算法设计与分析的经典问题
算法设计与分析习题答案
算法设计与分析习题答案算法设计与分析是计算机科学中一个重要的领域,它涉及到算法的创建、优化以及评估。
以下是一些典型的算法设计与分析习题及其答案。
习题1:二分查找算法问题描述:给定一个已排序的整数数组,编写一个函数来查找一个目标值是否存在于数组中。
答案:二分查找算法的基本思想是将数组分成两半,比较中间元素与目标值的大小,如果目标值等于中间元素,则查找成功;如果目标值小于中间元素,则在左半部分继续查找;如果目标值大于中间元素,则在右半部分继续查找。
这个过程会不断重复,直到找到目标值或搜索范围为空。
```pythondef binary_search(arr, target):low, high = 0, len(arr) - 1while low <= high:mid = (low + high) // 2if arr[mid] == target:return Trueelif arr[mid] < target:low = mid + 1else:high = mid - 1return False```习题2:归并排序算法问题描述:给定一个无序数组,使用归并排序算法对其进行排序。
答案:归并排序是一种分治算法,它将数组分成两半,分别对这两半进行排序,然后将排序好的两半合并成一个有序数组。
```pythondef merge_sort(arr):if len(arr) > 1:mid = len(arr) // 2left_half = arr[:mid]right_half = arr[mid:]merge_sort(left_half)merge_sort(right_half)i = j = k = 0while i < len(left_half) and j < len(right_half): if left_half[i] < right_half[j]:arr[k] = left_half[i]i += 1else:arr[k] = right_half[j]j += 1k += 1while i < len(left_half):arr[k] = left_half[i]i += 1k += 1while j < len(right_half):arr[k] = right_half[j]j += 1k += 1arr = [38, 27, 43, 3, 9, 82, 10]merge_sort(arr)print("Sorted array is:", arr)```习题3:动态规划求解最长公共子序列问题问题描述:给定两个序列,找到它们的最长公共子序列。
算法设计与分析试题及答案
1. 按分治策略求解棋盘覆盖问题时,对于如图所示的24×24的特殊棋盘,共需要多少个L 型骨牌;并在棋盘上填写L 型骨牌的覆盖情况。
2. 假设有7个物品,给出重量和价值。
若这些物品均不能被分割,且背包容量M =140,使用回溯方法求解此0-1背包问题。
请画出状态空间搜索树。
3. 假设有7个物品,它们的重量和价值如下表所示。
若这些物品均可以被分割,且背包容量M=140,使用贪心算法求解此背包问题。
请写出求解策略和求解过程。
W (35,30,50,60,40,10,25)p (10,40,30,50,35,40,30)4. 在给出的电路板中,阴影部分是已作了封锁标记的方格,请按照队列式分支限界法在图中确定a 到b 的最短布线方案,要求布线时只能沿直线或直角进行,在图中标出求得最优解时各方格情况。
5. 画出字符表的哈夫曼编码对应的二叉树。
6. 已知1()*()i i k k ij r r A a +=,k =1,2,3,4,5,6,r 1=5,r 2=10,r 3=3,r 4=8,r 5=5,r 6=20,r 7=6,求矩阵链积A 1×A 2×A 3×A 4×A 5×A 6的最佳求积顺序。
7. 给出城市网络图,售货员要从城市1出发,经过所有城市回到城市1,画出该问题的解空间树,描述出用优先队列式分支限界法求解时的搜索情况。
表示出优先队列、当前扩展结点等的变化情况。
8. 依据优先队列式分支限界法,求从s 点到t 点的单源最短路径,画出求得最优解的解空间树。
一、假设有7个物品,它们的重量和价值如下表所示。
若这些物品均不能被分割,且背包容量M=150,使用回溯方法求解此背包问题。
请写出状态空间搜索树(20分)。
答:按照单位效益从大到小依次排列这7个物品为:FBGDECA 。
将它们的序号分别记为1~7。
则可生产如下的状态空间搜索树。
其中各个节点处的限界函数值通过如下方式求得:【排序1分】5x =6x =7x =17分,每个节点1分】a .1501154040305035190.62540-++++⨯=7(1,1,1,1,,0,0)8b. 1501154040305030177.560-++++⨯=7(1,1,1,1,0,,0)12c .4040305010170++++=(1,1,1,1,0,0,1)d. 1501054040303530167.560-++++⨯=3(1,1,1,0,1,,0)4e. 150130404050353017560-++++⨯=1(1,1,0,1,1,,0)3f. 1501304040503510170.7135-++++⨯=4(1,1,0,1,1,0,)7g. 40405030160+++=(1,1,0,1,0,1,0)h. 1501404040353010146.8535-++++⨯=2(1,1,0,0,1,1,)7i.1501254030503530167.560-++++⨯=5(1,0,1,1,1,,0)12 j. 1501454030503530157.560-++++⨯=1(0,1,1,1,1,,0)12在Q 1处获得该问题的最优解为(1,1,1,1,0,0,1),背包效益为170。
算法设计期末大题分析总结
算法设计期末大题分析总结1. 前言在本次算法设计期末大题分析中,我将对所给的几个算法问题进行详细的分析和总结。
这几个算法问题涉及了各个领域,包括图论、动态规划、字符串处理等等。
在解决这些问题的过程中,我运用了所学的算法知识和编程技巧,通过合理的算法设计和优化,解决了这些问题。
2. 问题1:最小生成树给定一个无向图,每个边都有一个正的权值。
我们需要找到一个最小生成树,使得所有边的权值之和最小。
这是一个非常经典的图论问题,常用的解决方法包括Kruskal算法和Prim算法。
在本次问题中,我使用了Prim算法来解决这个问题。
Prim算法的基本思想是从一个顶点开始,逐渐构造最小生成树,每次选择一个与当前顶点距离最短的边。
通过运用堆数据结构来加速选取最短边的过程,使得算法能够在较短的时间内求解问题。
3. 问题2:最长递增子序列给定一个序列,我们需要找到一个最长的递增子序列,即该子序列中的元素按照从小到大的顺序排列。
这是一个动态规划问题,常用的解决方法是使用动态规划算法来求解。
在本次问题中,我使用了动态规划算法来解决这个问题。
动态规划算法的基本思想是将一个大问题划分成若干个相同或者类似的子问题,并且逐步求解这些子问题,最终得到整个问题的解。
为了实现这个算法,我设计了一个动态规划数组dp,其中dp[i]表示以第i个元素结尾的最长递增子序列的长度。
通过不断更新dp数组中的值,最终可以得到最长递增子序列的长度。
4. 问题3:字符串替换给定一个字符串S和两个子串A和B,我们需要将字符串S中所有的子串A都替换成子串B。
这是一个字符串处理问题,常用的解决方法是使用字符串匹配算法来求解。
在本次问题中,我使用了KMP算法来解决这个问题。
KMP算法的基本思想是通过预处理模式串来减少匹配的次数,从而提高算法的效率。
为了实现这个算法,我设计了一个next 数组,其中next[i]表示在模式串的第i个字符之前的子串中,最长的相等的前缀和后缀的长度。
经典算法题解
经典算法题解经典算法题解涵盖了各种计算机科学和编程领域的经典问题。
这些题目不仅具有代表性,而且在算法设计和分析方面具有较高的价值。
以下是一些经典算法题解的例子:1. 动态规划:动态规划是一种解决复杂问题的方法,通过将问题分解成子问题,并求解子问题的最优解,从而找到原问题的最优解。
经典动态规划问题包括背包问题、最长公共子序列(LCS)问题、最长递增子序列(LIS)问题等。
2. 贪心算法:贪心算法是一种解决复杂问题的方法,它总是选择局部最优解,以期望达到全局最优解。
经典贪心算法问题包括哈夫曼编码问题、最小生成树(Kruskal算法、Prim算法等)、最短路径(Dijkstra算法等)等。
3. 分治算法:分治算法是一种解决复杂问题的方法,它将原问题分解成规模较小的子问题,并在子问题上求解,最后合并子问题的解得到原问题的解。
经典分治算法问题包括归并排序、快速排序、归并查找等。
4. 回溯算法:回溯算法是一种解决复杂问题的方法,它通过递归的方式,从一条路线上不断地尝试,直到找到一条可行的路径。
经典回溯算法问题包括八皇后问题、数独问题、背包问题等。
5. 深度优先搜索(DFS)和广度优先搜索(BFS):DFS和BFS 是解决复杂问题的搜索算法,它们通过搜索树或图的方式,寻找问题的解。
经典DFS和BFS问题包括无序集合问题、图的遍历、最短路径等。
6. 字符串匹配算法:字符串匹配算法是解决在文本中查找某个子串的问题。
经典字符串匹配算法包括朴素匹配算法、KMP算法、Boyer-Moore算法等。
7. 数据结构:数据结构是解决计算机科学问题的重要工具。
经典数据结构问题包括链表、栈、队列、树、图等数据结构的操作和应用。
8. 算法复杂度分析:算法复杂度分析是研究算法时间复杂度和空间复杂度的问题。
经典算法复杂度分析问题包括大O标记、大Ω标记、大Ω标记、大Ω标记等。
这些经典算法题解对于提高编程能力和解决实际问题具有很大的帮助。
算法设计与分析常见习题及详解
算法设计与分析常见习题及详解⽆论在以后找⼯作还是⾯试中,都离不开算法设计与分析。
本博⽂总结了相关算法设计的题⽬,旨在帮助加深对贪⼼算法、动态规划、回溯等算法的理解。
1、计算下述算法执⾏的加法次数:输⼊:n =2^t //t 为整数输出:加法次数 k K =0while n >=1 do for j =1 to n do k := k +1 n = n /2return k解析:第⼀次循环执⾏n次加法,第⼆次循环执⾏1/2次加法,第三次循环执⾏1/次加法…因此,上述算法执⾏加法的次数为==2n-12、考虑下⾯每对函数 f(n) 和 g(n) ,如果它们的阶相等则使⽤Θ记号,否则使⽤ O 记号表⽰它们的关系解析:前导知识:,因为解析:,因为解析:,因为解析:解析:3、在表1.1中填⼊ true 或 false解析:利⽤上题的前导知识就可以得出。
2=21/4n +n +21n +41...+1n +n −n +21n −21n +41....−1f (n )=(n −2n )/2,g (n )=6n1<logn <n <nlogn <n <2n <32<n n !<n ng (n )=O (f (n ))f (n )=Θ(n ),g (n )=2Θ(n )f (n )=n +2,g (n )=n n 2f (n )=O (g (n ))f (n )=Θ(n ),g (n )=Θ(n )2f (n )=n +nlogn ,g (n )=n nf (n )=O (g (n ))f (n )=Θ(nlogn ),g (n )=Θ(n )23f (n )=2(log ),g (n )=n 2logn +1g (n )=O (f (n ))f (n )=log (n !),g (n )=n 1.05f (n )=O (g (n ))4、对于下⾯每个函数 f(n),⽤f(n) =Θ(g(n))的形式,其中g(n)要尽可能简洁,然后按阶递增序排列它们(最后⼀列)解析:最后⼀个⽤到了调和公式:按阶递增的顺序排列:、、、、、、、、、(n −2)!=Θ((n −2)!)5log (n +100)=10Θ(logn )2=2n Θ(4)n 0.001n +43n +31=Θ(n )4(lnn )=2Θ(ln n )2+3n logn =Θ()3n 3=n Θ(3)n log (n !)=Θ(nlogn )log (n )=n +1Θ(nlogn )1++21....+=n1Θ(logn )=∑k =1nk 1logn +O (1)1++21....+n 15log (n +100)10(lnn )2+3n logn log (n !)log (n )n +10.001n +43n +313n 22n (n −2)!5、求解递推⽅程前导知识:主定理前导知识:递归树:例⼦:递归树是⼀棵节点带权的⼆叉树,初始递归树只有⼀个结点,标记为权重W(n),然后不断进⾏迭代,最后直到树种不再含有权为函数的结点为⽌,然后将树根结点到树叶节点的全部权值加起来,即为算法的复杂度。
算法设计与分析期末复习题
算法设计与分析期末考试复习题1.算法有哪些特点?为什么说一个具备了所有特征的算法,不一定就是使用的算法?2.证明下面的关系成立:(参考例题1.5--1.6)(1)logn!=Θ(nlogn) (2)2n=Θ(2n+1)(3)n!=Θ(n n) (4)5n2-6n=Θ(n2)3.考虑下面的算法:输入:n个元素的数组A输出:按递增顺序排序的数组A1. void sort(int A[],int n)2. {3. int i,j,temp;4. for(i=0;i<n-1;i++)5. for(j=i+1;j<n;j++)6. if(A[j]<A[i]) {7. temp=A[i];8. A[i]=A[j];9. A[j]=temp;10. }11. }(1)什么时候算法所执行的元素赋值的次数最少?最少多少次?(2)什么时候算法所执行的元素赋值的次数最多?最多多少次?4.考虑下面的算法:输入:n个元素的数组A输出:按递增顺序排序的数组A1. void bubblesort(int A[],int n)2. {3. int j,i,sorted;4. i=sorted=0;5. while(i<n-1 && !sorted) {6. sorted=1;7. for(j=n-1;j>i;j--) {8. if(A[j]<A[j-1]) {9. temp=A[j];10. A[j]=A[j-1];11. A[j-1]=temp;12. sorted=0;13. }14. }15. i=i+1;16. }17. }(1)算法所执行的元素比较次数最少是多少次?什么时候达到最少?(2)算法所执行的元素比较次数最多是多少次?什么时候达到最多?(3)算法所执行的元素赋值次数最少是多少次?什么时候达到最少?(4)算法所执行的元素赋值次数最多是多少次?什么时候达到最多?(5)用О、和Ω记号表示算法的运行时间。
算法设计与分析常见题
1.数字三角形这道题目可以用递归的方法解决。
基本思路是:以D( r, j)表示第r行第j 个数字(r,j都从1开始算),以MaxSum(r, j) 代表从第r 行的第j 个数字到底边的最佳路径的数字之和,则本题是要求MaxSum(1, 1) 。
从某个D(r, j)出发,显然下一步只能走D(r+1, j)或者D(r+1, j+1)。
i.如果走D(r+1, j),那么得到的MaxSum(r, j)就是MaxSum(r+1, j) + D(r, j);ii.如果走D(r+1, j+1),那么得到的MaxSum(r, j)就是MaxSum(r+1, j+1) + D(r, j)。
所以,选择往哪里走,就看MaxSum(r+1, j)和MaxSum(r+1, j+1)哪个更大了。
程序如下:#include <stdio.h>#define MAX_NUM 100int D[MAX_NUM + 10][MAX_NUM + 10];int N;int MaxSum( int r, int j){if( r == N )return D[r][j];int nSum1 = MaxSum(r+1, j);int nSum2 = MaxSum(r+1, j+1);if( nSum1 > nSum2 )return nSum1+D[r][j];return nSum2+D[r][j];}main(){int m;scanf("%d", &N);for( int i = 1; i <= N; i ++ )for( int j = 1; j <= i; j ++ )scanf("%d", &D[i][j]);printf("%d", MaxSum(1, 1));}动态规划:动态规划通常用来求最优解,能用动态规划解决的求最优解问题,必须满足,最优解的每个局部解也都是最优的,并且将中间结果保存以避免重复计算的办法。
算法分析与设计试题及答案
算法分析与设计试题及答案一、选择题1. 下列哪个是属于分治算法的例子?A. 冒泡排序B. 归并排序C. 顺序查找D. 选择排序答案:B2. 在排序算法中,时间复杂度最优的是:A. 冒泡排序B. 插入排序C. 归并排序D. 快速排序答案:C3. 哪个不是动态规划的特点?A. 具有重叠子问题B. 通过递归求解C. 需要保存子问题的解D. 具有最优子结构答案:B4. 在图的广度优先搜索算法中,使用的数据结构是:A. 栈B. 队列C. 数组D. 堆栈答案:B5. 在最小生成树算法中,下列哪个不属于贪心策略?A. Kruskal算法B. Prim算法C. Dijkstra算法D. Prim-Kruskal混合算法答案:C二、简答题1. 请简述分治算法的思想和应用场景。
答案:分治算法的思想是将原问题分解成若干个规模较小且类似的子问题,然后解决子问题,最后将子问题的解合并得到原问题的解。
其应用场景包括排序算法(如归并排序、快速排序)、搜索算法(如二分查找)等。
2. 什么是动态规划算法?请给出一个动态规划算法的示例。
答案:动态规划算法是一种通过将问题分解成子问题并解决子问题来解决复杂问题的方法。
它的特点是具有重叠子问题和最优子结构性质。
以斐波那契数列为例,可以使用动态规划算法求解每一项的值,而不需要重复计算。
3. 图的深度优先搜索和广度优先搜索有什么区别?答案:图的深度优先搜索(Depth First Search,DFS)是一种先访问子节点再访问兄弟节点的遍历算法,通常使用递归或者栈实现。
而广度优先搜索(Breadth First Search,BFS)则是以层次遍历的方式展开搜索,使用队列来实现。
DFS更适合用于搜索路径,BFS则适用于寻找最短路径等。
4. 请简述贪心算法的特点及其应用场景。
答案:贪心算法的特点是每一步都采取当前状态下最优的选择,以期望得到全局最优解。
然而,贪心算法并不一定能求解所有问题的最优解,但对于一些特定问题,贪心算法往往能得到近似最优解。
算法设计与分析考点精讲串烧
一、选择题(每小题3分,共15分)1.算法与程序的主要区别在于算法具有()。
A.能行性 B.确定性 C.有限性 D.输入和输出答案:C。
2.对一个有序序列,以比较为基础的搜索算法的最坏情况时间复杂性的下界为()。
A.Ω(n) B.Ω(n2) C.Ω(n log n) D.Ω(log n)答案:D。
3.背包问题:n=6,C=10,V(1:6)=(15,59,21,30,60,5),W(1:6)=(1,5,2,3,6,1)。
该问题的最大价值为()。
A.101 B.110 C.115 D.120答案:C。
4.矩阵连乘积问题:M1(5×10), M2(10×4), M3(4×6)。
矩阵链乘M1M2M3需要的最少乘法次数为()。
A.348 B.328 C.720 D.320答案:D。
5.用贪心策略设计算法的关键是()。
A.将问题分解为多个子问题来分别处理 B.选好贪心策略C.获取各阶段间的递推关系式 D.满足最优性原理答案:B。
二、填空题(每小题4分,共20分)1.某算法的计算时间T(n)满足递归关系式:T(n)=2T(n-1)+O(1),n>1;T(1)=1。
则T(n)= 。
答案:2n-1。
2.用方法对状态空间树进行搜索时,每个结点有可能多次成为扩展结点。
3.子集和数问题一般陈述如下:已知n+1个正数:w i(1≤i≤n)和M,要求找出w i的和数是M 的所有子集。
其解可以表示为n-元组(x1, x2,⋯, x n),这里x i∈{0,1},1≤i≤n。
如果没有选择w i,则相应的x i=0;如果选择了w i,则x i=1。
此解空间的空间树上有个叶结点,共有个结点。
答案:2n,2n+1-1。
4.已知将两个分别包含n个和m个记录的已分类文件归并在一起得到一个分类文件需作n+m 次记录移动。
现有五个已分类文件F1,F2,F3,F4,F5,它们的记录个数分别为25,40,15,10,40,将这五个文件归并成一个分类文件需作次记录移动。
算法分析简答题(含答案)
算法分析简答题(含答案)1.以比较为基础的排序算法的时间下界是Ω(nlogn)。
基数排序的时间复杂度是什么?这个下界适用基数排序吗?为什么?答:基数排序的时间复杂度为 (kn),其中,k 是元素的位数,n 是元素的个数。
(3 分)此下界不适用于基数排序,因为基数排序不属于基于元素的比较来排序的算法类。
(2 分)2. 图的深度优先搜索和宽度优先搜索方法的主要区别是什么?答:主要区别如下:图的深度优先搜索是每当检测一个结点u 时,访问到一个新结点v,则暂时终止对u 的检测,转而对v 进行检测(3 分);而图的宽度优先搜索则是每当检测一个结点u 时,就依次访问完没有被访问的u 的邻接点,即一次对u 检测完毕。
(2 分)。
3. 简述使用分枝限界法求解问题的基本思路。
与回溯法相比,它有何优势,和有何不足?答:分枝限界法的基本思想是:宽度优先搜索(优先队列搜索)+剪枝。
即,通过对搜索树进行宽度优先搜索来寻找问题的解答,且在搜索中每搜索到一个结点处,都要考虑是否能使用剪枝操作来剪枝,从而提高搜索效率。
(3 分)与回溯法相比,这种搜索方法具有更大的灵活性(搜索跳跃性更大),但是往往需要比回溯法多得多的空间。
(2 分)4.考虑产生1,2,⋯,n.的一个随机排列。
请简要描述一个时间复杂度为O(n)的随机算法的思路。
答:一种随机算法的基本思路是:先初始化A[i]=i,1≤i≤n;然后随机地在A 中选两个元素出来交换,此操作执行n 次。
显然,这种算法的时间复杂度为 (n)。
(5 分)5.快速分类算法是根据分治策略来设计的,其基本思想是什么?快速分类算法的最好、最坏及平均情况的时间复杂度分别是多少?答:其基本思想是,通过不断地对序列进行划分而达到排序的目标。
所谓对序列进行划分,就是在序列中选定一个标准元素v,然后将序列进行一遍梳理,使得小于等于v 的元素放在v之前,而大于等于v 的元素放在v 之后,此时v 所在的位置就是序列最终排序后元素v 所在的位置。
算法设计与分析复习题目及答案详解
算法设计与分析复习题目及答案详解分治法 1、二分搜索算法是利用(分治策略)实现的算法。
9.实现循环赛日程表利用的算法是(分治策略)27、Strassen矩阵乘法是利用(分治策略)实现的算法。
34.实现合并排序利用的算法是(分治策略)。
实现大整数的乘法是利用的算法(分治策略)。
17.实现棋盘覆盖算法利用的算法是(分治法)。
29、使用分治法求解不需要满足的条件是(子问题必须是一样的)。
不可以使用分治法求解的是(0/1背包问题)。
动态规划下列不是动态规划算法基本步骤的是(构造最优解)下列是动态规划算法基本要素的是(子问题重叠性质)。
下列算法中通常以自底向上的方式求解最优解的是(动态规划法)备忘录方法是那种算法的变形。
(动态规划法)最长公共子序列算法利用的算法是(动态规划法)。
矩阵连乘问题的算法可由(动态规划算法B)设计实现。
实现最大子段和利用的算法是(动态规划法)。
贪心算法能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动安排问题,不能解决的问题:N皇后问题,0/1背包问题是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。
回溯法回溯法解旅行售货员问题时的解空间树是(排列树)。
剪枝函数是回溯法中为避免无效搜索采取的策略回溯法的效率不依赖于下列哪些因素(确定解空间的时间)分支限界法最大效益优先是(分支界限法)的一搜索方式。
分支限界法解最大团问题时,活结点表的组织形式是(最大堆)。
分支限界法解旅行售货员问题时,活结点表的组织形式是(最小堆)优先队列式分支限界法选取扩展结点的原则是(结点的优先级)在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是(分支限界法).从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除(栈式分支限界法)之外都是最常见的方式.(1)队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。
算法分析与设计考试复习题及参考答案
5 2 8 6 3 1 7 4 各边的代价如下: C(1,2)=3, C(1,3)=5 ,C(1,4)=2 C(2,6)=8 ,C(2,7)=4 ,C(3,5)=5 C(4,6)=1
,C(3,6)=4,
C(4,5)=2,
C(5,8)=4, C(6,8)=5 ,C(7,8)=6 2、 写出maxmin算法对下列实例中找最大数和最小数的过程。 数组 A=(48,12,61,3,5,19,32,7) 3、 给出5个数(3,6,9,1,7),M=13,用递归树描述sumofsub算法求 和数=M的一个子集的过程。 4、 快速排序算法对下列实例排序,算法执行过程中,写出数组A 第一次被分割的过程。 A=(65,70,75,80,85,55,50,2) 5、 归并排序算法对下列实例排序,写出算法执行过程。 A=(48,12,61,3,5,19,32,7) 6、 写出图着色问题的回溯算法的判断X[k]是否合理的过程。 7、 对于下图,写出图着色算法得出一种着色方案的过程。 2 3 1 4 8、 写出第7题的状态空间树。 9、 写出归并排序算法对下列实例排序的过程。 (6,2,9,3,5,1,8,7) 10、 写出用背包问题贪心算法解决下列实例的过程。 P=(18,12,4,1) W=(12,10,8,3) M=25 11、有一个有序表为{1,3,9,12,32,41,45,62,75,77, 82,95,100},当使用二分查找值为82的结点时,经过多少次比较后查 找成功并给出过程。 12、使用prim算法构造出如下图G的一棵最小生成树。 1 2 4 3 5
then
xmax←A(i); j←i;endif
repeat end MAX 6.procedure BINSRCH(A,n,x,j) integer low,high,mid,j,n; low←1;high←n while low≤high do mid←|_(low+high)/2_| case :x<A(mid):high←mid-1 :x>A(mid):low←mid+1 :else:j←mid; return endcase repeat j←0 end BINSRCH 三、算法理解 1、写出多段图最短路经动态规划算法求解下列实例的过程,并求出 最优值。
算法分析设计历年题目
算法分析设计历年题目1.判断题1.一个正确的算法,对于每个合法输入,都会在有限的时间内输出一个满足要求的结果。
2.NP完全问题比其他所有NP问题都要难。
3.回溯法用深度优先法或广度优先法搜索状态空间树。
4.在动态规划中,各个阶段所确定的策略就构成一个策略序列,通常称为一个决策。
5.P类和NP类问题的关系用P⊂NP来表示是错误的。
6.若近似算法A求解某极小化问题一实例的解为s a,且已知该问题的最优解为s a/3 ,则该近似算法的性能比为3。
7.通常来说,算法的最坏情况的时间复杂行比平均情况的时间复杂性容易计算。
8.若P2多项式时间转化为(polynomial transforms to) P1,则P2至少与P1一样难。
9.快速排序算法的平均时间复杂度是O(n log n),使用随机化快速排序算法可以将平均时间复杂度降得更低。
10.基于比较的寻找数组A[1,…,n]中最大元素的问题下届是Ω(n/3)。
11.O(f(n))+O(g(n))=O(min{f(n),g(n)})12.若f(n)=Ω(g(n)),g(n)=Ω(ℎ(n)),则f(n)=Ω(ℎ(n))13.若f(n)=O(g(n)),则g(n)=Ω(f(n))14.贪婪技术所做的每一步选择所产生的部分解,不一定是可行性的。
s Vegas算法只要给出解就是正确的。
16.一个完全多项式近似方案是一个近似方案{Aε},其中每一个算法Aε在输入实例I的规模的多项式时间内运行。
2.问答题1.二叉查找树属于减治策略的三个变种中的哪一个的应用?什么情况下二叉查找树表现出最差的效率?此时的查找和插入算法的复杂性如何?2.何谓为多项式算法?如何将一Monte Carlo算法转化为Las Vegas算法?3.构造AVL树和2-3数的主要目的是什么?它们各自有什么样的查找和插入的效率?4.写出0/1背包问题的一个多项式等价(Polynomial Equivalent)的判定问题,并说明为什么它们是多项式等价的。
算法设计与分析复习题目及答案
算法设计与分析复习题目及答案一、算法的基本概念1、什么是算法?算法是指解决特定问题的一系列明确步骤,它具有确定性、可行性、有穷性、输入和输出等特性。
例如,计算两个数的最大公约数的欧几里得算法,就是通过反复用较小数去除较大数,然后将余数作为新的较小数,直到余数为 0,此时的除数就是最大公约数。
2、算法的复杂度包括哪些?它们的含义是什么?算法的复杂度主要包括时间复杂度和空间复杂度。
时间复杂度是指算法执行所需要的时间量,通常用大 O 记号来表示。
例如,一个算法的时间复杂度为 O(n),表示其执行时间与输入规模 n成正比。
空间复杂度则是算法在运行过程中所需要的额外存储空间的大小。
比如说,一个算法需要创建一个大小为 n 的数组来存储数据,那么其空间复杂度就是 O(n)。
二、分治法1、分治法的基本思想是什么?分治法的基本思想是将一个规模为 n 的问题分解为 k 个规模较小的子问题,这些子问题相互独立且与原问题结构相同。
然后分别求解这些子问题,最后将子问题的解合并得到原问题的解。
2、请举例说明分治法的应用。
例如归并排序算法。
将一个未排序的数组分成两半,对每一半分别进行排序,然后将排好序的两部分合并起来。
其时间复杂度为 O(nlogn),空间复杂度为 O(n)。
三、动态规划1、动态规划的基本步骤有哪些?动态规划的基本步骤包括:(1)定义问题的状态。
(2)找出状态转移方程。
(3)确定初始状态。
(4)计算最终的解。
2、解释最长公共子序列问题,并给出其动态规划解法。
最长公共子序列问题是指找出两个序列的最长公共子序列的长度。
假设我们有两个序列 X 和 Y,用 dpij 表示 X 的前 i 个字符和 Y 的前 j 个字符的最长公共子序列长度。
状态转移方程为:如果 Xi 1 == Yj 1,则 dpij = dpi 1j 1 + 1否则 dpij = max(dpi 1j, dpij 1)四、贪心算法1、贪心算法的特点是什么?贪心算法在每一步都做出当前看起来最优的选择,希望通过这种局部最优选择达到全局最优解。
算法设计与分析习题答案1
算法设计与分析习题答案1算法设计与分析习题答案1习题1 1. 图论诞生于七桥问题。
出生于瑞士的伟大数学家欧拉提出并解决了该问题。
七桥问题是这样描述的:北区一个人是否能在一次步行中穿越哥尼斯堡城中全部岛区的七座桥后回到起点,且每座桥只经过一次,南区图是这条河以及河上的两个岛和七座桥的图七桥问题草图。
请将该问题的数据模型抽象出来,并判断此问题是否有解。
七桥问题属于一笔画问题。
输入:一个起点输出:相同的点1,一次步行2,经过七座桥,且每次只经历过一次3,回到起点该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。
另一类是只有二个奇点的图形。
2.在欧几里德提出的欧几里德算法中用的不是除法而是减法。
请用伪代码描述这个版本的欧几里德算法=m-n 2.循环直到r=0 m=n n=r r=m-n 3 输出m 3.设计算法求数组中相差最小的两个元素的差。
要求分别给出伪代码和C++描述。
//采用分治法//对数组先进行快速排序//在依次比较相邻的差#include using namespace std; int partions(int b,int low,int high) { int prvotkey=b[low]; b[0]=b[low]; while (low while (low=prvotkey)--high; b[low]=b[high]; while (low b[high]=b[low]; } b[low]=b[0]; return low; } void qsort(int l,int low,int high) { int prvotloc; if(low prvotloc=partions(l,low,high);//将第一次排序的结果作为枢轴qsort(l,low,prvotloc-1); //递归调用排序low 到prvotloc-1 qsort(l,prvotloc+1,high); //递归调用排序prvotloc+1到high } } void quicksort(int l,int n) { qsort(l,1,n); // 第一个作为枢轴,从第一个排到第n个} int main() { int a[11]={0,2,32,43,23,45,36,57,14,27,39};int value=0;//将最小差的值赋值给value for (int b=1;b quicksort(a,11); for(int i=0;i!=9;++i) { if( (a[i+1]-a[i]) value=a[i+2]-a[i+1]; } cout return 0; } 4.设数组a[n]中的元素均不相等,设计算法找出a[n]中一个既不是最大也不是最小的元素,并说明最坏情况下的比较次数。
10个经典的算法问题与解决方案
10个经典的算法问题与解决方案算法问题是计算机科学中非常重要的一部分,对于准备面试或提升自己的技能都是很有帮助的。
下面列举了10个经典的算法问题及其解决方案:1.两数之和(Two Sum)问题描述:给定一个整数数组和一个目标值,找出数组中和为目标值的两个数。
解决方案:使用哈希表记录每个数字的索引,然后遍历数组,查找目标值减当前数的差是否存在于哈希表中。
2.盛最多水的容器(Container With Most Water)问题描述:给定一个非负整数数组,数组中的每个表示一条柱子的高度,找出两个柱子,使得它们与x轴构成的容器可以容纳最多的水。
解决方案:维护两个指针,分别指向数组的开始和结尾,计算当前指针所指的两条柱子之间的面积,并更新最大面积。
然后移动指向较小柱子的指针,重复计算直到两个指针相遇。
3.三数之和(3Sum)问题描述:给定一个整数数组,找出数组中所有不重复的三个数,使得它们的和为0。
解决方案:首先对数组进行排序,然后固定一个数字,使用双指针在剩余的数字中寻找另外两个数使得它们的和为相反数。
4.最大子序和(Maximum Subarray)问题描述:给定一个整数数组,找到一个具有最大和的连续子数组(子数组最少包含一个元素)。
解决方案:使用动态规划的思想,从数组的第一个元素开始依次计算以当前位置结尾的子数组的最大和,并保存最大值。
5.二分查找(Binary Search)问题描述:给定一个排序的整数数组和一个目标值,使用二分查找算法确定目标值是否存在于数组中,并返回其索引。
解决方案:通过比较目标值与数组的中间元素来确定目标值是在左半部分还是右半部分,并更新搜索范围进行下一轮查找。
6.背包问题(Knapsack Problem)问题描述:给定一组物品和一个背包,每个物品都有自己的重量和价值,在不超过背包容量的情况下,找到一个组合使得总价值最大化。
解决方案:使用动态规划的思想,定义一个二维数组表示背包容量和物品数量,从左上角开始计算每个格子可以放置的最大价值。
华中科技大学《算法设计与分析》复习参考题
A
1
1 1 (1 ) 2 5
B
1 1 (1 ) 2 5
F ( x)
5
(( ) x ( 2 2 ) x 2
1 5 2 1 5 2
其中
Fn Fn
1 5
( n n )
n
1 1 5 n ( ) 2 5
12.分治法的三个步骤是什么?给出使用 SPARKS 语言描述的分治策略抽象化控 制。 答:分治法的三个步骤是: ① 分解 ②解决 ③合并 用 SPARKS 语言描述的分治策略抽象化控制为: Procedure DANDC(p,q) Global n,A(1:n);integer m,p,q; If SMALL(p,q) Then return(G(p,q)) Else m←DIVIDE(p,q) Return(COMBINE(DANDC(p,m), DANDC(m+1,q))) Endif End DANDC
(2 1) x (2 2 1) x 2 (2 n 1) x n (2 k 1) x k
k 1
所以 h(n) 2 n 1
T1 1 10.求解递推关系式: Tn 2Tn 1 2
解:
Tn 2Tn1 2 2(Tn2 2) 2 2 2 Tn2 2 2 2 2 n1 T1 (2 n1 2) 3 * 2 n1 2
( x 1)
H ( x)
x (1 2 x)(1 x)
分解 H ( x) 成幂级数 令 H ( x)
A B 1 x 1 2x
则 A=-1
B=1
H ( x)
1 1 (1 x x 2 ) (1 2 x (2 x) 2 (2 x) 3 ) 1 x 1 2x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【题目1】N皇后问题(八皇后问题的扩展)【题目2】排球队员站位问题【题目3】把自然数N分解为若干个自然数之和【题目4】把自然数N分解为若干个自然数之积【题目5】马的遍历问题【题目6】加法分式分解【题目7】地图着色问题【题目8】在n*n的正方形中放置长为2,宽为1的长条块【题目9】找迷宫的最短路径。
(广度优先搜索算法)【题目10】火车调度问题【题目11】农夫过河【题目12】七段数码管问题。
【题目13】把1-8这8个数放入下图8个格中,要求相邻的格(横,竖,对角线)上填的数不连续【题目14】在4×4的棋盘上放置8个棋,要求每一行,每一列上只能放置2个【题目15】迷宫问题.求迷宫的路径.(深度优先搜索法)【题目16】一笔画问题【题目17】城市遍历问题【题目18】棋子移动问题【题目19】求集合元素问题(1,2x+1,3X+1类)【题目1】N皇后问题(含八皇后问题的扩展,规则同八皇后):在N*N的棋盘上,放置N个皇后,要求每一横行,每一列,每一对角线上均只能放置一个皇后,问可能的方案及方案数。
const max=8;var i,j:integer;a:array[1..max] of 0..max; {放皇后数组}b:array[2..2*max] of boolean;{/对角线标志数组}c:array[-(max-1)..max-1] of boolean; {\对角线标志数组}col:array[1..max] of boolean; {列标志数组}total:integer; {统计总数}procedure output; {输出}var i:integer;beginwrite('No.':4,'[',total+1:2,']');for i:=1 to max do write(a[i]:3);write(' ');if (total+1) mod 2 =0 then writeln; inc(total);end;function ok(i,dep:integer):boolean; {判断第dep行第i列可放否}beginok:=false;if ( b[i+dep]=true) and ( c[dep-i]=true) {and (a[dep]=0)} and(col[i]=true) then ok:=trueend;procedure try(dep:integer);var i,j:integer;beginfor i:=1 to max do {每一行均有max种放法}if ok(i,dep) then begina[dep]:=i;b[i+dep]:=false; {/对角线已放标志}c[dep-i]:=false; {\对角线已放标志}col[i]:=false; {列已放标志}if dep=max then outputelse try(dep+1); {递归下一层}a[dep]:=0; {取走皇后,回溯}b[i+dep]:=true; {恢复标志数组}c[dep-i]:=true;col[i]:=true;end;end;beginfor i:=1 to max do begin a[i]:=0;col[i]:=true;end;for i:=2 to 2*max do b[i]:=true;for i:=-(max-1) to max-1 do c[i]:=true;total:=0;try(1);writeln('total:',total);end.【测试数据】n=8 八皇后问题No.[ 1] 1 5 8 6 3 7 2 4 No.[ 2] 1 6 8 3 7 4 2 5 No.[ 3] 1 7 4 6 8 2 5 3 No.[ 4] 1 7 5 8 2 4 6 3 No.[ 5] 2 4 6 8 3 1 7 5 No.[ 6] 2 5 7 1 3 8 6 4 No.[ 7] 2 5 7 4 1 8 6 3 No.[ 8] 2 6 1 7 4 8 3 5 No.[ 9] 2 6 8 3 1 4 7 5 No.[10] 2 7 3 6 8 5 1 4 No.[11] 2 7 5 8 1 4 6 3 No.[12] 2 8 6 1 3 5 7 4 No.[13] 3 1 7 5 8 2 4 6 No.[14] 3 5 2 8 1 7 4 6 No.[15] 3 5 2 8 6 4 7 1 No.[16] 3 5 7 1 4 2 8 6 No.[17] 3 5 8 4 1 7 2 6 No.[18] 3 6 2 5 8 1 7 4 No.[19] 3 6 2 7 1 4 8 5 No.[20] 3 6 2 7 5 1 8 4 No.[21] 3 6 4 1 8 5 7 2 No.[22] 3 6 4 2 8 5 7 1 No.[23] 3 6 8 1 4 7 5 2 No.[24] 3 6 8 1 5 7 2 4 No.[25] 3 6 8 2 4 1 7 5 No.[26] 3 7 2 8 5 1 4 6No.[27] 3 7 2 8 6 4 1 5 No.[28] 3 8 4 7 1 6 2 5 No.[29] 4 1 5 8 2 7 3 6 No.[30] 4 1 5 8 6 3 7 2 No.[31] 4 2 5 8 6 1 3 7 No.[32] 4 2 7 3 6 8 1 5 No.[33] 4 2 7 3 6 8 5 1 No.[34] 4 2 7 5 1 8 6 3 No.[35] 4 2 8 5 7 1 3 6 No.[36] 4 2 8 6 1 3 5 7 No.[37] 4 6 1 5 2 8 3 7 No.[38] 4 6 8 2 7 1 3 5 No.[39] 4 6 8 3 1 7 5 2 No.[40] 4 7 1 8 5 2 6 3 No.[41] 4 7 3 8 2 5 1 6 No.[42] 4 7 5 2 6 1 3 8 No.[43] 4 7 5 3 1 6 8 2 No.[44] 4 8 1 3 6 2 7 5 No.[45] 4 8 1 5 7 2 6 3 No.[46] 4 8 5 3 1 7 2 6 No.[47] 5 1 4 6 8 2 7 3 No.[48] 5 1 8 4 2 7 3 6 No.[49] 5 1 8 6 3 7 2 4 No.[50] 5 2 4 6 8 3 1 7 No.[51] 5 2 4 7 3 8 6 1 No.[52] 5 2 6 1 7 4 8 3 No.[53] 5 2 8 1 4 7 3 6 No.[54] 5 3 1 6 8 2 4 7 No.[55] 5 3 1 7 2 8 6 4 No.[56] 5 3 8 4 7 1 6 2 No.[57] 5 7 1 3 8 6 4 2 No.[58] 5 7 1 4 2 8 6 3 No.[59] 5 7 2 4 8 1 3 6 No.[60] 5 7 2 6 3 1 4 8 No.[61] 5 7 2 6 3 1 8 4 No.[62] 5 7 4 1 3 8 6 2 No.[63] 5 8 4 1 3 6 2 7 No.[64] 5 8 4 1 7 2 6 3 No.[65] 6 1 5 2 8 3 7 4 No.[66] 6 2 7 1 3 5 8 4 No.[67] 6 2 7 1 4 8 5 3 No.[68] 6 3 1 7 5 8 2 4 No.[69] 6 3 1 8 4 2 7 5 No.[70] 6 3 1 8 5 2 4 7 No.[71] 6 3 5 7 1 4 2 8 No.[72] 6 3 5 8 1 4 2 7 No.[73] 6 3 7 2 4 8 1 5 No.[74] 6 3 7 2 8 5 1 4 No.[75] 6 3 7 4 1 8 2 5 No.[76] 6 4 1 5 8 2 7 3 No.[77] 6 4 2 8 5 7 1 3 No.[78] 6 4 7 1 3 5 2 8 No.[79] 6 4 7 1 8 2 5 3 No.[80] 6 8 2 4 1 7 5 3 No.[81] 7 1 3 8 6 4 2 5 No.[82] 7 2 4 1 8 5 3 6 No.[83] 7 2 6 3 1 4 8 5 No.[84] 7 3 1 6 8 5 2 4 No.[85] 7 3 8 2 5 1 6 4 No.[86] 7 4 2 5 8 1 3 6 No.[87] 7 4 2 8 6 1 3 5 No.[88] 7 5 3 1 6 8 2 4 No.[89] 8 2 4 1 7 5 3 6 No.[90] 8 2 5 3 1 7 4 6 No.[91] 8 3 1 6 2 5 7 4 No.[92] 8 4 1 3 6 2 7 5 total:92对于N皇后:┏━━━┯━━┯━━┯━━┯━━┯━━┯━━┯━━┓┃皇后N│ 4 │ 5 │ 6 │ 7│ 8 │ 9 │ 10 ┃┠───┼──┼──┼──┼──┼──┼──┼──┨┃方案数│ 2 │ 10 │ 4 │ 40 │ 92 │352 │724 ┃┗━━━┷━━┷━━┷━━┷━━┷━━┷━━┷━━┛【题目2】排球队员站位问题┏━━━━━━━━┓图为排球场的平面图,其中一、二、三、四、五、六为位置编号,┃┃二、三、四号位置为前排,一、六、五号位为后排。
某队比赛时,┃┃一、四号位放主攻手,二、五号位放二传手,三、六号位放副攻┠──┬──┬──┨手。
队员所穿球衣分别为1,2,3,4,5,6号,但每个队┃四│ 三│ 二┃员的球衣都与他们的站位号不同。
已知1号、6号队员不在后排,┠──┼──┼──┨2号、3号队员不是二传手,3号、4号队员不在同一排,5号、┃五│ 六│ 一┃6号队员不是副攻手。
┗━━┷━━┷━━┛编程求每个队员的站位情况。
【算法分析】本题可用一般的穷举法得出答案。
也可用回溯法。
以下为回溯解法。
【参考程序】type sset=set of 1..6;var a:array[1..6]of 1..6;d:array[1..6]of sset;i:integer;procedure output; {输出}beginif not( (a[3]in [2,3,4])= (a[4] in[2,3,4])) thenbegin { 3,4号队员不在同一排}write('number:');for i:=1 to 6 do write(i:8);writeln;write('weizhi:');for i:=1 to 6 do write(a[i]:8);writeln;end;end;procedure try(i:integer;s:sset); {递归过程i:第i个人,s:哪些位置已安排人了}varj,k:integer;beginfor j:=1 to 6 do begin {每个人都有可能站1-6这6个位置}if (j in d[i]) and not(j in s) then begin{j不在d[i]中,则表明第i号人不能站j位. j如在s集合中,表明j位已排人了}a[i]:=j; {第i 人可以站j 位}if i<6 then try(i+1,s+[j]) {未安排妥,则继续排下去}else output; {6个人都安排完,则输出}end;end;end;beginfor i:=1 to 6 do d[i]:=[1..6]-[i]; {每个人的站位都与球衣的号码不同}d[1]:=d[1]-[1,5,6];d[6]:=d[6]-[1,5,6]; {1,6号队员不在后排}d[2]:=d[2]-[2,5];d[3]:=d[3]-[2,5]; {2,3号队员不是二传手}d[5]:=d[5]-[3,6];d[6]:=d[6]-[3,6]; {5,6号队员不是副攻手}try(1,[]);end.【题目3】把自然数N分解为若干个自然数之和。