一元一次方程应用题七种类型
一元一次方程应用题归类汇集(含答案)

一元一次方程应用题归类聚集〔含答案〕一、一般行程问题〔相遇与追击问题〕1.行程问题中的三个根本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题根本类型〔1〕相遇问题:快行距+慢行距=原距〔2〕追及问题:快行距-慢行距=原距二、环行跑道与时钟问题:三、行船与飞机飞行问题:航行问题:顺水〔风〕速度=静水〔风〕速度+水流〔风〕速度逆水〔风〕速度=静水〔风〕速度-水流〔风〕速度水流速度=〔顺水速度-逆水速度〕÷2四、工程问题1.工程问题中的三个量及其关系为:工作总量=工作效率×工作时间2.经常在题目中未给出工作总量时,设工作总量为单位1。
即完成某项任务的各工作量的和=总工作量=1.一元一次方程应用题型1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?设慢车开出a小时后与快车相遇50a+75〔a-1〕=27550a+75a-75=275125a=350a=2.8小时2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲乙两地间隔。
设原定时间为a小时45分钟=3/4小时根据题意40a=40×3+〔40-10〕×〔a-3+3/4〕40a=120+30a-67.510a=52.5a=5.25=5又1/4小时=21/4小时所以甲乙间隔40×21/4=210千米3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的 2倍,从甲队调16人到乙队,那么甲队剩下的人数比乙队的人数的一半少3人,求甲乙两队原来的人数?解:设乙队原来有a人,甲队有2a人那么根据题意2a-16=1/2×〔a+16〕-34a-32=a+16-63a=42a=14那么乙队原来有14人,甲队原来有14×2=28人如今乙队有14+16=30人,甲队有28-16=12人4、某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份的月增长率。
一元一次方程应用题8种类型题目及答案

一元一次方程应用题8种类型题目及答案一、问题类型1一辆汽车以每小时60公里的速度行驶,开了8小时后,行驶了多远?答案:汽车行驶的距离 = 60 公里/小时 * 8 小时 = 480 公里二、问题类型2某种蔬菜每斤售价5元,某人准备买3斤,需要支付多少钱?答案:购买3斤蔬菜需要支付的钱数 = 5元/斤 * 3斤 = 15元三、问题类型3一个长方形的长是2厘米,宽是3厘米,求其面积。
答案:长方形的面积 = 长 * 宽 = 2厘米 * 3厘米 = 6平方厘米四、问题类型4甲乙两人总共抓了123只昆虫,其中甲抓了30只,求乙抓了多少只。
答案:乙抓的昆虫数 = 总数 - 甲抓的数 = 123只 - 30只 = 93只五、问题类型5一家商店原价售货价格为120元,现进行7折优惠,优惠后的价格是多少?答案:折扣后的价格 = 原价 * 折扣 = 120元 * 0.7 = 84元六、问题类型6一个数的三分之一加上它自身的一半等于10,求这个数。
答案:设这个数为x,则 1/3x + 1/2x = 10 化简得到5/6x = 10,x = 10 * 6 / 5 = 12七、问题类型7甲乙两人合作种了一块地,甲种了2小时,乙种了3小时,已知甲比乙每小时多种1/3亩,求地的面积。
答案:设乙每小时种的亩数为x,则甲每小时种的亩数为 x + 1/3 根据时间和亩数的乘积相等,得到方程 2(x + 1/3) + 3x = 地的面积化简得到 2x + 2/3 + 3x = 地的面积化简得 5x + 2/3 = 地的面积八、问题类型8A、B两地相距360公里,两车分别从A、B地同时出发相向而行,A车速度每小时40公里,B车速度每小时60公里,相向而行几小时可以相遇?答案:将两车的速度相加,得到每小时的相对速度为 40公里 + 60公里 = 100公里根据速度=路程/时间,得到时间为距离 / 速度 = 360公里 / 100公里/小时 = 3.6小时以上就是一元一次方程应用题8种类型题目及答案。
一元一次方程应用题8种类型例题

一元一次方程应用题8种类型例题
类型一:物品价格
1.某商店连续3天在降价促销,第一天一种水果的价格为x元,第二
天降价10%,第三天再降价20%,最终第三天的价格为16元,求第一天水
果的原价。
类型二:工作效率
2.甲工人单独工作需要5小时完成某项工作,乙工人单独工作需要7
小时完成同样的工作,如果两人一起工作,需要2.5小时完成,请问他们一起
工作的效率是单独工作的几倍?
类型三:平均分配
3.分别有甲、乙两个人一起捕鱼,如果甲一个人用4小时捕到12条鱼,乙一个人用3小时捕到9条鱼,现在如果两人分配捕到的鱼,每个人平均分
得多少条鱼?
类型四:钱币问题
4.小明有一些1元、2元、5元三种面值的硬币共30枚,共计80元,且5元硬币的数量是1元硬币数量的两倍,求1元硬币的数量。
类型五:行程问题
5.一辆自行车骑行4小时可以到达甲地,同样的路程乘汽车只需要1
小时,如果自行车的速度是每小时10公里,汽车的速度是每小时40公里,
问这段路程的长度是多少?
类型六:温度问题
6.有一加热器每小时的加热量是50瓦,现在将加热时间缩短为原来的
2/3,加热器每小时的加热量增加到了75瓦,求原来的加热器每小时的加热
时间。
类型七:混合物问题
7.有两桶水,一桶水中含有60升的纯净水,另一桶水中含有40升的
纯净水,现从第一桶水中取出x升加入到第二桶水中,使得第二桶水中纯净
水的含量降低为50%,求x值。
类型八:年龄问题
8.某家庭中父亲现在年龄是儿子的7/5倍,2年前父亲的年龄是儿子
的5/3倍,求现在儿子的年龄。
以上是一元一次方程应用题8种类型例题,希望对您有所帮助。
一元一次方程解应用题分类全

(一)和差倍分问题1、已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数。
2、某厂今年的产值是去年产值的3倍少25万,今年和去年产值总和是75万,求今年该厂的产值。
3、两筐鸭梨共重154千克,其中第一筐比第二筐的2倍少14千克,求两筐鸭梨各有多少千克?4、初一(1)班举办了一次集邮展览。
展出的邮票比平均每人3张多24张,比平均每人4张少26张。
这个班级有多少学生?一共展出了多少邮票?5、初一(4)班课外乒乓球小组买了两副乒乓球板,如果每人付9元,那么多了5元,如果每人付8元,那么还缺2元,请你根据以上情境提出问题,并列方程求解.6、某校住校生分配宿舍,如果每间住5人,则有2人无处住;如果每间住6人,则可以多住8人。
问该校有多少住校生?有多少间宿舍?7、学校准备拿出2000元资金给22名“希望杯”竞赛获奖学生买奖品,一等奖每人200元奖品,二等奖每人50元奖品,求得到一等奖和二等奖的学生分别是多少人?8、有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?(二)调配问题1、甲、乙两个工程队分别有80人和60人,为了支援乙队,需要从甲队调出一部分人进乙队,使乙队的人数比甲队人数的2倍多5人,问从甲队调出的人数应是多少?2、甲乙两运输队,甲队32人,乙队28人,若从乙队调走一些人到甲队,那么甲队人数恰好是乙队人数的2倍,问:从乙队调走了多少人到甲队?3、甲处劳动的有29人,在乙处劳动的有17人,现在赶工期,总公司另调20人去支援,使在甲处的人数为在乙处人数的2倍,应分别调往甲处、乙处各多少人?4、甲、乙两书架各有若干本书,如果从乙架拿100本放到甲架上,那么甲架上的书比乙架上所剩的书多5倍,如果从甲架上拿100本书放到乙架上,两架所有书相等。
问原来每架上各有多少书?(三)配套问题1、现有白铁皮28张,每张白铁皮可做甲件5个或乙件6个,若3个甲件及2个乙件配套,问如何下料正好使机件配套2、某车间22名工人参加生产一种螺母和螺丝。
七年级一元一次方程应用题8种类型归类

七年级一元一次方程应用题8种类型归类第一类:简单的线性方程的应用题这类题目基本上是直接套用一元一次方程的定义,根据题目中的条件列出方程,然后解方程得到答案。
这类问题比较简单,适合入门阶段的学生练习。
第二类:带有关系的线性方程应用题这类题目常常要求学生根据题意建立两个或多个物体之间的量的关系,然后通过建立方程解决问题。
这类问题往往需要学生较高的抽象思维能力来解决。
第三类:工作时间线性方程应用题这类题目要求学生根据不同情况下人员的工作效率和时间推导出方程,然后解决问题。
这类问题对学生的逻辑思维和数学应用能力有一定要求。
第四类:比例关系与一元一次方程的整合这类题目旨在让学生熟练掌握用比例关系建立一元一次方程,进一步拓展了一元一次方程的应用范围,对学生的推导能力和计算能力提出了更高的要求。
第五类:几何问题与线性方程的结合这类题目结合了几何图形中的关系与线性方程的解法,通过建立图形中的几何关系,以方程的形式呈现并求解,培养了学生的几何直观和数学抽象能力。
第六类:消耗量的线性方程应用题这类问题常常涉及到消耗量与产出量之间的关系,学生需要根据不同情况下物质的消耗速度和产出速度建立方程,解决问题。
第七类:时间速度距离的线性方程题型这类题目涉及了时间、速度和距离之间的关系,要求学生根据不同的情景情况建立方程,解决问题。
这类题目较为灵活,需要学生综合考虑多个变量间的关系。
第八类:经济问题的线性方程应用题这类题目常常涉及到金钱的支出与收入之间的关系,学生需要根据题目中的条件建立方程,解决经济问题。
这类题目旨在培养学生的实际应用能力和经济思维。
以上就是七年级一元一次方程应用题的8种典型类型,不同类型的题目反映了一元一次方程在现实生活中的广泛应用,通过解决这些问题,学生不仅可以提高解决实际问题的能力,还能深入理解一元一次方程的运用和意义。
希望同学们在学习过程中能够灵活应用这些方法,提高自己的数学水平。
一元一次方程的应用题练习题总结

课题:实际问题与一元一次方程解题步骤:审(借助表格,图表等提炼数学信息,理解问题中的基本数学关系);设(用代数式表示实际问题中的文字语言,文字语言符号化);列(找到所列代数式中的基本等量关系,列出方程);解(数学方程的解);验(数学方程的解,实际问题有意义);答(实际问题的答案).解题要点:(1)先找出相等的关系,再按照相等关系来选择未知数和表达式;(2)要注意方程两边是同一类量,并且单位要统一;常见方程的7种类型:1、市场经济问题×100%(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.储蓄问题利润=每个期数内的利息×100% 利息=本金×利率×期数本金2、行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度【抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.】3、工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=14、和差倍分问题增长量=原有量×增长率现在量=原有量+增长量5、等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S·h= r2h②长方体的体积 V=长×宽×高=abc6、数字问题一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.7、方案问题类型一:市场经济问题例1、商店购进某种盒装茶叶80盒,第一个月每盒按进价增加20%作为售价,售出50盒,第二个月每盒以低于进价5元作为售价,售完余下的茶叶. 在这个买卖过程中盈利250元,求每盒茶叶的进价.例2、针对居民用水浪费现象,某市制定居民用水标准规定三口之家楼房,每月标准用水量,超标部分加价收费,假设不超标部分每立方米水费1.3元,超标部分每立方米水费2.9元,某住楼房的三口之家某月用水12立方米,交水费22元,请你通过列方程求出该市三口之家楼房的标准用水量为多少立方米?【同步练习】1、某商店在某一时间内以每件元的价格卖出两件衣服,其中一件盈利25℅,另一件亏损25℅,问:卖这两件衣服总的是盈利还是亏损,或是不亏不损?(提示:商品售价=商品进价+商品利润)2、七年级一班共有48名同学,班级决定每人购买一本定价为5元的《中学生数学学习手册》,书店对购买50本及50本以上者给予九折优惠,请你设计一下,怎样买书最省钱?3、在商品市场经常可以听到小贩的叫嚷声和顾客的讨价还价声:“10元一个的玩具赛车打八折,快来买啊!”“能不能再便宜2元?”如果小贩真的让利(便宜)2元卖了,他还能获利20%,根据下列公式求一个玩具赛车进价是多少元?(公式:利润=进价×利润率=销售价×打折数-让利数-进价)4、甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按标价的9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?5、爸爸为小明存了一个3年期的教育储蓄(3年期的年利率为2.7%),3年后能取5405元,那么刚开始他存入多少元?类型二:行程问题(一)相遇、追及问题例1、两地相距28千米,甲以15千米/小时的速度,乙以30千米/小时的速度,分别骑自行车和开汽车从同一地前往另一地,甲先出发1小时,乙几小时后才能追上甲?例2、甲、乙两人环绕周长是400米的跑道散步,如果两人从同一地点背道而行,那么经过2分钟他们两人就要相遇.如果2人从同一地点同向而行,那么经过20分钟两人相遇.如果甲的速度比乙的速度快,求两人散步的速度?【同步练习】1、一列客车和一列货车在平行的轨道上同向行驶,客车的长是200米,货车的长是280米,客车的速度与货车的速度比是5:3,客车赶上货车的交叉时间是1分钟,求各车的速度;若两车相向行驶,它们的交叉时间是多少分钟?2、某连队从驻地出发前往某地执行任务,行军速度是6千米/小时,18分钟后,驻地接到紧急命令,派遣通讯员小王必须在一刻钟内把命令传达到该连队,小王骑自行车以14千米/小时的速度沿同一路线追赶连队,问是否能在规定时间内完成任务?(二)航行问题例1、一艘轮船航行在甲、乙两个码头之间,已知水流速度是3Km/h,轮船顺水航行需5h,逆水航行需7h,求甲、乙两码头之间的距离。
一元一次方程应用题七种类型

一元一次方程的典型题型1. 和、差、倍、分问题:( 1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现2. 等积变形问题:“等积变形”是以形状改变而体积不变为前提. 常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积.3. 劳力调配问题:这类问题要搞清人数的变化,常见题型有:( 1)既有调入又有调出;( 2)只有调入没有调出,调入部分变化,其余不变;( 3)只有调出没有调入,调出部分变化,其余不变4. 数字问题(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且K a< 9,0 < b< 9,0 < c< 9)则这个三位数表示为:100a+10b+c.(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n 表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.5. 工程问题:工程问题中的三个量及其关系为:工作总量=工作效率X工作时间6. 行程问题:(1)行程问题中的三个基本量及其关系:路程=速度X时间.( 2)基本类型有①相遇问题;②追及问题;常见的还有:相背而行;行船问题;环形跑道问题.7. 商品销售问题有关关系式:商品利润=商品售价一商品进价=商品标价X折扣率一商品进价商品利润率=商品利润/ 商品进价商品售价=商品标价X折扣率8. 储蓄问题⑴ 顾客存入银行的钱叫做本金, 银行付给顾客的酬金叫利息, 本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率. 利息的20%付利息税⑵利息=本金X利率X期数本息和=本金+利息利息税=利息X税率(20%【典型例题】【典型例题】一、一元一次方程的有关概念例1. 一个一元一次方程的解为2,请写出这个一元一次方程.1分析与解:这是一道开放性试题,答案不唯一•如2x=1, x-2=0等等.【点拨】解答这类开放性问题时要敢于大胆猜想,然后利用一元一次方程的定义与解来完成•二、一元一次方程的解例2.若关于x的一兀一次方程2x k x33k 1的解是x21,则k的值是( )A. 2 B . 1C 13D.0711分析:根据方程解的定义,一兀「次方程的解能使方程左、右两边的值相等,把x= -1代入原方程得到一个关于k的一兀一次方程,解这个方程即可得到k的值.■2-k ・1-3k解:把x=-1代入2x k X 3k[中得,^^- - =1,解得:k=1.答案为B.3 2 3 2【点拨】根据方程解的概念,直接把方程的解代入即可三、一元一次方程的解法例3.如果2005 200.5 x 20.05,那么x等于( )(A)1814.55 (B)1824.55 (C)1774.45 (D)1784.45分析与解:移项,得2005-200.5+20.05=x,解得:x=1824.55.答案为A.【点拨】由于一元一次方程的形式、结构多种多样,所以在解一元一次方程时除了要灵活运用解一元一次方程的步骤外,还要根据方程的特定结构运用适当的解题技巧,只有这样才能降低解题难度.心 2 3 1例4. 3{?[尹-1)-3卜3}=3分析:观察本题中各个系数的特点,可以选择由外到内去括号的方法,从而可以一次性去掉大括号和中括号,既简化了解题过程,又能避开一些常见解题错误的发生1解:去大括号,得[2(X-1)-3]-2=31去中括号,得2(X-1)-3-2=31 1去小括号,得?x-?-3-2=31 1移项,得歹石+3+2+31 17合并,得歹=亍系数化为1,得:x = 17四、一元一次方程的实际应用例5.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1 )求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.分析:可以先设1个小餐厅可供y名学生就餐,这样的话,2个小餐厅就可供2y个学生就餐,因此大餐厅就可共(1680-2y )名学生就餐.然后在根据开放2个大餐厅、1个小餐厅可以就餐的人数列出方程2 (1680-2y ) +y=2280解:(1 )设1个小餐厅可供y 名学生就餐,则1个大餐厅可供(1680-2y )名学生就餐, 根据题意,得2(1680-2y )+y=2280解得:y=360 (名) 所以 1680-2y=960 (名) 答:(略)•(2)因为 960 5 360 2 5520 5300,所以如果同时开放 7个餐厅,能够供全校的 5300名学生就餐. 【点拨】第⑴问属于直接列方程解应用题,而第⑵问属于说理题,关键是求出这7个餐厅共能容纳多少人就餐,然后比较即可•例6.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等•该工艺品每件的进价、标 价分别是多少元?分析:根据利润=售价-进价与售价=标价X 折扣率这两个等量关系以及按标价的八五折 销售该工艺品8件与将标价降低 35元销售该工艺品12件所获利润相等,就可以列出一元一 次方程•解:设该工艺品每件的进价是X 元,标价是(45+x )元.依题意,得:8(45+x )X 0.85-8x= (45+X-35 ) X 12-12x解得:x=155 (元) 所以 45+x=200 (元) 答:(略)•【点拨】这是销售问题,在解答销售问题时把握下列关系即可: 商品售价=商品标价X 折扣率商品利润=商品售价一商品进价=商品标价X 折数一商品进价例7. (2006 •益阳市)八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话: 李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本. 售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见•根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?分析:这是一道情景对话问题,具有一定的新颖性 •解答这类问题的关键是要从对话中捕捉等量关系•从对话中可以知道每支钢笔比每本笔记本贵2元,同时还可以发现买10支钢笔和15本笔记本共消费(100-5 ) =95元•根据上述等量关系可以得到相应的方程•解:设笔记本每本 x 元,则钢笔每支为 (x+2)元,据题意得10 (x+2) +15x=100-5解得,x=3 (元) 所以x+2=5 (元)答:(略)•商品利润率商品利润 商品进价X 100%。
一元一次方程应用题8种类型

一元一次方程应用题8种类型引言一元一次方程是初中数学中最基础、最常见的方程类型之一。
在实际生活中,我们可以经常遇到一些问题需要用到一元一次方程来求解。
本文将介绍一元一次方程应用题的8种类型,并通过具体例子进行解析。
通过学习这些例题,我们可以更好地理解一元一次方程的应用。
类型一:简单乘除法在这类问题中,我们可以利用一元一次方程来解决乘除法的运算问题。
举例如下:例题一:小明买了三个相同价格的苹果,花了50元。
那么每个苹果的价格是多少?解析:设每个苹果的价格为x元,则有3x = 50。
解这个方程,得到每个苹果的价格为50/3 = 16.67元。
类型二:加减法在这类问题中,我们可以利用一元一次方程来解决加减法的运算问题。
举例如下:例题二:在一张长方形的图纸上,长所占的比例是宽的2倍。
如果长为8厘米,那么宽是多少?解析:设宽为x厘米,则有8 = 2x。
解这个方程,得到宽为4厘米。
类型三:平均数在这类问题中,我们可以利用一元一次方程来解决平均数的问题。
举例如下:例题三:小明连续三天每天跑步,第一天跑了3公里,第三天跑了7公里,三天的平均距离是5公里。
那么第二天跑了多少公里?解析:设第二天跑了x公里,则有(3 + x + 7)/3 = 5。
解这个方程,得到第二天跑了5公里。
类型四:速度在这类问题中,我们可以利用一元一次方程来解决速度问题。
举例如下:例题四:小红骑自行车去学校的路上,遇到了红绿灯,等了30秒后才能继续骑行,这时她发现她在等红绿灯的时候又走了200米。
如果她骑自行车的速度是10米/秒,那么她离开红绿灯时与红绿灯的距离是多少?解析:设她离开红绿灯时与红绿灯的距离为x米,则有10 * 30 = x + 200。
解这个方程,得到她离开红绿灯时与红绿灯的距离是500米。
类型五:价格打折在这类问题中,我们可以利用一元一次方程来解决打折问题。
举例如下:例题五:商场举办打折活动,凡购买两件以上商品的顾客可以享受8折优惠。
解一元一次方程应用题的十六种常见题型

列一元一次方程解应用题(设未知数,找等量关系列方程)一.利润率问题:利润=进价(成本价)×利润率利润=售价-进价利润率=(利润÷进价)×100%进价(成本价)﹢利润=售价1. 某商品进价为 500 元,按标价的 9 折销售,利润率为 15.2%,求商品的标价为多少元?2. 工艺商场按标价销售某种工艺品时,每件可获利 45 元;按标价的八五折销售该工艺品 8 件与将标价降低 35 元销售该工艺品 12 件所获利润相等.该工艺品每件的进价、标价分别是多少元?3. 一家商店将某种服装按进价提高 40%后标价,又以 8 折优惠卖出,结果每件仍获利 15 元,这种服装每件的进价是多少?4. 某商品的进价是 2000 元,标价为 3000 元,商店要求以利润不低于 5%的售价打折出售,售货员最低可以打几折出售此商品?5、某商品的销售价格每件900元,为了参加市场竞争,商店按售价的九折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?6、某商店在同一时间内以每件60元的价格卖出2件衣服,其中一件盈利25%,另一件亏损25%,则卖这2件衣服是盈利还是亏损了,还是不盈不亏?二. 储蓄问题:利息=本金×利率×期数本息和=本金+利息利息税=利息×税率年利率=月利率×12=日利率×3651. 某同学把 250 元钱存入银行,整存整取,存期为半年。
半年后共得本息和 252.7 元,求银行半年期的年利率是多少?(不计利息税)2. 某储蓄所去年储户存款为4600万元,今年与去年相比,定期存款增加20%,而活期存款减少25%,但总存款增加15%,问今年定期,活期存款各是多少?三. 相遇问题(相向而行):这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。
对应公式:路程=速度×时间快者路程+慢者路程=总路程(慢者速度+快者速度)×相遇时间=相遇路程1. 甲、乙两车从相距 264 千米的 A、B 两地同时出发相向而行,甲速是乙速的 1.2 倍,4 小时相遇,求乙速?2. 甲、乙两站相距 600 千米,慢车从甲地出发,每小时行 40 千米,快车从乙地出发,每小时行 60 千米,若慢车先行 50 分钟,快车再开出,又行一段时间后遇到慢车,求快车开出多少小时两车相遇?3. A、B 两地相距 75 千米,一辆汽车以 50 千米/时的速度从 A 地出发,另一辆汽车以 40 千米/时速度从 B 地出发,两车同时出发,相向而行,经过几小时两车相距 30 千米?四. 追及问题(同向而行):这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。
初中数学一元一次方程解应用题的10大题型

初中数学一元一次方程解应用题的10大题型增长率问题增长量=原有量×增长率;现在量=原有量+增长量=原有量×(1+增长率)例题1:某学校食堂这个月的大米购进量比上个月减少了5%,由于受疫情影响米价上涨,这个月购进大米的费用反而比上个月增加了14%,求这个月大米价格相对上个月的增长率.数字问题数字问题需要清除数字的表示方法,一个两位数字,个位上是a,十位上是b,那么该数为10b+a;一个三位数,百位上是a,十位上是b,个位上是c,那么该数为100a+10b+c。
偶数常表示为2n,奇数常表示为2n-1或2n+1。
例题2:一个两位数,个位的数字比十位上的数字大1,交换两位数位置得到新的两位数与原两位数之和等于33,求这个两位数.例题3:一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数.日历问题在日历中,横向相邻的两个数相差1,相邻的三个数可设为n-1,n,n+1;纵向相邻的两个数相差7,相邻的三个数可设为n-7,n,n+7.例题4:在一张日历表中,用正方形圈出4个数,这4个数的和可以是78吗?请简要计算说明你的理由.例题5:爷爷快八十大寿,小明想在日历上把这一天圈起来,但不知道是哪一天,于是便去问爸爸,爸爸笑笑说,“在日历上,那一天的上下左右4个日期的和正好等于那天爷爷的年龄”.求小明爷爷的生日.行程问题行程问题种类较多,常见的有追及问题、相遇问题、环形跑道问题、顺流逆流问题、火车过桥问题等等,行程问题中有三个基本量及其关系:路程=速度×时间,速度=路程÷时间,时间=路程÷速度。
例题6:一艘船从甲码头到乙码头顺流而行,用了2h,又从乙码头返回甲码头逆流而行,用了2.5h,船在静水中的平均速度为27km/h,求水流的速度.例题7:从甲地到乙地,长途汽车原来需要8小时,开通高速公路后,路程缩短了40千米,平均车速增加了30千米/时,需要4.5小时即可达到,求长途汽车原来行驶的速度.工程问题工程问题与行程问题一样,是比较经典的类型之一,工程问题中三个量及其关系:工作总量=工作时间×工作效率,工作时间=工作总量÷工作效率,工作效率=工作总量÷工作时间。
一元一次方程应用题8种类型解法及典型例题

一、概述1. 介绍一元一次方程的定义和基本形式2. 引出本文将要讨论的内容二、一元一次方程的八种类型1. 类型一:简单应用题1)例题:小明买了一些苹果,一共花了20元,每个苹果2元,问他买了多少个苹果?2)解法:设苹果的数量为x,根据题意可列出方程2x=20,解得x=10。
2. 类型二:两个未知数的应用题1)例题:甲乙两地相距180公里,相对而行,甲地的时速是每小时30公里,问几小时能相遇?2)解法:设相遇时间为t小时,甲地行驶的距离为30t,乙地行驶的距离为180-30t,根据题意可列出方程30t+30t=180,解得t=3。
3. 类型三:含有括号的应用题1)例题:一个数比8大,乘以3再减去2的结果是20,问这个数是多少?2)解法:设这个数为x,根据题意可列出方程3(x-8)-2=20,解得x=18。
4. 类型四:含有分数的应用题1)例题:某数的1/3等于它的2/5减去3,问这个数是多少?2)解法:设这个数为x,根据题意可列出方程1/3=2/5-3,解得x=-9。
5. 类型五:含有小数的应用题1)例题:一块钢铁的重量是另一块的3/5,如果重量相差5.2公斤,问两块钢铁的重量各是多少?2)解法:设较重的钢铁重量为x,根据题意可列出方程x-x*3/5=5.2,解得x=13。
6. 类型六:含有分母的应用题1)例题:一个数加上15的4/5等于这个数的3/4,问这个数是多少?2)解法:设这个数为x,根据题意可列出方程x+15=3x/4,解得x=60。
7. 类型七:字母表示未知数的应用题1)例题:甲乙两个数的和是50,甲是乙的2倍,问甲乙两个数各是多少?2)解法:设甲的数为x,乙的数为y,根据题意可列出方程x+y=50和x=2y,解得x=40,y=10。
8. 类型八:几何问题转化为一元一次方程1)例题:一个三角形的底边长度是两腿长度的和的2倍,底边长8米,腿长是多少?2)解法:设腿长为x,根据题意可列出方程2x+x=8,解得x=4。
预习 初一数学上册:【一元一次方程】15个常考应用题类型,必看!

预习|初一数学上册:【一元一次方程】15个常考应用题类型,必看!1.和、差、倍、分问题(增长率问题)增长量=原有量×增长率现在量=原有量+增长量(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,几分之几,增长率,减少,缩小……”来体现.(2)多少关系:通过关键词语“多、少、大、小、和、差、不足、剩余……”来体现.审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别.2.等积变形问题(1)“等积变形”是以形状改变而体积不变(等积)为前提,是等量关系的所在.常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积.(2)常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式V=底面积×高=S·h =πr2h②长方体的体积V =长×宽×高=abc3.劳力调配问题从调配后的数量关系中找等量关系,要注意调配对象流动的方向和数量.这类问题要搞清人数的变化,常见题型有:小刘老师(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变4.要正确区分“数”与“数字”两个概念,同一个数字在不同数位上,表示的数值不同,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系列方程.列方程的前提还必须正确地表示多位数的代数式,一个多位数是各位上数字与该位计数单位的积之和.(1)要搞清楚数的表示方法:一般可设个位数字为a ,十位数字为b ,百位数字为c ,十位数可表示为10b+a ,百位数可表示为100c+10b+a (其中a 、b 、c 均为整数,且0≤a≤9,0≤b≤9,1≤c≤9).(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n 表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.5.工作量=工作效率×工作时间合做的效率=各单独做的效率的和.一般情况下把总工作量设为1,完成某项任务的各工作量的和=总工作量=1.分析时可采用列表或画图来帮助理解题意。
初一数学一元一次方程应用题的各种类型

初一数学一元一次方程应用题的各种类型一、一元一次方程的应用题类型初一数学,我们学习了很多有趣的知识,其中最让人头疼的就是一元一次方程的应用题。
今天,我就来给大家讲讲一元一次方程应用题的各种类型,让我们一起来看看吧!1.1 速度、时间和距离的问题这类问题是最常见的一元一次方程应用题。
比如:“小明骑自行车去上学,他骑了20分钟,每分钟骑行200米,那么他离学校还有多远?”这类问题我们可以这样解:假设小明离学校的距离为x米,那么根据题意,我们可以得到一个一元一次方程:$20\times 200 + x = 总路程$。
通过这个方程,我们就可以求出小明离学校的距离了。
1.2 相遇与追及的问题这类问题主要考察我们对一元一次方程的灵活运用。
比如:“甲乙两人相向而行,甲的速度是乙的1.5倍,他们相距100米,那么他们要多久才能相遇?”这类问题我们可以这样解:假设甲乙两人相遇时所用时间为t分钟,那么根据题意,我们可以得到一个一元一次方程:$(1.5 1)\times t = 100$。
通过这个方程,我们就可以求出他们相遇的时间了。
1.3 利润、成本和售价的问题这类问题主要考察我们对一元一次方程的实际应用。
比如:“一家商店进货一件衣服,进价是200元,如果按照原价的1.5倍出售,那么它的利润是多少?”这类问题我们可以这样解:假设这件衣服的利润为y元,那么根据题意,我们可以得到一个一元一次方程:$y = (售价进价)div 原价\times 1.5$。
通过这个方程,我们就可以求出这件衣服的利润了。
二、如何解决这些应用题呢?2.1 仔细审题,理解题意在解决一元一次方程应用题时,首先要做的就是仔细审题,理解题意。
只有弄清楚了题目中的已知条件和所求未知量,我们才能找到解题的方向。
2.2 建立方程,求解未知量在理解了题意之后,我们需要建立一个一元一次方程来求解未知量。
这里需要注意的是,我们要保证建立的方程是正确的,否则得出的结果也是错误的。
一元一次方程应用题8种类型

一元一次方程应用题8种类型
1、一元一次方程解题:此类型题目要求将一个未知数从一元一次方程中求出。
例如:求x+7=8的解。
2、解一元一次不等式题:此类型题目要求将一元一次不等式的解集求出。
例如:求x+7≥8的解集。
3、一元一次比例方程解题:此类型题目要求将一元一次比例方程中的未知数求出。
例如:已知A:B=2:3,求A=?
4、分式比例方程解题:此类型题目要求将分式比例方程中的未知数求出。
例如:已知A/B=2/3,求A=?
5、一元一次定义方程解题:此类型题目要求将一元一次定义方程中的未知数求出。
例如:已知y=2x+1,求x=?
6、一元一次函数图像解题:此类型题目要求根据一元一次函数的图像求出未知数。
例如:求y=2x+1图像上x=-2时的y值。
7、一元一次函数求导题:此类型题目要求求出一元一次函数的导数。
例如:求f(x)=2x+1的导数。
8、一元一次方程换元题:此类型题目要求将一个未知数从一元一次方程中求出,但是此方程可能有两个及以上的未知数,此时就需要进行换元法求解。
例如:已知
x+y=8,求x=?。
七年级一元一次方程应用题所有题型大全

七年级一元一次方程应用题所有题型大全
一、整数应用题
1.小明的妈妈给了他100元,他花了其中的四分之三,然后剩下的钱
还多少?
2.一条绳子长5米,剪成两段,其中一段比另一段多2米,求两段的
长度各是多少米。
3.某商品原价250元,打八五折后的价格是多少?
二、比例应用题
1.小李走了200米,小王走了300米,两人一共走了多少米?
2.一队篮球队员有男生8个,女生5个,男生人数是女生人数的几倍?
3.小华种了一些白菜和胡萝卜,白菜的重量是胡萝卜的3倍,总重量
是12千克,求胡萝卜的重量是多少千克。
三、距离速度时间应用题
1.两点之间的距离为80千米,汽车以每小时60千米的速度开,需要
多长时间到达?
2.小明骑自行车去了一半的路程,速度是10千米每小时,走了2个小
时,求剩下的路程还有多远?
3.水管从一个水塔底部向上喷水,水的喷射速度为10米每秒,水喷到
高度为50米时离水面还有多远?
四、工程应用题
1.甲组工人一天修150米路,乙组工人一天修120米路,如果两组工
人合作修路,一天可以修多少米路?
2.甲组工人修一段路需要7天,乙组工人修同样的路需要10天,如果
两组工人合作修路,完成同等工程需要几天?
3.水库中原有水量是6000立方米,通过排水口每小时流失200立方米,
如果连续5小时不停排水,水库中剩余多少水量?
以上为七年级一元一次方程应用题的一些常见题型,通过解决这些问题,可以
帮助学生更好地理解和应用一元一次方程的知识。
一元一次方程方程应用题总结归类

一元一次方程方程应用题总结归类列方程解应用题,是初中数学的重要内容之一;许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;下面老师就从以下几个方面分门别类的对常见的数学问题加以阐述,希望对同学们有所帮助.一行程问题:基本量、基本数量关系:路程=速度×时间,顺水速=静水速+水速,逆水速=静水速-水速,寻找相等关系的方法:抓住两码头之间的距离不变,水流速度,船在静水中的速度不变的特点来考虑;1相向问题,寻找相等关系的方法:甲走的路程+乙走的路程=两地距离2追击问题:寻找相等关系的方法:第一,同地不同时出发:前者走的路程=追者走的路程;第二,同时不同地出发:前者走的路程+两地距离=追者所走的路程3航行问题:4飞行问题:1、火车提速后由天津到上海的时间缩短了,若天津到上海的路程为1326km,提速前火车的平均速度为xkm/h,提速后火车的平均速度为ykm/h,x、y应满足的关系式为:2、甲、乙骑自行车同时从相距65千米的两地相向而行,2小时相遇.甲比乙每小时多骑千米,求乙的时速各是多少3、一列客车长200米,一列货车长280米,在平行的轨道上相向行驶,从相遇到车尾离开经过18秒,客车与货车的速度比是5∶3,问两车每秒各行驶多少米4、一架飞机在两城之间飞行,风速为24千米 /小时 ,顺风飞行需2小时50分,逆风飞行需要3小时;1求无风时飞机的飞行速度2求两城之间的距离;5、一条环行跑道长400米,甲每分钟行550米,乙每分钟行250米.1甲、乙两人同时同地反向出发,问多少分钟后他们再相遇2甲、乙两人同时同地同向出发,问多少分钟后他们再相遇6、甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里;1慢车先开出1小时,快车再开;两车相向而行;问快车开出多少小时后两车相遇2两车同时开出,相背而行多少小时后两车相距600公里3两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里4两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车5慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车1、一列火车长150米,每秒钟行19米;全车通过长800米的大桥,需要多少时间2、一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从车头进入隧道到车尾离开隧道共需要多少秒3、一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟;求这列火车的速度是每秒多少米车长多少米4、一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒.这列火车的速度和车身长各是多少5、一列火车长119米,它以每秒15米的速度行驶,小华以每秒2米的速度从对面走来,经过几秒钟后火车从小华身边通过6、一列火车长700米,以每分钟400米的速度通过一座长900米的大桥.从车上桥到车尾离要多少分钟7、一座铁路桥全长1200米,一列火车开过大桥需花费75秒;火车开过路旁电杆,只要花费15秒,那么火车全长是多少米8、铁路沿线的电杆间隔是40米,某旅客在运行的火车中,从看到第一根电线杆到看到第51根电线杆正好是2分钟,火车每小时行多少千米9、已知快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向而行,当快车车尾接慢车车头时,称快车穿过慢车,则快车穿过慢车的时间是多少秒10、两列火车,一列长120米,每秒行20米;另一列长160米,每秒行15米,两车相向而行,从车头相遇到车尾离开需要几秒钟11、马路上有一辆车身为15米的公共汽车,由东向西行驶,车速为每小时18千米,马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑.某一时刻,汽车追上甲,6秒钟后汽车离开了甲;半分钟之后汽车遇到迎面跑来的乙;又过了2秒钟,汽车离开了乙.问再过多少秒后,甲、乙两人相遇12、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米;两车在距中点32千米处相遇;东西两地相距多少千米13、小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米14、一辆汽车和一辆摩托车同时从甲乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米;当摩托车行到两地中点处,与汽车相距75千米;甲乙两地相距多少千米15、小轿车每小时行60千米,比客车每小时多行5千米,两车同时从甲乙两地相向而行,在距中点20千米处相遇,求甲乙两地之间的路程;16、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地17、学校运来一批树苗,五1班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵;如果这批树苗平均分给五1班的同学去植,平均每人植多少棵18、甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米;中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙;求东西两村相距多少千米19、甲乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米;甲到达B地后立即返回A地,在离B地千米处相遇;A、B两地之间相距多少千米20、小平和小红同时从学校出发步行去小平家,小平每分钟比小红多走20米;30分钟后小平到家,到家后立即沿原路返回,在离家350米处遇到小红;小红每分钟走多少米21、甲乙二人上午7时同时从A地去B地,甲每小时比乙快8千米;上午11时到达B地后立即返回,在距离B地24千米处相遇;求A、B两地相距多少千米22、甲乙两队学生从相距18千米的两地同时出发,相向而行;一个同学骑自行车以每小时14千米的速度,在两队之间不停地往返联络;甲队每小时行5千米,乙队每小时行4千米;两队相遇时,骑自行车的同学共行多少千米23、长100米的列车,以每秒20米的速度通过了一条座长500米的桥;列车通过这座桥要用多少秒24、一列货车要通过一条1800米长的大桥;已知从货车车头上桥到车尾离开桥共用120秒,货车完全在桥上的时间为80秒,这列货车长多少米25、两码头相距360千米,一艘汽艇顺水航行完全程要9小时,逆水航行完全程要12小时;这艘船在静水中的速度是多少千米这条河水流速度是多少千米26、甲、乙两个码头相距336千米;一艘船从乙码头逆水而上,行了14小时到达甲码头;已知船速是水速的13倍,这艘船从甲码头返回乙码头需要多少小时27、在400米的环形跑道上,甲乙两人同时起跑,如果同向跑3分20秒相遇,如果背向跑25秒相遇,已知甲比乙跑得快,求甲乙两人的速度各是多少28、一列客车车身上190米,每秒运行24米;在这列客车前面有一列长230米的货车,每秒运行18米,两列车在并行的两条轨道上运行;客车从后面追上并完全超过货车要用多少秒29、甲乙两人去同一地点办事,甲每小时走5千米,乙每小时走6千米,甲有急事先出发1小时后,乙才出发,经过几小时后能追上甲二工程问题:基本量、基本数量关系:把总工作量看作单位“1”工作量=工作效率×工作时间;相等关系:各部分工作量之和等于11.一件工程,甲独做10天完工,乙独做15天完工,二人合做几天完工2.一批零件,王师傅单独做要15小时完成,李师傅单独做要20小时完成,两人合做,几小时能加工完这批零件的错误!3.4.一项工作,甲单独做要10天完成,乙单独做要15天完成;甲、乙合做几天可以完成这项工作的80%5.一项工程,甲独做要12天完成,乙独做要18天完成,二人合做多少天可以完成这件工程的2/36.一项工程,甲独做要18天,乙独做要15天,二人合做6天后,其余的由乙独做,还要几天做完7.修一条路,甲单独修需16天,乙单独修需24天,如果乙先修了9天,然后甲、乙二人合修,还要几天8.一项工程,甲单独做16天可以完成,乙单独做12天可以完成;现在由乙先做3天,剩下的由甲来做,还需要多少天能完成这项工程9.一项工程,甲独做要12天,乙独做要16天,丙独做要20天,如果甲先做了3天,丙又做了5天,其余的由乙去做,还要几天10. 一批货物,由大、小卡车同时运送,6小时可运完,如果用大卡车单独运,10小时可运完;用小卡车单独运,要几小时运完11. 小王和小张同时打一份稿件,5小时打了这份这稿件的65;如果由小王单独打,10小时可以打完;求如果由小张单独打,几小时可以打完;12. 一项工程,甲队独做15天完成,乙队独做12天完成;现在甲、乙合作4天后,剩下的工程由丙队8天完成;如果这项工程由丙队独做,需几天完成13. 甲和乙两队合修一条公路,完成任务时,甲队修了这条公路的158;如果乙队单独完成要24天,甲队单独做几天完成14. 一项工程,甲独做要10天,乙独做要15天,丙独做要20天;三人合做期间,甲因病请假,工程6天完工,问甲请了几天病假15. 一袋米,甲、乙、丙三人一起吃,8天吃完,甲一人24天吃完,乙一人36天吃完,问丙一人几天吃完16. 一条公路长1500米,单独修好甲要15天,乙要10天,两队合修需几天才能完成浙江江山市17. 师徒共同完成一件工作,徒弟独做20天完成,比师傅多用4天完成,如果师徒合作需几天完成18. 一项工程,由甲工程队修建,需要20天完成;由乙工程队修建,需要的天数是甲工程队的倍才能完成;两队合修共需要多少天完成19.20. 一件工作,甲单独完成需要8天,乙的工作效率是甲的2倍,两人同时合作,几天能完成这件工作21. 一项工程,甲队独做要20天完成,乙队独做要5天能完成全工程的61;现由两队合做,多少天可以完成22.23.24. 修一条水渠,甲队3天可以修全长的101,乙队单独修20天可以修完,如果两队合修,多少天可以修完25.26.27. 一件工作,甲队独做每天能完成这件工作的201,乙队单独完成这件工作需要12天,如果两面三刀队合作完成这件工作的201,需要多少天 28.29. 一件工作,甲单独做需要12天,乙的工作效率是甲的43,两个合做,几天能完成这件工作的54 30. 31. 一套家具,由一个老工人做40天完成,由一个徒工做80天完成;现由2个老工人和4个徒工同时合做,几天可以完成32. 一个水池上有两个进水管,单开甲管,10小时可把空池注满,单开乙管,15小时可把空池注满;现先开甲管,2小时后把乙管也打开,再过几小时池内蓄有3/4的水33.原是空池34.25、一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程26、要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工4小时,完成了任务.已知甲每小时比乙多加工2个零件,求甲、乙每小时各加工多少个零件.三.分配问题:这类问题要搞清人数的变化,常见题型有:1既有调入又有调出;2只有调入没有调出,调入部分变化,其余不变;3只有调出没有调入,调出部分变化,其余不变;1、机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套2、、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母3、、在甲处劳动的有27人,在乙处劳动的有19人.现在另调20人去支援,使在甲处的人数为在乙处的人数的2倍,应调往甲、乙两处各多少人4、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1 200个或螺母2 000个,一个螺钉要配两个螺母.为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母某水利工地派 48 人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走5、某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数6、某牛奶加工厂有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获利500元,制成酸奶销售,每吨可获利1200元,制成奶片销售,每吨可获利2000元;该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片每天可加工1吨,受人员限制,两种加工方式不可同时进行,受气温限制,这批牛奶必须在4天内全部销售或加工完毕,为此,该厂设计出了两种可行方案:方案一:尽可能多的制成奶片,其余的直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成; 你认为那种方式获利最多为什么四、浓度问题以盐水为例,像盐这样能溶于水或其他液体中的纯净物质叫做溶质;像水这样能溶解物质的纯净液体叫做溶剂;溶质与溶剂的混合物叫做溶液,溶质在溶液中所占的百分比叫做浓度,又叫做百分比浓度;浓度问题常见的数量关系式有:溶液的重量=溶质的重量+溶剂的重量浓度=溶质重量÷溶液重量×100%溶液的重量=溶质重量÷浓度溶质重量=溶液重量×浓度1、含盐6%的盐水900克,要使其含盐量加大到10%,需要加盐多少克2、把浓度为25%的盐水30千克,加水冲淡为15%的盐水,问需要加水多少千克3、有浓度为%的盐水210克,为了制成浓度为%的盐水,从中要蒸发掉多少克水4、5、一瓶100克的酒精溶液加入80克水后,稀释成浓度为40%的新溶液,原溶液的浓度是多少5、甲、乙两种酒精浓度分别为70%和55%,现在要配制浓度为65%的酒精3000克,应当从这两种酒精中各取多少克6、一杯纯牛奶,喝去25%再加满水,又喝去25%,再加满水后,牛奶的浓度是多少7、三个容积相同的瓶子里装满了酒精溶液,酒精与水的比分别为2:1,3:1,4:1,当把三种酒精溶液混合后,酒精与水的比是多少1:甲、乙、丙三人到银行存款,甲存入的款数比乙多错误!,乙存入的款数比丙多错误!,问甲存入的款数比丙多几分之几2:小明从甲地到乙地需要2天,第一天走了全程地错误!多72千米,第二天所走的路程等于第一天所走路程地错误!,求甲乙两地的距离;3:兄弟四人合修一条路,结果老大修了另外三人的一半,老二修了另外三人的错误!,老三修了另外三人总数的错误!,老四修了91米,问:这条路长多少米4:一本书,已经看了130页,剩下的准备8天看完,如果每天看的页数相等,3天看的页数恰好为全书的错误!,这本书共有多少页5:书店售一种挂历,每售出一种棵获利18元,售出一部分后每本降价10元出售,全部售完已知减价出售的本数是原价出售挂历本数的错误!,书店售完这种挂历共获利2870元,问:书店共售出这种挂历多少本6:甲乙两个水杯,甲杯有水1千克,乙杯是空的,第一次将甲杯水的错误!倒入乙杯,第二次将乙杯水的水的错误!倒回甲杯里,第三次将甲杯里的水的错误!倒回乙杯里,第四次将乙杯里水的错误!倒回甲杯,照这样来回倒下去,一直倒了1999次以后,甲杯里还剩下水多少克7:哥哥有250张邮票,弟弟有200张邮票,哥哥的邮票比弟弟的邮票多几分之几弟弟邮票比哥哥少几分之几2.一瓶容器盛满药液10升,第一次倒出若干升,用水加满,第二次倒出同样的升数,这时容器剩下药液升那么第一次倒出升数多少;五、利息问题⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率;利息的20%付利息税⑵利息=本金×利率×期数本息和=本金+利息利息税=利息×税率20%1、某同学把250元钱存入银行,整存整取,存期为半年;半年后共得本息和元,求银行半年期的年利率是多少不计利息税2.李叔叔于2000年1月1日在银行存了活期储蓄1000元,如果每月的利率是%,存款三个月时,可得到利息多少元本金和利息一共多少元3、叔叔今年存入银行10万元,定期二年,年利率% ,二年后到期,扣除利息税5% ,得到的利息能买一台6000元的电脑吗4、小华妈妈是一名光荣的中国共产党员,按党章规定,工资收入在400-600元的,每月党费应缴纳工资总额的%,在600-800元的应缴纳1%,在800-1000元的,应缴纳%,在1000以上的应缴纳2%,小华妈妈的工资为2400元,她这一年应缴纳党费多少元5、银行定期壹年存款的年利率为%,某人存入一年后本息元,问存入银行的本金是多少元六. 利润问题1销售问题中常出现的量有:进价、售价、标价、利润等2有关关系式:商品利润=商品售价—商品进价=商品标价×折扣率—商品进价商品利润率=商品利润/商品进价商品售价=商品标价×折扣率1、一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少2、某商品的进价是500元,标价是750元,商店要求以利润低于5%的售价打折出售,售货员最低可以打折出售此商品3、某书店出售一种优惠卡,花100元买这种卡后,可打6折,不买卡可打8折,你怎样选择购物方式;4、某种商品的零售价为每件900元,为了适应市场竟争,商店按零售价的九折降价并让利40元销售,仍可获利10%;则进价为每件多少元5、东方商场把进价为1890元的某商品按标价的8折出售,仍获利10%,则该商品的标价为多少6、某种商品的进价是1000元,售价为1500元, 由于销售情况不好,商店决定降价出售,但又要保证利润不低于5%,那么商店最多降多少元出售此商品;7、某商品的进价是150元,售价是180元;求此商品的利润率8、商店对某种商品作调价,按原价的八五折出售,此时商品的利润率是9%, 此商品的进价为500元;求商品的原价9、某商品的进价为200元,标价为300元,折价销售时的利润率为5%,此商品是按几折销售的10、某商品标价是1955元,按此标价的九折出售,利润率为15%;求此商品的进价是多少七、数字问题1要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9则这个三位数表示为:100a+10b+c;2数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2N表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示;1、一个两位数,十位上的数字比个位上的数字大1,十位与个位上的数字和是这个两位数的1/6,这两个数是多少2、一个两位数字之和为11,如果原数加45,得的数恰是原两位数字交换后的两位数,求原来这个两位数;3、一个两位数,十位上的数字比个位上的数字的2倍大3,把这两位数的位置对调后组成的两位数比原数小45,求原来这个两位数;4、一个三位数,基个位上的数字相加之和为9,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字小1,求这个三位数;5、三个连续自然数,它们的和为108,求这三个数;6、有一个两位数,十位上的数字比个位上的数字大2,若把这个两位数的十位与个位对调,所得的两位数比原数小18,求原来的两位数;7、一个两位数,十位数字比个位数字少3,两个数字之和等于这两位数的1/4;求这个两位数;8、一个三位数,三个数位上的数字和是15,百位上的数比十位上的数多5,个位上的数字是十位上的数字的3倍,求这个三位数;9、一个两位数的个位与十位数字的和为15,如果把十位数字与个位数字对调,则所得新数比原数小27,则原来的两位数是多少10、已知三个连续奇数的和比它们相间的两个偶数的和多15,求这三个连续奇数;11、一个三位数,三个数位上的数字和为13,百位上的数字比十位上的数少3,个位上的数字是十位上的数字的2倍,求这三位数;12、有一个两位数,十位上的数比个位上的数大2,若把这个两位数的十位与个位对调所得的两位数比原数小18,求原来的两位数;13、三个连续偶数的和比其中最小的一个大14,求这三个连续偶数的积;14、一个两位数,十位上的数比个位上的数小1,十位与个位上的数的和是这个两位数的1/5,求这个两位数;15、甲、乙、丙三辆汽车所运货物的吨数比是6:5:4,已知三辆汽车共运货物120吨,求这三丙汽车各运多少吨货物16、甲、乙、丙三个粮仓共存粮80吨,已知甲、乙两仓存粮数之比是1:2;乙、丙两仓存粮数这比是1:,求甲、乙、丙三仓各存粮多少吨17、甲、乙、丙三村集资140万元办学,经协商甲、乙、丙三村的投资额度比例是5:2:3,问他们各应提交多少元18、三个连续整数之和是81,这三个整数分别是:_______ 、_______、_______连续三个偶数之和是276,这三个数分别是:_______、_______、_______ 三个数之比是5:6:7,他们的和是198,则这三个数分别是:_______、_______、_______19、已知三个连续奇数的和比它们相间的两个偶数的和多15,求这三个连续奇数;20、一个两位数,个位数字比十位数字的2倍大3,如果把个位数字与十位数字对调,则所得两位数比原两位数大45;求这个两位数;21、甲、乙、丙三辆汽车所运货物的吨数是6:5:4,已知三辆汽车共运货物120吨,求这三辆汽车各运货物多少吨22、要拌制一种建筑用的沙桨,生石灰、水泥、黄沙的质量比为2:1:4,现在要拌制这种沙桨1400千克,需生石灰、水泥、黄沙各多少23、一个两位数,十位数字比个位数字少3,两个数字之和等于这个两位数的1/4,求这个两位数;24、有一个三位数,其各数位的数字之和是16,十位数字是个位数字与百位数字的和,若把百位数字与个位数字对调,那么新数比原数大594,求原数;25、一个四位数,千位数字是1,若把1移到个位上去,则所得的新四位数字是原来的5倍少14,求这个四位数;26、一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数27、一个两位数,十位上的数与个位上的数字之和为11,如果十位上的数字与个位上的数字对调,则所得的新数比原来大63,求原来两位数;八、和倍问题:基本相等关系:增长量=原有量×增长率,现有量=原有量+增长量或现有量=原有量-降低量寻找相等关系的方法:抓住关键性词语:共、多、少、倍、几分之几以及原有量、先有量之间的关系推导出相等关系;1、根据2001年3月28日新华社公布的第五次人口普查统计数据,截止到2000年11月1日0时,全国每10万人中具有小学文化程度的人口为35701人,比1990年7月1日减少了%,1990年6月底每10万人中约有多少人具有小学文化程度2、某商场甲、乙两个柜组十二月份营业额共64万元;一月份甲增长了20%,。
十六种用一元一次方程解决实际问题专题(含解析)

十六种用一元一次方程解决实际问题专题类型一:和差倍分问题1.某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.(用含t的代数式表示.)2.某同学在A、B两家超市发现他看中的随身听的单价相同,书包的单价也相同,随身听与书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打8折销售,超市B全场购物每满100元返购物券30元(不足100元不返券,购物券全场通用),但他只带了400元钱.若两家都可以选择,在哪一家购买更省钱?类型二:行程问题(相遇、追及、相对速度等)(1)直线型路线3.A,B两地相距480千米,甲乙两车分别从A,B两地出发,相向而行,2小时30分相遇.已知甲车速度是每小时80千米,乙车速度每小时多少千米?4.A、B两地相距400米,甲、乙两人分别从A、B两地同时同向出发,甲在乙后面,已知甲每分钟跑250米,乙每分钟跑200米,经过多长时间甲能追上乙?5.列方程解应用题:甲、乙两站相距448km,一列慢车从甲站出发开往乙站,速度为60km/h;一列快车从乙站出发开往甲站,速度为100km/h(1)两车同时出发,出发后多少时间两车相遇?(2)慢车先出发32min,快车开出后多少时间两车相距48km?(2)环型跑道6.小红和小明绕周长为1200米的湖晨练,小红的速度为85米/分,小明比她快10米/分.(1)如果两人同时同向同一地点开跑,多少分钟两人会相遇?(2)如果两人同时相向同地开跑,多少分钟两人会相遇?(3)如果小红在小明前面200米两人同时反向开跑,多少分钟两人会相遇?(3)相对速度7.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16s,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?8.小明和小红沿着与铁轨平行的方向相向而行,两人行走的速度均为每小时7.2千米,恰有一列火车从他们身旁驶过.火车与小明相向而行,从小明身旁驶过用了10秒;火车与小红同向而行,从小红身旁驶过用了12秒.求火车车身的长度.类型三:航行问题(航空、陆地、水上等)9.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时40分,逆风飞行需要3小时,两城市间的距离为.10.某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船4小时,已知船在静水中的速度为7.5km/h,水流速度为2.5km/h,若A,C两地相距10km,求A,B两地的距离.类型四:工(作)程问题(工作总量为单位“1”,工作总量=工作效率×工作时间)11.由于洪水渗漏造成堤坝内积水,用三部抽水机抽水,单独用一部抽水机抽尽,第一部需用24小时,第二部需用30小时,第三部需用40小时.现在第一部、第二部共同抽8小时后,第三部也加入,问从开始到结束,一共用了多少小时才把水抽掉?12.要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时完成了任务.已知甲每小时比乙多加工2个零件,问甲、乙二人每小时各加工多少个零件?类型五:销售盈亏问题13.某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是()A.不赚不亏B.赚8元C.亏8元D.赚15元14.一家商场因换季决定将某种服装打折销售,每件服装如果按标价的5折出售将亏20元,而按标价的8折出售就可赚40元.问:(1)每件服装的标价是多少元?(2)每件服装的成本是多少元?15.某超市经销A、B两种商品,A种商品每件进价20元,售价30元;B种商品每件进价35元,售价48元.(1)该超市准备用800元去购进A、B两种商品若干件,怎样购进才能使超市经销这两种商品所获利润最大?(其中B种商品不少于7件)(2)在“五•一”期间,该商场对A、B两种商品进行如下优惠促销活动:打折前一次购物总金额优惠措施不超过300元不优惠超过300元且不超过400元售价打八折超过400元售价打七折促销活动期间小颖去该超市购买A种商品,小华去该超市购买B种商品,分别付款210元与268.8元.促销活动期间小明决定一次去购买小颖和小华购买的同样多的商品,他需付款多少元?类型六:调配问题(内部、外部等)16.某班学生分两组参加植树活动,甲组有17人,乙组有25人,后来由于需要,又从甲组抽调部分学生去乙组,结果乙组人数是甲组的2倍,问从甲组抽调了多少学生去乙组?17.学校组织植树活动,已知在甲处植树的有14人,在乙处植树的有6人,现调70人去支援.(1)若要使在甲处植树的人数与在乙处植树的人数相等,应调往甲处人.(2)若要使在甲处植树的人数是在乙处植树人数的2倍,问应调往甲、乙两处各多少人?(3)通过适当的调配支援人数,使在甲处植树的人数恰好是在乙处植树人数的n倍(n 是大于1的正整数,不包括1.)则符合条件的n的值共有个.类型七:余缺问题18.学校安排学生住宿,若每室住8人,则有12人无法安排;若每室住9人,可空出2个房间.这个学校的住宿生有多少人?宿舍有多少房间?类型八:数字问题19.已知a是两位数,b是一位数,把a接写在b的后面,就成为一个三位数.这个三位数可表示成()A.10b+a B.ba C.100b+a D.b+10a20.一个两位数的十位数字和个位数字之和是7,如果这个两位数加上45,则恰好成为个位数字与十位数字对调之后组成的两位数,求这个两位数.类型九:日历问题21.在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.72类型十:年龄问题22.今年母女两人的年龄和为60岁,10年前母亲的年龄是女儿的7倍,则今年女儿的年龄是多少岁?类型十一:银行利率问题23.某人按定期2年向银行储蓄1500元,假设年利率为3%(不计复利)到期支取时,扣除利息所得税(税率为20%),此人实得利息为.24.一年定期存款的年利率为1.98%,到期取款时须扣除利息的20%作为利息税上缴国库.假若小颖存一笔一年定期储蓄,到期扣除利息税后实得利息158.4元,那么她存入的人民币是元.类型十二:比赛积分问题25.某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制.某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?类型十三:部分量之各等于总量26.一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的,水中部分是淤泥中部分的2倍多1米,露出水面的竹竿长1米.设竹竿的长度为x米,则可列出方程()A.B.C.D.类型十四:等积变形问题27.如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部底面积分别为80cm2、100cm2,且甲容器装满水,乙容器是空的.若将甲中的水全部倒入乙中,则乙中的水位高度比原先甲的水位高度低了8cm,求甲的容积为何()A.1280cm3 B.2560cm3 C.3200cm3 D.4000cm3类型十五:分段计费问题(水、电、煤、气、出租车和工资等)28.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水的收费价格见价目表:价目表每月用水量单价不超出6立方米的部分2元/米3超出6立方米不超出10立方米的部分4元/米3超出10立方米的部分8元/米3 注:水费按月结算.若某户居民1月份用水8立方米,则应交水费:2×6+4×(8﹣6)=20(元).(1)若该户居民2月份用水12.5立方米,则应交水费元;(2)若该户居民3,4月份共用水15立方米(4月份用水量多于3月份),共交水费44元,则该户居民3,4月份各用水多少立方米?类型十六:方案设计问题(设备购买、房屋销售、汽车运输等)29.A、B两仓库分别有水泥20吨和30吨,C、D两工地分别需要水泥15吨和35吨.已知从A、B仓库到C、D工地的运价如下表:到C工地到D工地A仓库每吨15元每吨12元B仓库每吨10元每吨9元(1)若从A仓库运到C工地的水泥为x吨,则用含x的代数式表示从A仓库运到D工地的水泥为吨,从B仓库将水泥运到D工地的运输费用为元;(2)求把全部水泥从A、B两仓库运到C、D两工地的总运输费(用含x的代数式表示并化简);(3)如果从A仓库运到C工地的水泥为15吨时,那么总运输费为多少元?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程的典型题型
1. 和、差、倍、分问题:
(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.
(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.
2. 等积变形问题:
“等积变形”是以形状改变而体积不变为前提.常用等量关系为:
①形状面积变了,周长没变;
②原料体积=成品体积.
3. 劳力调配问题:
这类问题要搞清人数的变化,常见题型有:
(1)既有调入又有调出;
(2)只有调入没有调出,调入部分变化,其余不变;
(3)只有调出没有调入,调出部分变化,其余不变
4. 数字问题
(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)则这个三位数表示为:100a+10b+c.
(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.
5. 工程问题:
工程问题中的三个量及其关系为:工作总量=工作效率×工作时间
6.行程问题:
(1)行程问题中的三个基本量及其关系:路程=速度×时间.
(2)基本类型有
①相遇问题;
②追及问题;常见的还有:相背而行;行船问题;环形跑道问题.
7.商品销售问题
有关关系式:
商品利润=商品售价—商品进价=商品标价×折扣率—商品进价
商品利润率=商品利润/商品进价
商品售价=商品标价×折扣率
8. 储蓄问题
⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税
⑵利息=本金×利率×期数
本息和=本金+利息
利息税=利息×税率(20%)
【典型例题】
【典型例题】
一、一元一次方程的有关概念
例1.一个一元一次方程的解为2,请写出这个一元一次方程 .
分析与解:这是一道开放性试题,答案不唯一.如12
x=1,x-2=0等等. 【点拨】 解答这类开放性问题时要敢于大胆猜想,然后利用一元一次方程的定义与解来完成.
二、一元一次方程的解
例2.若关于x 的一元一次方程23132
x k x k ---=的解是1x =-,则k 的值是( ) A . 27 B .1 C .1311
- D .0 分析:根据方程解的定义,一元一次方程的解能使方程左、右两边的值相等,把x=-1代入原方程得到一个关于k 的一元一次方程,解这个方程即可得到k 的值.
解:把x=-1代入23132
x k x k ---=中得,-2-k 3--1-3k 2=1,解得:k=1.答案为B. 【点拨】根据方程解的概念,直接把方程的解代入即可.
三、一元一次方程的解法
例3.如果2005200.520.05x -=-,那么x 等于( )
(A)1814.55 (B)1824.55 (C)1774.45 (D)1784.45
分析与解:移项,得2005-200.5+20.05=x ,解得:x=1824.55.答案为A.
【点拨】由于一元一次方程的形式、结构多种多样,所以在解一元一次方程时除了要灵活运用解一元一次方程的步骤外,还要根据方程的特定结构运用适当的解题技巧,只有这样才能降低解题难度.
例4. 23{32[12
(x-1)-3]-3}=3 分析:观察本题中各个系数的特点,可以选择由外到内去括号的方法,从而可以一次性去掉大括号和中括号,既简化了解题过程,又能避开一些常见解题错误的发生.
解:去大括号,得 [12
(x-1)-3]-2=3 去中括号,得12
(x-1)-3-2=3 去小括号,得12x-12
-3-2=3 移项,得12x=12
+3+2+3 合并,得12x=172
系数化为1,得:x = 17
四、一元一次方程的实际应用
例5.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.
(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;
(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.
分析:可以先设1个小餐厅可供y名学生就餐,这样的话,2个小餐厅就可供2y个学生就餐,因此大餐厅就可共(1680-2y)名学生就餐.然后在根据开放2个大餐厅、1个小餐厅可以就餐的人数列出方程2(1680-2y)+y=2280
解:(1)设1个小餐厅可供y名学生就餐,则1个大餐厅可供(1680-2y)名学生就餐,根据题意,得
2(1680-2y)+y=2280
解得:y=360(名)
所以1680-2y=960(名)
答:(略).
(2)因为9605360255205300
⨯+⨯=>,
所以如果同时开放7个餐厅,能够供全校的5300名学生就餐.
【点拨】第⑴问属于直接列方程解应用题,而第⑵问属于说理题,关键是求出这7个餐厅共能容纳多少人就餐,然后比较即可.
例6.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.该工艺品每件的进价、标价分别是多少元?
分析:根据利润=售价-进价与售价=标价×折扣率这两个等量关系以及按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等,就可以列出一元一次方程.
解:设该工艺品每件的进价是x元,标价是(45+x)元.依题意,得:
8(45+x)×0.85-8x=(45+x-35)×12-12x
解得:x=155(元)
所以45+x=200(元)
答:(略).
【点拨】这是销售问题,在解答销售问题时把握下列关系即可:
商品售价=商品标价×折扣率
商品利润=商品售价—商品进价=商品标价×折数—商品进价
商品利润率=商品利润
商品进价×100%
例7.(2006·益阳市)八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:
李小波:阿姨,您好!
售货员:同学,你好,想买点什么?
李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.
售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.
根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?
分析:这是一道情景对话问题,具有一定的新颖性.解答这类问题的关键是要从对话中捕捉等量关系.从对话中可以知道每支钢笔比每本笔记本贵2元,同时还可以发现买10支钢笔和15本笔记本共消费(100-5)=95元.根据上述等量关系可以得到相应的方程.
解:设笔记本每本x元,则钢笔每支为(x+2)元,据题意得
10(x+2)+15x=100-5
解得,x=3(元)
所以x+2=5(元)
答:(略).
感谢您的阅读,祝您生活愉快。