高中数学解题方法与技巧---构造函数法证明导数不等式的六种方法
【高考数学】构造函数法证明导数不等式的八种方法
构造函数法证明不等式的八种方法1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。
2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。
以下介绍构造函数法证明不等式的八种方法:一、移项法构造函数【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(111 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(-+++=x x x g ,从其导数入手即可证明。
【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 ,即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数,故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方;分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题, 即3232ln 21x x x <+,只需证明在区间),1(∞+上,恒有3232ln 21x x x <+成立,设)()()(x f x g x F -=,),1(+∞∈x ,考虑到061)1(>=F 要证不等式转化变为:当1>x 时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可。
人教版数学高二-备课资料不等式证明的常用方法和技巧
不等式证明的常用方法和技巧不等式证明是学习的难点,其方法灵活多样,它又可以和很多内容结合.如果思路不开阔,方法不灵活,做题时就陷入困境.下面介绍有关不等式证明的六种常用方法和技巧,有助于同学们对这部分知识的掌握与应用. 一、 比较法例1 已知x 、y 、R z ∈,a 、b 、*∈R c ,求证:)(2222zx yz xy z cb a y b ac x a c b ++≥+++++. 证明:∵)(2222zx yz xy z cb a y b ac x a c b ++-+++++ =222222222z cb yz y bc z c a zx x a c y b a xy x a b +-++-++- =0)()()(222≥-+-+-z cb y bcz c a x ac y b a x ab. ∴)(2222zx yz xy z cb a y b ac x a c b ++≥+++++. 【点评】⑴作差比较法的依据是0>-⇔>b a b a ,作差后要判定差式的符号.其难点..是对差式变形,常常将差式化为几个可判号因式..............连乘积或几个偶次因式和...........的形式;⑵作差比较法的适用范围:多项式的大小比较、对数式的大小比较;⑶本题证明配方技巧的实现关键在于合理分项. 二、 综合法 例2 求证:1)4141(log 21-+≤+b a b a .证明:∵1)1()21(2222414124141-+-+---==⋅⋅=⨯≥+b a b a b a b a ba . 又因为x y log 21=在区间(0,∞+)上是减函数,所以1)21()4141(12121log log -+=≤+-+b a b a b a .当且仅当b a 4141=,即b a =时等号成立.【点评】⑴综合法的证明思路:由已知条件出发,根据要证不等式左右的结构特点,借助不等式的性质和有关定理,按逻辑推理导出欲证结论,其特点是“由因导果”;⑵本题用到了基本不等式,又用到了对数函数的单调性,函数的单调性是函数与不等式有机结合的最佳结合点. 三、 分析法 例3是否存在常数c,使得不等式yx y y x x c y x y y x x +++≤≤+++2222对任意正实数x 、y 恒成立,证明你的结论.证明:假设存在常数c,使得不等式yx yy x x c y x y y x x +++≤≤+++2222对任意正实数x 、y 恒成立,则当y x =时,可得32=c . 下面分两部分给出证明当32=c 时,不等式yx yy x x c y x y y x x +++≤≤+++2222对任意正实数x 、y 恒成立:① 先证3222≤+++y x y y x x .∵x 、*∈R y ,∴欲证3222≤+++y x y y x x ,只需证)2)(2(2)2(3)2(3y x y x y x y y x x ++≤+++,即证222y x xy +≤.∵x 、R y ∈,222y x xy +≤成立,∴证式成立.② 再证3222≥+++y x y y x x .∵x 、*∈R y ,∴欲证3222≥+++y x y y x x ,只需证)2)(2(2)2(3)2(3y x y x y x y y x x ++≥+++,即证xy y x 222≥+,∵x 、R y ∈,xy y x 222≥+成立,∴证式成立. 综上①、②可知,存在常数32=c 对任意正实数x 、y ,题中的不等式成立.【点评】⑴常数c 的正确寻找是解决问题的关键.依据题设条件给x 、y 赋特殊值求出c 的值是常用的基本方法;⑵当证明从正面打不开思路时,可以考虑用分析法从结论出发,“执果索因”. 四、 反证法例4 证明由小于1的三个正数a 、b 、c 所组成的三个乘积b a )1(-,c b )1(-,a c )1(-不能同时大于41.证明:假设b a )1(-,c b )1(-,a c )1(-都大于41,则有641)1()1()1(>-⋅-⋅-a c c b b a ,但由2)21()1(0a a a a +-≤-<, 即41)1(0≤-<a a .同理有41)1(0≤-<b b ,41)1(0≤-<c c .即有641)1()1()1(≤-⋅-⋅-a c c b b a .这与假设产生矛盾,从而原命题成立.【点评】⑴反证法适宜证明“存在性问题,唯一性问题,或带有‘至多有一个’、‘至少有一个’等字样的问题”;⑵常见的矛盾有三种表现形式:与已知矛盾;与假设产生矛盾;与公理、定理等事实矛盾. 五、 放缩法 例5当2≥n ,且*∈N n ,求证:n nn 121312*********-<++++<+- . 证明:∵)1()1(2->>+k k k k k ,∴)1(11)1(12-<<+k k k k k ,即k k k k k 11111112--<<+-,分别令2=k 、3、4、…、n . 得 2112131212-<<-, 31213141312-<<-, ……nn n n n 11111112--<<+- 将这些不等式同时相加, 得<+-++-+-)111()4131()3121(n n 222131211n++++)111()3121()211(nn -+++-+-< ,即n n n 11131211121222-<+++<+- , ∴n nn 121312111123222-<++++<+-. 【点评】⑴放缩法常用的思路:欲证B A >,则找出过度量,使B DC A >>>;⑵放缩法常用的技巧:①舍去一些正项(或负项);②在和或积中换大(或换小)某些项;③扩大(或缩小)分式的分子(或分母);④应用基本不等式进行放缩.如(ⅰ)22)21(43)21(+>++a a ;(ⅱ))1(112-<k k k ,)1(112+>k k k ;(ⅲ))1(2121-+=--<k k k k k ,)1(2121--=-+>k k k k k .六、 三角换元法例7 已知2122≤+≤y x ,求证:32122≤+-≤y xy x .证明:∵2122≤+≤y x ,可设⎩⎨⎧==θθsin cos r y r x ,其中21≤≤r ,πθ20<≤.∴)2sin 211(cos sin 22222θθθ-=-=+-r r r y xy x .∵πθ20<≤,∴232sin 21121≤-≤θ,∴22223)2sin 211(21r r r ≤-≤θ.而21212≥r , 3232≤r ,∴32122≤+-≤y xy x .【点评】⑴本例证明,不等式中的两个等号不能同时成立.做三角代换,应注意换元后对r 和角θ的限制,即三角不等式与代数不等式的等价转化应引起足够的重视;⑵三角换元法多用于条件不等式的证明,若条件是222a y x =+(a 为常数),则可设⎩⎨⎧==θθsin cos a y a x ;若222a y x ≤+(a 为常数),则可设⎩⎨⎧==θθsin cos a y a x .。
证明导数不等式常见八法
ln(1 m) ln(1 n) 原不等式成立
m
n
(log a
x)'
1 x
log a
e
(e x )' e x ;
(a x )' a x ln a
默写:导数的四运算
[ f (x) g(x)]' f '(x) g'(x) 函数和差的导 ,等于导的和差
[ f (x) g(x)]' f '(x)g(x) f (x)g'(x)
[ f (x)]' g(x)
f ''(x) 2x 0(x 0) 由定理2知f '(x)在(0,)上单调递增, 1 x
f '(x) f '(0) 0(x 0) f (x)在(0,)上单调递增
f (x) f (0) 0 2x x2 2(x 1) ln(1 x) 0
6、构造二阶导数函数证明导数的单调性(两次求导)
例6.已知函数f (x) aex 1 x2 2
6、构造二阶导数函数证明导数的单调性(两次求导)
例6.已知函数f (x) aex 1 x2 2
(2)记F(x) f (x) (1 x) ex 1 x2 x 1(x 0) 2
A
在x 2处的导数值
f (x) x1
f
'(x)
x 11
1 x2
B
x的变化量:由分子" f (?)"
中的"?"确定, 不能由分母定.
原式
1 2
lim h0
f
导数与构造函数证明不等式的技巧
导数与构造函数证明不等式的技巧导数与构造函数是微积分中的重要概念,它们在证明不等式中起着重要作用。
本文将介绍一些导数与构造函数在证明不等式中的技巧,并通过具体的例子来加深理解。
1. 利用导数的性质进行不等式证明在证明不等式时,可以通过导数的性质来进行推导。
当需要证明一个函数在某个区间上单调递增或单调递减时,可以通过求导数并分析导数的正负性来进行证明。
假设一个函数f(x)在区间[a, b]上可导,求出其导数f'(x)并分析f'(x)的正负性,如果f'(x)恒大于零,那么函数f(x)在区间[a, b]上就是单调递增的;如果f'(x)恒小于零,那么函数f(x)在区间[a, b]上就是单调递减的。
通过这种方法,可以利用导数的性质来证明函数的单调性质,从而进一步推导出不等式。
2. 构造函数进行不等式证明构造函数是指通过一些技巧将原函数进行变形,从而更好地应用各种数学性质来进行不等式证明。
当需要证明一个不等式时,可以通过构造一个辅助函数来简化原不等式的证明过程。
通过巧妙地构造函数,可以使得不等式的证明更加直观、简单。
例1:证明当x>0时,有e^x>1+x。
解:可以通过在函数f(x) = e^x - (1+x)上应用导数的性质来证明这个不等式。
求导数得f'(x) = e^x - 1,显然f'(x)恒大于零,因此f(x)在区间(0, +∞)上单调递增。
又当x=0时,有f(0) = e^0 - (1+0) = 0,因此在区间(0, +∞)上有f(x)>0,即e^x>1+x。
通过导数的性质,成功证明了不等式e^x>1+x。
通过以上两个例子,可以看到导数与构造函数在不等式证明中的重要作用。
通过分析导数的性质以及巧妙地构造辅助函数,可以更好地理解、应用和证明各种不等式。
在实际的数学问题中,通常会遇到各种复杂的不等式,通过灵活运用导数与构造函数的技巧,可以更加轻松地解决这些问题。
导数与构造函数证明不等式的技巧
导数与构造函数证明不等式的技巧导数是微积分中的一个重要概念。
它可以描述函数在各个点上的变化率,也可以用来求函数的最大值、最小值以及拐点等重要信息。
而构造函数则是数学中一种非常常见的证明不等式的方法。
本文将介绍一些常用的导数和构造函数证明不等式的技巧。
一、使用导数证明不等式1. 求导数确定函数的单调性对于一个函数$f(x)$,如果它在某个区间上的导数$f'(x)$大于0,说明它在该区间上单调递增;如果导数$f'(x)$小于0,则说明它在该区间上单调递减。
因此,如果要证明一个不等式在某个区间上成立,可以先求出函数在该区间上的导数,确定其单调性,然后再比较函数在两个端点处的取值即可。
例如,对于函数$f(x)=x^2-4x+3$,我们可以求出它的导数为$f'(x)=2x-4$。
由于$f'(x)>0$时$f(x)$单调递增,因此当$x<2$时,$f(x)<f(2)$,当$x>2$时,$f(x)>f(2)$,即$f(x)$在$x<2$和$x>2$的区间上都小于$f(2)$,因此我们可以得到不等式$f(x)<f(2)$,即$x^2-4x+3<1$。
2. 求导数判断函数的最值对于一个函数$f(x)$,如果它在某个点$x_0$处的导数$f'(x_0)=0$,且$f^{''}(x_0)>0$(即$f(x)$的二阶导数大于0)则$f(x)$在$x_0$处取得一个局部最小值;如果$f^{''}(x_0)<0$,则$f(x)$在$x_0$处取得一个局部最大值。
因此,如果要证明一个不等式最值的存在性,可以先求出函数的导数,再找出导数为0的点即可。
3. 构造特殊的函数如果一个不等式的两边都是多项式,可以考虑构造一个较为特殊的函数,来证明不等式的成立性。
例如,对于不等式$\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\leq\dfrac{3}{2\sqrt[3]{abc}}$,我们可以考虑构造一个函数$f(x)=\dfrac{1}{a+b+x}+\dfrac{1}{b+c+x}+\dfrac{1}{c+a+x}-\dfrac{3}{2\sqrt[3]{(a+x)(b+x)(c+x)}}$,并证明$f(x)\leq 0$。
构造函数证明不等式的八种方法
构造函数证明不等式的八种方法下面将介绍构造函数证明不等式的八种常见方法:1.特殊赋值法:这种方法通过为变量赋特殊的值来构造函数,使得不等式成立。
例如,对于不等式a^2>b^2,可以构造函数f(x)=x^2,当a=2,b=1时,即f(2)>f(1),从而得到a^2>b^22.梯度法:这种方法通过构造一个变化率为正(或负)的函数来推导出不等式。
例如对于不等式a^2>b^2,可以构造函数f(x)=(x-a)^2-(x-b)^2,当x>(a+b)/2时,即f'(x)>0,从而得到a^2>b^23.极值法:这种方法通过构造一个函数的极大值(或极小值)来证明不等式。
例如对于不等式a^2>b^2,可以构造函数f(x)=x^2-b^2,当x=a时,f(x)>0,从而得到a^2>b^24.差的平方法:这种方法通过构造一个差的平方形式的函数来证明不等式。
例如对于不等式a^2>b^2,可以构造函数f(x)=(x+a)^2-(x+b)^2,当x>(a+b)/2时,即f(x)>0,从而得到a^2>b^25.相似形式法:这种方法通过构造一个与要证明的不等式形式相似的函数来证明不等式。
例如对于不等式(a+b)^4 > 8(ab)^2,可以构造函数f(x) = (x+1)^4- 8(x-1)^2,令x = ab,当x > 1时,即f(x) > 0,从而得到(a+b)^4 > 8(ab)^26.中值定理法:这种方法通过应用中值定理来证明不等式。
例如对于不等式f(a)>f(b),可以构造函数g(x)=f(x)-f(b),当a>b时,存在c∈(b,a),使得g'(c)>0,从而得到f(a)>f(b)。
7.逼近法:这种方法通过构造一个逼近函数序列来证明不等式。
例如对于不等式a > b,可以构造一个逼近函数序列f_n(x) = (a+x)^n - (b+x)^n,当n 趋近于正无穷时,即lim(n→∞)(a+x)^n - (b+x)^n = ∞,从而得到a > b。
构造函数法证明不等式的八种方法
构造函数法证明不等式的八种方法一、构造函数法是一种常用的数学证明方法,通过巧妙地构造函数,并对其性质进行分析,可以证明各种数学不等式。
下面就列举八种常用的构造函数法证明不等式的方法。
1.构造平方函数法:对于形如x^2≥0的不等式,可以构造f(x)=x^2,然后通过分析f(x)的性质,来证明不等式的成立。
2.构造递增函数法:对于形如a≥b的不等式,可以构造f(x)=x,然后通过分析f(x)的性质,来证明不等式的成立。
3.构造递减函数法:对于形如a≤b的不等式,可以构造f(x)=-x,然后通过分析f(x)的性质,来证明不等式的成立。
4.构造两个函数之差法:对于形如a-b≥0的不等式,可以构造f(x)=x^2和g(x)=(x-a)(x-b),然后通过分析f(x)和g(x)的性质,来证明不等式的成立。
5. 构造函数的和法:对于形如(a+b)^2≥0的不等式,可以构造f(x)=x^2和g(x)=a^2+b^2+2ab,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。
6.构造函数的积法:对于形如(a·b)^2≥0的不等式,可以构造f(x)=x^2和g(x)=a^2·b^2,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。
7.构造函数的倒数法:对于形如1/(a·b)≥0的不等式,可以构造f(x)=1/x和g(x)=a·b,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。
8.构造指数函数法:对于形如e^x≥1的不等式,可以构造f(x)=e^x 和g(x)=1,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。
以上就是八种常用的构造函数法证明不等式的方法。
在实际证明过程中,需要注意选择合适的函数,并结合函数的性质进行分析,以确定不等式的成立情况。
此外,还需要注意构造的函数在给定范围内是否满足所要求的性质,以确保证明的正确性。
导数与构造函数证明不等式的技巧
导数与构造函数证明不等式的技巧在高中数学中,不等式是经常会遇到的题目类型,也是数学竞赛中经常涉及到的一类题目。
在证明不等式的过程中,我们可以运用导数与构造函数等技巧来简化证明难度,提高证明效率。
一、运用导数证明不等式当我们需要证明一个函数的值在某个范围内时,我们可以考虑用导数来帮助我们进行证明,具体可分为以下步骤:1、确定函数的定义域和值域,并确定要证明的不等式形式。
2、通过求导得到函数的单调性或极值点。
3、根据函数的单调性或极值点,利用数轴或图象来确定函数的取值范围及是否满足要证明的不等式。
例如,要证明关于 $x$ 的不等式 $\frac{3}{2}x^2-6x+5>0$ 成立,可按以下步骤进行证明:1、由不等式左边的式子可得到 $f(x)=\frac{3}{2}x^2-6x+5$,其定义域为实数集,值域为 $[0,\infty)$。
2、对 $f(x)$ 求导,得到 $f'(x)=3x-6$。
当 $f'(x)>0$ 时,$f(x)$ 单调上升,当$f'(x)<0$ 时,$f(x)$ 单调下降。
当 $f'(x)=0$ 时,$f(x)$ 有极值,即当 $x=2$ 时,$f(x)$ 取得极小值 $-1$。
3、据此得到 $f(x)$ 的图象如下图所示,可知在 $x<2$ 和 $x>2$ 的区间内,$f(x)$ 的取值为正,因此原不等式成立。
构造函数法是一种运用代数方法构造一个函数来满足指定条件的证明方法。
具体可分为以下步骤:1、根据不等式的形式或特点,分析解析式中可能出现的约束条件或不等式关系。
2、构造一个函数并确定其满足条件的范围。
3、证明所构造的函数满足所要证明的不等式条件。
1、根据不等式的形式,可考虑构造分式函数。
2、构造函数 $f(x,y)=\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}$,其定义域为$D=\{(x,y)\mid x\neq0,y\neq0,x\neq y\}$。
利用导数证明不等式的技巧策略
ʏ浙江省杭州育新高级中学 周小锋证明不等式在高考数学试卷中是一个永恒的难题,充分体现了数学基础知识的交汇性与综合性,数学思想方法的创新灵活多样性,经常出现在高考试卷的压轴题的位置㊂而导数作为一种数学工具,对于证明不等式问题更是一种具有创新性的应用㊂本文结合实例,就利用导数证明不等式的几种常见方式,合理总结证明技巧方法与规律㊂一㊁构建函数利用待证不等式的结构特征来构建相应的函数,利用导数法及其函数的单调性来化归与转化,是证明一些涉及函数的不等式问题中最常用的技巧方法,而其他方法技巧中往往也离不开构建函数这一关键步骤㊂例1 已知函数f (x )=1-l n xx,g (x )=a e e x +1x -b x ,若曲线y =f (x )与曲线y =g (x )在公共点A (1,1)处的切线相互垂直㊂(1)求实数a ,b 的值;(2)证明:当x ȡ1时,f (x )+g (x )ȡ2x ㊂解析:(1)对f (x )求导得f '(x )=l n x -1x2,则f '(1)=-1㊂对g (x )求导得g'(x )=-a e e x-1x2-b ,则g '(1)=-a -1-b ㊂联立方程组f '(1)g'(1)=-1,g (1)=1,即a +1+b =-1,a +1-b =1,解得a =b =-1㊂(2)由(1)可得g (x )=-e ex +1x +x ㊂令函数h (x )=f (x )+g (x )-2x(x ȡ1),则h (x )=1-l n x x -e e x -1x +x ,求导得h '(x )=-1-l n x x 2+e e x +1x2+1=l n x x 2+eex +1㊂因为x ȡ1,所以h '(x )>0,所以h (x )在[1,+ɕ)上单调递增,所以h (x )ȡh (1)=0,即1-l n x x -e ex -1x +x ȡ0㊂所以当x ȡ1时,f (x )+g (x )ȡ2x㊂点评:当证明含参不等式问题时,经常通过合理构建一边含参,一边为常数(往往是0或1等),对应构建形如 左减右 型(或 复杂减简单 型,以及除式等特殊形式)的函数,进而利用新函数的构建与求导,结合函数的单调性㊁极值与最值等知识来合理分析与转化,得以合理巧妙证明相应的不等式㊂二㊁放缩法放缩法证明不等式是在综合导数及其应用,以及函数的单调性等的基础上,进一步利用不等式的性质㊁重要不等式的结论(l n x ɤx -1,e xȡx +1,当且仅当x =1时取等号),借助导数法的应用来综合分析,实现不等式的证明㊂例2 已知函数f (x )=2l n x +2ex㊂(1)试确定f (x )的单调区间;(2)证明:当x >0时,都有f '(x )l n (x +1)<2e x +2ex +2㊂解析:(1)对f (x )求导得f '(x )=2(1-x -x l n x )x e x(x >0)㊂令函数g (x )=1-x -x l n x ,则g (1)=0㊂当0<x <1时,1-x >0,-x l n x >0,所以g (x )>0,f '(x )>0;当x >1时,1-x <0,-x l n x <0,所以g (x )<0,f'(x )<0㊂所以函数f (x )在(0,1)上单调递增,在(1,+ɕ)上单调递减㊂(2)要证明f '(x )l n (x +1)<2e x +2ex +2,即证(1-x -x l n x )l n (x +1)<1+1e2x ㊂12解题篇 创新题追根溯源 高考数学 2023年5月Copyright ©博看网. All Rights Reserved.令函数g (x )=1-x -x l n x ,求导得g'(x )=-1-(l n x +1)=-2-l n x ㊂当0<x <1e 2时,g '(x )>0;当x >1e2时,g'(x )<0㊂所以函数g (x )在0,1e2上单调递增,在1e2,+ɕ 上单调递减,所以g (x )ɤg 1e 2=1-1e 2+2e 2=1+1e2,所以1-x -x l n x ɤ1+1e2㊂要证明(1-x -x l n x )l n (x +1)<1+1e2x ,只需证明l n (x +1)<x 即可㊂结合重要不等式,可知l n x ɤx -1,当且仅当x =1时取等号(直接利用重要不等式的结论,证明略),所以0<l n (x +1)<x ㊂综上所述,当x >0时,都有f '(x )㊃l n (x +1)<2e x +2ex +2㊂点评:在证明一些含有l n x 与e x型的超越函数所对应的复杂不等式问题时,经常利用相应的重要不等式结论l n x ɤx -1㊁e xȡx +1等进行合理放缩处理,巧妙转化,进而得以证明相应的不等式㊂三㊁切线法切线法证明不等式问题,往往是数形结合的 产物 ,也是问题前后联系的进一步应用,利用前面问题所探求的切线方程,巧妙利用导数㊁函数的单调性及图像特征来分析与转化㊂例3 已知函数f (x )=e x-x2㊂(1)求函数f (x )的图像在x =1处的切线方程;(2)求证:当x >0时,e x+(2-e )x -1xȡl n x +1㊂解析:(1)对f (x )求导得f '(x )=e x-2x ,所以f '(1)=e -2,f (1)=e -1,所以函数f (x )的图像在x =1处的切线方程为y =(e -2)(x -1)+e -1,即y =(e -2)x +1㊂(2)令函数g (x )=f '(x )(x >0),求导得g '(x )=e x-2㊂当x <l n 2时,g'(x )<0;当x >l n 2时,g'(x )>0㊂所以函数g (x )=f'(x )在(0,l n 2)上单调递减,在(l n 2,+ɕ)上单调递增,则g (x )m i n =g (l n 2)=f '(l n 2)=2-2l n 2>0,所以函数f (x )=e x -x 2在(0,+ɕ)上单调递增㊂由函数f (x )的图像在x =1处的切线方程为y =(e -2)x +1,f (1)=e -1,可猜测:当x >0时,f (x )ȡ(e -2)x +1㊂证明如下:设函数h (x )=f (x )-(e -2)x -1(x >0),求导得h '(x )=e x-2x -e +2㊂令函数m (x )=h '(x ),求导得m '(x )=e x-2㊂当x <l n 2时,m '(x )<0;当x >l n 2时,m '(x )>0㊂所以h '(x )在(0,l n 2)上单调递减,在(l n 2,+ɕ)上单调递增,则h '(1)=0,0<l n 2<1,所以h '(l n 2)<0㊂又h '(0)=3-e >0,所以存在x 0ɪ(0,l n 2),使得h '(x 0)=0㊂故当x ɪ(0,x 0)ɣ(1,+ɕ)时,h '(x )>0;当x ɪ(x 0,1)时,h '(x )<0㊂所以h (x )在(0,x 0)上单调递增,在(x 0,1)上单调递减,在(1,+ɕ)上单调递增㊂因为h (0)=h (1)=0,所以h (x )ȡ0,即f (x )ȡ(e -2)x +1,当且仅当x =1时取等号,所以当x >0时,e x -x 2ȡ(e -2)x +1,变形可得e x+(2-e )x -1xȡx ㊂又x ȡl n x +1,当且仅当x =1时取等号(直接利用重要不等式的结论,证明略),所以e x+(2-e )x -1x ȡl n x +1,当且仅当x =1时取等号㊂点评:该题的第(1)问是求曲线的切线方程,要注意其切线方程是后续切线法证明不等式的 台阶 ,可运用切线放缩法进行放缩解决问题㊂此类综合应用问题往往呈现特殊的规律性:多步设问,层层递进,上问结果,用于下问㊂巧妙利用切线法来转化,合理有效证明相应的不等式㊂四㊁极值点偏移法证明一些含有函数的极值点或零点等的特殊不等式时,往往利用极值点偏移法,巧妙22 解题篇 创新题追根溯源 高考数学 2023年5月Copyright ©博看网. All Rights Reserved.通过消参或消元等方式,合理构建函数,结合导数的运算与应用,以及函数的单调性㊁极值㊁最值等来综合应用,进而证明对应的不等式成立㊂例4 已知f (x )=x l n x -12m x 2-x ,m ɪR ㊂若函数f (x )的两个极值点x 1,x 2满足x 1<x 2,求证:x 1x 2>e 2㊂证明:欲证x 1x 2>e 2,需证l n x 1+l n x 2>2㊂由函数f (x )有两个极值点x 1,x 2,可得f'(x )有两个零点,又f '(x )=l n x -m x ,所以x 1,x 2是方程f '(x )=0的两个不同实根㊂证法一:于是有l n x 1-m x 1=0,l n x 2-m x 2=0㊂①②由①+②可得l n x 1+l n x 2=m (x 1+x 2),即m =l n x 1+l n x 2x 1+x 2;由②-①可得l n x 2-l n x 1=m (x 2-x 1),即m =l n x 2-l n x 1x 2-x 1㊂所以l n x 2-l n x 1x 2-x 1=l n x 1+l n x 2x 1+x 2,则l n x 1+l n x 2=(l n x 2-l n x 1)(x 2+x 1)x 2-x 1=1+x 2x 1l n x 2x 1x 2x 1-1㊂又0<x 1<x 2,设t =x 2x 1,则t >1,因此l n x 1+l n x 2=(1+t )l n tt -1,t >1㊂要证l n x 1+l n x 2>2,即证(t +1)l n tt -1>2(t >1),即证当t >1时,有l n t >2(t -1)t +1㊂令函数g (t )=l n t -2(t -1)t +1(t >1),求导得g '(t )=1t-2(t +1)-2(t -1)(t +1)2=(t -1)2t (t +1)2>0,所以函数g (t )在(1,+ɕ)上单调递增,因此g (t )>l n 1-2ˑ(1-1)1+1=0㊂于是当t >1时,有l n t >2(t -1)t +1,所以有l n x 1+l n x 2>2成立,即x 1x 2>e 2㊂证法二:由于f '(x 1)=f '(x 2)=0,令f'(x )=0,则l n xx=m ㊂令函数h (x )=l n xx,则h (x 1)=h (x 2)=m ,h '(x )=1-l n xx2㊂由h '(x )>0,得0<x <e ;由h '(x )<0,得x >e ,所以函数h (x )在(0,e)上单调递增,在(e ,+ɕ)上单调递减,故0<x 1<e<x 2㊂令函数H (x )=h (x )-h e2x(0<x <e ),求导得H '(x )=h '(x )+e 2x 2h 'e2x=1-l n x x 2+e 2x 2㊃1-l n e2x e4x2=1-l n x x 2+l n x -1e 2=(1-l n x )1x 2-1e2=(1-l n x )e 2-x2e 2x2㊂因为0<x <e,所以1-l n x >0,e 2-x 2>0,所以H '(x )>0,所以H (x )在(0,e )上单调递增,易得H (x )<0,所以当x ɪ(0,e )时,h (x )<he2x㊂因为h (x 1)=h (x 2),所以h (x 2)<he2x 1㊂因为x 2ɪ(e ,+ɕ),e 2x 1ɪ(e ,+ɕ),h (x )在(e,+ɕ)上单调递减,所以x 2>e2x 1,即x 1x 2>e 2㊂点评:利用导数证明不等式问题时,关键就是合理消参,或合理消 变 ,或减少参数个数,或减少变量个数,合理借助新函数的构建与导数的运算,利用函数的单调性㊁极值与最值等来转化与应用㊂利用导数证明不等式问题时,其实质就是借助导数的应用,结合导数的运算,以及函数的单调性㊁极值或最值等相关知识,从而达到 数 与 形 的联系,合理依托端点效应,巧妙缩小变量的取值范围,借助直观分析,合理寻找临界,进而巧妙实现对应的不等式证明问题,全面提升函数与导数的综合应用与巧妙转化,提高数学能力,培养数学核心素养㊂(责任编辑 王福华)32解题篇 创新题追根溯源 高考数学 2023年5月Copyright ©博看网. All Rights Reserved.。
构造函数法证明不等式的八种方法冷世平整理
构造函数法证明不等式的八种方法冷世平整理1.构造多项式函数法:通过构造一个多项式函数来证明不等式。
例如,要证明当$x>0$时,$x^3+x^2+x+1>0$,我们可以构造多项式$f(x)=x^3+x^2+x+1$,然后证明$f(x)$的系数全为正数,从而得到结论。
2. 构造变形函数法:通过构造一个特定的变形函数来证明不等式。
例如,要证明当$x>0$时,$x+\frac{1}{x}>2$,我们可以构造变形函数$f(x)=x+\frac{1}{x}-2$,然后证明$f(x)$的取值范围为正数,从而得到结论。
3. 构造反函数法:通过构造一个特定的反函数来证明不等式。
例如,要证明当$x>0$时,$\frac{1}{x}+\frac{1}{1-x}>2$,我们可以构造反函数$f(x)=\frac{1}{x}+\frac{1}{1-x}-2$,然后证明$f(x)$的取值范围为正数,从而得到结论。
4. 构造积分函数法:通过构造一个特定的积分函数来证明不等式。
例如,要证明当$x>0$时,$\int_{0}^{x}\sqrt{t}dt<x$,我们可以构造积分函数$f(x)=\int_{0}^{x}\sqrt{t}dt-x$,然后证明$f(x)$的取值范围为负数,从而得到结论。
5. 构造递推函数法:通过构造一个特定的递推函数来证明不等式。
例如,要证明$n$个正实数的算术平均数大于等于它们的几何平均数,我们可以构造递推函数$f(n)=\frac{a_1+a_2+\dots+a_n}{n}-\sqrt[n]{a_1a_2\dots a_n}$,然后证明$f(n)$关于$n$的递推关系为非负数,从而得到结论。
6. 构造交换函数法:通过构造一个特定的交换函数来证明不等式。
例如,要证明当$x,y,z>0$时,$(x+y)(y+z)(z+x)\geq 8xyz$,我们可以构造交换函数$f(x,y,z)=(x+y)(y+z)(z+x)-8xyz$,然后证明$f(x,y,z)$在$x,y,z$的任意交换下都保持不变或增加,从而得到结论。
巧妙构造函数应用导数证明不等式问题-2019年高考数学压轴题探究与突破
巧妙构造函数应用导数证明不等式问题-2019年高考数学压轴题探究与突破一.方法综述利用导数证明不等式是近几年高考命题的一种热点题型.利用导数证明不等式,关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的,这时常常需要构造辅助函数来解决.题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里给出几种常用的构造技巧. 二.解题策略类型一 “比较法”构造差函数证明不等式【例1】【2018届广州模拟】已知函数()(xf x e ax e =-为自然对数的底数,a 为常数)的图象在点(0,1)处的切线斜率为-1.(1)求a 的值及函数()f x 的极值; (2)证明:当20.xx x e >时,< 【答案】见解析. 【解析】(2)证明:令()()22.xxg x e x g x e x '=-,则=-由(1)得()()() 20g x f x f ln '≥=>, 故()g x 在R 上单调递增.所以当()()20010.xx g x g x e >时,>=>,即<【指点迷津】当题目中给出简单的基本初等函数,例如()()3 f x x g x ln x =,=,进而证明在某个取值范围内不等式()()f x g x ≥成立时,可以类比作差法,构造函数()()()()()()h x f x g x x g x f x ϕ=-或=-,进而证明()()00min max h x x ϕ≥≤或即可,在求最值的过程中,可以利用导数为工具.此外,在能够说明()()()00g x f x >>的前提下,也可以类比作商法,构造函数()()()()()f x f x h x xg x g x ϕ=(()=),进而证明()()()11min max h x x ϕ≥≤.【举一反三】【广东省佛山市南海区南海中学2018届考前七校联合体高考冲刺】已知函数,(Ⅰ) 设函数,讨论函数的单调性;(Ⅱ)求证:当时,【答案】(1)见解析.(2)见解析. 【解析】(Ⅱ)要证,即证,令,当时,,∴成立;当时,,当时,;当时,,∴在区间上单调递减,在区间上单调递增,∴.∵,∴,,∴,即成立,故原不等式成立.类型二“拆分法”构造两函数证明不等式【例2】【山东省青岛市2019届9月期初调研】已知函数. (1)若上存在极值,求实数m的取值范围;(2)求证:当时,.【答案】(1);(2)见解析【解析】(2)要证即证令,则再令,则当时,,∴在上是增函数,∴∴,∴在上是增函数 ∴当时,∴令,则当时,,∴即在上是减函数∴当时,所以,即【指点迷津】当所要证明的不等式由几个基本初等函数通过相乘以及相加的形式组成时,如果对其直接求导,得到的导函数往往给人一种“扑朔迷离”“不知所措”的感觉.这时可以将原不等式合理拆分为()()f x g x ≤的形式,进而证明()()max min f x g x ≤即可,此时注意配合使用导数工具.在拆分的过程中,一定要注意合理性的把握,一般以能利用导数进行最值分析为拆分标准.【举一反三】【山东省实验中学2019届高三第一次诊断】已知函数().(1)若函数在上是减函数,求实数的取值范围; (2)令,是否存在实数,当(为自然对数的底数)时,函数的最小值是,若存在,求出的值;若不存在,说明理由; (3)当时,证明:.【答案】(1);(2);(3)见解析.【解析】分析:(1)根据函数在上是减函数知其导数在上恒成立,结合二次函数性质可求得的范围(2)先假设存在,对函数求导,根据的值分情况讨论在上的单调性和最小值取得,可知当能够保证当时有最小值3(3)令由(2)知,,令可求出其最大值为3,即有,化简即可得证.解:(1)在上恒成立,令,有得,得.(2)假设存在实数,使有最小值3,①当时,在上单调递减,(舍去),②当时,在上单调递减,在上单调递增∴,满足条件.③当时,在上单调递减,(舍去),综上,存在实数,使得当时有最小值3.类型三“换元法”构造函数证明不等式【四川省成都石室中学2019届高三上学期入学】已知函数,,其中【例3】(1)若,求的单调区间;(2)若的两根为,且,证明:.【答案】(1)见解析;(2)见解析【解析】分析:(1) 由已知得,,解不等式即可得到单调区间;(2)由题意可得,要证,即证:,即证:.解:(1)由已知得,所以,当时,;当时,.故的单调递增区间为,单调递减区间为.【指点迷津】若两个变元x 1,x 2之间联系“亲密”,我们可以通过计算、化简,将所证明的不等式整体转化为关于m(x 1,x 2)的表达式(其中m(x 1,x 2)为x 1,x 2组合成的表达式),进而使用换元令m(x 1,x 2)=t ,使所要证明的不等式转化为关于t 的表达式,进而用导数法进行证明,因此,换元的本质是消元. 【举一反三】【2018届四川省资阳市4月模拟(三诊)】已知函数()()ln pF x px x=+(其中0p >). (1)当12p <<时,求()F x 零点的个数k 的值; (2)在(1)的条件下,记这些零点分别为()1,2,,i x i k =,求证:12111kx x x +++> 【答案】(1)见解析;(2)见解析. 【解析】(2)由(1)知()F x 的两个零点为12x x ,,不妨设12x x <, 于是()()112212ln ln 0ln ln 0p pF x p x F x p x x x =++==++=,,且1244p x p x p <<<<, 两式相减得()211122ln0p x x x x x x -+=(*), 令121(1)16x t t x =<<, 则将12x tx =代入(*)得()21ln p t x t t-=,进而()11ln p t x t-=,所以()121ln 111ln ln 1111t t t t t x x p t t p t ⎡⎤+⎛⎫+=+=⎢⎥ ⎪---⎝⎭⎣⎦, 下面证明()1ln 21t t t +>-,其中1116t <<, 即证明()()1ln 21t t t +<-,设()()()211ln f t t t t =--+, 则()11ln f t t t -'=-,令()u t 11ln t t =--,则()221110tu t t t t-='=->,所以()u t 为增函数,即()11ln f t t t-'=-为1,116⎛⎫⎪⎝⎭增函数, 故()()10f t f ''<=,故()()()211ln f t t t t =--+为1,116⎛⎫⎪⎝⎭减函数, 于是()()()()211ln 10f t t t t f =--+>=,即()()211ln t t t ->+.所以有()1ln 21t t t +>-,从而12112x x p +>.而由12p <<,得1p >所以1211x x +> 类型四 “转化法”构造函数证明不等式【例4】【内蒙古赤峰二中2019届第二次月考】设函数有两个极值点,且(I )求的取值范围,并讨论的单调性;(II )证明:【答案】(Ⅰ)函数的单调递增区间为和,单调递减区间,其中,且.(Ⅱ)证明见解析 【解析】(Ⅱ)由韦达定理和①知,,则﹣<x2<0,,a=﹣2x2(1+x2),于是f(x2)=﹣2x2(1+x2)ln(1+x2),设函数g(t)=t2﹣2t(1+t)ln(1+t),则g′(t)=﹣2(1+2t)ln(1+t),当t=﹣时,g′(t)=0,当t∈(﹣,0)时,g′(t)>0,故g(t)在[﹣,0)上是增函数.于是,当t∈(﹣,0),g(t)>g(﹣)=,因此f(x2)=g(x2)>.【指点迷津】在关于x1,x2的双变元问题中,若无法将所要证明的不等式整体转化为关于m(x1,x2)的表达式,则考虑将不等式转化为函数的单调性问题进行处理,进而实现消元的目的.【举一反三】【江西师范大学附属中学2018年10月高三月考】设,函数(1)若无零点,求实数的取值范围;(2)若有两个相异零点,求证:.【答案】(1);(2)见解析【解析】(1)①若时,则是区间上的增函数,∵∴,函数在区间有唯一零点;②若,有唯一零点;③若,令,得,在区间上,,函数是增函数;在区间故在区间三.强化训练1.【山西省长治市第二中学2017-2018学年高二下期末】设函数在点处的切线方程为.(1)求的值,并求的单调区间;(2)证明:当时,.【答案】(1)见解析;(2)见解析【解析】⑴,由已知,,故a=-2,b=-2.,当时,,当时,,故f(x)在单调递减,在单调递减;⑵,即,设,,所以g(x)在递增,在递减,当x≥0时,.2. 【2018届高三第一次全国大联考】已知函数有两个零点(). (1)求实数的取值范围;(2)求证:.【答案】(1);(2)见解析【解析】作出直线,由图可知,实数的取值范围为.(2)由题意,即,所以.故,即,整理得,即,不妨设,由题意得.则,所以.所以,故.记函数(),则,因为,所以,所以函数在上单调递增,所以.而,所以,故,即.3. 【2018届吉林省长春市高三质量监测(三)】已知函数.(1)若在上是单调递增函数,求的取值范围;(2)设,当时,若,其中,求证:. 【答案】(1) (2)见解析【解析】(2),设,则,在上递增且令,设,,,在上递增,,,,令即:又,即:,,在上递增,即:,得证.4.【2018届山东省济南市高三一模】已知函数()()2ln 21f x a x x a x =-+- ()a R ∈有两个不同的零点. (1)求a 的取值范围;(2)设1x , 2x 是()f x 的两个零点,证明: 122x x a +>. 【答案】(1) ()1,+∞ (2)见解析 【解析】②当0a >时,令()'0f x =得: x a =,则(ii )当1a >时, ()()max 0f x a g a =⋅>, ∵121f a e e ⎛⎫⎛⎫=- ⎪⎪⎝⎭⎝⎭ 2110e e --<,∴()f x 在区间1,a e ⎛⎫⎪⎝⎭上有一个零点,∵()()31ln 31f a a a -=- ()()()2312131a a a --+-- ()()ln 3131a a a ⎡⎤=---⎣⎦, 设()ln h x x x =-, (1)x >,∵()1'10h x x=-<, ∴()h x 在()1,+∞上单调递减,则()()312ln220h a h -<=-<, ∴()()31310f a a h a -=⋅-<,∴()f x 在区间(),31a a -上有一个零点,那么, ()f x 恰有两个零点. 综上所述,当()f x 有两个不同零点时, a 的取值范围是()1,+∞. (1)【解法二】函数的定义域为: ()0,+∞. ()'221af x x a x =-+- ()()21x a x x+-=, ①当0a ≤时,易得()'0f x <,则()f x 在()0,+∞上单调递增, 则()f x 至多只有一个零点,不符合题意,舍去. ②当0a >时,令()'0f x =得: x a =,则∴()()maxf x f x =极大 ()()ln 1f a a a a ==+-. ∴要使函数()f x 有两个零点,则必有()()ln 10f a a a a =+->,即ln 10a a +->, 设()ln 1g a a a =+-,∵()1'10g a a=+>,则()g a 在()0,+∞上单调递增, 又∵()10g =,∴1a >; 当1a >时: ∵121f a e e ⎛⎫⎛⎫=- ⎪⎪⎝⎭⎝⎭2110e e --<,∴()f x 在区间1,a e ⎛⎫ ⎪⎝⎭上有一个零点; 设()ln h x x x =-, ∵()11'1x h x x x-=-=,∴()h x 在()0,1上单调递增,在()1,+∞上单调递减, ∴()()110h x h ≤=-<,∴ln x x <,∴()()2ln 21f x a x x a x =-+- ()22213ax x a x ax x x ≤-+-=-- ()233ax x x a x ≤-=-,则()40f a <,∴()f x 在区间(),4a a 上有一个零点, 那么,此时()f x 恰有两个零点.综上所述,当()f x 有两个不同零点时, a 的取值范围是()1,+∞. (2)【证法一】由(1)可知,∵()f x 有两个不同零点,∴1a >,且当()0,x a ∈时, ()f x 是增函数; 当(),x a ∈+∞时, ()f x 是减函数;不妨设: 12x x <,则: 120x a x <<<; 设()()()2F x f x f a x =--, ()0,2x a ∈, 则: ()()()'''2F x f x f a x =-- ()2212a a x a x a x=-+-+- ()()2221a x a --+- ()()22222x a a ax a x x a x -=+-=--. 当()0,x a ∈时, ()'0F x >,∴()F x 单调递增,又∵()0F a =, ∴()0F x <,∴()()2f x f a x <-, ∵()10,x a ∈,∴()()112f x f a x <-, ∵()()12f x f x =,∴()()212f x f a x <-,∵()2,x a ∈+∞, ()12,a x a -∈+∞, ()f x 在(),a +∞上单调递减, ∴212x a x >-,∴122x x a +>.当()0,x a ∈时, ()'0F x >,∴()F x 单调递增, 又∵()00F =,∴()0F x >,∴()()f a x f a x +>-, ∵()10,a x a -∈,∴()()12f x f x = ()()()()11f a a x f a a x =--<+- ()12f a x =-, ∵()2,x a ∈+∞, ()12,a x a -∈+∞, ()f x 在(),a +∞上单调递减, ∴212x a x >-,∴122x x a +>.5.【2018届四川省攀枝花市高三第三次(4月)统考】已知函数()()2111x f x nx x -=-+,()()()211,g x x nx n x m n R =--∈.(I)若函数()(),f x g x 在区间01(,)上均单调且单调性相反,求实数n 的取值范围;(Ⅱ)若0a b <<,证明112a b a bna nb -+<<-【答案】(Ⅰ)12n ≥;(Ⅱ)见解析. 【解析】(Ⅱ)由(Ⅰ)()()21ln 1x f x x x -=-+在()0,1上单调递增,()()()21ln 101x f x x f x -=-<=+即()21ln 1x x x -<+,令()0,1a x b =∈得()212ln 1a a b a b b a b b⎛⎫- ⎪-⎝⎭<=++, ln 0a b < ∴ .ln ln 2a b a b a b -+<-在(Ⅰ)中,令1,2n =由()g x 在()0,1上均单调递减得: ()()10g x g >=所以()21ln 102x x x -->,即11ln 2x x x ⎛⎫>- ⎪⎝⎭,取()0,1x =得12>,即ln ln a b ->,由ln ln 0a b -<得:.ln ln a b a b --综上:.ln ln 2a b a ba b -+<<-6.【河北省衡水中学2019届高三上二调】已知函数.(1)当时,若在上恒成立,求的取值范围;(2)当时,证明:.【答案】(1) (2)见解析【解析】(2)因为,所以,.令,则.当时,,单调递减;当时,,单调递增.所以,即当时,,所以在上单调递减.又因为所以当时,当时,于是对恒成立.7. 【四川省高2019届高三第一次诊断】已知函数.(1)求曲线在点处的切线方程;(2)设,证明:.【答案】(1);(2)见解析.【解析】(2)证明:因为,所以由于,等价于,令,设函数当时,,所以,所以在上是单调递增函数,又,所以,所以,即等价于,令,设函数当时,,所以,所以在上是单调递减函数,又,所以所以,即综上①②可得:.8.【北京市第八十中学2019届10月月考】已知函数.(1)求曲线在点处的切线方程;(2)当时,求证:.【答案】(1) ex﹣4y+e=0;(2)证明见解析.【解析】(2)设,则,x∈(1,+∞)⇒F''(x)>0⇒F'(x)在(1,+∞)上为增函数;又因,在(1,+∞)上为增函数;在(1,+∞)都成立.设,由于△=32(2﹣e)<0,则在(1,+∞)上为增函数,又G(1)=0,若x>1时,则.综上:.9.【河北省衡水中学2019届高三上二调】已知函数.(1)若函数在上为增函数,求的取值范围;(2)若函数有两个不同的极值点,记作,且,证明:.【答案】(1)(2)见解析【解析】(2)由题得,则因为有两个极值点,所以欲证等价于证,即,所以因为,所以原不等式等价于.由可得,则.由可知,原不等式等价于,即设,则,则上式等价于.令,则因为,所以,所以在区间上单调递增,所以当时,,即,所以原不等式成立,即.10.【贵州省遵义航天高级中学2018届四模】已知函数的两个零点为.(1)求实数m的取值范围;(2)求证:.【答案】(1)(2)见解析【解析】(2)令,则,由题意知方程有两个根,即方程有两个根,不妨设,,令,则当时,单调递增,时,单调递减,综上可知,,要证,即证,即,即证,令,下面证对任意的恒成立,∵,∴,∴又∵,∴∴,则在单调递增∴,故原不等式成立.。
A新高考数学 高考重难专攻(一) 导数与不等式的证明
成立.
适当放缩法
已知函数f(x)=aex-ln x-1. (1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间; (2)证明:当a≥1e时,f(x)≥0. [解] (1)f(x)的定义域为(0,+∞),f′(x)=aex-1x. 由题设知,f′(2)=0,所以a=21e2. 从而f(x)=21e2ex-ln x-1,f′(x)=21e2ex-1x. 当0<x<2时,f′(x)<0;当x>2时,f′(x)>0. 所以f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞).
1.待证不等式的两边含有相同的变量时,一般地,可以直接构造“左减右” 或“右减
2.利用构造差函数证明不等式的基本步骤 (1)作差或变形; (2)构造新的函数g(x); (3)利用导数研究g(x)的单调性或最值; (4)根据单调性及最值,得到所证不等式.
x=ln 2.
于是当 x 变化时,f′(x),f(x)的变化情况如下表:
x (-∞,ln 2)
ln 2
(ln 2,+∞)
f′(x)
-
0
+
f(x)
2(1-ln 2+a)
故 f(x)的单调递减区间是(-∞,ln 2),单调递增区间是(ln 2,+∞). 所以 f(x)在 x=ln 2 处取得极小值,极小值为 f(ln 2)=2(1-ln 2+a),无极大值.
(2)证明:当a=0,x∈(0,1)时,x2-1x<fexx等价于-elnx x+x2-1x<0, ∵当x∈(0,1)时,ex∈(1,e),-ln x>0,∴-elnx x<-ln x, ∴只需要证-ln x+x2-1x<0在(0,1)上恒成立. 令g(x)=-ln x+x2-1x,x∈(0,1), ∴g′(x)=-1x+2x+x12=2x3-x2x+1>0, 则函数g(x)在(0,1)上单调递增,于是g(x)<g(1)=-ln 1+1-1=0, ∴当x∈(0,1)时,x2-1x<fexx.
构造函数法证明不等式的八种方法.doc
构造函数法证明不等式的八种方法.doc构造函数法是一种证明不等式的有效方法。
构造函数法是通过构造函数来证明不等式的真实性。
构造函数是函数的一种特殊形式,它是根据不等式中的条件和限制而构造出来的函数。
构造函数法的基本思路是,通过构造函数将原不等式转化为更容易证明的形式,进而通过对构造函数的研究来证明原不等式的真实性。
本文将介绍构造函数法证明不等式的八种方法。
一、线性函数法线性函数法是基于线性函数的构造函数法,它是构造函数法中最简单的方法之一。
线性函数法的思路是,构造一个线性函数,使得该函数在不等式限制下达到最大值或最小值。
例如,证明如下不等式:$$\frac{a}{b+1}+\frac{b}{c+1}+\frac{c}{a+1}\geq\frac{3}{2}$$将不等式两边都乘以$2(b+1)(c+1)(a+1)$得:$$2a(c+1)(b+1)+2b(a+1)(c+1)+2c(b+1)(a+1)\geq 3(a+1)(b+1)(c+1)$$此时,可以构造如下的线性函数$f(x,y,z)$:容易发现,$f(x,y,z)$在限制条件$x,y,z\geq 0$,$xy+yz+zx=3$下,达到最大值$\frac{3}{2}$。
因此,原不等式成立。
二、对数函数法对数函数法是基于对数函数的构造函数法,它常用于证明形如$a^x+b^y+c^z\geq k$的不等式,其中$a,b,c,x,y,z,k$均为正实数。
对数函数法的思路是,构造一个对数函数,使得该函数满足$g(x,y,z)\leq\ln(a^x+b^y+c^z)$,进而证明$g(x,y,z)\leq\ln k$,从而得到原不等式的证明。
例如,证明如下不等式:考虑构造如下的对数函数:$$g(x)=\ln\left(\frac{4a^3x+6}{5a^2x+2ax+5}\right)-\frac{3}{4}\ln x$$不难证明,$g(x)$在$x\geq 1$时单调递减且$g(1)=0$,因此$g(x)\leq 0$。
高中数学:掌握这7种函数构造方法,巧解导数难题!
近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法,但在平时的教学和考试中,发现很多学生不会合理构造函数,结果往往求解非常复杂甚至是无果而终.因此笔者认为解决此类问题的关键就是怎样合理构造函数,本文以近几年的高考题和模考题为例,对在处理导数问题时构造函数的方法进行归类和总结,供大家参考.一、作差构造法1.直接作差构造评注: 本题采用直接作差法构造函数,通过特殊值缩小参数范围后,再对参数进行分类讨论来求解.2.变形作差构造二、分离参数构造法分离参数是指对已知恒成立的不等式在能够判断出参数系数正负的情况下,根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量的不等式,只要研究变量不等式的最值就可以解决问题.三、局部构造法1.化和局部构造2.化积局部构造四、换元构造法换元构造法在处理多变元函数问题中应用较多,就是用新元去代替该函数中的部分(或全部)变元.通过换元可以使变量化多元为少元,即达到减元的目的.换元构造法是求解多变元导数压轴题的常用方法.评注: 本题的两种解法通过将待解决的式子进行恰当的变形,将二元字母变出统一的一种结构,然后用辅助元将其代替,从而将两个变元问题转化一个变元问题,再以辅助元为自变量构造函数,利用导数来来求解。
其中解法1、解法2还分别体现了化积局部构造法和变形作差构造法.五、主元构造法主元构造法,就是将多变元函数中的某一个变元看作主元(即自变量),将其它变元看作常数,来构造函数,然后用函数、方程、不等式的相关知识来解决问题的方法.六、特征构造法1.根据条件特征构造2.根据结论特征构造七、放缩构造法1.由基本不等式放缩构造2.由已证不等式放缩构造评注: 本题第二问是一道典型且难度比较大的求参问题,这类题目很容易让考生想到用分离参数的方法,但分离参数后利用高中所学知识无法解决,笔者研究发现不能解决的原因是分离参数后,出现了“0/0型”的式子,解决这类问题的有效方法就是高等数学中的洛必达法则;若直接构造函数,里面涉及到指数函数、三角函数及高次函数,处理起来难度很大.本题解法中两次巧妙利用第一问的结论,通过分类讨论和假设反正,使问题得到解决,本题也让我们再次体会了化积局部构造法的独特魅力.。
证明函数不等式的六种方法
证明函数不等式的六种方法在高中数学中,函数的不等式是一个重要的主题。
证明函数不等式是一个基本的技能,它可以帮助学生更好地理解函数的性质并提高数学思维能力。
下面我们介绍六种证明函数不等式的方法。
1. 代数法这种方法是最常用的方法之一。
我们可以将不等式两边的函数展开,并进行简单的代数计算,以确定不等式的正确性。
例如,我们要证明:f(x) > g(x)其中f(x) = x^2 + 2x + 1g(x) = x^2 + x我们可以将f(x)和g(x)展开,然后将它们相减,得到:f(x) - g(x) = x + 1因此,f(x) > g(x) 当且仅当 x > -12. 消元法这种方法通常适用于含有多个变量的不等式。
我们可以将其中一个变量消去,从而使不等式简化。
例如,我们要证明:f(x, y) > g(x, y)其中f(x, y) = x^2 + y^2g(x, y) = x^2 - y^2我们可以将y消去,得到:f(x, y) - g(x, y) = 2y^2因此,f(x, y) > g(x, y) 当且仅当 y ≠ 03. 极限法这种方法通常适用于连续函数的不等式。
我们可以将不等式两边取极限,以确定不等式的正确性。
例如,我们要证明:f(x) > g(x)其中f(x) = x^2 + 2x + 1g(x) = x^2 + x我们可以将f(x)和g(x)的极限计算出来,得到:lim (f(x)) = +∞x→+∞lim (g(x)) = +∞x→+∞因此,f(x) > g(x) 当 x → +∞4. 导数法这种方法通常适用于在区间内单调的函数不等式。
我们可以计算函数的导数,以确定函数的单调性和不等式的正确性。
例如,我们要证明:f(x) > g(x)其中f(x) = x^3 + 3x^2 + 3x + 1g(x) = x^2 + 2x + 1我们可以计算f(x)和g(x)的导数,得到:f'(x) = 3x^2 + 6x + 3g'(x) = 2x + 2由于f'(x) > g'(x) 在 [-1, +∞) 上成立,并且f(-1) > g(-1) ,因此,f(x) > g(x) 在 [-1, +∞) 上成立。
高考数学必杀技系列之导数5构造函数证明不等式
高考数学必杀技系列之导数5构造函数证明不等式
专题5 构造函数证明不等式
一、考情分析
函数与导数一直是高考中的热点与难点, 利用导数证明不等式在近几年高考中出现的频率比较高.求解此类问题关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的.
二、解题秘籍
(一) 把证明转化为证明
此类问题一般是有最小值且比较容易求,或者有最小值,
但无法具体确定,这种情况下一般是先把的最小值转化为关于极值点的一个函数,再根据极值点所在范围,确定最小值所在范围
此类问题是证明不等式中最基本的一类问题,把两个函数通过作差转化为一个函数,再利用导数研究该函数的性质,通过函数性质证明该不等式.
(五) 改变不等式结构,重新构造函数证明不等式
此类问题要先对待证不等式进行重组整合,适当变形,找到其等价的不等式,观察其结构,根据结构构造函数.常见的变形方法有:
①去分母,把分数不等式转化为整式不等式;
②两边取对数,把指数型不等式转化为对数型不等式;
③两边同时除以,此方法适用于以下两类问题:
(i)不等式为类型,且的符号确定;
(ii)不等式中含有,有时为了一次求导后不再含有对数符号,可考虑此法.
(六) 通过减元法构造函数证明不等式
对于多变量不等式,一般处理策略为消元或是把一个看作变量其他看作常量;当都不能处理的时候,通过变形,再换元产生一个新变量,从而构造新变量的函数.
(七) 与数列前n项和有关的不等式的证明
此类问题一般先由已知条件及导数得出一个不等式,再把该不等式中的自变量依次用1,2,3,,n代换,然后用叠加法证明.
完整电子版可关注下载。
高二培优课件1构造函数法证明不等式的七种方法
三. 从条件特征入手构造函数证明例3.若函数y = f (x)在R 上可导且满足不等式 x f (x) >- f (x)恒成立,且常数a ,b 满足 a >b ,求证:• a f (a) >b f (b)四. 主元法构造函数精品教学课件设计 | Excellent teaching plan高二培优讲义1构造函数法证明不等式的七种方法利用导数研究函数的单调性极值和最值, 再由单调性来证明不等式是函数、 导 数、不等式综合中的一个难点, 也是近几年考试的热点。
解题技巧是构造辅助函数, 把不等式的证明转化为利用导数研究函数的单调性或求最值, 从而证得不等式,而 如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。
以下介 绍构造函数法证明不等式的七种方法。
1 例5.已知函数f(x) ae xx 2 2(1) 若f(x)在R 上为增函数,求a 的取值范围 (2) 若 a=1,求证:x > 0 时,f(x)>1+x一.移项法、作差法构造函数 1 2 例1.已知函数f (x) x 2 In x.求证:在区间(1, )上,函数f(x)的图象在2 23 函数g(x) x 的图象的下方• 六.对数法构造函数(选用于幕指数函数不等式)1 _!例6.证明:当x 0时,(1 x) x七 .构造形似函数二.换元法构造函数证明 1 例2.证明:对任意的正整数n ,不等式ln( 1)n例7:证明当b a e,证明a b b a都成立.例&已知m n 都是正整数,且1m n,证明:(1 m)n(1n)经典题选 1.已知函数f (x)ln(11 ◎axx),求证:对任意的正数 a 、b ,1 x恒有In a In b 2.已知函数 f(x)In (x 1) x ,求证:当x1时,恒有例4.已知函数f(x) ln(1 x) x, g(x) xlnxa b 设0 a b,证明:o g (a) g(b) 2g(—一) (b a) l n2.2 五.构造二阶导数函数证明导数的单调性(1)求函数f (x)的单调区间;1(2)若不等式(1 -)n a e对任意的n N*都成立(其中e是自然对数的底数) n 求a的最大值.ln x k7.已知函数f(x) x (k为常数,e=2.71828是自然对数的底数),曲线y f(x) e 在点(1, f (1))处的切线与x轴平行.(I)求k的值;(n)求f(x)的单调区间;xf (x),其中f (x)为f (x)的导函数.证明:对任意x 0,g(x)6.已知函数f(X) •如b,曲线yX 1 X f (X)在点(1,f (1))处的切线方程为精品教学课件设计ln(x 1) | Excellent teaching plan(I)求a, b的值;(II)证明:当x>0 ,且x1时,f(x) ln xx 14.已知函数f (x) ^X22ax (a 1)ln x , a 1 .证明:若a 5,则对任意x1, x2(0, X2,有f(xj f(X2)X1X225.已知函数f (x) xlnx ax (2a 1)x a R.1(1)当a —时,求f (x)的单调区间;2(2)若函数f (X)在[1, )单调递减,求实数a的取值范围8.设函数f (x) ax n (1 x) b(x 0), n为正整数,a,b为常数,曲线y f(x)在(1,f (1))处的切线方程为x y 1.(1)求a,b的值;⑵求函数f (x)的最大值;1⑶证明:f(X).ne1 1 答案:3. (1)增(-1,0)减(0, + s) (2) a <花-1 ; 5. (1)减(0, +^) (2) a迁;n n 6.a=b=1 ;7. (1) k=1 (2)增(0,1)减(1, + s) ;8. (1) a=1, b=0; ( 2) ----------------------------------------------------------------------------n+1(n+1 )3.已知函数f(x)ln2(1 x)(川)设g(x)。
构造函数法证明不等式的八种方法
导数之构造函数法证明不等式 1、移项法构造函数 【例1】已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有【解】1111)(+-=-+='x xx x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f +=求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方; 【解】设)()()(x f x g x F -=,即x x x x F ln 2132)(23--=, 则xx x x F 12)(2--='=x x x x )12)(1(2++-当1>x 时,)(x F '=xx x x )12)(1(2++-从而)(x F 在),1(∞+上为增函数,∴061)1()(>=>F x F∴当1>x 时 0)()(>-x f x g ,即)()(x g x f <, 故在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方。
掌握这7种函数构造方法,巧解高考导数难题
掌握这7种函数构造方法,巧解高考导数难题近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法,但在平时的教学和考试中,发现很多学生不会合理构造函数,结果往往求解非常复杂甚至是无果而终.因此笔者认为解决此类问题的关键就是怎样合理构造函数,本文以近几年的高考题和模考题为例,对在处理导数问题时构造函数的方法进行归类和总结,供大家参考.一、作差构造法1.直接作差构造评注:本题采用直接作差法构造函数,通过特殊值缩小参数范围后,再对参数进行分类讨论来求解.2.变形作差构造二、分离参数构造法分离参数是指对已知恒成立的不等式在能够判断出参数系数正负的情况下,根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量的不等式,只要研究变量不等式的最值就可以解决问题.三、局部构造法1.化和局部构造2.化积局部构造四、换元构造法换元构造法在处理多变元函数问题中应用较多,就是用新元去代替该函数中的部分(或全部)变元.通过换元可以使变量化多元为少元,即达到减元的目的.换元构造法是求解多变元导数压轴题的常用方法.评注:本题的两种解法通过将待解决的式子进行恰当的变形,将二元字母变出统一的一种结构,然后用辅助元将其代替,从而将两个变元问题转化一个变元问题,再以辅助元为自变量构造函数,利用导数来来求解。
其中解法1、解法2还分别体现了化积局部构造法和变形作差构造法.五、主元构造法主元构造法,就是将多变元函数中的某一个变元看作主元(即自变量),将其它变元看作常数,来构造函数,然后用函数、方程、不等式的相关知识来解决问题的方法.六、特征构造法1.根据条件特征构造2.根据结论特征构造七、放缩构造法1.由基本不等式放缩构造2.由已证不等式放缩构造评注:本题第二问是一道典型且难度比较大的求参问题,这类题目很容易让考生想到用分离参数的方法,但分离参数后利用高中所学知识无法解决,笔者研究发现不能解决的原因是分离参数后,出现了“0/0型”的式子,解决这类问题的有效方法就是高等数学中的洛必达法则;若直接构造函数,里面涉及到指数函数、三角函数及高次函数,处理起来难度很大.本题解法中两次巧妙利用第一问的结论,通过分类讨论和假设反正,使问题得到解决,本题也让我们再次体会了化积局部构造法的独特魅力.。
专题05 构造函数证明不等式(学生版) -2025年高考数学压轴大题必杀技系列导数
专题5 构造函数证明不等式函数与导数一直是高考中的热点与难点, 利用导数证明不等式在近几年高考中出现的频率比较高.求解此类问题关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的.(一) 把证明()f x k >转化为证明()min f x k>此类问题一般简单的题目可以直接求出()f x 的最小值,复杂一点的题目是()f x 有最小值,但无法具体确定,这种情况下一般是先把()f x 的最小值转化为关于极值点的一个函数,再根据极值点所在范围,确定最小值所在范围【例1】(2024届黑龙江省哈尔滨市三中学校高三下学期第五次模拟)已知函数()()21ln f x a x x x =+--(a ÎR ).(1)讨论()f x 的单调性;(2)当102a <£时,求证:()1212f x a a³-+.【解析】(1)由题意可知,函数2()(1)ln f x a x x x =+--的定义域为(0,)+¥,导数1(1)(21)()2(1)1x ax f x a x x x+-¢=+--=,当0a £时,,()0x Î+¥,()0f x ¢<;当0a >时,1(0,)2x a Î,()0f x ¢<;1(,),()02x f x a¢Î+¥>;综上,当0a £时,函数()f x 在区间(0,)+¥上单调递减;当0a >时,函数()f x 在区间1(0,2a 上单调递减,在区间1(,)2a+¥上单调递增.(2)由(1)可知,当102a <£时,函数()f x 在区间1(0,)2a 上单调递减,在区间1(,)2a+¥上单调递增.所以函数211111()()(1)ln()1ln(2)22224f x f a a a a a a a a³=+--=+-+,要证1()212f x a a ³-+,需证111ln(2)2142a a a a a+-+³-+,即需证11ln(2)0,(0,]42a a a a +-³Î恒成立.令1()ln(2)4g a a a a =+-,则()2222111()1044a g a a aa -=--+=-£¢,所以函数()g a 在区间1(0,2单调递减,故111()()00222g a g ³=+-=,所以11ln(2)0,(0,]42a a a a +-³Î恒成立,所以当102a <£时,1()212f x a a³-+.【例2】(2024届重庆市南开中学高三上学期第一次质量检测)已知函数()()sin ln 1f x x x =-+.(1)求证:当π1,2x æöÎ-ç÷èø时,()0f x ³;(2)求证:()()111111ln 1sin sin sin sinln ln 2224622n n n n *+<++++<+ÎN L .【解析】(1)证明:因为()()sin ln 1f x x x =-+,则()0sin 0ln10f =-=,()1cos 1f x x x =-+¢,当(]1,0x Î-时,cos 1x £,111x ³+,()0f x ¢£,函数()f x 单调递减,则()()00f x f ³=成立;当π0,2x æöÎç÷èø时,令()1cos 1p x x x =-+,则()()21sin 1p x x x ¢=-+,因为函数()211y x =+、sin y x =-在π0,2æöç÷èø上均为减函数,所以,函数()p x ¢在π0,2æöç÷èø上为减函数,因为()010p ¢=>,2π1102π12p æö¢=-<ç÷èøæö+ç÷èø,所以存在π0,2x æöÎç÷èø,使得()00p x ¢=,且当00x x <<时,()0p x ¢>,此时函数()f x ¢单调递增,当0π2x x <<时,()0p x ¢<,此时函数()f x ¢单调递减,而()00f ¢=,所以()00f x ¢>,又因为π02f æö¢<ç÷èø,所以存在10π,2x x æöÎç÷èø,使得()10f x ¢=,当10x x <<时,()0f x ¢>,此时函数()f x 单调递增,当1π2x x <<时,()0f x ¢<,此时函数()f x 单调递减,因为π1e 2+<,所以,ππ1ln 11ln e 022f æöæö=-+>-=ç÷ç÷èøèø,所以,对任意的π0,2x æöÎç÷èø时,()0f x >成立,综上,()0f x ³对任意的π1,2x æöÎ-ç÷èø恒成立.(2)证明:由(1),对任意的n *ÎN ,11022n <£,则111sin ln 10222f n n n æöæö=-+>ç÷ç÷èøèø,即1121sinln 1ln 222n n n n +æö>+=ç÷èø,对任意的n *ÎN ,()()()()22122221221022*******n n n n n n n n n n n +-+++-==>+++,所以,2122221n n n n ++>+,则2122ln ln 221n n n n ++>+,所以111135721sin sin sin sinln ln ln ln 24622462n n n +++++>+++L ,从而可得111146822sin sin sin sinln ln ln ln 246235721n n n +++++>++++L ,上述两个不等式相加可得11112sin sin sin sin 2462n æö++++ç÷èøL ()3456782122ln ln ln ln ln ln ln ln ln 1234567221n n n n n ++>++++++++=++L ,所以,()11111sin sin sin sinln 124622n n ++++>+L ,又由(1),因为1102n -<-<,则111121sin ln 1sin ln022222n f n n n n n -æöæöæö-=---=-->ç÷ç÷ç÷èøèøèø,可得1212sinln ln 2221n nn n n -<-=-,当2n ³且n *ÎN 时,()()()()()()22222122110212221222122n n n n n n n n n n n -----==-<------,所以,2212122n n n n -<--,即221ln ln 2122n n n n -<--,所以,当2n ³时,1111462sin sin sin sinln 2ln ln ln 24623521nn n ++++<++++-L L ,从而有11113521sin sin sin sinln 2ln ln ln 24622422n n n -++++<++++-L L ,上述两个不等式相加得:11112sin sin sin sin 2462n æö++++ç÷èøL 3456782122ln 2ln ln ln ln ln ln ln ln 2ln 2ln 2345672221n nn n n -<+++++++++=+--L ,所以,11111sin sin sin sinln 2ln 24622n n ++++<+L ,当1n =时,1111sin ln ln 2sin 02222f æöæö-=--=->ç÷ç÷èøèø,即1sin ln 22<,所以,对任意的n *ÎN ,11111sin sin sin sinln ln 224622n n ++++<+L ,因此,()()111111ln 1sin sin sin sinln ln 2224622n n n n *+<++++<+ÎN L . (二) 把证明()()f x g x > 转化为证明()()0f xg x ->此类问题是证明不等式中最基本的一类问题,把两个函数通过作差转化为一个函数,再利用导数研究该函数的性质,通过函数性质证明该不等式.【例3】(2024届西省榆林市第十中学高三下学期一模)已知函数()()e 11xf x a x =+--,其中a ÎR .(1)讨论函数()f x 的单调性;(2)当2a =时,证明:()ln cos f x x x x >-.【解析】(1)()()e 11x f x a x =+--Q ,()e 1x f x a \=¢+-,当1a ³时,()e 10xf x a =+->¢,函数()f x 在R 上单调递增;当1a <时,由()e 10xf x a =+->¢,得()ln 1x a >-,函数()f x 在区间()()ln 1,a ¥-+上单调递增,由()e 10xf x a =+-<¢,得()ln 1x a <-,函数()f x 在区间()(),ln 1a -¥-上单调递减.综上,当1a ³时,()f x 在R 上单调递增,无减区间.当1a <时,()f x 在()()ln 1,a ¥-+上单调递增,在()(),ln 1a -¥-上单调递减.(2)Q 当2a =时,()e 1xf x x =+-,\要证()ln cos f x x x x >-,即证()e cos 1ln 0,0,x x x x x x ++-->Î+¥,①当01x <£时,e cos 10x x x ++->Q ,ln 0x x £,e cos 1ln 0x x x x x \++-->;②当1x >时,令()e cos 1ln xg x x x x x =++--,则()e sin ln x g x x x =--¢,设()()h x g x ¢=,则()1e cos xh x x x=¢--,1x >Q ,e e 2x \>>,110x-<-<,1cos 1x -£-£,()0h x ¢\>,()h x \在()1,+¥上单调递增,()()1e sin100h x h \>=-->,即()0g x ¢>,()g x \在()1,+¥上单调递增,()()1e cos10g x g \>=+>,即e cos 1ln 0x x x x x ++-->.综上,当2a =时,()ln cos f x x x x >-. (三) 把证明()()f x g x > 转化为证明()()min maxf xg x >有时候把证明()()f x g x > 转化为证明()()0f x g x ->后,可能会出现()()f x g x -的导函数很复杂,很难根据导函数研究()()f x g x -的最值,而()f x 的最小值及()g x 的最大值都比较容易求,可考虑利用证明()()min max f x g x >的方法证明原不等式,但要注意这种方法有局限性,因为()()f x g x >未必有()()min max f x g x >.【例4】(2024届广东省部分学校高三上学期第二次联考)已知函数()()e 0xf x ax a =¹.(1)讨论()f x 的单调性;(2)当24e a ³时,证明:()()1ln 01f x x x x -+>+.【解析】(1)由题意可得()()1e xf x a x +¢=.则0a >时,由()0f x ¢>,得1x >-,由()0f x ¢<,得1x <-,则()f x 在(),1-¥-上单调递减,在()1,-+¥上单调递增;当a<0时,由()0f x ¢<,得1x >-,由()0f x ¢>,得1x <-,则()f x 在(),1-¥-上单调递增,在()1,-+¥上单调递减.(2)因为0x >,所以e 01x x x >+.因为24e a ³,所以()()2e 4e 1ln 1ln 11xx ax x x x x x x x --+³-+++.要证()()1ln 01f x x x x -+>+,即证()24e 1ln 01x x x x x --+>+,即证()224e ln 1x x x x ->+.设()()224e 1x g x x -=+,则()()()234e 11x x g x x --¢=+.当()0,1x Î时,()0g x ¢<,当()1,x Î+¥时,()0g x ¢>,则()g x 在()0,1上单调递减,在()1,+¥上单调递增.故()()min 11eg x g ==.设()ln x h x x =,则()21ln xh x x-¢=.当()0,e x Î时,()0h x ¢>,当()e,x Î+¥时,()0h x ¢<,则()h x 在()0,e 上单调递增,在()e,+¥上单调递减.故()()max 1e eh x h ==.因为()()min max g x h x =,且两个最值的取等条件不同,所以()224e ln 1x x x x ->+,即当24e a ³时,()()1ln 01f x x x x -+>+.(四) 把证明()()f xg x >转化为证明()()()(),f xh x h x g x >>若直接证明()()f x g x >比较困难,有时可利用导数中的常见不等式如ln 1,e +1x x x x £-³构造一个中间函数()h x ,或利用不等式的性质通过放缩构造一个中间函数()h x ,再通过证明()()()(),f x h x h x g x >>来证明原不等式.【例5】已知函数()sin 2cos xf x x=+在区间()0,a 上单调.(1)求a 的最大值;(2)证明:当0x >时,()31e xf x +<.【解析】 (1)由已知得,22cos (2cos )sin sin 2cos 1()(2cos )(2cos )x x x x x f x x x +++¢==++,要使函数()f x 在区间(0,)a 上单调,可知在区间(0,)a 上单调递增,令()0f x ¢>,得2cos 10x +>,即1cos 2x >-,解得22(2,2)33x k k p pp p Î-++,(k Z Î),当0k =时满足题意,此时,在区间2(0,3p 上是单调递增的,故a 的最在值为23p.(2)当0x >时,要证明()31e xf x +<,即证明e 1()3x f x -<,而1xe x ->,故需要证明e 1()33x xf x -<<.先证:e 133x x -<,(0x >)记()e 1x F x x =--,()e 1x F x ¢=-Q ,,()0x Î+¥时,()0F x ¢>,所以()F x 在(0,)+¥上递增,\()e 1xF x x =--(0)0F >=,故1xe x ->,即e133xx -<.再证:()3x f x <,(0x >)令1()()3G x f x x =-,则sin 1(),2cos 3x G x x x =-+则()()()()222cos 12cos 1132cos 32cos x x G x x x ¢--+=-=++,故对于0x ">,都有()0¢<G x ,因而()G x 在(0,)¥+上递减,对于0x ">,都有()(0)0G x G <=,因此对于0x ">,都有()3xf x <.所以e 1()33x x f x -<<成立,即e 1()3x f x -<成立,故原不等式成立.(五) 改变不等式结构,重新构造函数证明不等式此类问题要先对待证不等式进行重组整合,适当变形,找到其等价的不等式,观察其结构,根据结构构造函数.常见的变形方法有:①去分母,把分数不等式转化为整式不等式;②两边取对数,把指数型不等式转化为对数型不等式;③不等式为()()()()f x h x g x h x >类型,且()()0h x >或<0的解集比较容易确定,可考虑两边同时除以()h x ;④不等式中含有,有时为了一次求导后不再含有对数符号,可考虑不等式两边同时除以x ;⑤通过换元把复杂的不等式转化为简单不等式.【例6】(2024届河南省创新发展联盟5月月考)已知函数1e 1()ln x af x x x x-=--.(1)讨论()f x 的单调性;(2)当52a ³时,证明:()11()ln e 1ln x f x x x x x -++->-.【解析】(1)函数1e 1()ln x af x x x x -=--的定义域为(0,)+¥,求导得11222e (1)11(1)(e 1)()x x a x x a f x x x x x -----=-+=¢,若0a £,则1e 10x a --<,且当()0,1x Î时,()0f x ¢>,当()1,x ¥Î+时,()0f x ¢<,即函数()f x 在(0,1)上递增,在(1,)+¥上递减;若0a >,令1e 10x a --=,解得1ln x a =-,若1ln 0a -£,即e a ³,则1e 10x a --³恒成立,当()0,1x Î时,()0f x ¢<,当()1,x ¥Î+时,()0f x ¢>,即函数()f x 在(0,1)上递减,在(1,)+¥上递增;若01ln 1a <-<,即1e a <<,则当()()0,1ln 1,x a ¥Î-È+时,()0f x ¢>,当()1ln ,1x a Î-时,()0f x ¢<,即函数()f x 在(0,1ln ),(1,)a -+¥上递增,在(1ln ,1)a -上递减;ln x x若1ln 1a -=,即1a =,则()0f x ¢³在()0,¥+上恒成立,函数()f x 在(0,)+¥上递增;若1ln 1a ->,即01a <<,则当()()0,11ln ,x a ¥ÎÈ-+时,()0f x ¢>,当(1,1ln )x a Î-时,()0f x ¢<,即函数()f x 在(0,1),(1ln ,)a -+¥上递增,在(1,1ln )a -上递减,所以当0a £时,()f x 的递增区间为()0,1,递减区间为()1,¥+;当01a <<时,()f x 的递增区间为()0,1和()1ln ,a ¥-+,递减区间为()1,1ln a -;当1a =时,()f x 的递增区间为()0,¥+,无递减区间;当1e a <<时,()f x 的递增区间为()0,1ln a -和()1,¥+,递减区间为()1ln ,1a -;当e a ³时,()f x 的递增区间为()1,¥+,递减区间为()0,1.(2)要证()()11ln e 1ln x f x x x x x -++->-,需证()11e e ln 10x x a x x x --+-->,而15e ,02x a x -³>,即有()()1111e 5e e ln 1e ln 12x x x x a x x x x x x----+--³+--,则只需证明()115e e ln 102x x x x x --+-->,即证15e ln 12x x x x -æö+->ç÷èø,即证()215ln 12e x x x x -+->,令()()5ln 12h x x x =+-,则()ln h x x ¢=,当()0,1x Î时,()0h x ¢<,当()1,x ¥Î+时,()0h x ¢>,即函数()h x 在(0,1)上单调递减,在(1,)+¥上单调递增,则()min 3()12h x h ==,令()21(0)e x x x x j -=>,则()()12ex x x x j --¢=,当()0,2x Î时,()0x j ¢>,当()2,x ¥Î+时,()0x j ¢<,函数()j x 在(0,2)上单调递增,在(2,)+¥上单调递减,则()max min 43()2()e 2x h x j j ==<=,从而()215ln 12e x x x x -+->,即()11()ln e 1ln x f x x x x x -++->-成立.(六) 通过减元法构造函数证明不等式对于多变量不等式 ,一般处理策略为消元或是把一个看作变量其他看作常量;当都不能处理的时候,通过变形,再换元产生一个新变量,从而构造新变量的函数.【例7】(2024届江西省南昌市高三三模)定义:若变量,0x y >,且满足:1mmx y a b æöæö+=ç÷ç÷èøèø,其中,0,Z a b m >Î,称y 是关于的“m 型函数”.(1)当2,1a b ==时,求y 关于x 的“2型函数”在点æççè处的切线方程;(2)若y 是关于x 的“1-型函数”,(i )求x y +的最小值:(ii )求证:()1111n n n nn n n n nx ya b+++æö+³+ç÷èø,()N n *Î.【解析】(1)解:当2,1a b ==时,可得12214x y æö=-ç÷èø,则122111242x y x -æöæö=-×-ç÷¢ç÷èøèø,所以1x y =¢=,所求切线方程为1)y x =-,即40x +-=.(2)解:由y 是关于x 的“1-型函数”,可得111x y a b --æöæö+=ç÷ç÷èøèø,即1a b x y +=,(i)因为2()()a b ay bx x y x y a b a b x y x y æö+=++=+++³++=ç÷èø,当且仅当2ay x x y ì=ïíï+î即x a y b ì=ïí=ïî时取得最小值.(ii )由111x y a b --æöæö+=ç÷ç÷èøèø,即1a b x y +=,则()()x a y b ab --=,且x a >,y b >,可设x a at -=,by b t-=,其中(0,)t Î+¥,于是11[(1)]1(1)1nnnnnn n n x y a t b a t b t t éùæöæö+=+++=+++ç÷ç÷êúèøèøëû,记1()(1)1nnnnh t a t b t æö=+++ç÷èø,可得()()()11112111111n n n nn nn n n na t b h t na t nb t t t t a ---++éù+æöæöæö=+++-=-êúç÷ç÷ç÷èøèøèøêëû¢ú,由()0h t ¢=,得1n n b t a +æö=ç÷èø,记10n n b t a +æö=ç÷èø,当00t t <<时()0h t ¢<,当0t t >时,()0h t ¢>,则()()11min0001()1111nnn nnn n n n n n n b a h t h t a t b a b t a b ++éùéùæöæöæöêúêú==+++=+++ç÷ç÷ç÷êúêúèøèøèøëûëû111111111111n n n nn n n n n n n nn n n n n n n n n n a b a b a b a a b b b a ++++++++++æöæöæöæö=+×++×=+++ç÷ç÷ç÷ç÷èøèøèøèø111n n n nn n a b+++æö=+ç÷èø,所以()1111n n n nn n n n nx ya b+++æö+³+ç÷èø.(七) 与极值点或零点有关的多变量不等式的证明此类问题通常是给出函数的零点或极值点12,x x 或123,,x x x ,与证明与12,x x 或123,,x x x 有关的不等式,求解时要有意识的利用方程思想代入消元(若i x 是()f x 的零点,则()0i f x =,若i x 是()f x 的极值点,则()0i f x ¢=,),减少变量个数.【例8】(2024届湖南娄底市高三下学期高考考前仿真联考)已知函数()2e 2ln x af x a x x x =--.(1)当1a =时,讨论函数()f x 的单调性;(2)若22e a >,(i )证明:函数()f x 有三个不同的极值点;(ii )记函数()f x 三个极值点分别为123,,x x x ,且123x x x <<,证明:()()()23131e a f x f x a x x æö-<--ç÷èø.【解析】(1)函数()f x 的定义域为(0,)+¥,当1a =时,()2e 2ln xf x x x x=--,则()422323e e 21e 2(2)(e 2(2))x xx x x x x x x f x x x x x x x x -----¢=+-=+=,令e (0)x y x x =->,则e 10(0)x y x ¢=->>,所以e x y x =-在(0,)+¥上递增,所以0e e 01x y x =->-=,所以当2x >时,()0f x ¢>,当02x <<时,()0f x ¢<,所以()f x 在(0,2)上递减,在(2,)+¥上递增;(2)(i )因为,()0x Î+¥,且()233(2e 2(2)(e ))x xa a x f x x x x a x x x -¢=+--=-,(2)0f ¢=,由e 0xax -=,得e xa x=(,()0x Î+¥),令()(0)x e g x x x =>,则2(e 1)()(0)x x g x x x-¢=>,当01x <<时,()0g x ¢<,当1x >时,()0g x ¢>,所以()g x 在(0,1)上递减,在(1,)+¥上递增,所以min ()(1)e g x g ==,当2e (2)e 2a g >=>时,e xa x=在(0,1)和(2,)+¥上各有一个实数根,分别记为13,x x ,则1301,2x x <<>,设22x =,当10x x <<或23x x x <<时,()0f x ¢<,当12x x x <<或3x x >时,()0f x ¢>,所以()f x 在()10,x 和()23,x x 上递减,在()12,x x 和3(,)x +¥上递增,所以函数()f x 在(0,)+¥上有三个不同的极值点,(ii )由(i )1301,2x x <<>,所以13,x x 是方程e x ax =的两个不相等的实数根,即11e x ax =,33e xax =,所以11111211111e 221()ln ln ln x a a af x a x a x a x x x x x x æö=--=--=-+ç÷èø,同理3331()ln f x a x x æö=-+ç÷èø,所以()()313131313111ln ln a x a x f x f x x x x x x x æöæö-+++ç÷ç÷-èøèø=--31313111ln ln a x x x x x x æö-+--ç÷èø=-13331131ln x x x a x x x x x æö--+ç÷èø=-,由11e x ax =,33e x ax =,得3331113311e e ln ln ln ln e e e x x x x x x x a x x x a-====-,所以()()1331331313113131313131ln 11x x x x x a a x x f x f x x x x x x a x x x x x x x x æöæö---+-+-ç÷ç÷-æöèøèø===-ç÷---èø,因为2e ,2a æöÎ+¥ç÷èø,所以要证()()()23131e a f x f x a x x æö-<--ç÷èø,只要证()()23131e f x f x a a x x -<--,即证23111e a a a x x æö-<-ç÷èø,即证31111e a x x -<-,即证311e a x x <,只需证13e ax x <,即31e e xx <×,即311ex x -<,由(i )可得1301,2x x <<>,所以3110e e 1x --<<<,根据(i )中结论可知函数e ()=xg x x在(0,1)上递减,所以要证311ex x -<,即证311()(e )x g x g -<,因为3113e e x x a x x ==,所以13()()g x g x =,所以只要证313()(e )x g x g -<,即1333e 13e e e xx x x --<,得13e 3e e x x -<,即3131e ln x x --<,得313e 01ln xx ---<,令1()1ln e(2)xh x x x -=-->,则111e 1()e (2)x x x h x x x x---¢=-+=>,令1()e 1(2)x u x x x -=->,则1()(1)e 0(2)x u x x x -¢=-<>,所以()u x 在(2,)+¥上递减,所以2()(2)10eu x u <=-<,所以()0h x ¢<,所以()h x 在(2,)+¥上递减,所以1()(2)1ln 20e h x h <=--<,所以得证.(八) 与数列前n 项和有关的不等式的证明此类问题一般先由已知条件及导数得出一个不等式,再把该不等式中的自变量依次用1,2,3,L ,n 代换,然后用叠加法证明.【例9】(2024届重庆市九龙坡区高三下学期5月质量抽测)已知函数()213ln 22f x x x ax =+-+,()0a >.(1)当[)1,x ¥Î+时,函数()0f x ³恒成立,求实数a 的最大值;(2)当2a =时,若()()120f x f x +=,且12x x ¹,求证:122x x +>;(3)求证:对任意*N n Î,都有()2112ln 1ni i n n i =-æö++>ç÷èøå.【解析】(1)当1x ³时,()213ln 022f x x x ax =+-+³恒成立,即ln 1322x a x x x £++恒成立,只需min ln 1322x a x xx æö£++ç÷èø即可,令()ln 1322x g x x x x =++,1x ³,则()22221ln 132ln 1222x x x g x x x x ---=-¢+=,令()22ln 1h x x x =--,1x ³,则()22222x h x x x x=¢-=-,当1x ³时,()0h x ¢³恒成立,()h x 在[)1,x ¥Î+单调递增,所以()()10h x h ³=,所以()0g x ¢³在[)1,x ¥Î+恒成立,()g x 在[)1,x ¥Î+单调递增,所以()()min 12g x g ==,所以2a £,即实数a 的最大值为2.(2)当2a =时,()213ln 222f x x x x =+-+,0x >,所以()()21120x f x x x x-=+=¢-³,()f x 在()0,x ¥Î+上单调递增,又()10f =,()()120f x f x +=且12x x ¹,不妨设1201x x <<<,要证122x x +>,即证明212x x >-,因为()f x 在()0,x ¥Î+上单调递增,即证()()212f x f x >-,因为()()120f x f x +=,即证()()1120f x f x +-<,设()()()()()()2213132ln 2ln 22222222F x f x f x x x x x x x =+-=+-++-+---+()()()2ln 221ln 221x x x x x x x x éùéù=-+-+=---+ëûëû,01x <<,令()2t x x =-,则01t <<,则()ln 1t t t j =-+,()111tt t t j -=-=¢,由01t <<可得()0t j ¢>,()t j 在()0,1单调递增,所以()()10t j j <=,即()()()20F x f x f x =+-<,所以()()1120f x f x +-<成立,所以122x x +>.(3)由(2)可知当2a =时,()f x 在()1,¥+单调递增,且()()10f x f >=,由213ln 2022x x x +-+>得22ln 430x x x +-+>,即()22ln 21x x +->,令1n x n +=,则2112ln 21n n n n ++æö+->ç÷èø,即2112ln 1n n n n +-æö+>ç÷èø,所以22112ln 111-æö+>ç÷èø,23122ln 122-æö+>ç÷èø,24132ln 133-æö+>ç÷èø,…,2112ln 1n n n n +-æö+>ç÷èø,相加得()2112ln 1ni i n n i =-æö++>ç÷èøå.(九)通过同构函数把复杂不等式化为简单不等式此类问题通常是构造一个函数()f x ,把所证不等式转化为()()()()f g x f h x >,再根据()f x 的单调性转化为证明一个较简单的不等式.【例10】(2024届广东省广州市高中毕业班冲刺训练二)已知函数()e axf x x =(0a >).(1)求()f x 在区间[]1,1-上的最大值与最小值;(2)当1a ³时,求证:()ln 1f x x x ³++.【解析】(1)解:()()e 1axf x ax =+¢(0x >)(0a >),令()0f x ¢=,则1x a =-,当01a <£时,11a-£-,所以()0f x ¢³在区间[]1,1-上恒成立,()f x 在区间[]1,1-上单调递增,所以()()min 1e a f x f -=-=-,()()max 1e af x f ==.当1a >时,111a -<-<,则当11,x a éöÎ--÷êëø时,()0f x ¢<,()f x 在区间11,a éö--÷êëø上单调递减;当1,1x a æùÎ-çúèû时,()0f x ¢>,()f x 在区间1,1a æù-çúèû上单调递增,所以()min 11e f x f a a æö=-=-ç÷èø,而()1e 0a f --=-<,()1e 0a f =>.所以()()max 1e af x f ==综上所述,当01a <£时,()min e a f x -=-,()max e af x =;当1a >时,所以()min 1ef x a =-,()max e af x =.(2)因为0x >,1a ³,所以e e ax x x x ³,欲证e ln 1ax x x x ³++,只需证明e ln 1x x x x ³++,只需证明ln ln e e e e ln 1x x x x x x x x x +==³++,因此构造函数()e 1x h x x =--(x ÎR ),()e 1xh x ¢=-,当(),0x Î-¥时,()0h x ¢<,()h x 在(),0¥-上单调递减;当()0,x Î+¥时,()0h x ¢>,()h x 在()0,¥+上单调递增:所以()()00h x h ³=,所以e 1x x ³+,所以e ln 1x x x x ³++,因此()ln 1f x x x ³++.【例1】(2024届内蒙古呼和浩特市高三第二次质量监测)对于函数()f x ,若实数0x 满足()00f x x =,则0x 称为()f x 的不动点.已知函数()()e 2e 0x xf x x a x -=-+³.(1)当1a =-时,求证()0f x ³;(2)当0a =时,求函数()f x 的不动点的个数;(3)设*N n Î,()ln 1n +>+L .【解析】(1)当1a =-时,有()()e 2e 0x xf x x x -=--³,所以()1e 2e x x f x =+-¢()0x ³,所以()1e 220e x x f x =+-³=¢当且仅当1e e xx=,e 1x=,即0x =时,等号成立,所以当[)0,x Î+¥时,()0f x ¢³,()f x 单调递增,所以()()()min 00f x f x f ³==,所以()0f x ³得证.(2)当0a =时,()()e 20xf x x x =-³,根据题意可知:方程e 2x x x -=()0x ³解的个数即为函数()f x 的不动点的个数,化e 2x x x -=()0x ³为e 30x x -=()0x ³,令()e 3xg x x =-()0x ³,所以函数()g x 的零点个数,即为函数()f x 的不动点的个数,()e 3x g x ¢=-()0x ³,令()0g x ¢=,即e 3x =,解得ln 3x =,x[)0,ln 3ln 3()ln 3,¥+()g x ¢-+()g x 单调递减33ln 3-单调递增因为()010g =>,()ln 333ln 30g =-<,所以()g x 在[)0,ln 3上有唯一一个零点,又()555e 15215170g =->-=>,所以()g x 在()ln 3,¥+上有唯一一个零点,综上所述,函数()f x 有两个不动点.(3)由(1)知,()e 2e 0,0,x xx x ¥--->Î+,令ln ,1x s s =>,则12ln 0s s s --->,即12ln ,1s s s s->>,设*N s n =Î,则满足1s >,>1ln 1n æö>+ç÷èø,()1ln ln 1ln n n n n +æö>=+-ç÷èø,()ln 2ln1ln 3ln 2ln(1)ln ln 1n n n >-+-+++-=+L L ,即()ln 1n >+L .【例2】(2024届四川省自贡市高三第三次诊断性考试)已知函数1()1ln (0)f x a x a x=++>(1)求函数()f x 的单调区间;(2)函数()f x 有唯一零点1x ,函数2()sin e ag x x x =--在R 上的零点为2x .证明:12x x <.【解析】(1)函数1()1ln (0)f x a x a x=++>的定义域为()0,¥+,且2211()a ax f x x x x -¢=-+=,所以当10x a<<时()0f x ¢<,当1x a >时()0f x ¢>,所以()f x 的单调递减区间为10,a æöç÷èø,单调递增区间为1,a æö+¥ç÷èø;(2)法一:由(1)可知若函数()f x 有唯一零点1x ,则11x a=,即1ln 10f a a a a æö=-++=ç÷èø,令()ln 1x x x x j =-++,则()ln x x j ¢=-,当1x >时,()()0,x x j j ¢<单调递减,当01x <<时,()()0,x x j j ¢>单调递增,因为44e 2.753.144127>=>,55e 3243256<=<,所以()433ln 344ln 27ln e ln 270j =-+=-=->,()544ln 455ln 256ln e ln 2560j =-+=-=-<,当01x <<时()()1ln 10x x x j =-+>,当x ®+¥时()x j ®-¥,所以()x j 在()3,4上存在唯一零点,所以33a <<,即11143a <<,令()2e sin h x x x x -=+-,则()22e cos 10h x x x -=-+-<¢,所以()h x 在()0,¥+上单调递减,故22113113111sin sin sin 03e333333h h a æöæö>=+->+-=>ç÷ç÷èøèø,所以211e sin a a a->-,又()2222sin e 0g x x x a -=--=,所以2221111sin e sin sin x x a x x a a--=>-=-,令()sin F x x x =-,则()1cos 0F x x =-³¢,所以()F x 在()0,¥+上单调递增,又()()21>F x F x ,所以21x x >.法二:因为0a >,由(1)可知若函数()f x 有唯一零点1x ,则11x a=,即()()1111111111ln 1ln 10ln 10f x a x x x x x x x =++=++=Þ++=,设211()ln 1,0,0e e h x x x h h æöæö=++><ç÷ç÷èøèø,而()h x 在()0,¥+上单调递增,所以1211,e e x æöÎç÷èø,()1cos 0g x x ¢=-≥,所以()g x 在R 上单调递增,又12(0)0,0e ag x =-<\>,令22211()sin ,()1cos 0e e x x x x x x x j j ¢=--=-+>,所以()j x 在()0,¥+上单调递增,所以()111sin 0e e x j j æö\<=-<ç÷èø,而()222212211sin sin 0e e a g x x x x x x =--=--=,()()11122211221111sin sin e e g x x x g x x x x x x x \=--<=--\<.【例3】(2024届四川省成都市实验外国语学校教育集团高三下学期联考)已知函数()e xf x =,()lng x x =.(1)若函数()()111x h x ag x x +=---,a ÎR ,讨论函数()h x 的单调性;(2)证明:()()()()1212224x f x f x g x -->-.(参考数据:45e 2.23»,12e 1.65»)【解析】(1)由题意()()1ln 1,11x h x a x x x +=-->-,所以()()22,11ax a h x x x -+¢=>-,当0a =时,()0h x ¢>,所以()h x 在()1,+¥上为增函数;当0a ¹时,令()0h x ¢=得21x a=-,所以若0a >时,211a-<,所以()0h x ¢>,所以()h x 在()1,+¥上为增函数,若0<a 时,211a->,且211x a <<-时,()0h x ¢>,21x a >-时,()0h x ¢<,所以()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数,综上:当0a ³时,()h x 在()1,+¥上为增函数,当0<a 时,()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数;(2)()()()()1212224x f x f x g x -->-等价于()2121e e 2ln 204x x x x ---+>,设()()2121e e 2ln 24x x F x x x =---+,则()()()222e 2e 12e e 2e e x xx x xxx x x x F x x x x x-+--¢=--==,因为0x >,所以e 10x x +>,设()e 2x x x j =-,则()()10e xx x j ¢=+>,则()x j 在()0,¥+上单调递增,而()4544e 20,1e 2055j j æö=-<=->ç÷èø,所以存在04,15x æöÎç÷èø,使()00x j =,即00e 2xx =,所以00ln ln 2x x +=,即00ln ln 2x x =-,当00x x <<时,()0F x ¢<,则()F x 在()00,x 上单调递减,当0x x >时,()0F x ¢>,则()F x 在()0,x +¥上单调递增,所以()()00200min 121e e 2ln 24x x F x x x =---+()000220001421212ln 22222ln 224x x x x x x =---++=-+-+,设()21422ln 22,15m t t t t æö=-+-+<<ç÷èø,则()3220m t t ¢=+>,则()m t 在4,15æöç÷èø上单调递增,42581632ln 222ln 20516580m æö=-+-+=->ç÷èø,则()min 0F x >,则不等式()2121e e 2ln 204x x x x ---+>恒成立,即不等式()()()()1212224x f x f x g x -->-成立.【例4】(2024届天津市滨海新区高考模拟检测)已知函数()ln a xf x x+=,其中a 为实数.(1)当1a =时,①求函数()f x 的图象在e x =(e 为自然对数的底数)处的切线方程;②若对任意的x D Î,均有()()m x n x £,则称()m x 为()n x 在区间D 上的下界函数,()n x 为()m x 在区间D 上的上界函数.若()1kg x x =+,且()g x 为()f x 在[)1,+¥上的下界函数,求实数k 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学解题方法与技巧构造函数法证明不等式的六种方法1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。
2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。
以下介绍构造函数法证明不等式的六种方法:一、移项法构造函数【例1】 已知函数x x x f −+=)1ln()(,求证:当1−>x 时,恒有x x x ≤+≤+−)1ln(111 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(−+++=x x x g ,从其导数入手即可证明。
【解】1111)(+−=−+=′x x x x f ∴当01<<−x 时,0)(>′x f ,即)(x f 在)0,1(−∈x 上为增函数当0>x 时,0)(<′x f ,即)(x f 在),0(+∞∈x 上为减函数故函数()f x 的单调递增区间为)0,1(−,单调递减区间),0(+∞于是函数()f x 在),1(+∞−上的最大值为0)0()(max ==f x f ,因此,当1−>x 时,0)0()(=≤f x f ,即0)1ln(≤−+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(−+++=x x x g , 22)1()1(111)(+=+−+=′x x x x x g 则 当0)(,),0(;0)(,)0,1(>′+∞∈<′−∈x g x x g x 时当时 ,即)(x g 在)0,1(−∈x 上为减函数,在),0(+∞∈x 上为增函数,故函数)(x g 在),1(+∞−上的最小值为0)0()(min ==g x g ,∴当1−>x 时,0)0()(=≥g x g ,即0111)1ln(≥−+++x x ∴111)1ln(+−≥+x x ,综上可知,当x x x x ≤+≤−+−>)1ln(111,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证.2、作差法构造函数证明【例2】已知函数.ln 21)(2x x x f +=求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方; 分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题, 即3232ln 21x x x <+,只需证明在区间),1(∞+上,恒有3232ln 21x x x <+成立,设)()()(x f x g x F −=,),1(+∞∈x ,考虑到061)1(>=F 要证不等式转化变为:当1>x 时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可。
【解】设)()()(x f x g x F −=,即x x x x F ln 2132)(23−−=, 则x x x x F 12)(2−−=′=xx x x )12)(1(2++− 当1>x 时,)(x F ′=xx x x )12)(1(2++− 从而)(x F 在),1(∞+上为增函数,∴061)1()(>=>F x F ∴当1>x 时 0)()(>−x f x g ,即)()(x g x f <, 故在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方。
【警示启迪】本题首先根据题意构造出一个函数(可以移项,使右边为零,将移项后的左式设为函数),并利用导数判断所设函数的单调性,再根据函数单调性的定义,证明要证的不等式。
读者也可以设)()()(x g x f x F −=做一做,深刻体会其中的思想方法。
3、换元法构造函数证明【例3】证明:对任意的正整数n,不等式3211)11ln(nn n −>+ 都成立.分析:本题是山东卷的第(II)问,从所证结构出发,只需令x n=1,则问题转化为:当0>x 时,恒有32)1ln(x x x −>+成立,现构造函数)1ln()(23++−=x x x x h ,求导即可达到证明。
【解】令)1ln()(23++−=x x x x h , 则1)1(31123)(232+−+=++−=′x x x x x x x h 在),0(+∞∈x 上恒正, 所以函数)(x h 在),0(+∞上单调递增,∴),0(+∞∈x 时,恒有,0)0()(=>h x h即0)1ln(23>++−x x x ,∴32)1ln(x x x −>+对任意正整数n,取3211)11ln(),0(1nn n n x −>++∞∈=,则有 【警示启迪】我们知道,当()F x 在[,]a b 上单调递增,则x a >时,有()F x ()F a >.如果()f a =()a ϕ,要证明当x a >时,()f x >()x ϕ,那么,只要令()F x =()f x -()x ϕ,就可以利用()F x 的单调增性来推导.也就是说,在()F x 可导的前提下,只要证明'()F x >0即可.4、从条件特征入手构造函数证明【例4】若函数y =)(x f 在R 上可导且满足不等式x )(x f ′>-)(x f 恒成立,且常数a ,b 满足a >b ,求证:.a )(a f >b )(b f【解】由已知 x )(x f ′+)(x f >0 ∴构造函数 )()(x xf x F =,则=)('x F x )(x f ′+)(x f >0, 从而)(x F 在R 上为增函数。
Q b a > ∴)()(b F a F > 即 a )(a f >b )(b f【警示启迪】由条件移项后)()(x f x f x +′,容易想到是一个积的导数,从而可以构造函数)()(x xf x F =,求导即可完成证明。
若题目中的条件改为)()(x f x f x >′,则移项后)()(x f x f x −′,要想到是一个商的导数的分子,平时解题多注意总结。
5、主元法构造函数例.已知函数x x x g x x x f ln )(,)1ln()(=−+=(1)求函数)(x f 的最大值;(2)设b a <<0,证明 :2ln )()2(2)()(0a b b a g b g a g −<+−+<. 分析:对于(II)绝大部分的学生都会望而生畏.学生的盲点也主要就在对所给函数用不上.如果能挖掘一下所给函数与所证不等式间的联系,想一想大小关系又与函数的单调性密切相关,由此就可过渡到根据所要证的不等式构造恰当的函数,利用导数研究函数的单调性,借助单调性比较函数值的大小,以期达到证明不等式的目的.证明如下:证明:对x x x g ln )(=求导,则1ln )('+=x x g . 在)2(2)()(b a g b g a g +−+中以b 为主变元构造函数, 设)2(2)()()(x a g x g a g x F +−+=,则2ln ln )]2([2)()('''x a x x a g x g x F +−=+−=. 当a x <<0时,0)('<x F ,因此)(x F 在),0(a 内为减函数.当a x >时,0)('>x F ,因此)(x F 在),(+∞a 上为增函数.从而当a x =时, )(x F 有极小值)(a F .因为,,0)(a b a F >=所以0)(>b F ,即.0)2(2)()(>+−+b a g b g a g 又设2ln )()()(a x x F x G −−=.则)ln(ln 2ln 2ln ln )('x a x x a x x G +−=−+−=.当0>x 时,0)('<x G .因此)(x G 在),0(+∞上为减函数.因为,,0)(a b a G >=所以0)(<b G ,即2ln )()2(2)()(a b b a g b g a g −<+−+. 6、构造二阶导数函数证明导数的单调性 例.已知函数21()2x f x ae x =− (1)若f (x )在R 上为增函数,求a 的取值范围;(2)若a =1,求证:x>0时,f (x )>1+x解:(1)f′(x )= ae x -x,∵f(x)在R上为增函数,∴f′(x )≥0对x∈R恒成立,即a≥xe-x对x∈R恒成立记g(x)=xe-x,则g′(x)=e-x-xe-x=(1-x )e -x ,当x>1时,g′(x)<0,当x<1时,g′(x)>0.知g(x)在(-∞,1)上为增函数,在(1,+ ∞)上为减函数,∴g (x )在x =1时,取得最大值,即g (x )max =g (1)=1/e , ∴a≥1/e ,即a 的取值范围是[1/e , + ∞)(2)记F (X )=f (x ) -(1+x ) =)0(1212>−−−x x x e x 则F′(x )=e x -1-x ,令h (x )= F′(x )=e x -1-x ,则h′(x )=e x -1当x >0时, h′(x )>0, ∴h (x )在(0,+ ∞)上为增函数,又h (x )在x =0处连续, ∴h (x )>h (0)=0即F′(x )>0 ,∴F (x ) 在(0,+ ∞)上为增函数,又F (x )在x =0处连续,∴F (x )>F (0)=0,即f (x )>1+x .小结:当函数取最大(或最小)值时不等式都成立,可得该不等式恒成立,从而把不等式的恒成立问题可转化为求函数最值问题.不等式恒成立问题,一般都会涉及到求参数范围,往往把变量分离后可以转化为)(x f m >(或)(x f m <)恒成立,于是m 大于)(x f 的最大值(或m 小于)(x f 的最小值),从而把不等式恒成立问题转化为求函数的最值问题.因此,利用导数求函数最值是解决不等式恒成立问题的一种重要方法.。