《数学史》数学的起源 共48页共50页文档
《数学史》数学的起源 共48页
辑学家亚里士多德(Aristotle,公元前384---约前322)在其《形而上
学》一书中指出“之所以在埃及能够产生数学,是受到上帝的恩
赐.”对此,恩格斯在《反杜林论》中明确指出:“数学是人的需
要中产生的,是从丈量土地和测量容积,从计算时间和制造器皿产 生的.”事实上,埃及的数学产生,符合恩格斯的精辟阐述.
也可能由于12能被许多整数整除。如1英尺是12英寸,钟有12个小 时,古代的一英磅是12盎斯,1先令是12便士,一打是12个。
数学的起源
(4)二十进制,可能由于人类手脚合起来的缘故。如玛 雅人。
(5)六十进制,古代巴比伦人使用过。
数学的起源
四、形与几何知识的积累
产生于人类改造客观世界的结果,并与当时宗教有着密切的联系. 1. 宗教绘画为图形几何化创造条件. 2. 生产实践加深和扩大了对几何图形的认识,形成抽象意义的几何
数学的起源
1、1 数与形概念的产生
一、数与记数法
1.数——由人类智慧所创造,可用来数(shǔ)各种 集合中的对象的个数,它与对象的特征无关,也不依赖 于表示它所采用的符号。
数是可以用来进行运算,并能同客观事物相联系的
符号系统。
2.人类对数的意识
1)建立一,解决原始计数,促使数的概念
研究埃及数学的依据
埃及最古老的文字是象形文字,后来演变成一种较简单的书写 体,通常叫僧侣文。除了这两卷纸草书外,还有一些写在羊皮 上或用象形文字刻在石碑上和木头上的史料,藏于世界各地。 两卷纸草书的年代在公元前1850~前1650年之间,相当于中 国的夏代。
单位分数之和:
71111 1 296 245887232
莱因德纸草书用很大的篇幅来记载2/N(N从5到 101)型的分数分解成单位分数的结果。为什么要这 样分解以及用什么方法去分解,到现在还是一个谜。 这种繁杂的分数算法实际上阻碍了算术的进一步发 展。
(2021年整理)数学的来历
(完整)数学的来历
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)数学的来历)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)数学的来历的全部内容。
数学的来历
大约在300万年前,处于原始社会的人类用在绳子上打结的方法来记数,并以绳结的大小来表示野兽的大小。
数的概念就是这样逐渐发展起来的.在距今约五六千年前,古埃及人较早地学会了农业生产。
尼罗河每年7月定期泛滥,11月洪水逐渐减退。
当时古埃及的农业制度,是国王分配同样大小的正方形土地给每一个人,耕种的人每年提取收获的一部分交租。
如果洪水冲垮了他们所耕种的土地,他们可以报告国王,国王就派人前来调查并将损失的那一部分测量出来,这样,他们可以相应地少交一些租。
这种对于土地的测量,最终产生了几何学.实际上,几何学本来就是“土地测量”的意思。
数学就是从“结绳记数”和“土地测量”开始的。
距今两千多年前,在欧洲东南部生活的古希腊人,继承和发展了这些数学知识,并将数学发展成为一门科学。
古希腊文明毁灭后,阿拉伯人将他们的文化保存下来并加以发展,后来又传回欧洲,数学重新得到繁荣,并最终导致了近代数学的创立。
数学史数学的起源 文档资料
研究埃及数学的依据
? ? ?
? 埃及最古老的文字是象形文字,后来演变成一种较简单的书写 体,通常叫僧侣文。除了这两卷纸草书外,还有一些写在羊皮 上或用象形文字刻在石碑上和木头上的史料,藏于世界各地。 两卷纸草书的年代在公元前1850~前1650年之间,相当于中 国的夏代。
单位分数之和:
7 ? 1? 1 ? 1 ? 1 ? 1 29 6 24 58 87 232
记载着古埃及数学的另一部古典书籍是莫斯科纸草书,此书是 由俄罗斯收藏者于1893年获得的.约20年后,即1912年转藏于莫斯 科图书馆.这部纸草书长约 550厘米、宽8厘米,共记载着25个问 题.由于卷首遗失,书名无法考证.
俄罗斯历史学家古拉叶夫 (1868---1920)于1917年和斯特卢威 1891---1964)于1930年对莫斯科纸草书进行了研究,后 -者完成了出 版工作,对进一步研究埃及的数学提供了方 便.
? 古埃及人创造出了几套文字,其中一套是象形文
字.“象形文字”这个词源于希腊文,意思是神圣的文 字.直到基督降生的年代,埃及在纪念碑文和器皿上还 刻有象形字.自公元前2500年左右起,开始使用象形文 字的缩写,称作僧侣文(hieraticwriting) .
象形文字记号
?1、2、3、4、5
?单位分数 ?分数分解
辑学家亚里士多德(Aristotle ,公元前384---约前322)在其《形而上
学》一书中指出“之所以在埃及能够产生数学,是受到上帝的恩
赐.”对此,恩格斯在《反杜林论》中明确指出:“数学是人的需
要中产生的,是从丈量土地和测量容积,从计算时间和制造器皿产
生的.”事实上,埃及的数学产生,符合恩格斯的精辟阐述.
? 两部纸草书中的问题,大部分来自现实生活,从这两部 纸草书中可以看出埃及数学有如下几个突出的成就:
数学史课件
文艺复兴时期的数学家不仅关注纯粹的数学理论,还将数学知识应用于实际问题的解决中 。例如,他们在建筑设计、机械制造、航海等领域运用数学知识和方法,推动了这些领域 的进步和发展。
16
04
近代数学革命性突破
2024/1/28
17
微积分的创立与发展
2024/1/28
微积分的起源
01
古希腊时期阿基米德对面积和体积的研究为微积分学奠定了基
数理统计的兴起
19世纪,高斯、皮尔逊等数学家在概率论的基础上,发展出了数 理统计学,为数据分析提供了有力工具。
概率论与数理统计的应用
在现代科学、工程、医学、经济等领域中,概率论与数理统计发挥 着重要作用。
19
线性代数与矩阵理论的建立
2024/1/28
线性代数的起源
18世纪,高斯等数学家开始研究线性方程组,为线性代数的发展 奠定了基础。
非欧几何
研究不满足欧氏几何公理的几何体系 ,包括黎曼几何、罗氏几何等。
2024/1/28
微分几何
研究曲线、曲面等微分性质,以及流 形上的微分结构。
拓扑学
研究空间在连续变换下的性质,包括 连通性、紧致性、维数等概念。
23
代数学领域
初等代数
研究数、式、方程和不等式等基本概念和运 算规则。
抽象代数
研究群、环、域等代数结构及其性质,包括 同态、同构等概念。
数学与神秘主义
数学在古埃及神秘主义和宗教仪式中的角色 。
10
古印度数学
数字系统的创新
算术与代数的发展
0的发明及印度数字系统对现代数字的影响 。
印度数学家对算术和代数的研究,如《莉 拉瓦蒂》和《比贾经》等著作。
数学史PPT课件
流形、张量、微分形式 等基本概念介绍
外微分、变分法等基本 方法探讨
微分几何在物理学中应用
1
微分几何在广义相对论中的应用
2
爱因斯坦场方程与黎曼几何的联系
时空弯曲与引力效应的解释
3
微分几何在物理学中应用
微分几何在其他物理学领域的应用举 例
量子力学、量子场论等领域的应用实 例
04
分析学领域里程碑式进展
高斯、波尔约、罗巴切夫斯基等人的贡献
非欧几何诞生及其意义
双曲几何
罗巴切夫斯基的创立,基于不同的平行公理
椭圆几何
黎曼的创立,考虑弯曲空间中的几何性质
非欧几何诞生及其意义
非欧几何的意义与影响 打破了欧几里得几何一统天下的局面
为现代数学和物理学的发展奠定了基础
拓扑空间概念引入和性质探讨
拓扑空间的定义与基本性质 开集、闭集、邻域等基本概念介绍 连续映射、同胚等拓扑性质探讨
数学应用领域的挑战
随着科技的发展,数学在各个领域的应用越来越广泛,但也面临着 一些挑战,如数学模型与实际应用之间的鸿沟、计算复杂性等。
数学研究的前沿问题
数学研究中仍有许多前沿问题有待解决,如P=NP问题、黎曼猜想等 ,这些问题对数学发展具有重要意义。
未来发展趋势预测
数学教育的创新与普及
随着教育技术的不断发展,数学教育将更加注重创新教学方法和 普及数学知识,提高全民数学素养。
数学与科技的深度融合
数学将在人工智能、大数据、量子计算等领域发挥更加重要的作用 ,推动科技进步。
跨学科合作与研究
未来数学研究将更加注重跨学科合作,与其他学科领域共同解决复 杂问题,推动数学研究的发展。
THANKS
感谢观看
数学史 第一讲 数学的起源和早期发展 课件
• 亚里士多德(前384-前332)曾指出,今天十进制的 广泛采用,只不过是我们绝大多数人生来具有10个手 指这样一个解剖学事实的结果。 • 《周易。系辞下传》有“上古结绳而治,后世圣人,易 之以书契”之说。 • 南美印加部落用来记事的绳结,称为基普。
• 直到距今大约五千多年前,出现了书写记 数以及相应的记数系统。如古埃及的象形 数字、巴比伦的qi形数字、中国甲骨文数 字等等。 • 记数系统的出现使数和数的书写运算成为 可能,初等算术应运而生了。
主要工作和特点 1、采用60进制为主的记数系统。对60以内的 整数采用简单十进累计法,对大于59的数采用 六十进制的位值记法。他们还巧妙地将位置记 法推广到整数以外的分数。 例: 2、在算术方面,他们长于计算,创造了很多 成熟的算法。 例:开方根。
3、他们编制了很多数学用表,如乘法表、倒 数表、平方表、立方表、平方根表、立方根 表三、甚至还有指数对数表等等。 4、在代数领域达到了相当高度,能有效地处 理二元二次方程和一些简单的三次方程。 例: 5、在几何领域掌握了三角形、梯形等平面图 形面积和棱柱、平截头方锥等一些立体图形 的体积公式,还会利用图形相似性的概念。
2. 形的概念 • 最初的几何知识是从人们的直觉中萌发出来的。 从自然界中提取几何形式,并且在器皿制作、 建筑设计及绘画装饰中加以再现。 • 据亚里士多德的研究,古埃及几何学产生于尼 罗河泛滥后土地的重新丈量。 • 古印度的几何学的起源和宗教实践密切相关。 • 古中国的几何学的起源更多地和天文观测相联 系。
在公元前1850~前1650年之间,相当于中国的夏代。
主要工作和特点 1、十进制记数系统,但没有位值的概念。单位 分数被广泛使用。 例:整数和单位分数的表示。 莱茵德纸草书上有一张形如2/(2p+1)(p从2到 50)的分数分解成单位分数之和的表。 2、在古埃及数学中,埃及算术主要是加法, 而乘法是加法的重复。 例:乘法和除法。
数学史课件
数学史课件引言数学,作为人类文明的重要组成部分,自古以来就在人类社会中发挥着至关重要的作用。
从古代的几何学、算术学,到现代的微积分、概率论,数学的发展历程见证了人类智慧的辉煌。
本课件旨在梳理数学发展的历史脉络,探讨数学与人类社会、科学技术的紧密联系,以期为读者提供一个全面、系统的数学史观。
一、古代数学1.古埃及与巴比伦数学古埃及与巴比伦是数学的摇篮,早在公元前3000年左右,这两个文明古国就已经有了较为完整的数学体系。
古埃及的数学主要用于土地测量、建筑设计和天文观测,如著名的金字塔就是运用了精确的几何知识。
巴比伦人则创立了60进位制,对后世数学的发展产生了深远影响。
2.古希腊数学古希腊数学是古代数学的高峰,以几何学为主,代表人物有毕达哥拉斯、欧几里得等。
古希腊数学家们提出了许多重要的数学概念和定理,如勾股定理、黄金分割等。
欧几里得的《几何原本》是古希腊数学的集大成之作,对后世数学发展产生了深远影响。
3.古印度数学古印度数学以算术和代数学为主,代表人物有布拉马古普塔、巴赫斯卡拉等。
古印度数学家们发明了阿拉伯数字,并提出了零的概念,对世界数学发展产生了重要影响。
二、中世纪数学1.中国数学中世纪的中国数学取得了举世瞩目的成就,代表人物有祖冲之、秦九韶等。
中国数学家们提出了许多重要的数学方法和定理,如高斯定理、秦九韶算法等。
中国数学家们还创立了完整的数学教育体系,对后世数学教育产生了深远影响。
2.阿拉伯数学中世纪的阿拉伯数学是数学发展的黄金时期,阿拉伯数学家们继承了古希腊、古印度等地的数学成就,并将其发扬光大。
阿拉伯数学家们创立了代数学,提出了方程、函数等概念,对世界数学发展产生了重要影响。
三、近代数学1.欧洲文艺复兴时期数学欧洲文艺复兴时期,数学取得了突破性进展。
代表人物有笛卡尔、费马等。
这一时期的数学家们创立了解析几何、概率论等分支,为现代数学的发展奠定了基础。
2.微积分的创立17世纪,牛顿和莱布尼茨分别独立创立了微积分,这标志着数学进入了一个新的时代。
数学史(数学文化2)
幼狼胫骨(捷克)
《周易· 系辞下》:上古结绳而治,后世圣人,易之以书契。
•
《易· 系辞》中载:“上古结绳而治,后 世圣人易之以书契”。结绳记数,是指在绳 子上打一个结表示一个数或一件事,绳结的 多少,根据事物多少而定。而所谓的“书契” ,就是刻划,“书”是划痕,“契”是刻痕。古 人常常在各种动物骨头、金属、泥版上刻痕 记数。如中国殷商时期常将文字刻划在牛的 肩胛骨或龟甲上,故称甲骨文。
第3次劫难:公元640年阿拉伯奥马尔一世下令收缴亚历山大城全部希 腊书籍予以焚毁
68
第三讲 中世纪的东西方数学
中国传统数学的兴盛
《周髀算经》与《九章算术》 刘徽与祖冲之 宋元数学
69
1. 中算发展的第一次高峰
数学体系的形成
70
秦汉时期形成中国传统数学体系
秦始皇陵兵马俑(中国, 1983)
公元529年东罗马皇帝查士丁尼(527-565)下令封闭了雅典的所有学校
亚历山大图书三劫
亚历山大图书馆:当时世界上藏书最多的图书馆
第1次劫难:前47年,罗马凯撒烧毁了亚历山大港的舰队,大火殃及 亚历山大图书馆,70万卷图书付之一炬
第2次劫难:公元392年罗马狄奥多修下令拆毁塞拉皮斯希腊神庙,30 多万件希腊文手稿被毁
( )
安蒂丰(约公元前480-前411年)的穷竭法 林德曼(德,1852-1939年)
42
古典时期的希腊数学
柏 拉 图 学 派
打开宇宙之迷的钥匙是 数与几何图形
柏拉图
(约公元前427-前347年)
43
古典时期的希腊数学
柏 拉 图 学 派
雅典学院(公元前387-公元529年)
第一章数学的起源.docx
数学思想史讲义杜文久西南大学数学与财经学院1.数学史的意义与其他学科相比,数学是一门累积性很强的科学。
重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不仅不会推翻原有的理论,而且总是包容原先的理论。
例如,数的理论的演进就表现出明显的累积性;在几何学中,非欧几何可以看成是欧氏几何的拓广,溯源于初等代数的抽象代数并没有使前者被淘汰;同样现代分析中诸如函数、导数、积分等概念的推广均包含了古典定义作为其特例,…。
可以说,在数学的进化过程中,几乎没有发生过彻底推翻前人建筑的情况。
如果我们对比天文学的“地心说”、物理学的“以太说”、化学的“燃素说”的命运,就可以看清数学发展不同于其他学科的这种特点。
因此有的数学史家认为“在大多数的学科里,一代人的建筑为下一代人所拆毁,一个人的创造被另一个人所破坏。
唯独数学,每一代人都在古老的大厦上添加一层楼。
”这种看法形象地说明了数学这幢大厦的累积特性。
因此当我们为这幢大厦添砖加瓦时,有必耍了解它的历史。
经过儿千年的发展,现代数学已变成成一株茂密的大树,它包括了约60个二级学科,400多个三级学科,更细的分科已难以统计。
面对着如此庞大的知识系统,职业数学家越来越被限制于一、二个专门领域。
庞加莱(H.Po加“心,1854-1912)曾经被称为“最后一位数学通才”。
虽然比他稍晚的希尔伯特(DH〃呢灯,1862—1943)也跨越过众多的领域, 但这样的数学家毕竟越来越难得了。
数学史不仅仅是单纯的数学成就的编年记录。
数学的发展决不是一帆风顺的,在更多的情况下是充满犹豫、徘徊,甚至会面临危机。
例如无理量的发展、微积分和非欧几何的创立, 费马大定理的证明,……等等,这样的例子在数学史上不胜枚举,它们可以帮助人们了解数学创造的真实过程,而这种过程在通常的教科书中是看不到的。
因此,可以说不了解数学史就不可能全面了解数学科学。
如果不去追溯自古希腊以来各个时代所发现与发展起来的概念、方法和结果,我们就不能理解前50年数学的目标,也不能理解它的成就。
2024版《数学史》数学的起源ppt课件
微积分的应用
在物理学、工程学、经济学等领 域有广泛应用,如求解速度、加 速度、曲线的长度、面积、体积
等问题。
概率论与数理统计的兴起
1 2 3
概率论的起源 起源于17世纪中叶人们对机会性游戏的数学研究, 如赌博中的骰子点数问题。
数理统计的发展 随着数据收集和分析的需求增加,数理统计逐渐 从概率论中独立出来,成为一门研究如何从数据 中提取有用信息的学科。
《数学史》数学的起源ppt课件
目录
• 引言 • 古代数学的起源 • 中世纪数学的发展 • 近代数学的崛起 • 现代数学的发展与挑战 • 数学史对数学教育的启示
01
引言
Chapter
数学的定义与重要性
数学是研究数量、结构、空间及变化等概念的一门学科。
数学作为一种普遍适用的技术,有助于人们解决各种问 题,推动科技进步和社会发展。 数学在自然科学、社会科学、工程学、医学等领域都有 广泛应用,具有不可替代的重要性。
数学史的研究意义
了解数学发展的历史 进程,探究数学思想 和方法的演变。
借鉴历史经验,为现 代数学教育和研究提 供启示和借鉴。
揭示数学与人类社会、 文化、科技等方面的 互动关系。
课件内容与结构
课件内容
介绍数学的起源、早期数学的发展、古代数学的辉 煌成就、中世纪数学的停滞与复兴、近代数学的兴 起与发展等。
概率论与数理统计的应用 在金融、保险、医学、社会科学等领域有广泛应 用,如风险评估、质量控制、假设检验、回归分 析等。
代数与几何的变革
代数的抽象化
19世纪,数学家们开始研究抽象代数结构,如群、环、域 等,使得代数的研究对象从具体的数扩展到更一般的数学 对象。
几何的变革 非欧几何的兴起打破了欧几里得几何一统天下的局面,揭 示了几何学的多样性。同时,微分几何和拓扑学的发展也 为几何学注入了新的活力。
《数学史》数学的起源
欧拉
沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺 回来。欧拉完全失明以后,虽然生活在黑暗中,但仍然 以惊人的毅力与黑暗搏斗,欧拉的记忆力也确实罕见, 他能够完整地背诵出几十年前的笔记内容,数学公式当 然更能背诵如流。欧拉总是把推理过程想得很细,然后 口授,由他的长子记录。他用这种方法又发表了论文4 00多篇以及多部专著,这几乎占他全部著作的半数以 上。直到逝世,竟达17年之久。
分数分解
研究埃及数学的依据
埃及最古老的文字是象形文字,后来演变成一种较简单的书写 体,通常叫僧侣文。除了这两卷纸草书外,还有一些写在羊皮 上或用象形文字刻在石碑上和木头上的史料,藏于世界各地。 两卷纸草书的年代在公元前1850~前1650年之间,相当于中 国的夏代。
单位分数之和:
7 1 1 1 1 1 29 6 24 58 87 232
a 2uv, b u 2 v 2 , c u 2 v 2
(2)相当于给出了正割的平方表.
下面介绍两位大家比较熟悉的数学家:
柯西 和 欧拉。
柯西
柯西(Cauchy,Augustin Louis 1789-1857),出生生 于巴黎,在数学领域,有很高的建树和造诣。很多数学 的定理和公式也都以他的名字来称呼,如柯西不等式、 柯西积分公式...他在纯数学和应用数学的功力是相当深厚 的,在数学写作上,他是被认为在数量上仅次于欧拉的 人,他一生一共著作了789篇论文和几本书。
古埃及人创造出了几套文字,其中一套是象形文 字.“象形文字”这个词源于希腊文,意思是神圣的文 字.直到基督降生的年代,埃及在纪念碑文和器皿上还 刻有象形字.自公元前2500年左右起,开始使用象形文 字的缩写,称作僧侣文(hieraticwriting).
第一讲:数学史的起源
第一讲:数学史的起源与早期发展数学史是研究数学发展历史的学科,是数学的一个分支,也是自然科学史研究下属的一个重要分支。
和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科。
数与形概念的产生人类在蒙昧时代就已具有识别事物多寡的能力,从这种原始的“数觉”抽象的“数”概念的形成,是一个缓慢的、渐进的过程。
原始人在采集、狩猎等生产活动中慢慢地发现原来事物之间存在着某种共通的东西,即它们的单位性。
同样,人们会注意到其他特定的物群,例如成双的事物,相互间也可以构成一一对应。
这样就产生了数的初步概念-----一定物群所共有的抽象性质。
当人们对数的认识越来越明确的时候,他们感到有必要以某种方式来表达事物的这一属性,于是导致了记数。
最早可能是手指计数,随着社会生产力的不断发展,手指计数已经不能满足人们生产活动的需要,进而出现了石子计数,但是记数的石子堆很难长久保存信息,于是又有了结绳记数和刻痕记数。
所谓结绳记数是指在一根较粗的绳子上栓系涂有颜色的细绳,再在细绳上打各种各样的结,不同的颜色和结的形状表示不同的事物和数目。
结绳方法不仅在中国而且在世界其他许多地方都曾使用过,而日本琉球岛的居民至今还保持着结绳记事的传统。
而当到了黄帝、尧舜时代(约公前2491年一前2042年),创制了从一到十的数码字,随着社会生产力的发展,人们在生产实践中,逐渐感到“结绳记事”已不能适应生产发展的需要,于是便开始向“书契记数”的时代迈进。
直到距今大约五千多年前,终于出现了书写记数以及相应的记数系统。
下面是按时代顺序列举的世界上几种古老文明的早期记数系统:古埃及象形数字(公元前3400年左右)------巴比伦的锲形数字(公元前2400年左右)------中国甲骨文数字(公元前1600年左右)------希腊阿提卡数字(公元前500年左右)------中国筹码数码(公元前500年左右)------印度婆罗门数字(公元前300年左右)------玛雅数字(?)。
数学的诞生史
数学的诞生史
数学的历史开始于结绳记事。
大约在300万年前,处于原始社会的人类用在绳子上打结的方式来表示事和数,并以绳结的大小来表示野兽的大小,数的概念就这样逐渐发展起来。
在距今约五六千年前,古埃及人较早地学会了农业生产。
当时,尼罗河每年会定期泛滥,淹没耕地,埃及国王便派人丈量每户损失的土地,以相应减免他们的地租。
这种对于土地的测量,最终催生了几何学。
数学就是从“结绳记事”和“土地测量”开始的。
约两千年前,古希腊人继承和发展了这些数学知识,并将数学发展为一门学科。
为何古代称“数学”为“算术”?在我国古代,“算”指一种竹制的计算器具,“算术”是指操作这种计算器具的技术,也泛指当时一切与计算有关的数学知识。
“算术”一词正式出现于《九章算术》中。
在隋唐时代,国家成立了培养天文家和数学家的专门机构一“算学”,它相当于现在大学里的数学系,教学用中国古代数学家祖冲之书有《孙子算法》《五曹算经》《九章算术》等算术书。
从19世纪起,西方的一些数学学科,包括代数、几何、微积分、概率论等相继传入我国,西方传教士多使用“数学”,中国古算术则仍沿用“算学”。
1935年,中国数学会确立了“算术”的意义,而算学与数学仍并存使用。
直至1939年,清华大学才把“算学系”改为“数学系”。