液压介质分类
(最新)液压传动基础知识

第二章液压传动基础液压油是液压传动系统中的传动介质,而且还对液压装置的机构、零件起着润滑、冷却和防锈作用。
液压介质的性能对液压系统的工作状态有很大影响,液压传动系统的压力、温度和流速在很大的范围内变化,因此液压油的质量优劣直接影响液压系统的工作性能。
因此,了解工作介质的种类、基本性质和主要力学特性,对于正确理解液压传动原理及其规律,从而正确使用液压系统都是非常必要的。
这些内容也是液压系统设计和计算的理论基础。
第一节液压传动的工作介质一、工作介质的物理特性(一)密度Vm (kg/m 3或kg/cm 3)(2-1)式中,m ──液体的质量(kg );V ──流体的容积(m 3或cm 3)。
流体的密度随温度和压力而变化,对于液压系统的矿物油,在一般使用温度与压力范围内,其密度变化很小,可近似认为不变。
其密度900kg/m 3。
空气的密度随温度和压力变化的规律符合气体状态方程。
在标准状态下空气的密度为12.93 kg/m 3。
(二)流体的粘性1.粘性的含义液体在外力作用下流动时,由于液体分子间的内聚力而产生一种阻碍液体分子之间进行相对运动的内摩擦力,液体的这种产生内摩擦力的性质称为液体的粘性。
由于液体具有粘性,当流体发生剪切变形时,流体内就产生阻滞变形的内摩擦力,由此可见,粘性表征了流体抵抗剪切变形的能力。
处于相对静止状态的流体中不存在剪切变形,因而也不存在变形的抵抗,只有当运动流体流层间发生相对运动时,流体对剪切变形的抵抗,也就是粘性才表现出来。
粘性所起的作用为阻滞流体内部的相互滑动,在任何情况下它都只能延缓滑动的过程而不能消除这种滑动。
2.牛顿内摩擦定律粘性的大小可用粘度来衡量,粘度是选择液压用流体的主要指标,是影响流动流体的重要物理性质。
图2-1 液体的粘性示意图当液体流动时,由于液体与固体壁面的附着力及流体本身的粘性使流体内各处的速度大小不等,以流体沿如图2-1所示的平行平板间的流动情况为例,设上平板以速度0u 向右运动,下平板固定不动。
液压系统工作介质使用规范

注:3 ACFTD 是一种作为校准物质的细试验粉末,目前已停止使用,被 ISO MTD 替代。
a 过滤比 茁ax(c))和 茁ax 的定义见 GB/T 20079。
2援8 采购 采购工作介质时应要求供应商提供产品合格证和产品性能检测报告。
2.9 其他要求 选用工作介质时,还要考虑工作介质与液压系统中的密封材料、金属材料、塑料、橡胶、过滤材
2.3 根据液压系统工作温度选择 应考虑液压系统所处的环境温度和工作介质工作时的温度,主要对工作介质的粘温性、热安定性
和液压系统的低温启动性提出要求。 2援3援1 不同液压系统工作温度所适应的工作介质品种见表 2。
表2
液压系统工作温度,益
<-10
-10~+80
>+80
工作介质 (液压油) 品种
HV、HS
对于不同液压泵类型和工作压力所推荐的工作介质粘度等级见表 5。
表5
液压泵类型
工作压力 MPa
<6.3 叶片泵
>6.3 <6.3 齿轮泵 >6.3
粘度等级(40 益)
工作温度 <50 益
工作温度 50~80 益
32,46
46,68
46,68
68,100
32,46
46,68
46,68
68,100
液压泵类型 径向柱塞泵 轴向柱塞泵
相适应的密封材料 丁腈橡胶、聚氨酯、聚四氟乙烯 丁腈橡胶、聚四氟乙烯、聚酰氨 氟橡胶、聚四氟乙烯、聚酰氨、硅橡胶 丁腈橡胶、聚酰氨、聚氨酯、聚四氟乙烯、氟橡胶、硅橡胶、氯 丁橡胶
当用户有特殊用途要求或国家标准和行业标准中无适用的工作介质时,建议用户与工作介质的供 应商联系。
液压传动所用的工作介质为液压油或其他合成液体.1doc

液压传动的工作原理:以油液为工作介质,通过密封容积的变化来传递运动,通过油液内部压力传递动力。
液压传动所用的工作介质为液压油或其他合成液体。
气压传动所用的工作介质为空气。
在液压和气压传动中,工作压力取决于负载,而与流入的流体多少无关。
活塞的运动的速度取决于进入液压缸的流量,而与流体压力大小无关。
液压与气压传动系统主要由几个部分组成:1、能源装置(把机械能转换成流体的压力能的装置)2、执行装置(把流体的压力能转换成机械能的装置)3、控制调节装置4、辅助装置5、传动介质矿物油型液压油的密度随温度的上升而有所减小,随压力的提高而稍有增加。
液体在外力作用下流动时,分子间的内聚力要阻止分子相对运动而产生的一种内摩擦力,这种现象叫做液体的粘性。
可压缩性:液体受压力作用而发生体积减小的特性。
液体的粘度随液体的压力和温度而变。
(压力增大时,粘度增大。
温度升高,粘度下降。
)(液压油)工作介质的选用原则:1、液压系统的工作条件2、液压系统的工作环境3、综合经济分析液体静止:指的是液体内部质点间没有相对运动,不呈现粘性而言,至于盛装液体的容器,不论它是静止的或是匀速、匀加速运动都没有关系。
压力的表示方法有两种,一种是以绝对真空作为基准所表示的压力,称为绝对压力。
另一种是以大气压力作为基准所表示的压力,称为相对压力。
大多数测压仪表所测得的压力都是相对压力,故相对压力也称表压力。
真空度:液体中某点处的绝对压力小于大气压,这时在这个点上的绝对压力比大气压小的那部分数值在密封容器内,施加于静止液体上的压力将以等值同时传到各点静压传递原理或称帕斯卡原理。
把既无粘性又不可压缩的液体称为理想液体。
单位时间内通过某通流截面的液体的体积称为流量。
在流动的液体中,因某点处的压力低于空气分离压而产生气泡的现象,称为空穴现象。
在液压系统中,由于某种原因,液体压力在一瞬间会突然升高,产生很高的压力峰值,这种现象称为液压冲击。
液压动力元件是把原动机输入的机械能转变成液压能输出的装置。
液压的基本知识

液压的基本知识液压技术是一种利用液体传递动力的技术,广泛应用于各个领域,如机械、航空、农业等。
液压系统由液压液、液压泵、液压阀、液压缸等组成。
本文将介绍液压的基本知识。
一、液压液液压液是液压系统中传递动力的介质,常见的液压液有矿物油、合成油和水基液压液。
液压液应具备良好的润滑性、稳定性和防腐性。
二、液压泵液压泵是将机械能转化为液体动能的装置,将液体从低压区域抽入高压区域。
常见的液压泵有齿轮泵、柱塞泵和螺杆泵等。
液压泵的选择应根据液压系统的要求和工作条件来确定。
三、液压阀液压阀是控制液压系统中液体流动的装置,常见的液压阀有溢流阀、节流阀和换向阀等。
液压阀的作用是控制液体的压力、流量和方向,从而实现液压系统的各种功能。
四、液压缸液压缸是液压系统中的执行器,将液压能转化为机械能。
液压缸由缸筒、活塞和密封装置等组成,通过液压液的作用,产生线性运动。
液压缸广泛应用于起重机械、挖掘机和农业机械等领域。
液压系统的工作原理是利用液体的不可压缩性来传递力和能量。
当液压泵工作时,液压液被抽入液压泵的吸入管道,然后被压入液压系统。
液压液经过液压阀的控制,进入液压缸,使其产生运动。
液压液在液压缸中的压力和流量大小由液压阀控制。
液压系统具有许多优点,如传动效率高、反应灵敏、可靠性高等。
液压系统的缺点是液压液易受污染和泄漏的影响,需要定期维护和保养。
总结起来,液压的基本知识包括液压液、液压泵、液压阀和液压缸。
液压系统的工作原理是利用液体的不可压缩性来传递力和能量。
液压系统具有许多优点,但也需要定期维护和保养。
液压技术的应用广泛,为各个领域的发展提供了强大的支持。
液压流体力学基础

学习要点: 1、液压油(流体)的基本性质。 2、流体静力学基本规律。 3、流体动力学基本概念。 4、流体流量连续方程、流体能量平衡方程 (伯努利方程)方程、动量方程。 5、小孔及缝隙流量计算。 6、压力损失、液压冲击与空穴现象。
第一节 液压系统的工作介质
液压工作介质
第一节 液压系统的工作介质
第一节 液压系统的工作介质
二、液压工作介质的主要性能(续)
4、液体的热容量、比热
热容量: 液体与外界发生热量交换而使流体的温度变化,
热量交换对温度的变化率称为流体的热容量。 比 热: 单位质量液体的热容量成为比热。
第一节 液压系统的工作介质
5、液体的含气量、空气分离压和汽化压
◎ 含气量: 液体中所含空气的体积百分比数量叫含气量。两种形式:
温度高时选用粘度较高的液压油,减少容积损失。
第一节 液压系统的工作介质
5、液压油的污染与保养
液压油使用一段时间后会受到污染,常使阀内的阀芯 卡死,并使油封加速磨耗及液压缸内壁磨损。造成液压油 污染的原因有三方面:
1)污染: a 外部侵入的污物;b 外部生成的不纯物。
2)恶化: 液压油的恶化速度与含水量、气泡、压力、油温、金属
※ 液体的粘度会随温度、压力变化而变化。 液体的粘度对温度变化十分敏感,对液压系统的性能
有明显影响。温度升高,粘度将显著下降,造成泄漏、磨 损增加、效率降低等问题;温度下降,粘度增加,造成流 动困难及泵转动不易等问题,液压系统工作时发热较严重。 所以,一般控制系统中均要设计冷却装置,尽量保持油液 工作温度的稳定。 ※ 液体承受的压力增大,液体内聚力增大,粘度也随之增 大,但变化幅度不大,低压时一般不考虑。
二、液压工作介质的主要性能(续)
液压介质

_主页_资源数据库◆::液压数据库::油液的清洁度绝对洁净的油液的不存在的,所谓清洁度(污染度)是指油液中污染物的含量。
由于污染物中包含各种尺寸颗粒,只规定污染物的总量是不够的,还需要进一步规定各种尺寸颗粒的数量。
国际标准ISO/DIS4406规定,用两种尺寸的颗粒数来确定油液的清洁度。
标准中油液清洁度等级用两个标号来表示。
前一标号表示每100cm3油液中大于5µm颗粒的数量,后一标号则表示大于15µm颗粒的数量。
按上述标准要求油液清洁度时还需配以适当的检查方法和仪器。
目前主要有两种检查方法。
一种是人工计数法,另一种是光电自动计数法。
后一方法是使油液通过一段透明管道,根据污染物的遮光效应采用光电管计数,即可自动给出各种尺寸污染物的数量。
一、油液污染的控制及管理为了控制液压系统中油液的污染度(清洁度),必须做到以下几点:1)液压系统(包括油箱)密封性好,并配有适当的过滤系统,使系统在运行过程中油液内污染物不超过规定的数量;2)系统装配好以后按有关规定先冲洗系统,冲洗完毕后更换油液及滤油器滤芯;3)系统运行过程中应经常检查滤油器并及时更换滤芯。
较完善的滤油器上有压差指示及堵塞报警装置,则说明系统有故障;4)系统运行过程中要注意油温和油箱油位。
油温过高将加速油液老化。
如果发现油温不正常,应检查冷却系统是否有故障。
油位过低会使吸油困难并引起噪声和气蚀。
油位降低过快说明系统中有不正常的泄漏;及时更换油液。
一般规定第一次换油在启动后三个月或500小时后进行。
以后每2000小时或一年换油一次。
换油时,新油必须经过滤后才能加入。
液压介质的污染种类及原因不同污染度标准对照表ISO/DIS4406固体污染物颗粒数量等级标准代号NAS1638污染等级标准(100mL中的颗粒数)抗磨液压油质量指标注:1.尾注号K表示对镀银部件具有良好的抗腐蚀性能。
2.YB-N46K原名为30号抗银液压油。
3.表中质量指标参照兰州炼油厂产品样本等资料编制。
液压介质的分类

液压介质的分类:液压油类产品分组:液压传动系统所用工作介质,根据其使用特性和化学组成的不同分成若干组,其组别名称和组别代号见下表:组别名称代号组别名称代号普通液压油A水包油液压液RA抗磨液压油B油包水液压液RB低凝液压油C水-乙二醇液压液RC高粘度指数液压油D磷酸酯液压液RD专用液压油-其他液压液-液压油类产品的代号类号组号牌号尾注号Y B N46K液压介质分类:普通液压油抗磨液压油低凝液压油矿油型液压油高粘度指数液压油专用液压油机械油汽轮机油液压介质水包油液压液含水型油包水液压液水-乙二醇液压液抗燃液高水基液压液磷酸酯液压液合成型脂肪酸酯液压液卤化物液压液液压介质的ISO分类法:国际标准化组织(ISO)将液压介质分为矿油型液压油和抗燃型液压油两大类。
各类液压介质的组别代号以及和我国组别代号对照见下表:抗燃型液压液液压油性质: 液压油密度:介质种类 矿油型液压油 水包油乳化液 油包水乳化液 水-乙二醇液压液 脂肪酸酯液压液 高水基液压液 密度850-960 990-1000 910-960 1030-1080 1120-1200 1000液压油的密度与温度的关系为:式中:、o--温度为t 和t o 时的液体密度。
当t o =20oC 时,ß和o 的关系见下表:o kg/m 3700 750 800 850 900 950 999ß ×10-3kg/(m 3.oC)890 837 765 699 633 567 515液压油的粘度:液压油的粘度常用的油动力粘度µ、运动粘度v 和恩氏粘度ºE。
恩氏粘度ºE 与运动粘度v 之间的换算为:当ºE>3.2时当1.35<=ºE<=3.2时粘度与温度的关系:对于液压系统常用的矿油型液压油,当40o C的运动粘度小于135mm2/s,温度在30-150o C范围内,可用下列公式计算不同温度时的液压油的运动粘度:式中:v40--温度为40o C时液压油的运动粘度n--指数,见下表:ºE40 1.27 1.77 2.23 2.65 4.46 6.388.331011.75v40 3.49.314183348637689n 1.39 1.59 1.72 1.79 1.99 2.13 2.24 2.32 2.42ºE4013.915.717.827.337.948.458.870.4101.5v40105119135207288368447535771n 2.49 2.52 2.56 2.76 2.86 2.96 3.06 3.10 3.17。
液压介质

(2)滤除系统产生的杂质:应在系统的相应部位安装适当精度的过滤器,
并且要定期检查、清洗或更换滤芯。
(3)控制液压介质的工作温度:液压介质的工作温度过高会加速其氧化
变质,产生各种生成物,缩短它的使用期限。所以要限制油液的最高使用温度。
(4)定期检查更换液压介质:应根据液压设备使用说明书的要求和维护
保养规程的有关规定,定期检查更换液压介质。更换液压介质时要清洗油箱, 冲洗系统管道及液压元件。
3、工作介质污染的控制 (1)减少外来的污染:液压传动系统的管路和油箱等在装配前必须严格清
洗,用机械的方法除去残渣和表面氧化物,然后进行酸洗。液压传动系统在组装 后要进行全面清洗,最好用系统工作时使用的油液清洗,特别是液压伺服系统最 好要经过几次清洗来保证清洁。油箱通气孔要加空气滤清器,给油箱加油要用滤 油车,对外露件应装防尘密封,并经常检查,定期更换。液压传动系统的维修、 液压元件的更换、拆卸应在无尘区进行。
通流截面 垂直于液体流动方向的截面称为通 流截面,也叫过流截面,符号:A,单位:m2。 流 量 单位时间内流过某通流截面的液体体积 称为流量(体积流量),符号:q,单位:m3/s。 平均流速 流过某通流截面的流量与通流截面 积的比值 。
v q/ A
2.3.1
连续性方程
连续性方程是质量守恒定律在流体力学中的一种具体表现 形式 。 如图所示的液体在任意形状 的管道中作稳定流动,任取1、2 个不同的通流截面。根据质量守 恒定律,单位时间内流过这两个 截面的液体质量是相等的,即
2.3
液体动力学
液体动力学的主要内容是研究液体流动时速度和压力的变 化规律。涉及到三个基本方程:流量连续性方程、伯努利方程和 动量方程。前两个方程反映压力、流速与流量之间的关系,后一 个方程用来解决流动液体与固体壁面间的作用力问题。
液压系统(完整)介绍

液压系统(完整)介绍一、液压系统的基本概念液压系统,是一种利用液体传递压力和能量的动力传输系统。
它主要由液压泵、液压缸(或液压马达)、控制阀、油箱、油管等部件组成。
液压系统广泛应用于各类机械设备中,如挖掘机、起重机、汽车制动系统等,其优势在于结构紧凑、输出力大、操作简便。
二、液压系统的工作原理液压系统的工作原理基于帕斯卡原理,即在密闭容器内,液体受到的压力能够大小不变地向各个方向传递。
具体来说,液压系统的工作过程如下:1. 液压泵:将机械能转化为液体的压力能,为系统提供动力源。
2. 液压缸(或液压马达):将液体的压力能转化为机械能,实现直线或旋转运动。
3. 控制阀:调节液体流动方向、压力和流量,实现对液压系统的控制。
4. 油箱:储存液压油,为系统提供油源。
5. 油管:连接各液压部件,传递压力和能量。
三、液压系统的分类1. 水基液压系统:以水作为工作介质,具有环保、成本低等优点,但易腐蚀金属、密封性能较差。
4. 气液联动液压系统:以气体和液体为工作介质,结合了气压传动和液压传动的优点,适用于特殊场合。
四、液压系统的关键部件详解1. 液压泵:作为液压系统的“心脏”,液压泵负责将低压油转化为高压油,为整个系统提供动力。
常见的液压泵有齿轮泵、叶片泵和柱塞泵等。
每种泵都有其独特的特点和适用范围,选择合适的液压泵对系统的性能至关重要。
2. 液压缸:液压缸是系统的执行元件,它将液压油的压力能转化为机械能,实现直线往复运动或推送力量。
根据结构不同,液压缸可分为活塞式、柱塞式和膜片式等。
3. 控制阀:控制阀是液压系统的“大脑”,它负责调节和分配液压油流动的方向、压力和流量。
常用的控制阀包括方向阀、压力阀和流量阀等,它们共同确保系统按照预定的要求稳定运行。
4. 滤清器:液压油中的杂质会对系统造成损害,滤清器的作用就是过滤液压油中的杂质,保护系统的正常运行。
合理选择和使用滤清器,对延长液压系统寿命具有重要意义。
五、液压系统的优势与应用1. 优势:力量大:液压系统能够实现大范围的力矩放大,轻松完成重物搬运等任务。
液压传动基础知识—液压传动的工作介质

2.1 液压传动的工作介质
三、液压油的污染与控制
➢ 液压油使用一段时间后会受到污染,常使阀内的阀芯卡死,并 使油封加速磨耗及液压缸内壁磨损。造成液压油污染的原因有 以下三个方面:
01 污染 1)外部浸入的污物 2)外部生成的不纯物
02 恶化
液压油的恶化速度与含水量、气泡、压力、油温、金属粉末等 有关,其中以温度影响最大,故液压设备运转时,须特别注意油温 之变化。
01 温度
温度上升,粘度降低,造成泄漏、磨损增加、效率降低
1
等问题;温度下降,粘度增加,造成流动困难及泵转动不易
等问题。
02 压力
当液体所受的压力增加时,其分子间的距离将减小,于是
1
内摩擦力将增加,即粘度也将随之增大。在中、低压液压系统 中由于压力变化很小,因而通常压力对粘度的影响忽略不计。
2.1 液压传动的工作介质
2.1 液压传动的工作介质
第2章 液压传动基础知识 1 液压传动的工作介质
教学 内容
2 液压传动的主要参数 3 液体流动时的能量 4 液体流经小孔和间隙时的流量 5 液压冲击和空穴现象
2.1 液压传动的工作介质
➢ 液压系统中完全靠液压油把能量从液压泵经管路、控制阀传递 到执行元件,根据统计,许多液压设备的故障,皆起因于液压 油的使用不当,故应对液压油要有充分的了解。
01
液压油的用途:
传递运动与动力;润滑;密封;冷却
液压油的种类:
02
石油基液压油、难燃型液压液、高
水基液和水介质等
2.1 液压传动的工作介质
一、液压油的主要性质
01 1、粘性
02 2、可压缩性
1、粘性
粘性 液体分子之间存在内聚力,液体在外力作用下流动时,液体分子 间的相对运动导致内摩擦力的产生,液体流动时具有内摩擦力的性质 被称为粘性。
液压基本知识

液压基本知识一、液压的定义液压是利用液体(通常是油)传递能量的一种技术。
它通过在管道中流动的压力,将能量从一个点传递到另一个点。
液压系统由许多不同的部件组成,包括泵、阀门、缸和马达等。
二、液压系统的组成1. 液压泵:将机械能转换为液体动能的设备;2. 液压阀门:控制和调节液体流动方向和流量大小;3. 液压缸:将液体动能转换为机械能,实现线性运动;4. 液压马达:将液体动能转换为机械能,实现旋转运动;5. 液压油箱:存储和冷却工作介质;6. 连接管路:连接各个部件,形成完整的系统。
三、液体介质1. 润滑油:用于减少摩擦,并保护各个部件不受磨损;2. 工作油:在系统中流动并传递能量;3. 密封油:用于密封各个部件之间的间隙,阻止工作油泄漏。
四、液压传动的优点1. 传动效率高:液压传动可以轻松实现高速、大功率的传动;2. 传递力矩大:液压系统可以提供高扭矩;3. 灵活性好:液压系统可以根据需要调整流量和压力;4. 控制精度高:液压系统可实现精确的位置和速度控制;5. 维护简单:液压系统由少量部件组成,易于维护。
五、常见故障及处理方法1. 漏油:检查密封件是否磨损或老化,并及时更换;2. 压力不稳定:检查泵是否故障或阀门是否堵塞,并进行相应的维修或更换;3. 液体温度过高:检查油箱是否有足够的冷却面积,并清洗散热器。
六、安全注意事项1. 液压系统中的油温可能会很高,因此在维修和保养时要注意避免烫伤;2. 在操作过程中,要注意不要将手指或其他物品放入运动部件中;3. 在加油或排放工作油时,要避免油液喷溅到皮肤或眼睛中。
七、液压系统的应用领域液压系统广泛应用于各种机械设备中,如工程机械、冶金设备、航空航天设备、汽车等。
它们在工业生产过程中起到了至关重要的作用,提高了生产效率和质量。
液压传动的工作介质

• 一、黏性 • 1定义:液体分子之间存在内聚力,液体在外力作用下流动时, 液体分子之间的相对运动导致内摩擦力的产生,液体流动时具 有内摩擦力的性质称为黏性。 • 2特点: 静止液体丌呈现黏性。 在流动截面上各点的流速丌同。 3作用: 阻滞流体内部相互滑动; 4黏度: 以40度时运动黏度的中心值来划分的 例:N32=32mm²/s 5影响因素: 温度:温度升高→黏度下降 压力:压力增大→分子间距减小→内摩擦力增大→黏度增加 二、可压缩性 定义:液体受到压力后容积发生变化的性质称为液体的可压缩 性。
液压油的主要性质
二、液压传动介质的选用 选用液压传动介质的种类要考虑设备的性能、使用环境等 综合因素。例如,一般机械可采用普通液压油;设备在高 温环境下,就应选用抗燃性能好的介质;在高压、高速的 工程机械上,可选用抗磨液压油;当要求低温时流动性好, 则可用加了降凝剂的低凝液压油。液压油黏度的选用应充 分考虑环境温度、工作压力、运动速度等要求。例如:温 度高时可以选用高黏度油,温度低时可用低黏度油;压力 越高,选用的黏度越高;执行元件的速度越高,选用的黏 度越低。
三、工作介质的污染和控制
• • • • • • 一、正确使用和防止液压油的污染; 二、控制油液的污染常用的措施; 减少外来的污染; 滤除系统产生的杂质;(设置过滤器。) 控制液压油液的工作温度;(控制油温。) 定期检查更换液压油液;(定期抽检、定期更换。)
2.1液压传动的工作介质
要求:了解液压系统中工作介质的主要性质极其 选用和污染控制。
14G电维5班 杜珂
一、工作介质的分类
一、定义; 工作介质是液压系统丌可缺少的组成部分,主要的作用是 完成能量的转换和传递,除此之外,还有散热、减少摩擦 和磨损、沉淀和分离丌可溶污物的作用。 二、液压油; 用的工作介质有石油基液压油、难燃型液压油、高水基 液和水介质(海水、淡水)等,一般称为液压油。
1液压油_A

βe值越大表示液体越不可压缩 。 液压油的体 值越大表示液体越不可压缩。 值越大表示液体越不可压缩 积弹性模量和温度、 积弹性模量和温度、压力以及含在油液中的空气 有关。一般在分析时取βe=700--1000MPa --1000MPa。 有关。一般在分析时取 =700--1000MPa。
2
封闭在容器内的液体在外力作用下的情 一个弹簧:外力增大,体积减小; 况类似 一个弹簧:外力增大,体积减小; 外力减小,体积增大。 外力减小,体积增大。
6
(3 )相对粘度
相对粘度又称条件粘度, 相对粘度又称条件粘度,它是按一定的测量条件 制定的。根据测量的方法不同,可分为恩氏粘度° 制定的。根据测量的方法不同,可分为恩氏粘度°E、 赛氏粘度SSU、 雷氏粘度Re 等 赛氏粘度 SSU、 雷氏粘度 Re等 。 我国和德国等国家 采用恩氏粘度。 采用恩氏粘度。 恩氏粘度用恩氏粘度计测量。即将200ml温度 恩氏粘度用恩氏粘度计测量。即将200ml温度 的被测液体注入粘度计的容器内, 为t℃的被测液体注入粘度计的容器内,由其下部直 径为2.8mm的小孔流出 测出液体流尽所需时间t1, 的小孔流出, 径为2.8mm的小孔流出,测出液体流尽所需时间t1, 再测出200ml温度为 ℃ 温度为20 再测出200ml温度为20℃的蒸馏水在同一粘度计中 流尽的时间t2, 流尽的时间t2,这两个时间的比值即为被测液体在 t℃时的恩氏粘度,即 时的恩氏粘度, ° E = t1 / t 2
o
5
(2) 运动粘度ν 运动粘度ν
液体的动力粘度µ与其密度ρ的比值, 液体的动力粘度µ与其密度ρ的比值,称为液体的 运动粘度ν 运动粘度ν,即 ν=µ/ρ 运动粘度的单位为m /s。 运动粘度的单位为m2 /s。 1 m2 /s=104 St(斯)=106 cSt(厘斯) St( cSt(厘斯) 运动粘度没有物理意义来说, 运动粘度没有物理意义来说,但同类型的液 体具有相同的运动黏度。 体具有相同的运动黏度。 液体的粘度是指40℃时运动粘度。 液体的粘度是指40℃时运动粘度。 例如,牌号为L HL22的普通液压油 的普通液压油。 例如,牌号为L—HL22的普通液压油。表示 40℃时运动粘度为22 /s( 表示润滑剂类, 在40℃时运动粘度为22 mm2/s(L表示润滑剂类, H表示液压油,L表示防锈抗氧型)。 表示液压油, 表示防锈抗氧型)。
液压系统的分类

液压系统的分类液压系统是一种利用液体传递能量的控制系统,广泛应用于各个领域,如工业、农业、航空航天等。
根据其应用领域和工作原理的不同,液压系统可以分为多个分类。
本文将从不同的角度对液压系统进行分类,并介绍每个分类的特点和应用。
一、按工作原理分类1.静压液压系统:静压液压系统是利用静态液压力来实现工作的液压系统。
它通过改变液体的静态压力来实现工作,常见的应用有液压机、液压千斤顶等。
静压液压系统具有结构简单、工作可靠等优点,但其工作速度较慢,适用于对速度要求不高的场合。
2.动压液压系统:动压液压系统是利用动态液压力来实现工作的液压系统。
它通过液压泵产生的动态压力来驱动液压缸或液压马达等执行元件工作。
动压液压系统具有工作速度快、功率大等优点,广泛应用于各个领域。
二、按控制方式分类1.开环液压系统:开环液压系统是指液压系统的工作状态不能自动调节,需要通过人工干预才能实现工作目标。
开环液压系统通常由液压泵、执行元件和控制阀等组成,常见的应用有液压升降台、液压夹紧装置等。
2.闭环液压系统:闭环液压系统是指液压系统的工作状态能够自动调节,通过传感器对系统的工作状态进行监测和反馈,实现对系统的闭环控制。
闭环液压系统通常由液压泵、执行元件、控制阀和传感器等组成,常见的应用有液压机床、液压伺服系统等。
三、按液体介质分类1.水液压系统:水液压系统是指利用水作为液体介质传递能量的液压系统。
水液压系统具有介质廉价、可再生等优点,广泛应用于农业灌溉、水力发电等领域。
2.油液压系统:油液压系统是指利用液体油作为液体介质传递能量的液压系统。
油液压系统具有介质稳定、润滑性好等优点,广泛应用于工业生产、航空航天等领域。
四、按系统结构分类1.单工液压系统:单工液压系统是指只有一个液压执行元件的液压系统。
单工液压系统通常由液压泵、液压缸或液压马达等组成,常见的应用有液压千斤顶、液压门禁系统等。
2.双工液压系统:双工液压系统是指有两个相对工作的液压执行元件的液压系统。
液压系统工作介质的分类

液压系统工作介质的分类液压系统工作介质的分类液压系统是利用液体传递动力的一种机械传动系统。
因此,在液压系统中,工作介质扮演着至关重要的角色。
工作介质的选择和质量将直接影响液压系统的性能和可靠性。
在液压系统中,根据工作介质的性质和用途,可以将工作介质分为多种类型。
下面,我们将详细介绍这些类型。
液压油液压油是液压系统中最常见的一种工作介质。
液压油是一种以矿物油、合成油或其它高分子化合物为基础的液体,它具有以下特点:粘度适宜、氧化稳定性好、含气性小、泡沫性能好、不会腐蚀系统、对密封件没有不良影响等。
因此,液压油被广泛应用于各种液压系统中,包括机床、冶金设备、建筑机械、船舶设备、航空航天设备、矿井设备等。
液压水除了液压油,液压系统也可以使用液压水作为工作介质。
液压水是一种以纯净水为基础的液体,它具有以下特征:压力强、韧性好、流动性好、耐蚀性强、温度稳定并且非常环保。
因此,液压水被广泛应用于高温、高压和高危险场合,例如钢铁冶金、核工业、火山地震等。
液态氮液态氮也是液压系统中常用的一种工作介质。
液态氮是一种冷却介质,在现代液压系统中广泛应用。
液态氮的优点是可以在极低的温度下使用,并且对环境不产生污染。
由于液态氮低温、低压、密度小,因此需要采取一些特殊的措施和设备来确保液态氮在液压系统中的安全性和可靠性。
液体金属液体金属是一种新型的液态介质,具有优异的热传导性、电导性和流动性。
液体金属可以在高温、高压、高粘度等恶劣环境下工作,因此被广泛应用于导电电缆、夹具工业、模具工业等领域。
由于液态金属具有导电性和磁性,因此在应用时需要特别注意安全性问题。
其他液体除了上述几种工作介质之外,液压系统中还有其他液体,例如:甘油、乳化液、酒精和其它有机溶剂等。
这些液体的使用与工作条件、材料、密封件和系统设计密切相关,需要注意液体的稳定性、使用寿命以及状态的变化等问题。
总之,在使用液压系统时,要合理选择和正确使用工作介质,确保液压系统的性能和可靠性。
液压介质

液压介质
液压介质的分类:
液压油类产品分组:
液压传动系统所用工作介质,根据其使用特性和化学组成的不同分成若干组,其组别名称和组别代号见下表:
液压油类产品的代号
液压介质分类:
液压介质的ISO分类法:
国际标准化组织(ISO)将液压介质分为矿油型液压油和抗燃型液压油两大类。
各类液压介质的组别代号以及和我国组别代号对照见下表:
液压油性质: 液压油密度:
液压油的密度与温度的关系为:
式中:
、
o--温度为t 和to 时的液体密度。
当to=20o
C 时,ß和
o 的关
系见下表: o kg/m
液压油的粘度:
液压油的粘度常用的油动力粘度µ、运动粘度v 和恩氏粘度ºE。
恩氏粘度ºE 与运动粘度v 之间的换算为:
当ºE>3.2时
当1.35<=ºE<=3.2时
恩氏粘度ºE 与运动粘度v 之间的换算可在此查出 粘度与温度的关系:
对于液压系统常用的矿油型液压油,当40o C 的运动粘度小于135mm 2
/s ,温度在30-150o
C 范围内,可用下列公式计算不同温度时的液压油的运动粘度:
式中:v 40--温度为40o
C 时液压油的运动粘度
n--指数,见下表:。
液压与气压传动 02液压传动基础知识

通流截面:在流束中与所有流线正交的截面。在液压传动 系统中,液体在管道中流动时,垂直于流动方向的截面即 为通流截面,也称为过流断面。
3、流量和平均流速
流量—单位时间内通过某通流截面的液体的体积。 单位:m3/s,实际使用中常用L/min或mL/s 流量的计算:
对于微小流束,可以认为通流截面上各点的流速是相等的,所以通 过此微小截面的流量为
三、伯努利方程
是能量守恒定律在流动液体中的表现形式。 推导过程略 1、理想液体的伯努利方程为
p1 u1 p2 u2 z1 z2 g 2 g g 2g
2、实际液体的伯努利方程
2
2
p1
z1 g
1v1
2
2
p2
z2 g
2v2
2
2
hw g
式中α为动能修正系数,层流取2,紊流取1 hw为能量损耗
du Ft A dy
粘性系数 或粘度
动力粘度(绝对粘度)μ
牛顿内摩擦定律 du Ft A dy 两边同除以A,得
Ft du A dy
式中
μ:称为动力粘度系数(Pa· s) τ:单位面积上的摩擦力(即剪切应力) 速度梯度,即液层间速度对液层距离的变化率
物理意义 : 当速度梯度为 1 时接触液层间单位面积上
石油型 液 压 油 乳化型 合成型
最常用的液压系统工作介质
水包油乳化液 油包水乳化液 水-乙二醇液 磷酸酯液
工作介质的污染是液压系统发生故障的主要原因。 固体 颗粒
最普遍 危害最大
1.污染物质 根据物体形 态
液体 气体
从外界侵入的水 空气
已被污染的新油
液压装置的工作原理

液压装置的工作原理
液压装置的工作原理是利用液体的压力传递和放大力量的原理进行工作的。
液压装置主要由液体介质、液压泵、液压缸和液压控制阀等组成。
液压装置的工作原理如下:
1. 液体介质:液压装置使用的液体通常为油,称为液体介质。
液体具有不可压缩性和良好的传导性能,能够有效地传递压力。
2. 液压泵:液压泵作为液压系统的动力源,将机械能转化为液体的压力能。
当液压泵工作时,泵的活塞或齿轮运动可产生液体流动,增加液体的压力。
3. 液压缸:液压装置中的液压缸是将液体的压力能转化为机械能的执行元件。
液压缸通常由活塞、缸体和密封件等组成。
当液体从液压泵进入液压缸时,液体的压力作用于活塞上,活塞会受到压力的推动而产生线性运动。
4. 液压控制阀:液压装置通过控制液压系统中的液压控制阀来调节液体的流动和压力。
液压控制阀通常包括方向控制阀、流量控制阀和压力控制阀等。
通过控制液压控制阀的开闭,可以实现液压系统中液体的流向控制、流量控制和压力控制。
液压装置的工作原理基于帕斯卡定律,即在封闭的液体系统中,液体的压力传递是均匀的。
通过液压泵提供的压力,液体在液压系统中传递,并通过液压控制阀的控制,使液体产生力量传
递和动力执行的功能。
液压装置广泛应用于各个行业,如工程机械、航空航天、汽车制造等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液压介质分类
普通液压油
专用液压油
1、石油基液压油
抗磨液压油
高粘度指数液压油
石油基液压油是以石油地精炼物未基础,加入抗氧化或抗磨剂等混合而成的液压油,不同性能、不同品种、不同精度则加入不同的添加剂。
合成液压油——磷酸酯液压油
2、难燃液压油水——乙二醇液压油
含水液压油油包税乳化液
乳化液
水包油乳化油
1)石油基液压油这种液压油是以石油的精炼物为基础,加入各种为改进性能的添加剂而成。
添加剂有抗氧添加剂、油性添加剂、抗磨添加剂等。
2)磷酸酯液压油是难燃液压油之一。
它的使用范围宽,可达-54~135℃。
抗燃性好,氧化安定性和润滑性都很好。
缺点是与多种密封材料的相容性很差,有一定的毒性。
3)水—乙二醇液压油这种液体由水、乙二醇和添加剂组成,而蒸馏水占35%~55%,因而抗燃性好。
这种液体的凝固点低,达-50℃,粘度指数高(130~170),为牛顿流体。
缺点是能使油漆涂料变软。
但对一般密封材料无影响。
4)乳化液乳化液属抗燃液压油,它由水、基础油和各种添加剂组成。
分水包油乳化液和油包水乳化液,前者含水量达90%~95%,后者含水量大40%。