触摸ic,中文,ds_cp2680_v13_ch
触摸芯片SGL8022K
1. 概述SGL8022K是一款两触摸通道带两个逻辑控制输出的电容式触摸芯片。
具有如下功能特点和优势:¾可通过触摸实现各种逻辑功能控制。
操作简单、方便实用。
¾可在有介质(如玻璃、亚克力、塑料、陶瓷等)隔离保护的情况下实现触摸功能,安全性高。
¾应用电压范围宽,可在2.4~4.5V之间任意选择。
¾应用电路简单,外围器件少,加工方便,成本低。
¾抗电源干扰及手机干扰特性好。
EFT可以达到±2KV以上;近距离、多角度手机干扰情况下,触摸响应灵敏度及可靠性不受影响。
2. 特性LO1与LO2在上电后的初始输出状态由上电前OSC的输入状态决定。
OSC管脚接VDD(高电平)上电,上电后LO1与LO2输出高电平;OSC管脚接GND(低电平)上电,上电后LO1与LO2输出低电平。
TI1触摸输入对应LO1逻辑输出,TI2触摸输入对应LO2逻辑输出。
按住TI1或TI2,对应LO1或LO2的输出状态翻转;松开后回复初始状态。
3. 封装及引脚说明DIP8SOP8管脚序号 管脚名称 输入/输出 功能描述1 OSC 输入选项输入脚2 VC 输入采样电容接入脚3 VDD 电源电源正4 GND 电源电源负5 TI1 输入触摸输入6 TI2 输入触摸输入7 LO1 输出控制输出8 LO2 输出控制输出4. 封装尺寸图DIP8SOP85. 应用电路图注:当介质材料及厚度等差异较大时,可通过调整VC与GND之间的C3采样电容来调节触摸灵敏度。
电容容值越大,灵敏度越高;电容容值越小,灵敏度越低。
VC与GND之间C3采样电容介质类型器件类型器件参数直接触摸金属外壳 333涤纶电容0.033uF/25V3mm以内亚克力玻璃 103涤纶电容0.01uF/25V3-6mm亚克力玻璃 203涤纶电容0.02uF/25V6-10mm亚克力玻璃 473涤纶电容0.047uF/25V6. 电气参数参数典型值单位工作电压 3.0 V工作电流60 uA待机电流8 uA输入高电平(2/3)VDD V输入低电平(1/3)VDD V 输出高电平电流7 mA参数典型值单位输出低电平电流10 mA 工作温度-20~70 ℃存储温度-50~100 ℃7. BOM表器件标示器件名称器件参数R2 碳膜电阻2KΩ/0.25WR3 碳膜电阻2KΩ/0.25WRm 碳膜电阻视应用情况而定Rn 碳膜电阻视应用情况而定C2 瓷片电容0.1uF/25VC3 瓷片电容0.01 uF /25VC4 点解电容10 uF/25VU1 低压差线性稳压器 3.3V输出LDOQ1 NPN三极管8050Q2 NPN三极管8050Dm 发光二极管LEDDn 发光二极管LED8. 修改记录版本更新日期更新内容修改人确认人V1.0 2008-12-18 原始版本Apple branden V1.1 2009-3-11 修改Q1,Q2的值Apple branden V1.2 2009-4-17 修改特性描述、应用电路及BOM表Apple branden V1.3 2009-9-17 修改特性描述、应用电路、电气参数及BOM表Apple branden V1.4 2011-1-11 修改应用电路及BOM表刘洋branden。
敦泰触摸IC参数对照表
20*12
FT5402DQT
互容
推荐7-10.1寸
27*16
FT5206GE1
互容
推荐2.8-5寸
Sito:金属架桥,OGS Dito:G+G,G+F+F Sito:金属架桥,OGS Dito:G+G,G+F+F Sito:金属架桥,OGS Dito:G+G,G+F+F Sito:金属架桥,OGS Dito:G+G,G+F+F Sito:金属架桥,OGS Dito:G+G,G+F+F Sito:金属架桥,OGS Dito:G+G,G+F+F Sito:金属架桥,OGS Dito:G+G,G+F+F Sito:金属架桥,OGS Dito:G+G,G+F+F Sito:金属架桥,OGS Dito:G+G,G+F+F 横三角图案: GF,GG,OGS,GP,PF 横三角图案: GF,GG,OGS,GP,PF 横三角图案: GF,GG,OGS,GP,PF 竖三角2点图案: GF,GG,OGS,GP,PF 横三角图案: GF,GG,OGS,GP,PF 竖三角2点图案: GF,GG,OGS,GP,PF G1M – OGS结构单层互容 GFM – GF结构单层互容 GGM – GG结构单层互容 G1M – OGS 结构单层互容 GFM – GF结构单层互容 GGM – GG结构单层互容
工作电流:6mA 待机电流:4mA 睡眠电流:30uA
工作温度: -20~+85 储存温度: -55~+150 工作温度: -20~+85 储存温度: -55~+150
HA2605触摸IC资料
HA2605是特别为移动便携式电子产品应用而设计的电容式触摸感应检测芯片。
它采用了全新芯片硬件架构,内置了电容检测模块、振荡电路、复位电路,使得应用趋于零外围,以满足产品小型化和成本低廉化的市场需求。
HA2605采用充放电方式实现5通道电容准确检测,确保检测数据可靠。
HA2605采用汇顶科技自主知识产权的邻键对比判断技术实现优良的按键性能;采用跳频、SAI技术和USB通信干扰抑制技术保证良好的抗干扰性能。
针对移动便携式产品的电池使用特点,HA2605自动检测当前工作状态,采取智能省电工作模式,节省主控软件开销,最大限度实现低功耗。
HA2605提供I2C通信接口,按键性能参数自由配置,确保每个按键检测准确可靠。
HA2605可广泛应用于MP3、MP4、GPS、手机、数码相框等多种数码产品。
主要特点最大支持5按键输入邻键对比判断技术, 最小邻键间距2mm灵敏度等控制参数灵活配置自适应校准及漂移补偿独特SAI技术,防手机RF干扰和USB通信干扰自动智能省电工作模式标准I2C通讯接口内部集成振荡电路和复位电路全新芯片架构,最精简的外围电路,支持整机产品小型化可使用PCB、FPCB、导电海绵、ITO涂层等作为按键材质可使用ABS、玻璃、亚克力等绝缘材料作为面板材料工业规格制造标准,工作温度 -40℃~ +85℃MSOP 10PIN封装,符合RoHS环保标准目录一、概述 (3)基本工作原理 (3)独特技术 (3)二、引脚排列及应用电路 (5)三、主要功能 (6)四、参数配置及按键输出信息 (8)五、I2C通信协议 (10)六、电气规格参数 (13)极限电气特性 (13)推荐工作条件 (13)AC特性 (14)DC特性 (14)七、应用设计指导 (15)八、生产应用指南 (17)九、封装形式及订单信息 (18)订单信息 (18)十、版本控制 0更改记录 0文件编号说明 0一、 概述基本工作原理HA2605内部集成了高性能电容检测模块,配合软件对检测精度及检测速度的控制,可实现5通道可靠检测。
FTC334E触摸IC
F T C334E触控按键芯片概述:触摸感应检测按键是近年来迅速发展起来一种新型按键。
它可以穿透绝缘材料外壳(玻璃、塑料等等),通过检测人体手指带来的电荷移动,而判断出人体手指触摸动作,从而实现按键操作。
电容式触摸按键不需要传统按键的机械触点,也不再使用传统金属触摸的人体直接接触金属片而带来的安全隐患以及应用局限。
电容式感应按键做出来的产品可靠耐用,美观时尚,材料用料少,便于生产安装以及维护,取代传统机械按钮键以及金属触摸。
F T C334E是专业的电容式触摸按键处理芯片,采用最新高精度数字电容测量技术,能做到防各种干扰、防面板水珠影响、适应各种电源供电等。
能支持6个触摸按键功能,输出采用6通道独立输出,带灵敏度选项口。
采用专用电路处理信号,能够轻松过E M S(C/S)方面的测试!。
适用各种E M S测试要求高的电子产品的应用。
特点:—超强抗E M C干扰,能防止功率大到5W的对讲机等发射设备天线靠近触摸点干扰。
—极简单外围电路,最简单的应用外围只需要一颗参考电容。
(视客户要求如需要提高E S D 和E M C则需每个按键接1颗电阻)—防水淹干扰,成片水珠覆盖在触摸面板上不影响按键的有效识别。
—超宽工作电压范围3.0V—5.5V,能应用在目前广泛应用的3.3V系统和3.0V电池系统。
—电源电压变化适应功能,内置电压补偿电路,电源电压在工作范围内变化时自动补偿,不影响芯片正常工作。
—环境温度湿度变化自动适应,环境缓慢适应技术的应用,使得芯片无限长时间连续工作不会出现灵敏度差异。
—可调灵敏度,可以通过外接电容容量来调整灵敏度以适应不同的设计。
—提供二进制编码直接输出接口,方便用户系统对接。
—上电快速初始化,在300m S左右内芯片就可以检测好环境参数包括自动适应,按键检测功能开始工作。
—灵敏度自动适应,各按键引线如果因为长短不一造成寄生电容大小不同,能够自动检测并适应,不同按键灵敏度做到一致。
—S O P16L封装管脚封装:管脚描述:编 号 管脚名称 类 型 功 能 描 述1-6K1-K6输入/输出 触摸信号接入口,空闲时为低电平一般使用时串联470欧姆-1K电阻,能有效防止R F干扰和提升抗E S D静电能力 7G N D--电源负端8S1输入 输入选项口,内部有上拉电阻 悬空:芯片为高灵敏度模式 接地:芯片为低灵敏度模式9-10Q6-Q5输出 触摸信号输出口,对应K6-K5按键有效时为低电平,无按键时为高电平11V D D--电源正端系统中使用1628等芯片驱动数码管时建议一定要给触摸芯片电源加R C滤波!12C A P N--接基准电容C s负端,C s电容正端接V D DC s电容须使用5%精度涤纶插件电容、10%高精度的N P O材质或X7R材质贴片电容13-16Q4-Q1输出 触摸信号输出口,对应K4-K1按键有效时为低电平,无按键时为高电平K1K2K3K4K5K6GNDS1SOP16L应用图例:※ 请按照K1,K2,..K6的顺序来选用按键输入,后面不用的按键口接地,K1、K2禁止接地。
IS3XCS8977 触控按键评估板应用用户指南说明书
IS3XCS8977 Touch Key Application User GuideRev. A2022-04-12GENERAL DESCRIPTIONCS8977 is a general-purpose MCU with 64KB Code e-Flash memory with ECC and 2KB SRAM with ECC. The embedded flash for code storage has built-in ECC that corrects one-bit errors and detects two-bit errors. CPU accesses the e-Flash through program address read and through Flash Controller which can perform software read/write operations of e-Flash.CS8977 has a 1-T 8051 with enhanced multiplication and division accelerator. There are three clock sources for system. One is a 16MHz/32MHz IOSC (manufacturer calibration+/- 2%), one is XCLK, and the other one is SOSC32KHz (typical 32KHz) which is divided from slow oscillator. ALL clock sources have a clock programmable divider for scaling down the frequency to save power dissipations. The clock selections are combined with flexible power management schemes, including NORMAL, STOP, and SLEEP modes to balance speed and power consumption.There are T0/T1/T2/T3/T4/T5 timers coupled with CPU and three WDTs where WDT1 is clocked by SYSCLK, and WDT2/WDT3 are clocked by a non-stop SOSC32KHz. An 8-bit/16-bit checksum and 16-bit CRC accelerator is included. There are EUART/LIN controllers, I2C master/Slave controllers and SPI master/slave controller. The interfaces of these controllers are multiplexed with GPIO pins. Other useful peripherals include a buzzer control, six 8/10/12-bit PWMs, one channel of 16-bit timer/capture, and one 16-bit quadrature decoder. There are also 16 channels 8-bit PWM for LED control.Analog peripherals include a 12-bit ADC with internal temperature sensor, an 8-bit voltage output DAC, and four analog comparators with programmable threshold. A touch key controller with up to 20-bit resolution is included. The touch key controller has shield output capability for moisture immunity and allows auto-detection wakeup from sleep mode (under 20uA). The maximum number of key inputs can be scanned is 27. The touch key controller can also be used for proximity sensing.CS8977 provides a flexible means of flash programming that supports ISP and IAP. The protection of data loss is implemented in hardware by access restriction of critical storage segments. The code security is reinforced with sophisticated writer commands and ISP commands. The on-chip break point processor also allows easy debugging which can be integrated with ISP. Reliable power-on-reset circuit and low supply voltage detection allow reliable operations under harsh environments.FEATURESCPU and Memory♦Up to 32MHz 1-Cycle 8051 CPU core♦16-bit Timers T0/T1/T2/T3/T4 and 24-bit Timer T5 ♦Checksum and CRC accelerator♦WDT1 by SYSCLK, WDT2/WDT3 bySOSC32KHz♦Clock fault monitoring♦Up to 6 external interrupts shared with GPIO pins ♦Power saving modes – Normal, STOP, and SLEEP modes♦256B IRAM and 1792B XRAM with ECC check♦64KB Code e-Flash with ECC and two 128x16 Information Block▪Code security and data loss protection▪100K endurance and 10 years retention Clock Sources♦Internal oscillator at 16MHz/32MHz(+/- 2%) ▪Spread Spectrum option♦Internal low power oscillator 128KHz/256KHz♦External clock option and clock outDigital Peripherals♦ 6 CH 8/10/12-bit center-aligned PWM controller ▪Trigger interrupt and ADC conversion♦16 CH 8-bit PWM left/right aligned♦One 16-bit Timer/Capture and One 16-bit quadrature decoder♦Buzzer/Melody generator♦One I2C Master♦One I2C Slave – also for ISP and debug♦One SPI Master/ Slave Controller♦One EUART1 and one EUART2/LINAnalog Peripherals♦Capacitance sense touch-key controller - scan up to 27 key▪Shield output for moisture immunity▪Low power sleep mode wakeup (<20uA).▪Active Proximity sensing front-end♦12-Bit SAR ADC with GPIO analog input▪Track and hold▪Temperature sensor and supply measurement ♦8-Bit DAC and four analog comparators♦Power on reset and Low voltage detect (2.2V-4.5V)Miscellaneous♦Up to 28 GPIO pins with multi-function options ▪Configurable IO structure and noise filters♦ 2.3V to 5.5V single supply♦Active current < 150uA/MHz in Normal mode♦Low power standby (1uA) in SLEEP mode♦Operating temperature -40°C t0 85°C♦TSSOP20/24/28, QFN-32 and LQFP32 package (RoHS compliant)ORDERING INFORMATIONTable 1: Ordering InformationFor pricing, delivery, and ordering information, please contact LUMISSIL’s marketing and sales team at https:///company/office-locations or (408) 969-6600.Copyright © 2021~2022 Lumissil Microsystems. All rights reserved. Lumissil Microsystems reserves the right to make changes to this specification and its products at any time without notice. Lumissil Microsystems assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.Lumissil Microsystems does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Lumissil Microsystems receives written assurance to its satisfaction, that:a.) the risk of injury or damage has been minimized;b.) the user assumes all such risks; andc.) potential liability of Lumissil Microsystems is adequately protected under the circumstancesQUICK STARTFigure 1: Photo of IS3XCS8977 EBGUI Top ViewFigure 2: Photo of IS3XCS8977 EBGUI Bottom ViewRECOMMENDED POWER SUPPLY•9V~15V, 1.0A power supplyABSOLUTE MAXIMUM RATING•≤ 25V power supplyCaution: Do not exceed the conditions listed above, otherwise the board will be damaged.PROCEDUREIS3XCS8977 EBGUI board is fully assembled and tested. Follow the steps listed below to verify board operation.Caution: Do not turn on the power supply until all connections are completed.Plug in the DC adapter and turn on the power supply. Please pay attention to the supply current.EzISP PROGARMMING BOARD OPERATIONIS3XCS8977 Touch Key evaluation board offers flexible flash programming that can be programmed via the ISP Mode, Write Mode or Fast Write Mode via EzISP Programming Board.1) The ISP Mode of the EzISP Programming Boardrequires 4-pins connection (SCL, SDA, GND, VDD).2) The Write Mode and Fast Writer Mode of theEzISP Programming Board requires 7-pins connection (RST, CK, CS, MO, MI, GND, VDD).Figure 3: Photo of EzISP Programming BoardBOARD ASSEMBLYPlease refer Figure 4 and Figure 5 for IS3XCS8977 EBGUI top and bottom view. IS3XCS8977 EBGUI schematics and PCB layout can be found from Figure 13~19. Bill of Materials can be found in table 2.Figure 4: Photo of Main Board Top ViewFigure 5: Photo of Main Board Bottom ViewTouch Key PadFigure 6: Photo of 6- Touch Key Daughter BoardFigure 7: Photo of IS3XCS8977 EBGUI Board Connection with Touch Key Daughter BoardSOFTWARE SUPPORTBefore starting up IS3XCS8977 Touch Key GUI software, it is required that the PC is installed with the EzISP USB driver and related files (for example: Microsoft Framework and C++ library) to check and update device boot code and flash if necessary. User can unzip file EzISP v3.3.x.zip(downloadable from our company web site) and run EzISP setup v3.3.x.exe for installation. And this installation needs the login Windows user with administrator privilege.EzISP software supports WinXP / Win7 / Win8 / Win10 operating system.Figure 8: Photo of EzISP Writer Mode operation interfaceEzISP Writer Mode programming operation process is as following:1) Connect USB cable between the writer connectorof the EzISP Programming Board and the USB port of your PC. 2) Connect a 10-pin 2x5 Socket-Socket 1.27mm IDCcable from the writer connector of the EzISP Programming Board to the writer connector on the IS3XCS8977 EBGUI. 3) Turn all switches of DIP switch (SW2) to ONposition. 4) Run EzISP software.5) Select the MCU chip type and programming mode(for example: Writer Mode or Fast Writer Mode). 6) Click the "Load" button and select theprogramming code (*.hex) to load. 7) Click the “Auto Run” button, and the EzISPsoftware will immediately perform “Erase”, “Write” and “Verify”. Then the prompt information will be displayed at the bottom of the window. The prompt message includes the programming result and the running time.8) Turn all switches of DIP switch (SW2) to OFFposition. After successful programming, IS3XCS8977 can run IS3XCS8977 Touch Key tool program.Caution: In the Fast Writer/Writer mode, on-chip Boot code WILL BE erased! Once it’s erased, ISP mode cannot function anymore.Figure 9: Photo of EzISP ISP Mode operation interfaceEzISP ISP Mode programming operation process is as following:1) Connect USB cable between the writer connectorof the EzISP Programming Board and the USB port of your PC. 2) Use a 10-pin 2x5 Socket-Socket 1.27mm IDCcable from the writer connector on the EzISP Programming Board to the writer connector on the IS3XCS8977 EBGUI. 3) Turn all switches of DIP switch (SW3) to ONposition. 4) Runb EzISP software.5) Select the MCU chip type and programming mode(for example: ISP Mode). 6) Click the "Load" button and select theprogramming code (*.hex) to load. 7) Click the “Auto Run”button, andthe EzISPsoftware will immediately perform “Erase”, “Write” and “Verify”. Then the prompt information will be displayed at the bottom of the window. The promptmessage includes the programming result and therunning time.8) Turn all switches of DIP switch (SW3) to OFFposition.Figure 10: Photo of EzISP Programming Board Connecting withIS3XCS8977 EBGUI BoardIS3XCS8977 EBGUI board requires 9V~15V/1.0A DC power supply. It must use a dedicated DC power supply.The steps listed below are examples of GPIO control using the IS3XCS8977.1) Use the test code in Appendix I and compile thetest code in the Keil C51 development environment (IDE, Keil μVision).2) Create a Hex file of the test code in Keil C51 andload the hex file of the test code via the EzISP software to update the firmware to the IS3XCS8977 flash.3) After the firmware update is complete,IS3XCS8977 chip will automatically reset and execute the program.4) In this example, you can measure if the P02 pinon the IS3XCS8977 EBGUI has been toggled.Figure 11: Photo of P02 pin toggling on the IS3XCS8977EBGUI SCHEMATICS AND LAYOUT GUIDEFigure 12: IS3XCS8977 Typical ApplicationBelow are layout guideline for your reference. Please refer above Figure 12 for below descriptions.1.) Four layers of PCB is recommended to have betterperformance.2.) In case, two-layer PCB is a must. Put the IC,sensor-related components, and sensor traces on the bottom layer. It is highly recommended toprovide a whole ground plane upon the top layer over IC and sensor related-components to haveless emissions.3.) Rs and Cs should be placed as close as possibleto IC.4.) Choose qualified by-pass capacitors and placethem as close as possible to the IC VDDC andVCC pins to provide the best decoupling.5.) Cref should be placed as close as possible to IC.6.) Reduce the capacitance of a touch sensor. Thereshould be no copper-filled, grounding or signalrouting within the sensor area.7.) Reduce signals trace length. A long PCB tracelength can form a proximity sensor.8.) Sensor traces should not be close tocommunication lines like I2C, UART.9.) Sensor traces should not be close to control signallines like LED control lines, LED power lines, …, etc..10.) Place a guard ring on the perimeter of the PCBand connect the guard ring to the chassis ground.Mechanical design will also play an important role for better performance in addition to PCB layout.SCHEMATICS OF IS3XCS8977 TOUCH KEY EVALUATION BOARD - EBGUIFigure 13: IS3XCS8977 EBGUI Application Schematics - 1Figure 14: IS3XCS8977 EBGUI Application Schematics - 2Figure 15: IS3XCS8977 EBGUI Application Schematics - 3Figure 16: IS3XCS8977 EBGUI Component Placement - Top LayerFigure 17: IS3XCS8977 EBGUI PCB Layout - Top LayerFigure 18: IS3XCS8977 EBGUI Component Placement - Bottom LayerFigure 19: IS3XCS8977 EBGUI PCB Layout - Bottom LayerBILL OF MATERIALSTable 2: Bill of Materials For Bill of Materials, please refer above Figure 13, Figure 14 and Figure 15.REVISION HISTORYAPPENDIX I: IS3XCS8977 Test Code -GPIO toggle#include "CS8977_SFR.h"#include "CS8977_XFR.h"#include "CS8977_MCU.h"#include "CS8977_EUART2.h"#include "Global.h"#include <intrins.h>//=================================================================== /***Initial_REGTRM**REGTRM value for 1.5V**/void Initial_REGTRM(unsigned char regtrm){TB = 0xAA;TB = 0x55;REGTRM = regtrm;TB = 0x00;}//=================================================================== /***Initial_IOSC**IOSC ITRM value and IOSC VTRM value for 16MHz**/void Initial_IOSC(unsigned char ITRM, unsigned char VTRM){TB = 0xAA;TB = 0x55;IOSCITRM = ITRM;TB = 0x00;Delay10ms(1);TB = 0xAA;TB = 0x55;IOSCVTRM = VTRM;TB = 0x00;}//=================================================================== /***IFB_Read_1Byte**Read 1 byte from Information block IFB**/unsigned char IFB_Read_1Byte(unsigned char ADD){unsigned char IFB_DAT;TB = 0xAA;TB = 0x55;FLSHADH = 0x00;FLSHADL = ADD;FLSHCMD = 0x02; //IFB ReadTB = 0x00;TB = 0xAA;TB = 0x55;IFB_DAT = FLSHDATL;TB = 0x00;return IFB_DAT;}//===================================================================/***Reset_WDT3**Watchdog Timer3 Configuration**/void Reset_WDT3(void){TB = 0xAA;TB = 0x55;WDT3CF = 0xD0;//clear WDT3 counter, stop WDT3 increment in STOP/SLEEP mode, clear Reset flag TB = 0x00;}//===================================================================/***Initial_IO**/void Initial_IO(void){/* Initial Port0 / 1 / 2 / 3 */P0 = 0;P1 = 0;P2 = 0;P3 = 0;/* Port0 */IO_setting(&IOCFGO00, IO_PNDRV, IO_Input_EN, MFCFG_GPIO);IO_setting(&IOCFGO01, IO_PNDRV, IO_Input_EN, MFCFG_GPIO);IO_setting(&IOCFGO02, IO_PNDRV, IO_Input_EN, MFCFG_GPIO);//IO_setting(&IOCFGO03, IO_PNDRV, IO_Input_EN, MFCFG_GPIO);IO_setting(&IOCFGO04, IO_PNDRV, IO_Input_EN, MFCFG_GPIO);IO_setting(&IOCFGO05, IO_PNDRV, IO_Input_EN, MFCFG_GPIO);IO_setting(&IOCFGO06, IO_PNDRV, IO_Input_EN, MFCFG_GPIO);IO_setting(&IOCFGO07, IO_PNDRV, IO_Input_EN, MFCFG_GPIO);/* Port1 */IO_setting(&IOCFGO10, IO_PNDRV, IO_Input_EN, MFCFG_GPIO);IO_setting(&IOCFGO11, IO_PNDRV, IO_Input_EN, MFCFG_GPIO);IO_setting(&IOCFGO12, IO_PNDRV, IO_Input_EN, MFCFG_GPIO);IO_setting(&IOCFGO13, IO_PNDRV, IO_Input_EN, MFCFG_GPIO);IO_setting(&IOCFGO14, IO_PNDRV, IO_Input_EN, MFCFG_GPIO);IO_setting(&IOCFGO15, IO_PNDRV, IO_Input_EN, MFCFG_GPIO);IO_setting(&IOCFGO16, IO_PNDRV, IO_Input_EN, MFCFG_GPIO);IO_setting(&IOCFGO17, IO_PNDRV, IO_Input_EN, MFCFG_GPIO);/* Port2 */IO_setting(&IOCFGO20, IO_PNDRV, IO_Input_EN, MFCFG_GPIO);IO_setting(&IOCFGO21, IO_PNDRV, IO_Input_EN, MFCFG_GPIO);IO_setting(&IOCFGO22, IO_PNDRV, IO_Input_EN, MFCFG_GPIO);IO_setting(&IOCFGO23, IO_PNDRV, IO_Input_EN, MFCFG_GPIO);IO_setting(&IOCFGO24, IO_PNDRV, IO_Input_EN, MFCFG_GPIO);IO_setting(&IOCFGO25, IO_PNDRV, IO_Input_EN, MFCFG_GPIO);IO_setting(&IOCFGO26, IO_PNDRV, IO_Input_EN, MFCFG_GPIO);IO_setting(&IOCFGO27, IO_PNDRV, IO_Input_EN, MFCFG_GPIO);/* Port3 */IO_setting(&IOCFGO30, IO_PNDRV, IO_Input_EN, MFCFG_GPIO);//IO_setting(&IOCFGO31, IO_PNDRV, IO_Input_EN, MFCFG_GPIO);//IO_setting(&IOCFGO32, IO_PNDRV, IO_Input_EN, MFCFG_GPIO);IO_setting(&IOCFGO33, IO_PNDRV, IO_Input_EN, MFCFG_GPIO);}//=================================================================== /***Initial_Variable**/void Initial_Variable(void){/* Initial variable */u8_EUART2_cnt = 0;}//=================================================================== /***Delay10us**//*void Delay10us(unsigned char delay){unsigned char i, j;for(i=0; i<delay;i++)for (j = 0; j < 16; j++);}*///=================================================================== /***Delay1ms**//*void Delay1ms(unsigned char delay){unsigned char i, j, k;for(i=0; i<delay; i++)for(j=0; j<10; j++)for(k=0; k<200; k++);}*///=================================================================== /***Delay10ms**/void Delay10ms(unsigned char delay){unsigned char i, j, k;for(i=0; i<delay; i++)for(j=0; j<100; j++)for(k=0; k<200; k++);}//===================================================================/***IO_setting** Setting IO Configuration and Multi-Function(IOCFGOxx, IOCFGIxx, MFCFGxx)**/void IO_setting(unsigned char* xIOCFGO, unsigned IOCFGO_V, unsigned IOCFGI_V, unsigned MFCFG_V){unsigned char* tmp;tmp = xIOCFGO;tmp += 0x20;*tmp = MFCFG_V;tmp -= 0x10;*tmp = IOCFGI_V;tmp -= 0x10;*tmp = IOCFGO_V;}unsigned char u8_EUART2_cnt;//===================================================================/***Initial_EUART2**Initial EUART2 Configuration**/void Initial_EUART2(void){/* P0_7 : TXD2, P0_6: RXD2 */IOCFGO32 = IO_NDRV | IO_PDRV;IOCFGI32 = 0x00;MFCFG32 = MFCFG_TXD2;IOCFGO31 = IO_PU;IOCFGI31 = IO_Input_EN;MFCFG31 = MFCFG_RXD2;/* EUART2 Configuration */LINSBRL = BUAD_L;// EUART2 baud rate Low byteLINSBRH = BUAD_H;// EUART2 baud rate High byteSCON2 = UART_SCON;// EUART2 Configuration RegisterSFIFO2 = 0x00;// Receive FIFO trigger threshold level = 0, Transmit FIFO trigger threshold level// = 0SCON2 = UART_SCON | 0x80;// EUART2 Enable}//===================================================================/***EUART2_tx_byte**EUART2 transmit 1 byte**/void EUART2_tx_byte(unsigned char p){while((SFIFO2 & 0x08));SBUF2 = p;}//===================================================================void main(void){unsigned char tmp;/* Disable Watchdog timer */TA = 0xAA; //Clear and disable watchdogTA = 0x55;WDCON = 0x00;TA = 0x00;/* Setup Wait Stat */TA = 0xAA;//Wait State Cycle = 0TA = 0x55;WTST = 0;TA = 0x00;/* Regulator Trim & IOSC Trim */Initial_REGTRM(IFB_Read_1Byte(0x20));//Regulator Voltage Initial_IOSC(IFB_Read_1Byte(0x21), IFB_Read_1Byte(0x22));//IOSC = 16MHz /* Initial variable */Initial_Variable();/* Initial EUART2 */Initial_EUART2();/* Initial IO */Initial_IO();EUART2_tx_byte(0x55);EUART2_tx_byte(0xAA);tmp = 0;while(1){Reset_WDT3();//Clear WDT3EUART2_tx_byte(tmp);/* Port 0 */P0_0 = !P0_0;P0_1 = !P0_1;P0_2 = !P0_2;//P0_3 = !P0_3;P0_4 = !P0_4;P0_5 = !P0_5;P0_6 = !P0_6;P0_7 = !P0_7;/* Port 1 */P1_0 = !P1_0;P1_1 = !P1_1;P1_2 = !P1_2;P1_3 = !P1_3;P1_4 = !P1_4;P1_5 = !P1_5;P1_6 = !P1_6;P1_7 = !P1_7;/* Port 2 */P2_0 = !P2_0;P2_1 = !P2_1;P2_2 = !P2_2;P2_3 = !P2_3;P2_4 = !P2_4;P2_5 = !P2_5;P2_6 = !P2_6;P2_7 = !P2_7;/* Port 3 */P3_0 = !P3_0;//P3_1 = !P3_1;//P3_2 = !P3_2;P3_3 = !P3_3;tmp++;}}。
泉盛电子触摸IC选型表
9 QTC1804A
4
3.0V-5.5V/1mA-2mA 一对一输出
输出电平可选,输出模式可选,带背光驱动,BUZ驱动
替代WTC6104
.5V/1mA-2mA 一对一输出
一对一输出,无触摸高阻抗,触摸输出低电平
替代WTC6106
7
3.0V-5.5V/1mA-2mA
8421二进制编码
◆各感应通道走线长短不一致所导致的灵敏度差异,芯片可以自动补偿到 一致,无需MCU改写寄存器,无需单独外挂1pF-50pF的小电容调节
6
3.0V-5.5V/1mA-2mA
一对一;触摸输出低; ◆工作电压跌落保护,不会因此误动作 无触摸呈高阻抗 ◆工作环境变化(温度升降、湿度增减等等)实时校准,确保芯片无限长时
10
2.5V-5.5V/1.5-2mA 2线串行通讯
可通过MCU单独设定每个触摸键的灵敏度,
备注 替代QT1696D 替代QT1696 替代QT1656 替代QT1698 替代QT1858R 替代QT1692D
8 QTC1810F
10
2.5V-5.5V/1.5-2mA 1628扫描输出
有1628的系统可实现零占用I/O口,无1628只要3条线通讯
8
3.0V-5.5V/1mA-2mA
8421二进制编码
间持续、稳定工作 ◆强磁场、强辐射环境仍可正常工作
8
3.0V-5.5V/1mA-2mA NEC格式IR码输出 ◆外围电路简单、无严苛设计要求,应用者自主调节灵敏度,方便快捷
2
3.0V-5.5V/1mA-2mA
一对一;触摸输出低; 无触摸输出高电平
家电常用触控按键IC选型表:
触控按键专家
序列 1 2 3 4 5 6 7
Chiphomer启攀微电容式触摸IC应用方案
电容式触摸感应按键作为一种人机交互界面,被广泛应用于家电、智能穿戴设备、遥控设备、多媒体播放器、移动电话、楼宇安防等产品中。
与传统的机械按键相比,电容性触摸按键具备耐用、成本低、结构简单且易于安装等优点。
Chiphomer启攀微电子致力于电容式触摸按键产品已有十年时间,有成熟的产品线和经验丰富的技术支持团队。
在产品特性方面:1,感应通道数量-涵盖了1/2/4/6/8/12/15通道;2,芯片形态:包括ASIC和SOC两大类产品,以满足客户不同的使用需求;3,功耗:低功耗产品线和常功耗产品线4,功能:可实现单击按触,滑动检测,GPIO控制,LED指示,逻辑运算,邻键抑制,防水抗污等各类功能CP2524 是一款支持 4 通道的电容式触摸传感芯片。
内嵌高精度电容数字转换(CDC)模块,并结合专用 DSP 处理器,能在各种应用环境下准确识别人手指的触摸。
感应判断结果可通过芯片引脚输出。
独特的 CDC 技术可以检测到电容变化,并把该变化量转换成数字信号。
转换后的数字信号经过硬件低通和 DSP处理,最后获得触摸感应判断。
硬件滤波器可解决输入信号的抖动。
集成特殊判断算法的DSP 处理器能实时计算出每个感应通道的状态。
感应判决算法具有自校准功能,能适应多种应用环境的变化。
深圳市奥伟斯科技有限公司是一家专注触摸芯片,单片机,电源管理芯片,语音芯片,场效应管,显示驱动芯片,网络接收芯片,运算放大器,红外线接收头及其它半导体产品的研发,代理销售推广的高新技术企业。
自成立以来一直致力于新半导体产品在国内的推广与销售,年销售额超过壹亿人民币,是一家具有综合竞争优势的专业电子元器件代理商。
主要品牌产品:一、OWEIS-TECH:OWEIS 触摸芯片、 OWEIS 接口芯片、 OWEIS 电源芯片、 OWEIS 语音芯片、 OWEIS 场效应管一、电容式触摸芯片、ADSEMI 触摸芯片代理、芯邦科技触控芯片、万代科技触摸按键芯片、博晶微触摸控制芯片、海栎创触摸感应芯片、启攀微触摸、 IC 融和微触摸感应、IC 合泰触摸按键、IC 通泰触摸芯片二、汽车电子/电源管理/接口芯片/逻辑芯片:IKSEMICON 一级代理、 ILN2003ADT、IK62783DT、 IL2596、IL2576 、ILX485、 ILX3485、 ILX232 、ILX3232三、功率器件/接收头/光电开关:KODENSHI、 AUK、 SMK系列、 MOS管、SMK0260F、 SMK0460F、SMK0760F、 SMK1260F、 SMK1820F、 SMK18T50F四、LED 显示驱动芯片:中微爱芯 AIP 系列: AIP1668、 AIP1628 、AIP1629 、AIP1616 、天微电子 TM 系列: TM1628 TM1668 TM1621五、电源管理芯片:Power Integrations LNK364PN LNK564PN 芯朋微 PN8012 PN8015 AP5054 AP5056 力生美晶源微友达天钰电子FR9886 FR9888六、语音芯片:APLUS 巨华电子AP23085 AP23170 AP23341 AP23682 AP89085 AP89170 AP89341 AP89341K AP89682七、运算放大器:3PEAK 运算放大器、聚洵运算放大器、圣邦微运算放大器八八、发光二极管:OSRAM 欧司朗发光二极管、Lite-On 光宝发光二极管、Everlight 亿光发光二极管、 Kingbright 今台发光二极管九、CAN收发器:NXP恩智浦CAN收发器、Microchip微芯CAN收发器十、分销产品线:ONSEMI安森美 TI德州仪器 ADI TOSHIBA东芝 AVAGO安华高十一、 MCU单片机ABOV现代单片机MC96F系列、 Microchip微芯单片机PIC12F PIC16F PIC18F系列、 FUJITSU富仕通单片机MB95F系列、STM单片机STM32F STM32L系列、 CKS中科芯单片机CKS32F系列、TI单片机 MSP430系列、TMS320F系列、 NXP单片机LPC系列下面,奥伟斯主要给大家详细介绍Chiphomer电容式触摸IC启攀微电容式触摸IC的相关产品信息:CP2524 采用 CMOS 工艺,工作电压范围为 2.8V ~ 5.5V,采用SOP24 封装。
十大触控一体机品牌技术参数
目录一、希沃 (1)70寸技术参数 (1)图片示例 (2)二、TCL (3)70寸技术参数 (3)图片示例 (4)65寸技术参数 (5)三、上海广电光显 (6)技术参数 (6)四、长虹 (7)65寸技术参数 (7)五、鸿合科技 (8)70寸技术参数 (8)六、创维光电 (8)70寸技术参数 (9)图片示例 (10)84寸技术参数 (11)65寸技术参数 (12)七、上海仙视 (12)70寸技术参数 (12)图片示例 (14)84寸技术参数 (15)八、夏普 (16)70寸技术参数 (16)80寸技术参数 (17)图片示例 (19)九、创显光电 (19)70寸技术参数 (20)84寸技术参数 (21)图片示例 (22)十、深圳中银科技 (23)70寸技术参数 (23)一、希沃70寸技术参数图片示例70寸图片165寸图片2二、TCL70寸技术参数图片示例70寸图片365寸图片465寸技术参数三、上海广电光显技术参数四、长虹65寸技术参数五、鸿合科技70寸技术参数产品规格:70英寸型号:HD-I7002E背光类型:LED显示比例:16:9可视角度:178°物理解析度:1920*1080Pixel图像制式/声音制式:PAL/DK,I3D功能:——工作电压:AC 90-265V,50/60Hz触摸表面材质:钢化玻璃感应方式:红外感应触摸技术特性:HID免驱触摸点数:多点触控,多点书写书写方式:手指或书写笔触摸分辨率:32767*32767通讯接口: USB存储温度/湿度:-20℃~60℃,10%~90% 工作温度/湿度:5℃~50℃,10%~90% 安装方式:壁挂或移动整机尺寸:1648.9*975.6*112.9mm重量:70KG六、创维光电70寸技术参数图片示例70寸图片565寸图片6七、上海仙视70寸技术参数图片示例八、夏普 70寸技术参数 电力消耗(W ) 230W 待机消耗功率(W ) 0.50电源要求 交流110-240V ,50Hz 屏幕显示语言 英文/中文(简体)/俄语 扬声器 (150mm×34mm )×2音频输出功率 10W×2(AV 输入,负载4欧姆,失真度为10%时) 电视调谐系统 自动预设99个频道视频彩色制式 PAL/SEAM/NTSC3.58/PAL60图像清晰度* RD 模拟信号:水平>=350,垂直>=400以上 SDTV :水平>=450,垂直>=450以上 背光源 LED 重量kg 57.5KG 外型尺寸(cm )宽×深×高 1.625 ×106 ×993mm液晶显示屏 X-GEN 面板分辨力1920(水平)×1080(垂直)下面-数字(天线输入)UHF/VHF 75q DIN 型插座下面-模拟(天线输UHF/VHF 75q DIN 型插座入)后面ー音频输入 HDMI2/电脑共用(直径3.5mm 插孔)RS-232C 9针D-sub 凸型插头电脑 15针小型D-sub,音频输入(与HDMI2共用)(直径3.5mm 插孔)后面—输入5 视频输入,音频输入后面—输入4色差输入(480I,576I,480P,576P,720P/50Hz,720P/60Hz, 1080I/50Hz,10080I/60Hz ),音频输入 后面-HDMI3HDMI(HDMI 输入)(480I,576I,480P,576P,720P/50Hz, 720P/60Hz,1080I50Hz,1080I/60Hz,1080P/50Hz, 1080P/60Hz,1080P/24Hz )侧面-HDMI2HDMI(HDMI 输入)(480I,576I,480P,576P,720P/50Hz720P/60Hz,1080I/50Hz,1080I/60Hz,1080P/50Hz,1080P/60Hz1080P/24Hz)音频输入(与电脑输入公用)(直径3.5mm 插孔))侧面-HDMI 1(ARC )HDMI(HDMI 输入)(480I,576I,480P,576P,720P/50Hz,720P/60Hz,1080I/50Hz,1080I/60Hz,1080P/50Hz,1080P/60Hz,1080P/24Hz ) 侧面-USB2(HDD ) USB2.0 前面 USB12.0侧面ー音频输出/耳机 直径3.5 插孔(音频输出)接收频道 VHF/UHF C1・C12・C13-C57 CATV SECAM/NTSC3.58/PAL60立体声/双语 丽音(NICAM )B/G ,I ,D/K A2 立体声:B/G 接收频率 模拟ATV 44.25-863.25MHz 数字DTV 55.25-863.25MHz电视制式 PAL :B/G,D/K ,I SECAM :B/G,D/K,K/K1 NTSC :M电源 由USB 提供操作系统 Win XP,Win CE,Vista,Win7,Linux,Mac,Android,Win8检测区域 153.9×86.6cmPC 连接器 USB (兼容1.1)书写方式 手指或非透明触控笔触摸定位精度 ± 2mm响应速度(单点连续) 4ms (典型值)触摸点数 6点检测方法 红外线阻隔检测方法80寸技术参数 基本规格电力消耗(W ) 260 待机消耗功率(W ) 0.50 能效指数(EEILCD ) 1.4分辨力1920(水平)×1080(垂直)外型尺寸(cm )宽×深×高 187.6×11.6×113.3液晶显示屏X超晶面板端子DVI-D 端口 1音频输出端子(HP) 1光纤数字音频输出 1Y,Pb,Pr输入端子 1USB端口 2RS-232C端口 1PC输入 1LAN(网络) 无HDMI端口 3复合视频输入端子 2声音声音输出(w) 10W+10W智能光控(opc) 有立体环绕SRS TruSurround HD图片示例九、创显光电图片示例十、深圳中银科技70寸技术参数。
华诚科技触摸IC选项表
华诚科技非标品触摸 IC 列表
深圳市福田区天安数码城创新科技广场一期 B 座 1411A
联系电话:13360505882
QQ:3243702918
序号 IC 型号 封装型号 工作电压 IO 口数量 工作频率 应用的电路
注意事项
备注
1 HC8T046P DIP8/SOP8 2.4-5.5V
OSC=GND,LO1、LO2=0
OSC=VDD,LO1、LO2=1; 2.4-5.5V
OSC=GND,LO1、LO2=0
功能说明 同步功能(脉冲功能)
开关功能
备注
2.4-5.5V
4 种工作模式可选
1)OPT1=1,OPT2=1 对应:不带亮度记忆突明突暗的 LED 触 摸无级调光功能 2)OPT1=0,OPT2=1 对应:不带亮度记忆渐明渐暗的 LED 触 摸无级调光功能 3)OPT1=1,OPT2=0 对应:带亮度记忆渐明渐暗的 LED 触 摸无级调光功能 4)OPT1=0,OPT2=0 对应:LED 三段触摸调光功能
4
1 入 3 出 2 入 2 出 P1.5 只能用作输入口,不能用作
3入1出
输出口
非标品
2 HC8T0506 DIP16/SOP16 2.4-5.5V
11
32K-16M
5入6出
(适用于 台灯、车
载、蓝牙
3 HC8T0810 TSSOP24 2.4-5.5V
18
32K-16M
8 入 10 出
音响),
取代传
4 HC8T1209 TSSOP28 2.4-5.5V
21
32K-16Mຫໍສະໝຸດ 12 入 9 出统机械 按键
OV2680_CSP5_DS_1.11_E-WELLY
i
00applications
ultra books PC multimedia games mobile phones tablets
ordering information
OV02680-H47A (color, lead-free) 47-pin CSP5
00features
MIPI and D-PHY specification (contains one clock lane) with a maximum of 750 Mbps data transfer rate support for output formats: 10-bit RAW RGB programmable controls for frame rate, mirror and flip, cropping, and windowing low operating voltage and low power consumption for embedded portable applications supports global analog gain
iii
1-1 2-1 2-1 2-1 2-4 2-5 2-5 2-6 2-7 2-7 2-7 2-8 3-1 3-1 3-1 3-1 3-1 3-5 3-5 3-6 4-1 4-1 4-2 4-2 4-2 4-3 4-3 4-4 4-4 4-4 4-4
03.03.2014
PRELIMINARY SPECIFICATION
00Copyright ©2014 OmniVision Technologies, Inc. All rights reserved.
This document is provided “as is” with no warranties whatsoever, including any warranty of merchantability, non-infringement, fitness for any particular purpose, or any warranty otherwise arising out of any proposal, specification, or sample. OmniVision Technologies, Inc. and all its affiliates disclaim all liability, including liability for infringement of any proprietary rights, relating to the use of information in this document. No license, expressed or implied, by estoppel or otherwise, to any intellectual property rights is granted herein. The information contained in this document is considered proprietary to OmniVision Technologies, Inc. and all its affiliates. This information may be distributed to individuals or organizations authorized by OmniVision Technologies, Inc. to receive said information. Individuals and/or organizations are not allowed to re-distribute said information.
Focaltech_CTP_触控IC_Roadmap
pin 数 封转类型 长*宽 电源电压 40 QFN 5*5 2.8V-3.6V 48 68 40 48 48 56 68 88 116 116 40 48 40 48 QFN QFN QFN QFN QFN QFN QFN QFN BGA BGA QFN QFN QFN QFN 6*6 8*8 5*5 6*6 6*6 7*7 8*8 8*8 8*8 5*5 6*6 5*5 6*6 2.8V-3.6V 2.8V-3.6V 2.8V-3.6V 2.8V-3.6V 2.8V-3.6V 2.8V-3.6V 2.8V-3.6V 2.8V-3.6V 2.8V-3.6V 2.8V-3.6V 2.8V-3.6V 2.8V-3.6V 2.8V-3.6V
状态 Sample 年月 MP 年月
11.5*8.5 11.5*10.5 11.5*8.5 11.5*10.5
>10.1(支持多IC方案) 5点~10点 48*36
14
ቤተ መጻሕፍቲ ባይዱ
11 13
16 22
注:互容IC均支持OGS及超薄FILM方案
Focaltech触控IC资源
Focaltech
接口电平 VDD/1.8V VDD/1.8V VDD/1.8V VDD/IOVDD VDD/IOVDD VDD VDD VDD/IOVDD VDD/IOVDD VDD/IOVDD VDD/IOVDD VDD/IOVDD VDD/IOVDD VDD/1.8V VDD/1.8V 触摸 I2C通讯 USB通讯 按键 是 否 支持 是 是 是 是 是 是 是 是 是 是 是 是 是 是 否 否 否 否 否 否 否 否 是 是 否 否 否 否 支持 支持 支持 支持 Flash 32K 32K 32K 32K 32K 外围 器件数 4C1R 4C1R 4C1R 4C1R 4C1R 9C1R 9C1R 4C1R 4C1R 4C1R 5C1R 4C1R 4C1R 4C1R 4C1R
DS8023单通道直流 LED 灯光触摸控制芯片SGL8022S
规格说明书DS 8023单通道直流LED 灯光触摸控制芯片DS8023目录一、概述.............................................................................................................................. - 2 -二、工作原理框图............................................................................................................... - 2 -三、功能简介 ...................................................................................................................... - 3 -四、管脚定义 ...................................................................................................................... - 5 -五、典型应用电路图 ........................................................................................................... - 6 -六、电气参数 ...................................................................................................................... - 8 -七、BOM表.......................................................................................................................... - 9 -八、封装尺寸图 ................................................................................................................ - 10 -一、概述DS8023主要用于LED灯光亮度调节及开关控制的单通道触摸芯片。
SinOne SCT80S16B 10V CS 8 通道触控按键专用 IC 说明书
SCT80S16B SinOne10V CS 8通道触控按键专用IC 目录目录 (1)1 总体描述 (3)2 主要功能和优势 (3)2.1 功能 (3)2.2 优势 (3)3 管脚定义 (3)3.1 管脚配置 (3)3.2 管脚定义 (4)4 电气性能 (4)4.1 推荐工作条件 (4)4.2 直流电气特性 (4)5 封装信息 (5)6 应用设计指南 (6)6.1 未使用通道处理 (6)6.2 邻键距离 (6)6.3 通讯输出选择 (6)6.3.1 通讯输出选择OUTS (6)6.3.2 灵敏度设置和键值读取格式 (6)7 注意事项 (9)7.1 典型应用电路 (9)7.2 电路Check List (9)7.3 电源要求 (9)7.4 PCB布局 (9)7.5 PCB布线 (10)7.6 PCB参考图 (10)Page 1 of 11 V 1.17.7 触控面板材料选择 (10)8 规格更改记录 (11)1 总体描述SCT80S16B 是一颗有8个触控通道,带UART/IIC 通讯接口的触控专用IC ,用户可通过UART/IIC 通讯来设置灵敏度。
此IC 具有工业级规格,拥有4KV EFT 和6KV 接触ESD 能力,可顺利通过3V 动态和10V 静态CS 测试,是用户高性能触控按键方案的首选。
非常适合应用于大小家电、安防、工控等应用场合。
2 主要功能和优势2.1 功能● 工作电压:3.3V ~ 5.5V ● 工作温度:-40 ~ 85℃● 触控按键通道:8通道,最多支持两个按键同时被按下 ● 触控按键输出通讯协议:UART/IIC 输出 ● 灵敏度调节:UART/IIC 通讯调节● 上电2s 内可通过UART/IIC 通讯来设置触控通道灵敏度等级 ● 覆盖物厚度:0 ~ 10mm● 有效触摸反应时间:小于100ms ● 允许按键长按时间为10S ●封装:SOP162.2 优势● 发明专利,业界独创; ● 完美触控按键操作体验; ● 用户根据需要设置灵敏度;●超强抗干扰能力,4KV EFT 、6KV ESD 、10V CS 。
CP2680_CP2681应用设计指南V1.0
一、 电容性触摸感应芯片CP2680及CP2681系列简介电容式触摸感应按键作为一种新型人机交互界面,被广泛应用于多媒体播放器、移动电话、楼宇安防和家用电器等产品中。
与传统的机械按键相比,电容式触摸按键具备耐用,造价低廉,机构简单且易于安装等优点。
我司电容式触摸感应芯片CP26XX 系列,包括CP2680、CP2681、CP2682和CP2688。
其中CP2680有SOP8和SOP14两种封装,分别对应双键、四键;CP2681为单键,封装为SOT23-6L ;CP2682为八通道电容式触摸检测芯片;CP2688为带电容式触摸检测功能SOC 。
如需详细了解CP2682及CP2688应用,请查看我司相关应用文档。
二、 典型应用Ⅰ、数字量状态输出(STx ),参考应用电路:10KR1 10KSubject: 应用文档AN26009 Rev 1.0Model Name: 电容性触摸检测驱动系列NC CS GND K1VCC ST2K2ST1CP2680SOP82 键图1数字量状态输出电路图 说明:1、 每个感应通道对应一个状态输出,触摸时输出低电平,未触摸输出高电平。
2、 PWM 输出按键状态,低电平有效,频率约为6.7KHz,占空比与按键状态相对应。
3、 K1~K4不用的感应通道,直接接地即可。
4、 ST1~ST4为输出数字接口,上拉电阻根据实际应用确定阻值,可直接连接外部MCU 的GPIO 口。
Ⅱ、模拟量输出,参考应用电路:模拟量输出可以采用两种方式:一种是电阻分压,另外一种是PWM 低通滤波(4键)。
电阻分压模式:图2 2键模量输出电路图图3 4键模拟量电路图1112K3K2CS1314K18GNDK49GND10VCCCP2680SOP14VCCPWM 低通滤波模式:2.2u F图4 PWM 方式模拟量输出电路图说明:1、输出模拟量采用电阻分压方式灵活多变,根据需要分得电压值;PWM 低通滤波输出的模拟电压比较固定,如表3。
JL1821S触摸芯片IC规格书(5键输出自锁)_V11
数据手册DATASHEETJL1821S5键(输出自锁)触摸感应芯片IC(Rev:1.1)一、概述JL1821S触摸感应IC是为实现人体触摸界面而设计的集成电路。
可替代机械式轻触按键,实现防水防尘、密封隔离、坚固美观的操作界面。
使用该芯片可以实现触摸开关控制,方案所需的外围电路简单,操作方便。
确定好灵敏度选择电容,IC就可以自动克服由于环境温度、湿度、表面杂物等造成的各种干扰,避免由于电阻、电容误差造成的按键差异。
二、特点1、高灵敏度(用户可自行调节)2、高防水性能3、待机功耗低,省电4、高抗干扰性能,近距离、多角度手机干扰情况下,触摸响应灵敏度及可靠性不受影响5、按键感应盘大小:大于3mm×3mm,根据不同面板材质跟厚度而定6、按键感应盘间距:大于2mm7、按键感应盘形状:任意形状(必须保证与面板的接触面积)8、按键感应盘材料:PCB铜箔,金属片,平顶圆柱弹簧,导电橡胶,导电油墨,导电玻璃的ITO层等9、面板材质:绝缘材料,如有机玻璃,普通玻璃,钢化玻璃,塑胶,木材,纸张,陶瓷,石材等10、面板厚度:0~12mm,根据不同的面板材质有所不同11、工作温度:-25℃~85℃12、工作电压:3V~5.5V13、封装类型:SOP14三、应用范围1、消费类电子2、数码产品3、家用电器4、小家电四、封装及引脚定义1、封装及引脚定义JL1821S,SOP142、引脚定义描述编号引脚定义功能描述编号引脚定义功能描述1 VDD 电源正端8 KEY5 触摸按键输入脚52 KEY1 触摸按键输入脚1 9 OUT5 输出通道53 KEY2 触摸按键输入脚2 10 OUT4 输出通道44 SEL 初始电平选择端11 OUT3 输出通道35 CAP 采样电容输入脚12 OUT2 输出通道26 KEY3 触摸按键输入脚3 13 OUT1 输出通道17 KEY4 触摸按键输入脚4 14 GND 电源负端五、应用电路图注:1、当介质材料及厚度等差异较大时,可通过调整采样电容容值来调节触摸灵敏度。
TCH68x系列8键触摸芯片
TCH68x系列8键触摸芯片概述:触摸感应检测按键是近年来迅速发展起来一种新型按键。
它可以穿透绝缘材料外壳(玻璃、塑料等等),通过检测人体手指带来的电荷移动,而判断出人体手指触摸动作,从而实现按键功能。
电容式触摸按键不需要传统按键的机械触点,也不再使用传统金属触摸的人体直接接触金属片而带来的安全隐患以及应用局限。
电容式感应按键做出来的产品可靠耐用,美观时尚,材料用料少,便于生产安装以及维护,取代传统机械按钮键以及金属触摸。
TCH68x是一款高性价比的8通道触摸感应检测IC,能提供最多种输出方式,应用领域广泛。
特点:y超强抗EMC干扰,除能够防止手机等一般EMC干扰外,还能防止功率大到5W的对讲机发射天线靠近和接触干扰。
y极简单外围电路,最简单的应用只需要一颗振荡电容,按键触摸盘直接接入芯片无需要任何外围元件。
(视客户要求如需要提高ESD和EMC则需接1颗电阻)y防水干扰、水溅、水淹。
在水珠突然覆盖按键不会误动作,水珠连接2键无影响。
y超宽工作电压2.0V - 5.5V ,使用范围非常广泛,能应用在目前广泛应用的3.3V系统和3.0V电池系统。
y极低睡眠电流5μA,睡眠状态能灵敏检测按键并唤醒功能。
在电池应用场合具有相当的优势。
y环境温度湿度变化自动适应,环境缓慢适应技术的应用,使得芯片无限长时间连续工作不会出现灵敏度差异。
y可调灵敏度,可以通过多种方式来调整灵敏度。
y提供多种输出模式,不同系列输出模式不一样,用户也可根据自己的实际要求来定制接口。
y上电快速初始化,在0.2-0.5S内芯片就可以检测好环境参数包括自动适应,按键检测功能开始工作。
y灵敏度自动适应,各按键引线如果因为长短不一造成寄生电容大小不同,TCH68x能够自动检测并适应,不同按键灵敏度做到几乎完全一致。
y抗电源电压跌落,当系统电源突然降低,芯片自动检测并停止输出,有效防止误动作。
y SOP-24L,TSSOP-20L封装管脚排列:SOP-24PIN TSSOP-20PIN24PIN 管脚20PIN管脚名称功能描述1 1Q0 功能脚02 2Q1 功能脚13 3VSS 接电源负端4 4Q2 功能脚25 5Q3 功能脚36 6Q3 功能脚47 7Q5 功能脚58 8VDD 接电源正端9 -RES 复位脚,低电平复位10 9 Q6 功能脚611 10 Q7 功能脚712 - NC 空脚13—16 11—14 I0—I3 按键K1-按键K4输入17 15 CS1 振荡电容脚118 16 CS2 振荡电容脚2 19—22 17—20 I0—I3 按键K5-按键K8输入23 - NC 空脚24 - NC 空脚电气特性:‧最大绝对额定值‧DC/AC 特性:(测试条件为室内温度=25℃)※ Cs 值根据PCB 的布线分布电容和用户需要的灵敏度实际调整。
PADAUK Technology Co. Ltd PMC232 PMS232系列 12位ADC双核
PMC232/PMS232系列带12位ADC、采用FPPA TM技术双核心8位单片机数据手册第0.03版2017年3月27日Copyright 2017 by PADAUK Technology Co., Ltd., all rights reserved10F-2, No. 1, Sec. 2, Dong-Da Road, Hsin-Chu 300, Taiwan, R.O.C.重要声明应广科技保留权利在任何时候变更或终止产品,建议客户在使用或下单前与应广科技或代理商联系以取得最新、最正确的产品信息。
应广科技不担保本产品适用于保障生命安全或紧急安全的应用,应广科技不为此类应用产品承担任何责任。
关键应用产品包括,但不仅限于,可能涉及的潜在风险的死亡,人身伤害,火灾或严重财产损失。
应广科技不承担任何责任来自于因客户的产品设计所造成的任何损失。
在应广科技所保障的规格范围内,客户应设计和验证他们的产品。
为了尽量减少风险,客户设计产品时,应保留适当的产品工作范围安全保障。
提供本文档的中文简体版是为了便于了解,请勿忽视文中英文的部份,因为其中提供有关产品性能以及产品使用的有用信息,应广科技暨代理商对于文中可能存在的差错不承担任何责任,建议参考本文件英文版。
目录1. 单片机特点 (8)1.1. 系列特点 (8)1.2. 高性能RISC CPU架构 (8)1.3. 系统功能 (8)1.4. 封装信息 (9)2. 系统概述和方框图 (10)3. PMC232系列引脚功能描述 (11)4. PMS232系列引脚功能描述 (12)5. 器件电气特性 (15)5.1. 直流/交流特性 (15)5.2. 最大范围 (17)5.3. ILRC频率与VDD、温度关系的曲线图 (18)5.4. IHRC频率与VDD、温度关系的曲线图 (19)5.5. 工作电流量测值@系统时钟=ILRC÷N (20)5.6. 工作电流量测值@系统时钟=IHRC÷N (20)5.7. 工作电流量测值@系统时钟=4MH Z晶振EOSC÷N (21)5.8. 工作电流量测值@系统时钟=32K H Z晶振EOSC÷N (21)5.9. IO引脚输出驱动电流(I OH)和灌电流(I OL)曲线图 (22)5.10. 测量的IO输入阈值电压(V IH/V IL) (22)5.11. IO引脚拉高阻抗曲线图 (22)5.12. 输出(VDD/2)偏置电压与VDD关系的曲线图 (23)5.13. 开机时序图 (23)6. 功能概述 (24)6.1. 处理单元 (24)6.1.1程序计数器 (25)6.1.2 堆栈指针 (25)6.1.3 一个处理单元工作模式 (26)6.2. OTP程序存储器 (27)6.2.1 程序存储器分配 (27)6.2.2 两个处理单元工作模式下程序存储器分配例子 (27)6.2.3 一个处理单元工作模式下程序存储器分配例子 (28)6.3 程序结构 (29)6.3.1 两个处理单元工作模式下程序结构 (29)6.3.2 一个处理单元工作模式下程序结构 (29)6.4 启动程序 (30)6.5 数据存储器 (31)6.6 算术和逻辑单元 (31)6.7 振荡器和时钟 (32)6.7.1 内部高频振荡器(IHRC)和低频振荡器(ILRC) (32)6.7.2 单片机校准 (32)6.7.3 IHRC频率校准和系统时钟 (32)6.7.4 晶体振荡器 (34)6.7.5 系统时钟和LVR水平 (35)6.7.6 系统时钟切换 (36)6.8 16位定时器(T IMER16) (37)6.9 8位PWM定时器(T IMER2) (39)6.9.1 使用Timer2产生定期波形 (40)6.9.2 使用Timer2产生8位PWM波形 (41)6.9.3 使用Timer2产生6位PWM波形 (43)6.10 看门狗定时器 (44)6.11 中断 (45)6.12 掉电模式 (47)6.12.1 省电模式(stopexe) (47)6.12.2 掉电模式(stopsys) (48)6.12.3 唤醒 (49)6.13 IO端口 (50)6.14 复位和LVR (51)6.14.1 复位 (51)6.14.2 LVR (51)6.15 VDD/2偏置电压 (51)6.16 数字转换(ADC)模块 (52)6.16.1 AD转换的输入要求 (53)6.16.2 ADC分辨率选择 (54)6.16.3 ADC 时钟选择 (54)6.16.4 AD转换 (54)6.16.5 模拟引脚的配置 (54)6.16.6 使用ADC (54)7. IO寄存器 (55)7.1 算术逻辑状态寄存器(FLAG),IO地址=0X00 (55)7.2 FPP单元允许寄存器(FPPEN),IO地址=0X01 (55)7.3 堆栈指针寄存器(SP),IO地址=0X02 (55)7.4 时钟控制寄存器(CLKMD),IO地址=0X03 (56)7.5 中断允许寄存器(INTEN),IO地址=0X04 (56)7.6 中断请求寄存器(INTRQ),IO地址=0X05 (56)7.7 T IMER16控制寄存器(T16M),IO地址=0X06 (57)7.8 通用数据输入/输出寄存器(GDIO),IO地址=0X07 (57)7.9 外部晶体振荡器控制寄存器(EOSCR),IO地址=0X0A (57)7.10 内部高频RC振荡器控制寄存器(IHRCR,只写),IO地址=0X0B (58)7.11 中断边沿选择寄存器(INTEGS,只写),IO地址=0X0C (58)7.12 端口A数字输入禁止寄存器(PADIER,只写),IO地址=0X0D (58)7.13 端口B数字输入禁止寄存器(PBDIER,只写),IO地址=0X0E (59)7.14 端口A数据寄存器(PA),IO地址=0X10 (59)7.15 端口A控制寄存器(PAC),IO地址=0X11 (59)7.16 端口A上拉控制寄存器(PAPH),IO地址=0X12 (59)7.17端口B数据寄存器(PB),IO地址=0X14 (59)7.18端口B控制寄存器(PBC),IO地址=0X15 (59)7.19 端口B上拉控制寄存器(PBPH),IO地址=0X16 (60)7.20 端口C数据寄存器(PC),IO地址=0X17 (60)7.21 端口C控制寄存器(PCC),IO地址=0X18 (60)7.22 端口C上拉控制寄存器(PCPH),IO地址=0X19 (60)7.23 ADC控制寄存器(ADCC),IO地址=0X20 (60)7.24 ADC模式控制寄存器(ADCM,只写),IO地址=0X21 (61)7.25 ADC数据高位寄存器(ADCRH,只读),IO地址=0X22 (61)7.26 ADC数据低位寄存器(ADCRL,只读),IO地址=0X23 (61)7.27 杂项寄存器(MISC),IO地址=0X3B (62)7.28 T IMER2控制寄存器(TM2C),IO地址=0X3C (63)7.29 T IMER2计数寄存器(TM2CT),IO地址=0X3D (63)7.30 T IMER2分频器寄存器(TM2S),IO地址=0X37 (63)7.31 T IMER2上限寄存器(TM2B),IO地址=0X09 (64)8. 指令 (65)8.1 数据传输类指令 (65)8.2 算术运算类指令 (69)8.3 移位运算类指令 (71)8.4 逻辑运算类指令 (72)8.5 位运算类指令 (74)8.6 条件运算类指令 (75)8.7 系统控制类指令 (77)8.8 指令执行周期综述 (79)8.9 指令影响标志的综述 (80)9. 特别注意事项 (81)9.1 警告 (81)9.2 使用IC时 (81)9.2.1 IO使用与设定 (81)9.2.2 中断 (82)9.2.3 切换系统时钟 (82)9.2.4 掉电模式、唤醒以及看门狗 (83)9.2.5 TIMER溢出时间 (84)9.2.6 ADC使用注意事项 (84)9.2.7 LVR (84)9.2.8 IHRC (84)9.2.9 单/双核模式下指令周期差异 (85)9.3 使用ICE时 (85)9.3.1 PMC232/PMS232系列于仿真器PDK3S-I-001/002/003上仿真时 (85)9.3.2 使用PDK3S-I-001/002/003仿真PMC232/PMS232系列功能時注意事項 (86)修订历史:修订日期描述0.01 2015/8/1 初版。
8按键电容触摸感应芯片HA3515中文版
上述干扰源产生的干扰均会对按键检测产生不同程度的影响。为了保证按键有效和可靠,HA3515 采用了多项独特软件技术进行抗干扰处理。对于比较常见的手机辐射干扰和处理比较困难的溢水 条件下的电磁干扰,HA3515 特别采用了 2 项独特技术来进行抑制:
WEIP 抗干扰技术 溢水条件下的电磁干扰抑制技术(Water & Electromagnetic Interference Prevention)
五、电气规格参数 .....................................................................................................14
1 极限电气特性.................................................................................................................14 2 推荐工作条件.................................................................................................................14 3 AC 特性..........................................................................................................................15 4 DC 特性..........................................................................................................................15
8022WS单键单输出LED调光触摸芯片IC规格书_V13_CH
数据手册DATASHEET8022WS单键单输出LED调光触摸芯片(Rev:1.3)一、概述8022WS触摸感应IC是为实现人体触摸界面而设计的集成电路。
可替代机械式轻触按键,实现防水防尘、密封隔离、坚固美观的操作界面。
使用该芯片可以实现LED 灯光的触摸开关控制和亮度调节。
方案所需的外围电路简单,操作方便。
确定好灵敏度选择电容,IC就可以自动克服由于环境温度、湿度、表面杂物等造成的各种干扰,避免由于电阻、电容误差造成的按键差异。
二、特性1、工作电压范围:2.2~5.5V。
2、待机功耗低:V DD=5V,待机电流14uA;V DD=3V,待机电流7uA。
3、工作温度:-25℃~85℃。
4、HBM ESD:±4KV以上。
5、按键响应时间:小于100ms。
6、灯光亮度可根据需要随意调节,选择范围宽,操作简单方便。
7、控制信号输出频率达32KHz,无频闪现象。
8、封装类型:SOP8。
9、内置稳压源、上电复位、低压复位、环境自适应算法等多种措施,可靠性高。
10、抗电源干扰及手机干扰特性好,近距离、多角度手机干扰情况下触摸响应灵敏度及可靠性不受影响。
11、高灵敏度(用户可自行调节)。
12、高防水性能。
13、应用电路简单,外围器件少,成本低。
14、按键感应盘大小:大于3mm*3mm,根据不同面板材质跟厚度而定,可以直接用大面积金属片。
15、按键感应盘间距:大于2mm。
16、按键感应盘形状:任意形状(必须保证与面板的接触面积)。
17、按键感应盘材料:PCB铜箔,金属片,平顶圆柱弹簧,导电橡胶,导电油墨,导电玻璃的ITO层等。
18、面板厚度:0~12mm,根据不同的面板材质有所不同。
19、面板材质:绝缘材料,如有机玻璃,普通玻璃,钢化玻璃,塑胶,木材,纸张,陶瓷,石材等。
20、芯片内置防水工作模式。
在防水模式下,无论面板上有溅水、漫水甚至完全被水淹没,按键都可以正确快速的响应。
不同于目前一般感应按键在面板溅水、漫水时容易误动作,积水后反应迟钝或误响应的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CP2680 数据手册
4 通道电容性触摸检测芯片 2 通道电容性触摸检测芯片
2013-7-1 CP2680 数来自手册 V1.31 概述
CP2680 是一款 4 通道/2 通道电容检测芯片,具有高效的 RF 噪音抑制功能,能够准确识别手 指触摸引起的微小电容变化,适用于用触摸按键替代机械按键等应用场合;具有实时的自校准和基 线跟踪算法,能有效避免因环境因素变化而引起按键误触等情况;可以通过 PWM 信号获得按键触 发状态;CP2680 DSP 中内置先进的检测算法,能够有效防止水膜引起的误触及抑制干扰噪音。
Confidential Page 3 of 15
2 引脚 2.1 引脚排列
CP2680 数据手册 V1.3
ST2_D ST1_D VCC
K1
8
7
6
5
CP2680SP8-A1
1
2
3
4
RSTN CS
GND
K2
图 1 CP2680SP8-A1 SOP8
ST2_T ST1_T VCC
K1
8
7
6
5
CP2680SP8-A2
目录 ......................................................................................................................................................... 3
4
12
5
13
CS
2
2
14
VCC
6
备注:
6
1
I: 数字信号输入引脚
O: 数字信号输出引脚
A: 模拟信号引脚
P: 电源
QFN16 引脚号
1
2
3
4
-
-
5 16 6, 9 10 11 12 13 14 15
I/O 类型
描述
通道 K1 触发状态直接输 O 出,开漏模式。无触摸时是
高阻,有触摸时为低电平。
通道 K2 触发状态直接输 O 出,开漏模式。无触摸时是
-
高阻态,触摸动作会使输出
转态。
O
指示 K1~K4 的按键状态, 开漏输出。
I 芯片复位,低有效。
G地
A 感应通道 4
A 感应通道 3
A 感应通道 2
A 感应通道 1
A
外接电容. (10nF 典型值), 用于调节按键灵敏度
P 电源
©Copyright 2011 by Chiphomer Technology Limited. Date: 22/01/2013
7 订货信息 ................................................................................................................................. 15
©Copyright 2011 by Chiphomer Technology Limited. Date: 22/01/2013
CP2680 数据手册 V1.3
5V
VCC K1
PWM
K2
ST1_D / ST1_T
K3
ST2_D / ST2_T
K4
ST3_D
ST4_D
CS
CP2680
GND
图 5 典型应用图
©Copyright 2011 by Chiphomer Technology Limited. Date: 22/01/2013
3 典型应用 ................................................................................................................................... 8 4 功能描述 ................................................................................................................................... 9
Confidential Page 6 of 15
G: 地
CP2680 数据手册 V1.3
©Copyright 2011 by Chiphomer Technology Limited. Date: 22/01/2013
Confidential Page 7 of 15
3 典型应用
5V
VCC
MCU
4.1 按键状态获取 .............................................................................................................................. 9 4.1.1 CP2680SP14-A1 和 CP2680QN-A1 按键状态获取 ................................................... 9 4.1.2 CP2680SP8-A1 按键状态获取 .................................................................................... 9 4.1.3 CP2680SP8-A2 按键状态获取 .................................................................................. 10
4.2 邻键抑制功能 ............................................................................................................................ 10
5 电气特性 ................................................................................................................................. 11 6 封装 ........................................................................................................................................ 12
©Copyright 2011 by Chiphomer Technology Limited. Date: 22/01/2013
Confidential Page 2 of 15
CP2680 数据手册 V1.3
目录
CP2680 数据手册 ......................................................................................................................... 1 1 概述 .......................................................................................................................................... 2
12 K2 11 K3 10 K4 9 GND
5678
图 4 CP2680QN-A1 QFN3x3-16L
©Copyright 2011 by Chiphomer Technology Limited. Date: 22/01/2013
Confidential Page 5 of 15
CP2680 数据手册 V1.3
K3
K4
GND GND
14 13 12 11 10
9
8
CP2680SP14-A1
1
2
3
4
5
6
7
VCC RSTN ST1_D ST2_D ST3_D ST4_D PWM
图 3 CP2680SP14-A1 SOP14
16 15 14 13
ST1_D 1 ST2_D 2 ST3_D 3 ST4_D 4
CP2680QN-A1
特性 支持 4 个/2 个感应按键 PWM 指示按键触发状态,能有效减少模拟输出口的电阻网络 支持 I/O 口开漏输出指示按键触发状态 高效的 RF 噪音抑制 能够防水 自动基线跟踪和自校准 简单的灵敏度调节,只需调整一个外部电容(Cs)即可 邻键抑制 低功耗 电源电压 2.8-5.5V 封装为 SOP8,SOP14,QFN3x3-16L
高阻,有触摸时为低电平。
通道 K3 触发状态直接输 O 出,开漏模式。无触摸时是
高阻,有触摸时为低电平。
通道 K4 触发状态直接输 O 出,开漏模式。无触摸时是
高阻,有触摸时为低电平。
通道 K1 触发状态锁存输
出,开漏模式。初始输出为
-
高阻态,触摸动作会使输出
转态。
通道 K2 触发状态锁存输
出,开漏模式。初始输出为
2 引脚 .......................................................................................................................................... 4