电力机车的传动控制技术

合集下载

HXD2电力机车电传动系统和机车网络控制系统培训教材【范本模板】

HXD2电力机车电传动系统和机车网络控制系统培训教材【范本模板】

HXD2型电力机车电传动系统培训教材1 交流电传动系统简介1。

1系统概述HXD2型电力机车交流电传动系统主要是由网侧电路、主变压器、牵引变流器、牵引电机及网络控制系统等部分组成。

交流电传动系统主要器件及其所在位置如图1—1所示。

图1—1 电传动系统主要器件及其位置机车主电路均采用轴控方式,交—直—交变流技术对牵引电机进行牵引和制动特性控制。

每台机车由两节车组成,设有四台变流柜,每台变流柜装有独立的两台变流器,每台变流器由IGBT模块组成的四象限变流器和逆变器组成,对该轴进行控制。

每节车的轴二、轴三变流器中间回路给辅助变流器提供电源。

整个系统采用绞线式列车总线(WTB)和多功能车辆总线(MVB)的形式实现对外通讯。

图1—2 牵引系统电气原理图1。

2 系统主要技术参数机车功率发挥基本要求:机车功率与网压关系如图1—3所示。

图1—3 八轴机车技术规范轮周功率发挥曲线图机车牵引力、制动力参数机车起动牵引力(0~5km/h速度范围内半磨耗的轮周平均牵引力) ≥760kN机车持续制牵引力≥532kN最大再生制动力(车钩处)461kN最大再生制动力开始线性下降的速度≤15km/h再生制动力线性下降至0的速度≤5km/h恒功率速度范围:牵引65~120km/h再生制动75~120km/h图1—4 机车牵引制动特性曲线轮轴参数轨距 1435mm轴式 2(B0-B0)机车整备重量 2x100 t轴荷重 25t机车轮周牵引功率(持续制)≥9600kW机车轮周再生制动功率(持续制) ≥9600kW额定牵引货物质量 1万吨车轮直径 1200(半磨耗)传动比 120/22.牵引系统介绍2。

1网侧电路网侧电路如图1-5所示,由1 台受电弓AP,1 台高压隔离开关QS—HV,1 个高压电压互感器TF1-PP,1台主断路器QF(M),1 台高压接地开关QS-GHV,1 台避雷器F1,1 个高压电流互感器TFI-QL(M),主变压器原边绕组AX,1 个接地侧电流互感器TFI—CE 和4 个回流装置,以及1 台高压连接器QF—HV 组成。

列车电力传动与控制第1章交-直流传动技术

列车电力传动与控制第1章交-直流传动技术

动、交-直流传动两个阶段。直-直流传动机车因技术原因已 被淘汰,交-直流传动机车/动车组技术成熟、性能可靠,保 有量很大,仍在许多国家、地区作为主型机车继续服役。 对于直流传动电力机车/EMU,没有经过直-直流传动阶 段,只经历了交-直流传动阶段。由于采用整流调压电路结构、 形式不同,先后经历了调压开关与二极管组合的有级调压、
3
3
110KV/50Hz
发电厂
升压站
地区变电所
牵引变电所
25kV/50Hz
A
25kV/50Hz 分相绝缘节
B
回流线 钢轨
图1–1 电力牵引系统组成
弓等高压电器,将接触网上 25kV/50Hz 单相交流电导入机车 内牵引变压器一次绕组,电流流过一次侧绕组,经车体接地装
臵与钢轨、回流线联结,与牵引变电所形成高压供电回路。同
本章主要介绍电力机车、EMU的直流传动系统,围绕基 本组成、牵引与制动等主要方面,进行系统分析。
2018/2/12 6
1.1 电力牵引传动系统的组成
电力牵引系统是由牵引供电部分和牵引动力装臵两大部分
组成,包括从牵引变电所到列车受电弓在内的供电部分和牵引
动力装臵的传动系统。牵引动力装臵主要指电力机车、电动车 组(EMU)。电力牵引系统组成如图1-1所示。一般习惯上以
2018/2/12 4
电力传动与控制
入交流传动时代,新造机车/动车组全部采用交流传动系统,
其交流传动机车、动车组的应用已很成熟。我国目前在线运
用的机车绝大多数属于交-直流传动机车。交流传动机车、 动车组在我国还处于起步发展阶段。我国曾研发了个别车型 的交流传动机车,但由于受关键技术、成本等因素制约,只 在机车型谱里占了一个位臵,没有形成批量。当前正在引进 的和谐系列机车、动车组均采用交流传动系统,这将确定了 我国牵引动力的发展方向,必然是走交流传动之路。 直流电力传动技术(机车)的发展概略为:

机电传动控制概述

机电传动控制概述
单电机拖动——一台电动机拖动一台生产机械的各运动部件。 这种拖动方式较成组拖动前进了一步,但当一台生产机械的运 动部件较多时,其传动机构仍十分复杂;
多电机拖动——一台生产机械的各个运动部件分别由不同的电 动机来拖动。
实例:汽车上的电(动)机
• 汽车上的电(动)机广泛分布于汽车的发动机、底盘、 车身三大部位及附件中
• 汽车附件上的电(动)机,应用于吸尘器、充气机、 气泵、抛光机、电动座椅按摩器等装置
二.机电传动控制系统的发展 控制系统的发展伴随控制器件的发展而发展。随着功率器件、
放大器件的不断更新,机电传动控制系统的发展日新月异,它主要 经历了四个阶段:
1.继电器—接触器控制:出现在20世纪初,它仅借助于简单 的接触器.器与继电器,实现对控制对象的启动、停车以及有级调 速等控制,它的控制速度慢,控制精度差;
机械制造自动化高级阶段是走向设计、制造一体化,即利用计算机辅助设计(CAD)与计算机辅助制造(CAM)形成产品设计和制造
过程的完整系统,对产品构思和设计直到装配、试验和质量管理这一全过程实现自动化。
汽车车身部件上的电(动)机,使用在中央门锁装置、电动后视镜、自动升降天线、电动天窗、自动前灯、电动汽车座椅调整器、电
二、机电传动控制的任务 ➢ 将电能转换为机械能; ➢ 实现生产机械的启动、停止以及速度的调节; ➢ 完成各种生产工艺过程的要求; ➢ 保证生产过程的正常进行。
三、机电传动控制的目的
从广义上讲,机电传动控制的目的就是要使生产设备、生产 线、车间乃至整个工厂都实现自动化。
从狭义上讲,则指控制电动机驱动生产机械,实现生产产品数 量的增加(效率)、质量的提高(精度)、生产成本的降低、工人 劳动条件的改善以及能量的合理利用等。

电传动控制原理第四章相控电力机车a课件

电传动控制原理第四章相控电力机车a课件

辅助控制策略通过调节机车的辅助设 备,如空调、照明、门窗等,提高机 车的舒适性和便利性。
04
CATALOGUE
相控电力机车的实验与验证
实验平台搭建
01
02
03
实验设备选择
根据相控电力机车的特性 和实验需求,选择合适的 实验设备和测试仪器。
实验环境搭建
建立模拟电力机车运行环 境的实验平台,包括电源 、信号发生器、数据采集 系统等。
实验结果验证与评估
实验结果对比
将实验结果与理论预测进行对比 ,验证相控电力机车的性能和行
为是否符合预期。
误差分析
分析实验结果与理论预测之间的误 差,找出误差来源,并提出改进措 施。
实验评估
根据实验结果和误差分析,对相控 电力机车的性能和行为进行评估, 为进一步优化设计提供依据。
05
CATALOGUE
安全防护措施
确保实验平台的安全性, 采取必要的防护措施,如 接地、过流保护等。
实验数据采集与分析
数据采集系统设置
配置数据采集系统,包括 传感器、信号调理电路、 数据采集卡等,确保能够 准确采集所需数据。
数据采集过程
在实验过程中,实时采集 电力机车的运行数据,如 电流、电压、速度等。
数据处理与分析
对采集到的数据进行处理 、分析和可视化,以便更 好地理解相控电力机车的 性能和行为。
国际市场
随着技术的不断进步和市场的扩大, 相控电力机车有望在国际市场上取得 更大的成功。
THANKS
感谢观看
牵引控制策略是相控电力机车 控制策略的重要组成部分,它 的主要目标是实现机车的牵引 力控制。
牵引控制策略通过调节机车的 输入电压和电流,实现对机车 牵引力的精确控制。

我国机车电传动技术的发展

我国机车电传动技术的发展

我国机车电传动技术的发展
机车电传动技术是指用电力来驱动机车的一种技术。

我国在机车电传动技术方面的发展可以分为以下几个阶段:
第一阶段是20世纪50年代到60年代,这一时期主要采用的是直流电机驱动,由于技术限制,机车功率和速度都较低。

其中最著名的是中国第一代电力机车——“东方红1号”,它于1958年投入使用,最大功率为1,200千瓦,最高时速为80公里。

第二阶段是70年代到80年代,这一时期我国开始引进国外的交流电机驱动技术,如日本的三菱公司和美国的通用电气公司。

这种技术可以实现高功率和高速,同时也更加节能。

其中最著名的是中国第二代电力机车——“和谐号”系列,它于1999年开始研制,最大功率为9,600千瓦,最高时速为350公里。

第三阶段是90年代至今,这一时期我国开始大力发展自主研发的机车电传动技术,如采用IGBT(绝缘栅双极性晶体管)的交流电机驱动技术,可以实现更高效率和更高可靠性。

其中最著名的是中国第三代电力机车——“复兴号”系列,它于2014年开始研制,最大功率为22,800千瓦,最高时速为400公里。

总的来说,我国机车电传动技术的发展经历了从直流电机驱动到交流电机驱动,再到自主研发的高效率、高可靠性技术的变化。

这些技术的发展不仅提高了机车
的功率和速度,也为我国铁路运输的安全和可靠性提供了有力支持。

重载货运电力机车电传动系统应用技术分析

重载货运电力机车电传动系统应用技术分析
再生 制动工况下实行连续控 制。 WM 四象限整流器实 P
元选择 标准屏蔽机柜 结构 ;布线方 面不仅严格选择接 地方式 且全部 采用标准 化布线作 业和测试作 业 , 提高 了产 品可靠 性 。 变流 器总体 选择 柜式 分区结构 , 成 形
屏 蔽罩 实现空 间电磁波 的吸收和反射 , 决 了空 间受 解 限条件 下强弱 电 的交错 干扰 问题 。 屏蔽罩 对空 间 电磁 波 的吸收损 耗为
化吸收 和再创新 的实施 , 促进 了 中国铁路牵 引动 力直
流到交 流的转化 , 实现 了重 载牵引技术 的跨 越式发展 。
移相 交错并联 , 在较 低 的开关频率 下大大 降低 输入 电
网 的谐 波 含量 。 3为 四重 化变 流器交错 并联原 理示 图 意图, 图4为机 车 电制 动工 况下变 压器 网侧 电流的仿 真 图形 , 明显 网侧 电流 得到 明显改善 。 很
构 , 电机 在机 车特 定 环境 条件 下 的功率 容量增 大 , 使 提高 了电机 的容积功 率密度 , 实现 牵引 电机 的免维护 使用 ;交 流电 机 的特 性也 提 升 了机 车 的空转 防 滑性 能。 通常电力机 车用异 步牵 引电机极数 可以选择 4 极或 6 , 际运 用中 , 极 电机 比6 极 实 4 极电机更优 。 在相 同转
2 4 牵 引 电机 .
2 交流 电传 动系统的应用特点
从能量 的利用效 率 、 功率等级 、 绿色节能等各方 面 比较 , 交流传动都具备很大 的优 势 , 已经成 为 目前 铁路
机 车 电传 动系统 的最佳 选择 方案 。
2 1 IB . G T的应 用
交 流牵 引 电机 由于取 消 了直 流 电机 的换 向器 结

3、交直电力机车

3、交直电力机车

成都机务段职教科
成都机务段职教科
第三章 电力机车概述
一、电力机车的基本组成:
主电路部分 电气 部分 电力机车
:高电压、大电流
压缩机
(升弓压缩机)外均
辅助电路部分:380V、220V交流、除辅助
为三相异步电动机
控制电路部分:110V直流 机械部分:车体、转向架、车体支撑装置、牵引缓冲装置。 空气管路部分:风源系统、辅助管路系统、控制管路系统、
交—直电力机车的传动控制
梁成鹰
成都机务段职教科
第一部分 交直电力机车传动
交流电气化线路 交直电力机车(直流车) 电力机车主电路系统
成都机务段职教科
交流电气化铁路
一、电气化铁路基本组成:
牵引网
牵引供电装置 变电所 电力机车
成都机务段职教科
成都机务段职教科
成都机务段职教科
成都机务段职教科
成都机务段职教科
成都机务段职教科
1、改变牵引电机端电压UD : 可通过改变一次侧、二次侧电压的方式进行有 级调速(调压开关)或利用晶闸管整流元件,通 过改变晶闸管移相角(触发角)的方法改变整流 输出电压,从而进行平滑无级调速。
2、改变磁通量ф : 即磁削弱调速,也称励磁调节。
成都机务段职教科
二、交直、交直型电力机车基本工作原理:
成都机务段职教科
1、中抽式全波整流(图a)
工作原理: 当变压器二次侧电压正半周a点高电位时: a→VD1→PK→M→O,此时VD2承受反向电压 而截止。 当变压器二次侧电压负半周b点高电位时: b点→Vd2→PK→M→0,此时VD1反向截止。
成都机务段职教科
轨电车采用。
成都机务段职教科
2、交—直传动:

hxd3型电力机车的传动原理

hxd3型电力机车的传动原理

hxd3型电力机车的传动原理Hxd3型电力机车是一种常见的铁路机车,其传动原理是指机车如何将电能转化为机械能,并传递到车轮上,使机车能够牵引车辆行驶。

下面将详细介绍hxd3型电力机车的传动原理。

Hxd3型电力机车的传动系统主要由电机、变速器、齿轮传动和轮轴传动组成。

电力机车的动力来源于电机。

电机是通过电能转化为机械能的装置,它可以将电能转化为旋转力,推动机车的运动。

在hxd3型电力机车中,电机一般采用交流异步电动机,通过电力系统供给电能,并控制电机的运转速度。

变速器在电力机车的传动中起到调节转速和扭矩的作用。

变速器是一种能够改变输出轴转速和扭矩的装置。

在hxd3型电力机车中,变速器一般采用油压式变速器,通过控制油流的大小和方向,调节电机输出的转速和扭矩,以适应不同的运行需求。

齿轮传动是电力机车传动系统中的重要组成部分。

它通过一系列的齿轮配合,将电机的旋转力传递到车轮上,实现机车的牵引作用。

在hxd3型电力机车中,齿轮传动一般采用多级齿轮传动,通过不同齿轮的配比,实现不同转速和扭矩的输出。

同时,齿轮传动还具有增加传动效率、减小传动误差和降低噪音的作用。

轮轴传动是电力机车传动系统的最后一环,它将齿轮传动的力量传递到车轮上,使机车能够牵引车辆行驶。

在hxd3型电力机车中,轮轴传动通常采用直接连接的方式,即将电机输出的动力通过齿轮传递到轮轴上,再由轮轴传递到车轮上,最终实现机车的牵引作用。

hxd3型电力机车的传动原理是通过电机、变速器、齿轮传动和轮轴传动等组成部分,将电能转化为机械能,并传递到车轮上,实现机车的牵引作用。

这一传动系统不仅能够提供足够的动力和扭矩,还能够适应不同的运行需求,并具有较高的传动效率和可靠性。

通过不断的技术改进和创新,hxd3型电力机车的传动系统将会更加先进和高效,为铁路运输提供更好的支持。

SS4电力机车

SS4电力机车

SS4电力机车1. 简介SS4电力机车是中国铁路货运列车中常用的一种电力机车型号。

它由中国中车集团有限公司研发和制造,广泛用于中国铁路系统的重载货运列车。

本文将介绍SS4电力机车的技术特点,设计原理和应用情况。

2. 技术特点2.1 动力系统SS4电力机车采用交流传动系统,配备了强大的牵引功率。

它采用了现代化的IGBT转流器控制技术,具有较高的整机效率和优异的牵引性能。

电力机车的动力系统是其核心部分,它可以提供足够的动力来驱动列车行驶。

2.2 控制系统SS4电力机车的控制系统采用了先进的微机控制技术。

它具有良好的稳定性和可靠性,并能通过与列车信号系统的联锁,实现列车进路的自动控制。

控制系统还包括了列车保护系统,可以对各种异常情况进行监测和处理,保证列车的安全运行。

2.3 车体结构SS4电力机车的车体采用了钢结构,具有较高的强度和刚度。

它拥有封闭式驾驶室和舒适的司机座椅,为机车驾驶员提供了良好的工作环境。

车体还采用了一些减振和降噪措施,提高了列车运行的平稳性和乘坐舒适性。

3. 设计原理SS4电力机车的设计原理是根据中国铁路货运的需求而制定的。

它采用了大功率交流传动技术,可以提供较大的牵引力和动力输出。

电力机车的动力系统由主变压器、整流变流器和牵引变压器组成,通过控制系统实现对电力机车的各项功能进行控制。

在设计过程中,SS4电力机车还考虑到了能耗和环境保护的要求。

它采用了节能技术,降低能源消耗,并且减少了对环境的污染。

同时,为了提高电力机车的可靠性,设计中还考虑了各种安全措施,确保列车在各种复杂条件下的安全运行。

4. 应用情况SS4电力机车在中国铁路系统的货运列车中得到了广泛的应用。

它主要用于长距离和重载货物运输,可以牵引各种类型的货车组成的列车。

电力机车的高功率和可靠性使其成为货物运输的理想选择。

目前,SS4电力机车已经运营在中国铁路系统的许多重要货运线路上。

它不仅提高了货物运输的效率和运力,还降低了物流成本。

hxd3型电力机车传动原理

hxd3型电力机车传动原理

hxd3型电力机车传动原理我们来了解一下电力传动的原理。

电力传动是指通过电能将动力传递到机械设备以实现运动的一种方式。

在hxd3型电力机车中,电能由供电系统提供,通过牵引变流器将电能转换为机械能。

牵引变流器根据司机的操作控制电机的工作方式,将电能转换为机械能驱动机车运动。

我们来了解一下hxd3型电力机车的组成。

hxd3型电力机车的主要部件包括牵引变流器、牵引电机、传动装置、转向架和制动系统等。

牵引变流器是将供电系统提供的电能转换为机械能的关键部件,它可以根据司机的操作控制电机的工作方式。

牵引电机是电力机车的动力来源,它通过传动装置将电能转换为机械能,驱动机车运动。

传动装置是将电能转换为机械能的中间环节,它将牵引电机的转速和扭矩传递给车轮,实现机车的运动。

转向架是支撑机车车体和传动装置的部件,它可以使机车进行转向。

制动系统是用于控制机车速度和停车的关键部件,它可以通过对车轮施加制动力来减速和停车。

我们来了解一下hxd3型电力机车传动系统的工作流程。

在机车运行前,司机需要对机车进行启动准备工作。

启动后,供电系统将电能提供给牵引变流器,牵引变流器根据司机的操作将电能转换为机械能。

然后,牵引电机通过传动装置将机械能传递给车轮,驱动机车开始运动。

在运动过程中,司机可以通过控制牵引变流器调节电机的工作方式,实现机车的加速和减速。

当需要减速和停车时,司机可以通过操作制动系统施加制动力,使机车减速并最终停车。

hxd3型电力机车采用电力传动的方式实现机车的运动。

通过牵引变流器将供电系统提供的电能转换为机械能,再通过传动装置将机械能传递给车轮驱动机车运动。

hxd3型电力机车的传动系统可靠高效,具有灵活调节和良好的动力性能,是现代化铁路运输中不可或缺的重要装备。

电力机车工作原理

电力机车工作原理

电力机车工作原理引言概述:电力机车是一种使用电力作为动力源的机车,它通过电力系统将电能转化为机械能,推动列车运行。

本文将详细介绍电力机车的工作原理,包括电力系统、传动系统、控制系统和辅助系统四个方面。

一、电力系统1.1 电源系统:电力机车的电源系统通常由架空供电和蓄电池两部分组成。

架空供电是通过接触网将交流电输送到机车上,而蓄电池则用于提供启动电流和应对断电情况。

1.2 变压器:电力机车中的变压器起到将高压的交流电转换为适合机车使用的低压电的作用。

变压器通过绕组和铁芯的相互作用,实现电能的传递和转换。

1.3 逆变器:逆变器是电力机车中的关键部件,它将直流电转换为交流电,供给电动机使用。

逆变器通过控制晶闸管等器件的导通和关断,实现电能的转换和调节。

二、传动系统2.1 电动机:电力机车中的电动机是将电能转化为机械能的核心部件。

电动机通过电磁感应原理,将交流电转换为旋转力,推动车轮运动。

2.2 齿轮传动:电力机车的传动系统通常采用齿轮传动方式。

齿轮箱通过齿轮的啮合和传动,将电动机输出的转矩和转速传递给车轮,实现列车的运动。

2.3 制动系统:电力机车的制动系统包括电阻制动和空气制动两种方式。

电阻制动通过将电动机的输出电能转化为热能来减速,而空气制动则通过增加车轮的摩擦力来实现制动。

三、控制系统3.1 牵引控制:电力机车的牵引控制系统用于调节电动机的转矩和转速,以实现列车的加速和减速。

通过控制电动机的电流和电压,牵引控制系统能够有效地控制机车的运行状态。

3.2 制动控制:制动控制系统用于控制电力机车的制动力度和制动方式。

通过调节电阻制动和空气制动的工作状态,制动控制系统能够实现列车的安全停车。

3.3 保护系统:电力机车的保护系统用于监测和保护机车的各个部件。

例如,温度保护器可以监测电动机的温度,当温度过高时会自动切断电源,以防止电动机过热。

四、辅助系统4.1 空调系统:电力机车通常配备有空调系统,以提供舒适的工作环境给机车乘务员。

电力机车工作原理

电力机车工作原理

电力机车工作原理标题:电力机车工作原理引言概述:电力机车是一种利用电力驱动的火车,其工作原理是通过电力系统将电能转换为机械能,从而驱动火车行驶。

电力机车在铁路运输中起着重要作用,其工作原理的了解对于提高火车运行效率和安全性至关重要。

一、电力机车的供电系统1.1 高压输电系统:电力机车通过高压输电系统从供电站获取电能。

1.2 变压器:将高压电能转换为适合电机使用的低压电能。

1.3 电池组:在断电或临时停电情况下提供电力供应。

二、电力机车的传动系统2.1 电动机:电力机车的主要驱动力,将电能转换为机械能。

2.2 牵引系统:将电动机产生的动力传递给火车车轮,实现牵引。

2.3 制动系统:通过电动机反向工作或机械制动实现减速和制动。

三、电力机车的辅助系统3.1 空气压缩机:为列车的制动系统提供压缩空气。

3.2 冷却系统:保持电动机和变压器的正常工作温度。

3.3 供暖系统:为列车提供乘客舒适的温度。

四、电力机车的控制系统4.1 主控制器:控制电动机的启停、转速和牵引力。

4.2 保护系统:监测电力机车各部件的工作状态,保障安全运行。

4.3 信号系统:接收信号指令,控制电力机车的运行方向和速度。

五、电力机车的维护和保养5.1 定期检查:对电力机车各部件进行定期检查,确保工作正常。

5.2 润滑维护:保证机械部件的良好运转,延长使用寿命。

5.3 故障排除:及时处理电力机车的故障,确保列车运行安全可靠。

结论:电力机车的工作原理涉及多个系统的协同作用,对于确保火车运行的顺利和安全至关重要。

通过对电力机车的供电、传动、辅助、控制系统的了解,可以更好地理解电力机车的工作原理,为铁路运输提供更高效、更安全的服务。

电力机车控制第一章 电力机车速度调节

电力机车控制第一章  电力机车速度调节

第五节 电力机车功率因数的改善
第六节 交流传动电力机车的调速
一、交-直-交型电力机车调速方法
1.改变电动机定子极对数
2.改变转差率 3.改变电源频率 (1)恒磁通控制。 (2)恒功率控制。
第六节 交流传动电力机车的调速
二、交-交型电力机车调速方法
交-交型电力机车采用三相同步牵引电动机,其调速方法和直 流电动机的调速原理相似,只要改变同步电动机的端电全控桥式整流电路
第四节 相控调压
二、单相半控桥式整流电路 三、整流电压(电流)的脉动
第四节 相控调压
四、机车功率因数
第五节 电力机车功率因数的改善
一、评价相控调压的两个指标
二、提高机车功率因数的方法
1.多段桥顺序控制 2.功率因数补偿器
第五节 电力机车功率因数的改善
二、交-直型电力机车调速方法
根据公式(1.2)可知交-直型电力机车的调速方案应有下列几种: 1.改变牵引电动机电枢回路电阻
2.改变牵引电动机的端电压
3.改变磁通量
第三节 励磁调节
一、磁场削弱系数 二、磁场削弱方法
1.电阻分路法 2.晶闸管分路法
三、磁场削弱的应用
第三节 励磁调节
第三节 励磁调节

机车调速是指人为地改变牵引电动机的工作参数使其速度发 生变化的运行过程,它有别于因外部扰动(网压变化、线路纵断
面变化等)引起的转速变化。
一、机车的运行状态 二、电力机车调速的本质 三、电力机车调速的基本要求
第二节 直流传动电力机车的调速
一、直流传动电力机车速度表达式
第二节 直流传动电力机车的调速
第一章
电力机车速度调节
(1)了解整流电流脉动对牵引电动机的影响及其减小措施。

HXD1型电力机车牵引电传动系统分析

HXD1型电力机车牵引电传动系统分析

HXD1型电力机车牵引电传动系统分析HXD1型电力机车是目前中国国内主要采用的交流传动电力机车之一、该型号机车采用了牵引电传动系统,由电机、变压器、整流器、逆变器和控制装置等组成。

本文将对HXD1型机车的牵引电传动系统进行分析,包括其工作原理、特点以及存在的问题等方面。

首先,HXD1型机车的牵引电传动系统主要由交流牵引电机驱动,电机与车轮通过齿轮减速器、驱动轴传递动力。

在牵引过程中,电机接收来自整流器输出的直流电能,通过电机的转子与零部件之间的相对运动,将电能转化为机械能,驱动车轮产生牵引力。

同时,在制动过程中,电机作为电动制动器,将机械能转化为电能,并通过逆变器将电能转化为热能散发。

其次,HXD1型机车牵引电传动系统的特点有以下几点。

首先是动力性能稳定可靠。

该型机车采用了电机传动,相比于传统的机械传动方式,具有动力传递效率高、响应速度快等特点,能够提供稳定可靠的动力输出。

其次是能源利用效率高。

传统的机车通过牵引发动机与传动系统实现牵引力,但在过程中会有功率损耗,而电力机车通过直接利用电能驱动电传动系统,能够更高效地利用能源,提高能源的利用效率。

再次是环境友好。

电力机车不需要燃料燃烧,减少了尾气排放,对环境的污染较小,有利于环境保护。

然而,HXD1型机车的牵引电传动系统还存在一些问题。

首先是系统的复杂性。

电力机车的牵引电传动系统涉及到多种电力、电子设备,需要较高的技术水平和维修保养能力。

其次是电力系统的稳定性。

机车的电力系统在工作过程中需要经常进行调整和优化,以确保系统的稳定性和安全性。

再次是能源供给的问题。

电力机车需要外部供电,如果供电系统不稳定或故障,会影响机车的正常运行和维护。

综上所述,HXD1型电力机车的牵引电传动系统具备稳定可靠、能源利用效率高、环境友好等特点。

然而,还需要进一步解决系统复杂性、电力系统稳定性和能源供给等问题,以提高机车的性能和可靠性。

发动机-传动电机的转速控制(BP+PID)

发动机-传动电机的转速控制(BP+PID)

目录一、设计题目 (1)二、系统的工作原理 (2)三、BP神经网络 (3)3.1BP神经网络结构 (3)3.2BP网络学习算法 (4)四、基于BP神经网络的PID控制器 (6)4.1PID控制器 (6)4.2基于BP神经网络的PID控制器 (7)五、程序代码及结果分析 (10)5.1程序代码 (10)5.2仿真结果 (13)六、结论 (15)一、设计题目柴油-电力机车传动电机的转速控制柴油机有着十分广泛的用途,它可用来驱动内燃机车的传动电机,从而保证重型列车的正常运行。

但是柴油机的工作效率对转速非常敏感,因此为了提高其工作效率,应该控制传动电机的转速。

图中给出了柴油内燃机车的电力传动模型。

图1-1 转速控制模型移动输入电位计的游标,可设置控制阀的位置,从而设定传动电机的预期转速w r 。

负载转速w 0是受控变量,其实际值由测速机测量。

测速机由电机轴上的皮带驱动,其输出电压v 0是系统的反馈变量。

由于输入电位计提供了预期参考电压,由此可求得参考电压与反馈电压间的偏差为( v r - v 0 )。

放大器将偏差电压放大后,生成电压信号v f ,并用作直流发电机的线圈磁场电压。

在电力传动系统中,柴油机的输出转速恒为w q ,直流发电机由柴油机驱动,其输出电压V g 是电枢控制直流电机的驱动电压。

此外电枢控制直流电机的励磁磁场电流i 也保持恒定不变。

在上述条件下,由于V R 的作用,直流电机将产生力矩T ,并使负载转速w 0逐渐趋近于预期转速w r 。

已知:● 电机的反电动势系数为Kb =31/50;● 与电机有关的参数为J=1,b=1,La=0.2,Ra=1; ● 发电机有关的参数为励磁电阻Rf=1,励磁电感Lf=0.1,Lg=0.1,Rg=1;柴油机 w rv rv 0v d 常量放大器i f L f R fi a L a R a发电机电机测速机负载w 0,J ,bv fV g● 测速机增益Kt=1;●发电机常数Kg ,电机常数Km 自定;二、系统的工作原理本系统利用移动输入电位计的游标,可设置控制阀的位置,从而设定传动电机的预期转速w r ,在移动输入电位计两端加有电源,每当游标移动一定距离,电位计上输出电压也跟随变化,该变化的电压(由输入电位计提供的的预期参考电压)与电动机反馈回来的电压值v 0进行比较,得到一个电压差v r - v 0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要:近年来, 为了适应“提速、重载”的要求, 功率大、性能技术先进的新型国产内燃、电力机车的投人运用, 成为我国铁路运输的主要牵引动力。

自1995年以来, 我国铁路机车迅速更新换代, 不仅蒸汽机车迅速退出历史舞台, 而且国产第一代内燃机车和第二代内燃机车的早期产品也批量报废, 国产第一代电力机车早期产品已开始批量报废, 第二代国产电力机车正通过大修改造为第三代相控电力机车。

近年来, 大批量生产的是适应“提速、重载”的第三代内燃、电力机车, 并在积极研制第四代新型内燃、电力机车。

本文简要介绍了机车电力传动形式的转变历程,回顾了交流传动的发展历史,揭示出电力电子技术与电传动技术的密切关系,重点阐述了我国电力牵引技术的发展与现状,并展望了以交流传动技术为方向的我国铁路机车车辆装备制造业的发展前景。

关键词:电力机车传动,控制技术,发展与现状。

目录1.电力传动形式的转变 (3)2.交流传动技术 (3)2.1 交流传动技术的发展 (3)2.2交流传动技术的原理简介 (5)3.我国机车电传动技术的发展 (6)3.1 第一代电力机车控制技术 (6)3.2 第二代电力机车控制技术 (7)3.3 第三代电力机车控制技术 (8)4.展望 (10)参考文献: (11)1.电力传动形式的转变从很早的年代开始,人们就一直努力探索机车牵引动力系统的电传动技术。

1879年的世界第一台电力机车和1881年的第一台城市电车都在尝试直流供电牵引方式。

1891年西门子试验了三相交流直接供电、绕线式转子异步电动机牵引的机车, 1917年德国又试制了采用“劈相机”将单相交流供电进行旋转、变换为三相交流电的试验车。

这些技术探索终因系统庞大、能量转换效率低、电能转换为机械能的转换能量小等因素,未能成为牵引动力的适用模式。

1955年,水银整流器机车问世,标志着牵引动力电传动技术实用化的开始。

1957年,硅可控整流器( 即普通晶闸管) 的发明, 标志着电力牵引跨入了电力电子时代。

大功率硅整流技术的出现,使电传动内燃机车和电力机车的传动型式从直-直传动(直流发电机或直流供电-直流电动机),很自然地被更优越的交-直传动(交流发电机或交流供电-硅整流-直流电动机)所取代。

1965年,晶闸管整流器机车问世, 使牵引动力电传动系统发生了根本性的技术变革, 全球兴起了单相工频交流电网电气化的高潮。

随着大功率的晶闸管特别是大功率可关断晶闸管(GTO)的出现和微机控制技术等的发展,20世纪70年代以后出现了交-直-交传动(交流发电机或交流供电-硅整流-逆变器-交流电动机),即所谓的交流传动,又很自然地取代了交-直传动。

2.交流传动技术2.1 交流传动技术的发展交流电动机作为牵引电动机使用, 具有独特的优越性:(1)交流电动机体积小、质量轻、功率大。

体积小, 解决了安装空间的限制问题;质量轻, 减小了机车转向架的簧下质量,改善了轮轨作用力,适应了高速的需要;功率大, 解决了高速所必需的动力问题。

(2)交流电动机保持恒定大功率的速度范围宽,有利于实现客货通用型机车。

(3)交流电动机无换向器,消除了电刷与换向器磨耗,提高了可靠性,也降低了制造和维修成本。

(4)异步交流电动机具有优异的牵引性能,陡峭的自然特性有利于提高粘着利用,能更好地发挥牵引力。

虽然交流电动机,尤其是异步电动机具有上述优势, 但在上世纪70年前,由于直流电机控制的简便性,以及电力电子技术仅具备整流晶闸管器件和完善的整流技术,交流传动无法与直流传动相媲美。

随着快速晶闸管的出现,采用异步牵引电机、快速晶闸管变流机组、电流--滑差控制方法的交流传动系统的DE-2500内燃机车问世了,交流传动在牵引领域展现出前所未有的活力。

从此,机车车辆装备进人了新时代。

1983年,世界首批5台BR120型大功率干线交流传动电力机车,赢得了德国联邦铁路的认可。

BR120机车在系统设计、总体布置、参数选择与优化规则、电路结构方面以及在主要部件,如卧式主变压器、牵引变流器、牵引电动机、空心轴万向节传动装置、辅助变流器等的设计和制造方面, 成功地进行了尝试, 奠定了当代交流机车设计和运行的基本模式。

交流传动系统不仅能充分发挥了交流电动机的优越性,而且采用新技术后,带来了新的优势:(1)机车采用四象限脉冲变流器,大大减少了供电网的电流谐波分量, 改善了供电品质,解除了对通信、信号的干扰;(2)交流传动机车可使供电网获得近似于1的功率因数, 从而减小了供电网损耗,再生制动时还可以向电网反馈品质良好的电能,节能效果显著;(3)机车向前/向后、牵引/制动操纵无需位置转换开关即可进行主电路的转换, 电路简单, 可靠性高。

西方发达国家投入巨资研发轨道交通交流传动系统, 经过30年的研发、考核、技术更新, 已完成了机车车辆直流传动向交流传动的产业转换。

TGV、新干线、ICE已经成为铁路现代化和国家综合实力的标志之一。

交流传动成为铁路实现高速和重载的唯一选择和发展方向。

在这发展过程中,电力电子器件的发展是交流传动技术进步的物质基础。

第一代机车采用快速晶闸管,变流机组复杂、效率较低、可靠性和可维修性等均不理想。

随着大功率GTO器件的诞生, 上世纪80 年代中后期被迅速应用于大功率交流传动机车动车, 技术性能又有新的提高。

进入上世纪90年代,中高压IGBT 相继问世,器件品质进一步提高,变流机组又开始更新换代。

与此同时, 控制策略的发展是交流传动技术进步的理论基础。

先后研究、应用了晶闸管移相整流控制、PWM控制、四象限脉冲整流控制、磁场定向控制、直接转矩控制等方法。

微电子、信息技术等为交流传动技术进步提供了现代控制手段。

从过去复杂的模拟--数字电路实现简单的控制功能,进人现代网络化控制、小型化及模块化结构。

微计算机和微处理器品质不断提升,由8位进步到32位、64位,由定点运算进步到浮点运算,处理能力大幅提升,构筑了以高速数字信号处理器为核心的实时控制器。

由此可见,电力电子技术这门综合学科对牵引动力交流传动系统的发展产生了强大的推动力。

2.2交流传动技术的原理简介交直流传动电力机车是采用直流供电,,由直流或脉流串励电动机牵引的机车。

其优点是串励电动机具有“软特性”,在电源电压一定时, 电动机的转速和转矩中随着负载阻力的变化而自行调节,特别适合机车牵引特性的要求。

其缺点是电机结构复杂,用铜多、重量大、维修不便,且由于换向器能力限制, 负载大时易环火,故无法进一步提高电机功率。

交流传动电力机车是采用交流供电,交流异步电动机牵引的机车,其优点是交流异步电动机结构简单、维修方便、体积小、重量轻、功率大,而且粘着利用率高,电机恒功区宽,特别适合大功率机车采用。

其难点是交流异步电动机必须采用变频调整,且大功率变频器不仅技术难度大,而且需要大功率高性能的电力电子元件。

国产电力机车交流传动装置,基本上均采用架控供电方式的交直交电传动系统。

电力机车的供电方式分为集中供电、架控供电和轴控供电三种。

由一台大功率牵引逆变器向机车所有电机供电,称为集中供电方式由一台牵引逆变器向一个转向架的几个电机供电,称为架控供电方式;由一台牵引逆变器向一个动轴上的一个电机供电,称为轴控供电方式。

因架控供电的逆便变器功率和数量适中,并且于实施轴重转移电气补偿,因此,国产交传动电力机车均采用架控供电方式。

交直交电传动机车的关键部件是牵引逆变器,它承担着将电压稳定的中间直流电转换为电压和频率均可调的三相交流电的任务,目前已经历了三代逆变器的发展过程。

第三代牵引逆变器以智能功率模块为元件,它性能更好,关断电流大,开关频率很高。

3.我国机车电传动技术的发展3.1 第一代电力机车控制技术我国电力机车控制技术的发展历史可追塑到本世纪60年代末、70年代初。

期间,株洲电力机车研究所的科技人员对SS2型试验用电力机车成功地进行了相控改造,为我国电力机车电传动控制技术的发展奠定了基础。

电子控制技术真正用于国产电力机车始于1978年竣工的6轴SS3型电力机车。

由于晶闸管应用技术的推广,该车采用了8级调压开关有级转换和级间相控平滑调压的主电路结构,因此电子控制系统相对比较复杂。

其主要功能有:(1)牵引工况恒电枢电流控制,具有最高电机电压限制功能;(2)制动工况恒励磁电流控制,具有最大制动电流限制功能;(3)具有超压、二次侧短路、电机过流等保护功能;(4)具有调压开关进、退级与相控调压有关逻辑联锁、监控及保护电路。

在电路系统设计上,为提高装置的可靠性,采用了A、B两组相同的控制系统,当一组出现故障时,可人工切换至另一组,从而不影响机车运行。

这一设计思想为后续各型机车控制系统所借鉴。

经过不断地改进、完善,该车型电子控制装置成为最早批量装车,技术比较成熟的第一代产品。

3.2 第二代电力机车控制技术80年代我国采用技贸结合的方式从欧洲50Hz集团采购了150台8K型电力机车,其中2台机车在株洲合作生产。

株洲电力机车研究所在此期间承担了电子控制装置的合作生产和技术国产化工作,并在此基础上,在“七五”、“八五”期间成功地开发出了SS5、SS6、SS3B、SS4改进型、SS6B、SS7等不同车型的电力机车电子控制装置。

这一代控制系统功能完善,技术上达到国际80年代初水平,并实现了标准化、模块化,从而实现了我国电力机车控制技术的一次更新换代。

第二代控制技术的特点有:(1) 电路组成单元主要以LM124、LM139、74HC系列IC等新一代数、模集成电路为主构成。

部分电路如功率因数补偿、空电联合制动控制电路采用单板机技术;(2) 采用了符合IEC有关标准的电路板、机箱结构和法拉第箱概念设计的机柜,具有良好的防尘、防潮、防震和电磁屏蔽性能;(3) 在系统设计上,较完整地考虑了电位隔离、滤波、屏蔽等抗干扰措施。

如对数字I O信号采用光耦和继电器进行电位隔离,对模拟I O信号采用电磁变换原理进行电位隔离等;(4) 系统电路设计上采用了高精度霍耳电流、电压传感器、0.5%精密电阻等措施,可保证电路板精度,系统精度达2%;(5) 各型控制装置电路板标准化、通用化程度高(12种电路板中有9种是通用电路板);(6) 系统充分考虑了各种控制需要,功能模块齐全,可满足特性控制,防空转 滑行控制,功率因数补偿控制,空电联合制动控制,加馈或再生制动控制,重联控制以及各种保护的功能要求;(7) 工艺上采用绕接、压接布线,自动波峰焊接,全自动功能测试等新工艺,提高了产品质量;3.3 第三代电力机车控制技术第三代电力机车控制技术是以微型计算机技术为核心的新一代控制技术。

我国电力机车微机控制技术1987年开始起步,并于1991年底首次在SS438号车上装车运行考核,目前已成功地推广应用于SS8准高速客运电力机车、SS4B重载货运电力机车和首次出口伊朗的电动车组头车(TM1)。

相关文档
最新文档