轮廓并作图流程图:源代码: work2.m function ppx=[100 134 164 180 198 195 186 160 136 100 66 35 15 0 5 17 32 63 100];y=[503 525 514.3 451 326.5 188.6 92.2 59.6 62.2 102.7 147.1 191.6 236 280.5 324.9 369.4 413.8 458.3 503]; i=[0:pi/9:pi*2];xx=csape(i,x,'periodic'); yy=csape(i,y,'periodic'); ii=[0:pi/225:pi*2]; xpp=ppval(xx,ii); ypp=ppval(yy,ii);pp=plot(xpp,ypp,'r-',x,y,'bd'); 运行结果:获得封闭曲线如右图取作图用样点作图输出图形构建样条函数结束开始断点数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目:利用Matlab实现数据的Hermite插值和分段三次Hermite插值小组成员:王晓波(38)蔡明宇(20)一、程序实现意义:一般的,从各种试验得来的数据总有一定的数量,而利用插值技术能够从有限的数据中获取整体的状态。
而Hermite插值不仅保证了插值函数与原函数在给定数据点处得拟合,同时保证了在相应点处导数的相同,从而在很大程度上保证了曲线的“光滑性”。
因此,通过Matlab实现Hermite插值具有很普遍的意义。
二、实现过程:1、Hermite插值由于并不是所有的Matlab版本都提供现有的Hermite插值函数包,故我们首先编写了实现给定五个观测点的Hermite插值的M程序,代码如下:function [f,f0] = Hermite1(x,y,y_1)syms t;f = ;!if(length(x) == length(y))if(length(y) == length(y_1))n = length(x);elsedisp('y和y的导数的维数不相等');return;endelsedisp('x和y的维数不相等! ');return;end*for i=1:nh = ;a = ;for j=1:nif( j ~= i)h = h*(t-x(j))^2/((x(i)-x(j))^2);a = a + 1/(x(i)-x(j));endendf = f + h*((x(i)-t)*(2*a*y(i)-y_1(i))+y(i));<endf0 = subs(f,'t');其中x为给定点横坐标数组,y为给定点纵坐标数组,y_1为原函数在给定点处的导数数组。
测试证明该程序可以实现,例如输入如下数组:x=1::;y_1=[ ];y=[1 ];>> [f,f0] = Hermite1(x,y,y_1);运行结果如下:f =$(390625*((3972231*t)/35 - 28321/0000)*(t - 1)^2*(t - 7/5)^2*(t - 8/5)^2*(t - 9/5)^2)/36 - (390625*(t - 1)^2*(t - 6/5)^2*(t - 7/5)^2*(t - 9/5)^2*((28557*t)/28 - 23/2000))/36 + (390625*((64*t)/3 - 61/3)*(t - 6/5)^2*(t - 7/5)^2*(t - 8/5)^2*(t - 9/5)^2)/576 + (390625*((763*t)/1984 + 043/6240000)*(t - 1)^2*(t - 6/5)^2*(t - 8/5)^2*(t - 9/5)^2)/16 - (390625*((77623*t)/28 - 931/60000)*(t - 1)^2*(t - 6/5)^2*(t - 7/5)^2*(t - 8/5)^2)/576f0 =.利用matlab绘制图像:2、程序的窗口化:利用Matlab提供的GUIDE工具以及callback函数实现相应函数的窗口化,GUI代码如下:function varargout = untitled(varargin)?% UNTITLED M-file for% UNTITLED, by itself, creates a new UNTITLED or raises the existing% singleton*.%% H = UNTITLED returns the handle to a new UNTITLED or the handle to% the existing singleton*.%% UNTITLED('CALLBACK',hObject,eventData,handles,...) calls the local% function named CALLBACK in with the given input arguments.%% UNTITLED('Property','Value',...) creates a new UNTITLED or raises the,% existing singleton*. Starting from the left, property value pairs are% applied to the GUI before untitled_OpeningFcn gets called. An% unrecognized property name or invalid value makes property application% stop. All inputs are passed to untitled_OpeningFcn via varargin.%% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one% instance to run (singleton)".%% See also: GUIDE, GUIDATA, GUIHANDLES% Edit the above text to modify the response to help untitled%% Last Modified by GUIDE 15-Sep-2011 22:24:48% Begin initialization code - DO NOT EDITgui_Singleton = 1;gui_State = struct('gui_Name', mfilename, ...'gui_Singleton', gui_Singleton, ...'gui_OpeningFcn', @untitled_OpeningFcn, ...'gui_OutputFcn', @untitled_OutputFcn, ...'gui_LayoutFcn', [] , ...'gui_Callback', []);】if nargin && ischar(varargin{1})= str2func(varargin{1});endif nargout[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); elsegui_mainfcn(gui_State, varargin{:});end% End initialization code - DO NOT EDIT<% --- Executes just before untitled is made visible.function untitled_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn.% hObject handle to figure% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% varargin command line arguments to untitled (see VARARGIN)% Choose default command line output for untitled= hObject;>% Update handles structureguidata(hObject, handles);% UIWAIT makes untitled wait for user response (see UIRESUME)% uiwait;% --- Outputs from this function are returned to the command line.function varargout = untitled_OutputFcn(hObject, eventdata, handles)% varargout cell array for returning output args (see VARARGOUT);…% hObject handle to figure% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% Get default command line output from handles structurevarargout{1} = ;function edit1_Callback(hObject, eventdata, handles)% hObject handle to edit1 (see GCBO)…% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% Hints: get(hObject,'String') returns contents of edit1 as text% str2double(get(hObject,'String')) returns contents of edit1 as a double guidata(hObject, handles);% --- Executes during object creation, after setting all properties.function edit1_CreateFcn(hObject, eventdata, handles)% hObject handle to edit1 (see GCBO)(% eventdata reserved - to be defined in a future version of MATLAB% handles empty - handles not created until after all CreateFcns called% Hint: edit controls usually have a white background on Windows.% See ISPC and COMPUTER.if ispc && isequal(get(hObject,'BackgroundColor'),get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');end¥function edit2_Callback(hObject, eventdata, handles)% hObject handle to edit2 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% Hints: get(hObject,'String') returns contents of edit2 as text% str2double(get(hObject,'String')) returns contents of edit2 as a double guidata(hObject, handles);% --- Executes during object creation, after setting all properties.、function edit2_CreateFcn(hObject, eventdata, handles)% hObject handle to edit2 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles empty - handles not created until after all CreateFcns called% Hint: edit controls usually have a white background on Windows.% See ISPC and COMPUTER.if ispc && isequal(get(hObject,'BackgroundColor'),get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');end—function edit3_Callback(hObject, eventdata, handles)% hObject handle to edit3 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% Hints: get(hObject,'String') returns contents of edit3 as text% str2double(get(hObject,'String')) returns contents of edit3 as a double guidata(hObject, handles);·% --- Executes during object creation, after setting all properties.function edit3_CreateFcn(hObject, eventdata, handles)% hObject handle to edit3 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles empty - handles not created until after all CreateFcns called% Hint: edit controls usually have a white background on Windows.% See ISPC and COMPUTER.if ispc && isequal(get(hObject,'BackgroundColor'),get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');·endfunction edit4_Callback(hObject, eventdata, handles)% hObject handle to edit4 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% Hints: get(hObject,'String') returns contents of edit4 as text% str2double(get(hObject,'String')) returns contents of edit4 as a double '% --- Executes during object creation, after setting all properties.function edit4_CreateFcn(hObject, eventdata, handles)% hObject handle to edit4 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles empty - handles not created until after all CreateFcns called% Hint: edit controls usually have a white background on Windows.% See ISPC and COMPUTER.if ispc && isequal(get(hObject,'BackgroundColor'),get(0,'defaultUicontrolBackgroundColor'));set(hObject,'BackgroundColor','white');end% --- Executes on button press in pushbutton1.function pushbutton1_Callback(hObject, eventdata, handles)% hObject handle to pushbutton1 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)x=str2num(get,'string'));y=str2num(get,'string'));<y_1=str2num(get,'string'));x0=str2num(get,'string'));syms t;f = ;if(length(x) == length(y))if(length(y) == length(y_1))n = length(x);elsedisp('yºÍyµÄµ¼ÊýµÄάÊý²»ÏàµÈ');return;end—elsedisp('xºÍyµÄάÊý²»ÏàµÈ£¡ ');return;endfor i=1:nh = ;a = ;for j=1:nif( j ~= i)h = h*(t-x(j))^2/((x(i)-x(j))^2);a = a + 1/(x(i)-x(j));、endendf = f + h*((x(i)-t)*(2*a*y(i)-y_1(i))+y(i));endf0 = subs(f,'t',x0);plot,x,y,'*');^function edit5_Callback(hObject, eventdata, handles)% hObject handle to edit5 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% Hints: get(hObject,'String') returns contents of edit5 as text% str2double(get(hObject,'String')) returns contents of edit5 as a doubleguidata(hObject, handles);{% --- Executes during object creation, after setting all properties.function edit5_CreateFcn(hObject, eventdata, handles)% hObject handle to edit5 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles empty - handles not created until after all CreateFcns called% Hint: edit controls usually have a white background on Windows.% See ISPC and COMPUTER.if ispc && isequal(get(hObject,'BackgroundColor'),get(0,'defaultUicontrolBackgroundColor'))~set(hObject,'BackgroundColor','white');end程序运行结果:其中左上方纵列的三个对话框从上到下分别输入给定点的横坐标x,纵坐标y以及导数值y_1,右侧空白框输入维数,下方坐标图显示插值函数图像,例如仍插入上面所给定的点列,得出结果:从图上看拟合程度还是比较不错的。