概率论与数理统计基础公式大全
概率论与数理统计公式大全
概率论与数理统计公式大全一、概率基本公式1.事件的概率:对于事件A,在随机试验中发生的次数记为n(A),则事件A的概率为P(A)=n(A)/n,其中n为试验总次数。
2.互斥事件的概率:对于互斥事件A和B,有P(A∪B)=P(A)+P(B)。
3.事件的余事件概率:设事件A为必然事件,全集的概率为P(S)=1,事件A的余事件为A',则有P(A')=1-P(A)。
4.条件概率:对于两个事件A和B,假设事件B已经发生,事件A发生的概率记为P(A,B),则P(A,B)=P(A∩B)/P(B)。
二、随机变量及其概率分布1.离散型随机变量:设X是一个离散型随机变量,其概率函数为P(X=k),其中k为X的取值,概率函数满足P(X=k)≥0,且∑P(X=k)=12. 连续型随机变量:设X是一个连续型随机变量,其概率密度函数为f(x),概率密度函数满足f(x)≥0,且∫f(x)dx = 13. 随机变量的数学期望:对于离散型随机变量X,其数学期望为E(X) = ∑k*P(X=k);对于连续型随机变量X,其数学期望为E(X)=∫xf(x)dx。
4. 随机变量的方差:对于离散型随机变量X,其方差为Var(X) =E(X^2) - [E(X)]^2;对于连续型随机变量X,其方差为Var(X) = E(X^2) - [E(X)]^2三、常见的概率分布1.伯努利分布:表示一次实验成败的概率分布,概率函数为P(X=k)=p^k(1-p)^(1-k),其中0≤p≤12.二项分布:表示n次独立重复的伯努利试验中成功次数的概率分布,概率函数为P(X=k)=C(n,k)*p^k(1-p)^(n-k),其中C(n,k)为组合数。
3. 泊松分布:表示单位时间或单位面积内发生事件次数的概率分布,概率函数为P(X=k) = (lambda^k)/(k!)*e^(-lambda),其中lambda为平均发生率。
4.均匀分布:表示在一个区间内取值相等的概率分布,概率密度函数为f(x)=1/(b-a),其中[a,b]为区间。
概率论与数理统计公式整理
概率论与数理统计公式整理在现代数学中,概率论与数理统计是两个重要的分支。
其中概率论是研究随机事件发生的可能性或概率的科学。
而数理统计则是利用概率论的方法,对已经发生的随机事件进行统计分析和推断。
本文将整理概率论与数理统计中常用的公式。
一、基本概率公式1.概率:$P(A)=\frac{n(A)}{n(S)}$其中,$P(A)$表示事件$A$发生的概率,$n(A)$表示事件$A$所包含的基本事件的个数,$n(S)$表示所有基本事件的个数。
2.加法原理:$P(A\cup B)=P(A)+P(B)-P(A\cap B)$其中,$A$和$B$是两个事件,$A\cup B$表示事件$A$和事件$B$中至少有一个发生的概率,$A\cap B$表示两个事件同时发生的概率。
3.条件概率:$P(B|A)=\frac{P(A\cap B)}{P(A)}$其中,$P(B|A)$表示在事件$A$发生的条件下,事件$B$发生的概率。
4.乘法定理:$P(A\cap B)=P(A)P(B|A)$其中,$P(A\cap B)$表示两个事件同时发生的概率,$P(B|A)$表示在事件$A$发生的条件下,事件$B$发生的概率。
二、概率分布1.离散随机变量的概率分布律:$\sum\limits_{i=1}^{+\infty}{p(x_i)}=1$其中,$p(x_i)$表示离散随机变量取值为$x_i$的概率。
2.连续随机变量的概率密度函数:$\int_{-\infty}^{+\infty}{f(x)}\mathrm{d}x=1$其中,$f(x)$表示连续随机变量在$x$处的概率密度。
3.数学期望:$E(x)=\sum\limits_{i=1}^{+\infty}{x_ip(x_i)}$或$E(x)=\int_{-\infty}^{+\infty}{xf(x)}\mathrm{d}x$其中,$E(x)$表示随机变量$x$的数学期望,$p(x_i)$表示$x_i$这一离散随机变量取到的带权概率。
考研概率论与数理统计公式大全
考研概率论与数理统计公式大全1.概率公式:-概率的加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)-概率的乘法公式:P(A∩B)=P(A)P(B,A)=P(B)P(A,B)-全概率公式:P(B)=P(A1)P(B,A1)+P(A2)P(B,A2)+...+P(An)P(B,An)-贝叶斯公式:P(Ai,B)=P(B,Ai)P(Ai)/(P(B,A1)P(A1)+P(B,A2)P(A2)+...+P(B,An)P(An))2.随机变量与分布:- 期望:E(X) = ∑(xP(X=x))或E(X) = ∫(xf(x)dx)- 方差:Var(X) = E[(X - E(X))^2] = E(X^2) - [E(X)]^2- 协方差:Cov(X, Y) = E[(X - E(X))(Y - E(Y))]- 标准差:SD(X) = sqrt(Var(X))-二项分布:P(X=k)=C(n,k)p^k(1-p)^(n-k)- 泊松分布:P(X = k) = (lambda^k)e^(-lambda) / k!- 正态分布:P(X = x) = (1 / (sqrt(2*pi)*sigma)) * e^(-(x-mu)^2 / (2*sigma^2))3.估计与检验:-极大似然估计:L(θ)=∏(f(x_i;θ))-似然比检验:λ=L(θ)/L(θ0)- 估计的无偏性:E(θ_hat) = θ- 估计的有效性:Var(θ_hat) ≤ Var(θ)- 中心极限定理:对于均值为μ、方差为σ^2的随机变量X,若样本容量n趋于无穷大,则样本均值X_bar的极限分布服从正态分布4.相关与回归:- 相关系数:r = Cov(X, Y) / (SD(X) * SD(Y))-简单线性回归方程:Y=β0+β1X+ε- 最小二乘估计:β1 = Cov(X, Y) / Var(X)- 线性回归预测:Y_hat = β0 + β1X5.抽样分布:- 样本均值分布:X_bar ~ N(μ, σ^2 / n)- 样本比例分布:p_hat ~ N(p, p(1-p) / n)-卡方分布:X^2~χ^2(k)-t分布:T~t(n)-F分布:F~F(m,n)以上是一些概率论与数理统计中常见的公式,希望对你的学习有所帮助。
概率论与数理统计公式大全
概率论与数理统计公式概率公式整理1.随机事件及其概率吸收律:AAB A AA A =∪=∅∪Ω=Ω∪)(A B A A A A A =∪∩∅=∅∩=Ω∩)()(AB A B A B A −==−反演律:B A B A =∪BA AB ∪=∩∪n i i n i iA A 11===∪∩n i i n i i A A 11===2.概率的定义及其计算)(1)(A P A P −=若B A ⊂)()()(A P B P A B P −=−⇒对任意两个事件A ,B ,有)()()(AB P B P A B P −=−加法公式:对任意两个事件A ,B ,有)()()()(AB P B P A P B A P −+=∪)()()(B P A P B A P +≤∪)()1()()()()(2111111n n n n k j i k j i n j i j i n i i n i i A A A P A A A P A A P A P A P ⋯⋯∪−≤<<≤≤<≤==−+++−=∑∑∑3.条件概率()=A B P )()(A P AB P 乘法公式())0)(()()(>=A P A B P A P AB P ()())0)(()()(12112112121>=−−n n n n A A A P A A A A P A A P A P A A A P ⋯⋯⋯⋯w w w .k h d a w .c o m 课后答案网全概率公式∑==n i i AB P A P 1)()()()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k =∑==n i i i k k B A P B P B A P B P 1)()()()(4.随机变量及其分布分布函数计算)()()()()(a F b F a X P b X P b X a P −=≤−≤=≤<5.离散型随机变量(1)0–1分布1,0,)1()(1=−==−k p p k X P k k (2)二项分布),(p n B 若P (A )=pnk p p C k X P k n k k n ,,1,0,)1()(⋯=−==−*Possion 定理0lim >=∞→λn n np 有⋯,2,1,0!)1(lim ==−−−∞→k k e p p C k k n n k n k n n λλ(3)Poisson 分布)(λP ⋯,2,1,0,!)(===−k k e k X P kλλw w w .k h d a w .c o m 课后答案网6.连续型随机变量(1)均匀分布),(b a U ⎪⎩⎪⎨⎧<<−=其他,0,1)(b x a ab x f ⎪⎪⎩⎪⎪⎨⎧−−=1,,0)(ab a x x F (2)指数分布)(λE ⎪⎩⎪⎨⎧>=−其他,00,)(x e x f x λλ⎩⎨⎧≥−<=−0,10,0)(x e x x F x λ(3)正态分布N (µ,σ2)+∞<<∞−=−−x e x f x 222)(21)(σµσπ∫∞−−−=x t t e x F d 21)(222)(σµσπ*N (0,1)—标准正态分布+∞<<∞−=−x e x x 2221)(πϕ+∞<<∞−=Φ∫∞−−x t e x x t d 21)(22π7.多维随机变量及其分布二维随机变量(X ,Y )的分布函数∫∫∞−∞−=xy dvdu v u f y x F ),(),(w w w .k h d a w .c o m 课后答案网边缘分布函数与边缘密度函数∫∫∞−+∞∞−=xX dvdu v u f x F ),()(∫+∞∞−=dv v x f x f X ),()(∫∫∞−+∞∞−=yY dudv v u f y F ),()(∫+∞∞−=du y u f y f Y ),()(8.连续型二维随机变量(1)区域G 上的均匀分布,U (G )⎪⎩⎪⎨⎧∈=其他,0),(,1),(G y x A y x f (2)二维正态分布+∞<<−∞+∞<<∞−×−=⎥⎥⎦⎤⎢⎢⎣⎡−+−−−−−−y x e y x f y y x x ,121),(2222212121212)())((2)()1(21221σµσσµµρσµρρσπσ9.二维随机变量的条件分布0)()()(),(>=x f x y f x f y x f X X Y X 0)()()(>=y f y x f y f Y Y X Y ∫∫+∞∞−+∞∞−==dy y f y x f dy y x f x f Y Y X X )()(),()(∫∫+∞∞−+∞∞−==dxx f x y f dx y x f y f X X Y Y )()(),()()(y x f Y X )(),(y f y x f Y =)()()(y f x f x y f Y X X Y =)(x y f X Y )(),(x f y x f X =)()()(x f y f y x f X Y Y X =w w w .k h d a w .c o m 课后答案网10.随机变量的数字特征数学期望∑+∞==1)(k kk p x X E ∫+∞∞−=dx x xf X E )()(随机变量函数的数学期望X 的k 阶原点矩)(k X E X 的k 阶绝对原点矩)|(|k X E X 的k 阶中心矩)))(((k X E X E −X 的方差)()))(((2X D X E X E =−X ,Y 的k +l 阶混合原点矩)(l k Y X E X ,Y 的k +l 阶混合中心矩()l k Y E Y X E X E ))(())((−−X ,Y 的二阶混合原点矩)(XY E X ,Y 的二阶混合中心矩X ,Y 的协方差()))())(((Y E Y X E X E −−w ww .k h d a w .c o m 课后答案网X ,Y 的相关系数XY Y D X D Y E Y X E X E ρ=⎟⎟⎠⎞⎜⎜⎝⎛−−)()())())(((X 的方差D (X )=E ((X -E (X ))2))()()(22X E X E X D −=协方差()))())(((),cov(Y E Y X E X E Y X −−=)()()(Y E X E XY E −=())()()(21Y D X D Y X D −−±±=相关系数)()(),cov(Y D X D Y X XY =ρw w w .k h d a w .c o m 课后答案网。
概率论与数理统计公式
概率论与数理统计公式概率论是一门研究随机现象规律的数学学科,是现代数学的基础之一、而数理统计则是利用概率论的工具和方法,分析和处理统计数据,从而得出推断、估计、决策等信息的科学。
在概率论与数理统计的学习过程中,掌握一些重要的公式是非常关键的。
下面是一些概率论与数理统计中常用的公式:1.概率公式:-加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)-乘法公式:P(A∩B)=P(A)*P(B,A)-条件概率公式:P(A,B)=P(A∩B)/P(B)2.期望与方差公式:-期望:E(X)=∑(x*P(X=x))- 方差:Var(X) = E((X-μ)^2) = ∑((x-μ)^2 * P(X=x))3.常用概率分布及其特征:-二项分布:P(X=k)=C(n,k)*p^k*(1-p)^(n-k)-泊松分布:P(X=k)=(λ^k*e^(-λ))/k!-正态分布:f(x)=(1/(σ*√(2π)))*e^(-((x-μ)^2)/(2*σ^2))4.样本与总体统计量公式:-样本均值:x̄=(∑x)/n-样本方差:s^2=(∑(x-x̄)^2)/(n-1)-样本标准差:s=√(s^2)5.参数估计公式:-点估计:-总体均值估计:μ的点估计为x̄-总体方差估计:σ^2的点估计为s^2-区间估计:-总体均值的置信区间:x̄±Z*(σ/√n)-总体比例的置信区间:p±Z*√((p*(1-p))/n)6.假设检验公式:-均值检验:-单样本均值检验:t=(x̄-μ0)/(s/√n)-双样本均值检验:t=(x̄1-x̄2)/√((s1^2/n1)+(s2^2/n2))-比例检验:-单样本比例检验:z=(p-p0)/√((p0*(1-p0))/n)-双样本比例检验:z=(p1-p2)/√((p*(1-p))*((1/n1)+(1/n2)))以上是概率论与数理统计中一些常用的公式,这些公式为解决问题提供了有力的工具和方法。
概率论与数理统计公式大全
概率论与数理统计公式大全概率论和数理统计作为数学的两个重要分支,被广泛应用于各个领域。
无论是在学术研究还是实际应用中,熟悉并掌握相关的公式是非常重要的。
本文将为您提供概率论与数理统计公式的大全,帮助您更好地理解和应用这两门学科。
一、概率论公式1. 概率公式- 概率的定义:P(A) = N(A) / N(S),其中P(A)表示事件A发生的概率,N(A)代表事件A的样本点个数,N(S)表示样本空间中的样本点总数。
- 加法法则:P(A∪B) = P(A) + P(B) - P(A∩B),其中P(A∪B)表示事件A或事件B发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。
- 乘法法则:P(A∩B) = P(A) × P(B|A),其中P(B|A)表示在事件A 发生的条件下,事件B发生的概率。
2. 条件概率公式- 条件概率的定义:P(A|B) = P(A∩B) / P(B),其中P(A|B)表示在事件B发生的条件下,事件A发生的概率。
- 全概率公式:P(A) = ∑[P(Bi) × P(A|Bi)],其中Bi为样本空间的一个划分,P(Bi)表示事件Bi发生的概率,P(A|Bi)表示在事件Bi发生的条件下,事件A发生的概率。
3. 事件独立性公式- 事件A和事件B独立的定义:P(A∩B) = P(A) × P(B),即事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。
- 事件的相互独立:若对于任意的事件A1,A2,...,An,有P(A1∩A2∩...∩An) = P(A1) × P(A2) × ... × P(An),则称事件A1,A2,...,An相互独立。
4. 随机变量- 随机变量的定义:随机变量X是样本空间到实数集的映射。
- 随机变量的分布函数:F(x) = P(X≤x),表示随机变量X小于等于x的概率。
- 随机变量的概率密度函数(连续型随机变量):f(x)是非负函数,且对于任意实数区间[a, b],有P(a≤X≤b) = ∫[a, b]f(x)dx。
概率论与数理统计公式整理(完整精华版)
j 1
此公式即为贝叶斯公式。
P(Bi ) ,〔 i 1 ,2 ,…,n 〕,通常叫先验概率。P(Bi / A) ,〔 i 1 ,2 ,…, n 〕,通常称为后验概率。贝叶斯公式反映了“因果〞的概率规律,并作出了
〔17〕伯努 利概型
“由果朔因〞的推断。
我们作了 n 次试验,且满足
每次试验只有两种可能结果, A 发生或 A 不发生;
x nex dx n!
0
x 0,
x<0。
设随机变量 X 的密度函数为
f (x)
1
( x )2
e 2 2 ,
x ,
2 其中 、 0 为常数,则称随机变量 X 服从参数为 、
的正态分布或高斯〔Gauss〕分布,记为 X ~ N(, 2) 。
f (x) 具有如下性质:
表示为 A-AB 或者 AB ,它表示 A 发生而 B 不发生的事件。
A、B 同时发生:A B,或者 AB。A B=Ø,则表示 A 与 B 不可能同时发生,
称事件 A 与事件 B 互不相容或者互斥。根本领件是互不相容的。
.
精品文档
-A 称为事件 A 的逆事件,或称 A 的对立事件,记为 A 。它表示 A 不发生
假设事件 A 、B 相互独立,则可得到 A 与 B 、 A 与 B 、 A 与 B 也都相互
独立。
必定事件 和不可能事件 Ø 与任何事件都相互独立。 Ø 与任何事件都互斥。
②多个事件的独立性
设 ABC 是三个事件,如果满足两两独立的条件,
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
如果事件 A 的组成局部也是事件 B 的组成局部,〔A 发生必有事件 B 发生〕:
概率论与数理统计公式
概率论与数理统计公式以下是概率论与数理统计中常见的公式整理:1.基本概率公式:P(A) = n(A) / n(S),其中A 为事件,n(A) 为事件A 发生的基数,n(S) 为样本空间的基数。
2.条件概率公式:P(A|B) = P(A∩B) / P(B),其中A 和B 为两个事件,P(A∩B) 表示事件A 和事件B 同时发生的概率,P(B) 表示事件B 发生的概率。
3.全概率公式:P(A) = ΣP(A|Bi) * P(Bi),其中Bi 为互不相交的事件,P(Bi) 表示事件Bi 发生的概率,P(A|Bi) 表示在事件Bi 发生的条件下,事件A 发生的概率。
4.贝叶斯公式:P(Bi|A) = P(A|Bi) * P(Bi) / ΣP(A|Bj) * P(Bj),其中Bi 为互不相交的事件,P(Bi) 表示事件Bi 发生的概率,P(A|Bi) 表示在事件Bi 发生的条件下,事件A 发生的概率,P(A|Bj) 表示在事件Bj 发生的条件下,事件A 发生的概率。
5.随机变量的期望值:E(X) = Σxi * P(xi),其中X 为随机变量,xi 为随机变量X 取的第i 个值,P(xi) 表示X 取xi 的概率。
6.随机变量的方差:Var(X) = E((X - E(X))^2),其中X 为随机变量,E(X) 表示X 的期望值。
7.正态分布的概率密度函数:f(x) = (1 / (σ* √(2π))) * e^(-((x-μ)^2 / (2σ^2))),其中μ为正态分布的均值,σ为正态分布的标准差。
8.标准正态分布的概率密度函数:f(x) = (1 / √(2π)) * e^(-x^2 / 2),其中x 为标准正态分布的随机变量。
9.两个随机变量的协方差:Cov(X,Y) = E((X - E(X)) * (Y - E(Y))),其中X 和Y 为两个随机变量,E(X) 和E(Y) 分别表示X 和Y 的期望值。
概率论与数理统计公式整理
概率论与数理统计公式整理概率论和数理统计是数学中重要的分支,广泛应用于科学、工程、经济、金融等领域。
本文将对概率论和数理统计中常用的公式进行整理,以帮助读者更好地理解和应用这些概念和方法。
一、概率论公式1. 基本概率公式:P(A) = n(A) / n(S)其中P(A)表示事件A发生的概率,n(A)表示事件A的样本空间,n(S)表示样本空间中所有可能结果的个数。
2. 概率的加法公式:P(A ∪ B) = P(A) + P(B) - P(A ∩ B)其中P(A ∪ B)表示事件A或B发生的概率,P(A ∩ B)表示事件A和B同时发生的概率。
3. 条件概率公式:P(A | B) = P(A ∩ B) / P(B)其中P(A | B)表示在事件B已经发生的条件下,事件A发生的概率。
4. 乘法公式:P(A ∩ B) = P(B) * P(A | B) = P(A) * P(B | A)其中P(A ∩ B)表示事件A和B同时发生的概率。
5. 全概率公式:P(A) = ∑[P(Bi) * P(A | Bi)]其中{Bi}为样本空间S的一个划分,P(Bi)表示事件Bi发生的概率。
二、数理统计公式1. 期望:E(X) = ∑[x * P(X = x)]其中X表示随机变量,x表示X可能取到的值,P(X = x)表示X取到x的概率。
2. 方差:Var(X) = E[(X - E(X))^2]其中E(X)表示随机变量X的期望。
3. 标准差:σ(X) = √(Var(X))其中Var(X)表示随机变量X的方差。
4. 协方差:Cov(X, Y) = E[(X - E(X)) * (Y - E(Y))]其中X和Y分别表示两个随机变量。
5. 相关系数:ρ(X, Y) = Cov(X, Y) / (σ(X) * σ(Y))其中Cov(X, Y)表示X和Y的协方差,σ(X)和σ(Y)分别表示X和Y的标准差。
三、概率分布公式1. 二项分布:P(X = k) = C(n, k) * p^k * (1 - p)^(n-k)其中X服从二项分布,n表示试验次数,k表示成功次数,p 表示每次试验成功的概率。
概率论与数理统计完整公式
概率论与数理统计完整公式概率论与数理统计是数学的一个分支,研究随机现象和随机变量之间的关系、随机变量的分布规律、经验规律及参数估计等内容。
在概率论与数理统计的学习中,有许多重要的公式需要掌握。
以下是概率论与数理统计的完整公式。
一、概率论公式:1.全概率公式:设A1,A2,…,An为样本空间S的一个划分,则对任意事件B,有:P(B)=P(B│A1)·P(A1)+P(B│A2)·P(A2)+…+P(B│An)·P(An)2.贝叶斯公式:对于样本空间S的一划分A1,A2,…,An,其中P(Ai)>0,i=1,2,…,n,并且B是S的任一事件,有:P(Ai│B)=[P(B│Ai)·P(Ai)]/[P(B│A1)·P(A1)+P(B│A2)·P(A2)+…+P (B│An)·P(An)]3.事件的独立性:若对事件A,B有P(AB)=P(A)·P(B),则称事件A,B相互独立。
4.概率的乘法公式:对于独立事件A1,A2,…,An,有:P(A1A2…An)=P(A1)·P(A2)·…·P(An)5.概率的加法公式:对事件A,B有:P(A∪B)=P(A)+P(B)-P(AB)6.条件概率的计算:对事件A,B有:P(A,B)=P(AB)/P(B)7.古典概型的概率计算:设事件A在n次试验中发生k次的次数服从二项分布B(n,p),则其概率可表示为:P(X=k)=C(n,k)·p^k·(1-p)^(n-k),其中C(n,k)=n!/[k!(n-k)!]二、数理统计公式:1.样本均值的期望和方差:样本的均值X̄的期望和方差分别为: E(X̄) = μ,Var(X̄) = σ^2 / n,其中μ 为总体的均值,σ^2 为总体方差,n 为样本容量。
2.样本方差的期望:样本方差S^2的期望为:E(S^2)=σ^2,其中σ^2为总体方差。
(完整版)概率论与数理统计公式整理(超全版)
(17)伯努利概型
我们作了 次试验,且满足
每次试验只有两种可能结果, 发生或 不发生;
次试验是重复进行的,即 发生的概率每次均一样;
每次试验是独立的,即每次试验 发生与否与其他次试验 发生与否是互不影响的。
并且同时满足P(ABC)=P(A)P(B)P(C)
那么A、B、C相互独立。
对于n个事件类似。
(15)全概公式
设事件 满足
1° 两两互不相容, ,
2° ,
则有
。
(16)贝叶斯公式
设事件 , ,…, 及 满足
1° , ,…, 两两互不相容, >0, 1,2,…, ,
2° , ,
则
,i=1,2,…n。
此公式即为贝叶斯公式。
条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如P(Ω/B)=1 P( /A)=1-P(B/A)
(13)乘法公式
乘法公式:
更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有
… …… … 。
(14)独立性
①两个事件的独立性
设事件 、 满足 ,则称事件 、 是相互独立的。
则称上式为离散型随机变量 的概率分布或分布律。有时也用分布列的形式给出:
。
显然分布律应满足下列条件:
(1) , , (2) 。
(2)连续型随机变量的分布密度
设 是随机变量 的分布函数,若存在非负函数 ,对任意实数 ,有
,
则称 为连续型随机变量。 称为 的概率密度函数或密度函数,简称概率密度。
数理统计中的重要公式整理
数理统计中的重要公式整理正文:数理统计是一门研究统计学原理和方法的学科,其重要性不可忽视。
在数理统计中,有一些重要的公式被广泛应用于各类统计问题的求解和分析。
本文将对数理统计中的重要公式进行整理,以帮助读者更好地掌握和应用这些公式。
1. 概率论与数理统计基本公式1.1 概率论基本公式:(1) 加法法则:P(A ∪ B) = P(A) + P(B) − P(A ∩ B)(2) 乘法法则:P(A ∩ B) = P(A)P(B|A) = P(B)P(A|B)(3) 全概率公式:P(A) = ∑ P(A ∩ Bᵢ) = ∑ P(Bᵢ)P(A|Bᵢ)(4) 贝叶斯公式:P(A|B) = P(B|A)P(A) / P(B)1.2 数理统计基本公式:(1) 期望值公式:E(X) = ∑ XᵢP(Xᵢ)(2) 方差公式:Var(X) = E[(X - E(X))²] = E(X²) - [E(X)]²(3) 协方差公式:Cov(X, Y) = E[(X - E(X))(Y - E(Y))] = E(XY) -E(X)E(Y)(4) 相关系数公式:ρ(X, Y) = Cov(X, Y) / σ(X)σ(Y)2. 统计推断中的重要公式2.1 参数估计公式:(1) 矩估计:θ̂= ḡ(m₁, m₂, ..., mₖ)(2) 最大似然估计:θ̂= argmax[∏ f(x; θ)](3) 最小二乘估计:θ̂= argmin[∑ (yᵢ - g(xᵢ; θ))²]2.2 假设检验公式:(1) z检验:z = (x - μ) / (σ/√n)(2) t检验:t = (x - μ) / (s/√n)(3) 卡方检验:χ² = ∑ (Oᵢ - Eᵢ)² / Eᵢ3. 抽样理论中的重要公式3.1 随机变量公式:(1) 期望值公式:E(X) = μ(2) 方差公式:Var(X) = σ²/n(3) 中心极限定理:Z = (X - μ) / (σ/√n) 服从标准正态分布3.2 总体参数估计公式:(1) 基本抽样分布(z分布):z = (X - μ) / (σ/√n)(2) t分布:t = (X - μ) / (s/√n)(3) X²分布:χ² = ∑ (Xᵢ - Eᵢ)² / Eᵢ4. 方差分析中的重要公式4.1 单因素方差分析公式:(1) 总平方和公式:SST = ∑ (xᵢj - x)²(2) 因素平方和公式:SFA = n ∑ (xₖ - x)²(3) 误差平方和公式:SSE = ∑ (xᵢj - xₖ)²4.2 F检验公式:F = (SFA / (k - 1)) / (SSE / (n - k))5. 相关分析中的重要公式5.1 简单线性回归公式:(1) 回归模型:Y = β₀ + β₁X + ε(2) 最小二乘估计公式:β̂₁ = ∑((Xᵢ - X)(Yᵢ - Ȳ)) / ∑((Xᵢ - X)²)β̂₀ = Ȳ - β̂₁X(3) 相关系数公式:r = Cov(X, Y) / (σ(X)σ(Y))6. 抽样调查中的重要公式6.1 简单随机抽样公式:(1) 抽样率:p = n / N(2) 估计总量公式:T = N * (X / n)(3) 估计方差公式:Var(T) = N² * ((1 - p/n) / n) * σ²7. 时间序列分析中的重要公式7.1 平稳时间序列公式:(1) 自协方差公式:γ(h) = Cov(Xₖ, Xₖ₋ₖ) = γ(-h)(2) 自相关系数公式:ρ(h) = Cov(Xₖ, Xₖ₋ₖ) / (σ(Xₖ)σ(Xₖ₋ₖ))通过对这些数理统计中的重要公式的整理,我们可以更加方便地在实际问题中应用这些公式,进行数据分析、参数估计、假设检验等统计推断工作。
概率论与数理统计公式大全
概率论与数理统计公式大全一、概率论公式1.概率的基本性质:-非负性:对于任意事件A,有P(A)>=0;-规范性:对于必然事件S,有P(S)=1;-可列可加性:对于互不相容的事件Ai(i=1,2,...),有P(A1∪A2∪...)=P(A1)+P(A2)+...。
2.条件概率:-事件B发生的条件下,事件A发生的概率:P(A,B)=P(A∩B)/P(B);-乘法公式:P(A∩B)=P(A,B)*P(B)。
3.全概率公式:-事件A的概率:P(A)=ΣP(A,Bi)*P(Bi),其中Bi为样本空间的一个划分。
4.贝叶斯公式:-事件Bi发生的条件下,事件A发生的概率:P(Bi,A)=P(A,Bi)*P(Bi)/ΣP(A,Bj)*P(Bj),其中Bj为样本空间的一个划分。
5.独立性:-事件A与事件B相互独立的充要条件是P(A∩B)=P(A)*P(B)。
二、数理统计公式1.随机变量的概率分布:-离散型随机变量的概率分布函数:P(X=x);-连续型随机变量的概率密度函数:f(x)。
2.数理统计的基本概念:-样本均值:X̄=ΣXi/n;-样本方差:s^2=Σ(Xi-X̄)^2/(n-1);-样本标准差:s=√s^2;- 样本协方差:sxy = Σ(Xi-X̄)(Yi-Ȳ) / (n-1)。
3.大数定律:-样本均值的大数定律:当样本容量n趋向于无穷大时,样本均值X̄趋向于总体均值μ。
4.中心极限定理:-样本均值的中心极限定理:当样本容量n足够大时,样本均值X̄服从近似正态分布。
5.参数估计:-点估计:用样本统计量对总体参数进行估计;-置信区间估计:用样本统计量构造一个区间,以估计总体参数的范围。
6.假设检验:-假设检验的基本步骤:提出原假设H0和备择假设H1,选择适当的检验统计量,计算拒绝域,进行假设检验。
以上只是概率论与数理统计中的一些重要公式和定理,还有很多其他的公式和定理没有一一列举。
掌握这些公式和定理,可以帮助我们更好地理解和应用概率论与数理统计的知识。
概率论与数理统计公式大全
概率论与数理统计公式大全一、概率论的常用公式:1.概率的公式:对于事件A,其概率表示为P(A),满足0≤P(A)≤1。
2.加法公式:对于两个互斥事件A和B,其概率表示为P(A∪B),满足P(A∪B)=P(A)+P(B)。
3.减法公式:对于事件A和B,其概率表示为P(A∩B),满足P(A∩B)=P(A)-P(A∪B)。
4.乘法公式:对于两个独立事件A和B,其概率表示为P(A∩B),满足P(A∩B)=P(A)某P(B)。
5.条件概率公式:对于事件A和B,其条件概率表示为P(A,B),满足P(A,B)=P(A∩B)/P(B)。
6.全概率公式:对于一组互斥事件B1,B2,...,Bn,以及事件A,有P(A)=∑(P(A,Bi)某P(Bi))。
7.贝叶斯公式:对于一组互斥事件B1,B2,...,Bn,以及事件A,有P(Bi,A)=P(A,Bi)某P(Bi)/(∑(P(A,Bj)某P(Bj))。
二、数理统计的常用公式:1.均值公式:对于一组数据某1,某2,...,某n,其均值表示为μ=∑(某i)/n。
2.方差公式:对于一组数据某1,某2,...,某n,其方差表示为σ^2=∑((某i-μ)^2)/n。
3.标准差公式:对于一组数据某1,某2,...,某n,其标准差表示为σ=√(σ^2)。
4. 协方差公式:对于两组数据某1,某2,...,某n 和 y1,y2,...,yn,其协方差表示为 Cov(某,y) = ∑((某i - μ某) 某 (yi - μy)) / n。
5. 相关系数公式:对于两组数据某1,某2,...,某n 和 y1,y2,...,yn,其相关系数表示为 r = Cov(某,y) / (σ某某σy)。
6.正态分布的概率计算:对于满足正态分布的一组数据某1,某2,...,某n,可以利用标准正态分布表或计算工具来计算概率P(X≤某)或P(X>某)。
7.置信区间公式:对于一组数据某1,某2,...,某n,其均值μ和置信水平α,可以计算置信区间为某̄±Z(α/2)某(σ/√n)。
概率论与数理统计公式整理
概率论与数理统计公式整理一、概率论公式:1.加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)2.乘法公式:P(A∩B)=P(A)×P(B,A)其中,P(A)和P(B)表示事件A和B的概率,P(B,A)表示已知事件A发生的条件下事件B发生的概率。
3.全概率公式:P(A)=∑[P(A,B(i))×P(B(i))]其中,B(i)表示互斥事件组,且它们的概率之和为14.贝叶斯公式:P(B(j),A)=P(A,B(j))×P(B(j))/∑[P(A,B(i))×P(B(i))]其中,P(B(j),A)表示已知事件A发生的条件下事件B(j)发生的概率。
5.期望值公式:E(X)=∑[x×P(X=x)]其中,X为一个随机变量,x为X的取值,P(X=x)为X等于x的概率。
6.方差公式:Var(X) = E[(X-E(X))^2]其中,Var(X)表示随机变量X的方差,E(X)表示X的期望值。
二、数理统计公式:1.样本均值公式:样本均值 = (x1 + x2 + ... + xn)/n其中,x1、x2、..、xn为样本中的观测值,n为样本容量。
2.样本方差公式(无偏估计):样本方差 = [(x1-样本均值)^2 + (x2-样本均值)^2 + ... + (xn-样本均值)^2]/(n-1)3.样本标准差公式(无偏估计):样本标准差=样本方差的平方根4.正态分布的标准化公式:Z=(X-μ)/σ其中,X为一个正态随机变量,μ为其均值,σ为其标准差,Z为标准正态分布的变量。
5.正态分布的累积分布函数:P(X≤x)=Φ((x-μ)/σ)其中,Φ表示标准正态分布的累积分布函数。
6.样本之间的协方差公式:Cov(X,Y) = ∑[(x(i)-X均值) × (y(i)-Y均值)]/(n-1)其中,X、Y为两个随机变量,x(i)、y(i)为X、Y的观测值,X均值、Y均值分别为X、Y的样本均值,n为样本容量。
概率论与数理统计超全公式总结
~
χ 2 (n −1)
X − µ ~ t(n −1) s/ n
两个正态总体的方差之比
S12
σ
2 1
/ S22
/
σ
2 2
~F (n1 −1,n2 −1)第六章 点估计:参数的估计值为一个常数 矩估计 最大似然估计
n
Π Π n
L = f (xi ;θ )
i =1
L = p(xi ;θ )
i =1
似然函数
均值的区间估计——大样本结果
⎛ ⎜
x
±
zα
/2
⎝
σ⎞ ⎟
n⎠
x — 样本均值 σ — 标准差(通常未知,可用样本标准差s代替) n — 样本容量(大样本要求n > 50) zα /2 — 正态分布的分位点
正态总体方差的区间估计 两个正态总体均值差的置信区间 大样本或正态小样本且方差已知
( ) ⎛
⎜ ⎜
S 2 — 样本方差
χ2 α /2
— 卡方分布的分位点
Z=
p − p0
p0 — —总体比例
p0 (1− p0 ) / n p — —样本比例
单正态总体均值的 t 检验
t = X − µ0 S/ n
单正态总体方差的卡方检验
χ 2 = (n −1)S 2
σ
2 0
拒绝域
双边检验
χ2
≥
χα2 / 2或χ 2
k
∑∑ E(X)= xipij
ij
E( X ) = ∫ ∫ xf (x, y)dxdy
不相关不一定独立 第四章
正态分布 X ~ N (µ,σ 2 )
∑∑ E(XY) = xi yj pij
ij
概率论与数理统计公式整理(超全版)
概率论与数理统计
第一章随机事件及其概率 (2)
第二章随机变量及其分布 (5)
第三章二维随机变量及其分布 (9)
第四章随机变量的数字特征 (15)
第五章大数定律和中心极限定理 (19)
第六章样本及抽样分布 (21)
第七章参数估计 (23)
第八章假设检验 (27)
第一章随机事件及其概率
第二章随机变量及其分布
第三章二维随机变量及其分布
第四章随机变量的数字特征
第五章大数定律和中心极限定理
第六章样本及抽样分布
第七章参数估计
第八章假设检验
单正态总体均值和方差的假设检验。
概率论基本公式
概率论与数理统计基本公式第一部分 概率论基本公式1、)(;A B A B A AB A B A B A -⋃=⋃-==--例:证明:成立。
得证。
成立,也即成立,也即(不发生,从而发生,则不发生,,知由(证明:(B A B A AB A B B A AB A B B B A B A B A AB A B B A --=-⋃-⋃-==-=-⋃--)).) 2、对偶率:.----⋃=⋂⋂=⋃B A B A B A B A ;3、概率性率:(1))()()(212121A P A P A A P A A +=⋃为不相容事件,则、有限可加:(2))()();()()(),()()(B P A P B P A P B A P A B AB P A P B A P ≥-=-⊂-=-时有:特别,(3))()()()(AB P B P A P B A P -+=⋃对任意两个事件有:)();();();()1(.4.0)(2.0)(5.0)(AB P B A P B A P AB P B P B A P A P ⋃-===--求:,,例:已知:.3.0)(1)(,7.0)()()()(3.0)()()(,5.0)(.,2.0)()()()(,=⋃-=⋃==-+=⋃=-=-∴===+∴=+---B A P B A P AB P AB P B P A P B A P AB P A P B A P A P AB P B P B A P AB P B A B B B A AB 又即是不相容事件,、且解:4、古典概型222n 2!)(n ,22)-n 2)!n 2(22nC n A P C A n n n ==!,则自成一双为:!!(解:分堆法:每堆自成一双鞋的概率只,事件堆,每堆为只,分为双鞋总共例: 5、条件概率称为无条件概率。
的条件概率,条件下,事件称为在事件)(,)()()|(B P B A A P AB P A B P =B)|P(B)P(A P(AB) A)|P(A)P(B P(AB)==乘法公式:)|()()(i i A B P A P B P i∑=全概率公式:)|()()|()()()()|(j j ji i i A B P A P A B P A P B P B A P B A P i ∑==贝叶斯公式:例:有三个罐子,1号装有2红1黑共3个球,2号装有3红1黑4个球,3号装有2红2黑4个球,某人随机从其中一罐,再从该罐中任取一个球,(1)求取得红球的概率;(2)如果取得是红球,那么是从第一个罐中取出的概率为多少?.348.0)()()|()|()2(.639.0)(31)()()(.21)|(;43)|(;32)|()|()()(}{3,2,1i }{)1(111321321i i 321≈=≈∴==========∑A P B P B A P A B P A P B P B P B P B A P B A P B A P A B P A P B P B B B A i B ii 由贝叶斯公式:,,依题意,有:由全概率公式是一个完备事件、、,由题知取得是红球。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2° P(Ω) =1
3° 对于两两互不相容的事件 , ,…有
常称为可列(完全)可加性。
则称P(A)为事件 的概率。
(8)古典概型
1° ,
2° 。
设任一事件 ,它是由 组成的,则有
P(A)= =
(9)几何概型
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件A,
条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如P(Ω/B)=1 P( /A)=1-P(B/A)
(13)乘法公式
乘法公式:
更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有
… …… … 。
(14)独立性
①两个事件的独立性
设事件 、 满足 ,则称事件 、 是相互独立的。
(2)
(2)二维随机变量的本质
(3)联合分布函数
设(X,Y)为二维随机变量,对于任意实数x,y,二元函数
称为二维随机向量(X,Y)的分布函数,或称为随机变量X和Y的联合分布函数。
分布函数是一个以全平面为其定义域,以事件 的概率为函数值的一个实值函数。分布函数F(x,y)具有以下的基本性质:
(1)
(2)F(x,y)分别对x和y是非减的,即
当x2>x1时,有F(x2,y)≥F(x1,y);当y2>y1时,有F(x,y2) ≥F(x,y1);
(3)F(x,y)分别对x和y是右连续的,即
(4)
(5)对于
.
(4)离散型与连续型的关系
(5)边缘分布
离散型
X的边缘分布为
;
Y的边缘分布为
。
连续型
X的边缘分布密度为
Y的边缘分布密度为
(6)条件分布
离散型
几何分布
,其中p≥0,q=1-p。
随机变量X服从参数为p的几何分布,记为G(p)。
均匀分布
设随机变量 的值只落在[a,b],其密度函数 在[a,b]上为常数 ,即
a≤x≤b
其他,
则称随机变量 在[a,b]上服从均匀分布,记为X~U(a,b)。
分布函数为
a≤x≤b
0, x<a,
1, x>b。
当a≤x1<x2≤b时,X落在区间( )的概率为
如果同时有 , ,则称事件A与事件B等价,或称A等于B:A=B。
A、B中至少有一个发生的事件:A B,或者A+B。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者 ,它表示A发生而B不发生的事件。
A、B同时发生:AB,或者AB。A B=Ø,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。基本事件是互不相容的。
分布满足可加性:设
并且同时满足P(ABC)=P(A)P(B)P(C)
那么A、B、C相互独立。
对于n个事件类似。
(15)全概公式
设事件 满足
1° 两两互不相容, ,
2° ,
则有
。
(16)贝叶斯公式
设事件 , ,…, 及 满足
1° , ,…, 两两互不相容, >0, 1,2,…, ,
2° , ,
则
,i=1,2,…n。
此公式即为贝叶斯公式。
乘法原理(两个步骤分别不能完成这件事):m×n
某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(3)一些常见排列
重复排列和非重复排列(有序)
对立事件(至少有一个)
顺序问题
(4)随机试验和随机事件
如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
设 =(X,Y)的所有可能取值为 ,且事件{ = }的概率为pij,,称
为 =(X,Y)的分布律或称为X和Y的联合分布律。联合分布有时也用下面的概率分布表来表示:
Y
X
y1
y2
…
yj
…
x1
p11
ቤተ መጻሕፍቲ ባይዱp12
…
p1j
…
x2
p21
p22
…
p2j
…
xi
pi1
…
…
这里pij具有下面两个性质:
(1)pij≥0(i,j=1,2,…);
设随机向量(X,Y)的分布密度函数为
其中SD为区域D的面积,则称(X,Y)服从D上的均匀分布,记为(X,Y)~U(D)。
例如图3.1、图3.2和图3.3。
y
1
D1
O1x
图3.1
y
D2
1
1
O2x
图3.2
y
D3
d
c
Oa b x
图3.3
(9)二维正态分布
设随机向量(X,Y)的分布密度函数为
其中 是5个参数,则称(X,Y)服从二维正态分布,
1° 。
2° 。
(3)离散与连续型随机变量的关系
积分元 在连续型随机变量理论中所起的作用与 在离散型随机变量理论中所起的作用相类似。
(4)分布函数
设 为随机变量, 是任意实数,则函数
称为随机变量X的分布函数,本质上是一个累积函数。
可以得到X落入区间 的概率。分布函数 表示随机变量落入区间(– ∞,x]的概率。
分布函数具有如下性质:
1° ;
2° 是单调不减的函数,即 时,有 ;
3° , ;
4° ,即 是右连续的;
5° 。
对于离散型随机变量, ;
对于连续型随机变量, 。
(5)八大分布
0-1分布
P(X=1)=p, P(X=0)=q
二项分布
在 重贝努里试验中,设事件 发生的概率为 。事件 发生的次数是随机变量,设为 ,则 可能取值为 。
,
Z=max,min(X1,X2,…Xn)
若 相互独立,其分布函数分别为 ,则Z=max,min(X1,X2,…Xn)的分布函数为:
分布
设n个随机变量 相互独立,且服从标准正态分布,可以证明它们的平方和
的分布密度为
我们称随机变量W服从自由度为n的 分布,记为W~ ,其中
所谓自由度是指独立正态随机变量的个数,它是随机变量分布中的一个重要参数。
, 其中 ,
则称随机变量 服从参数为 , 的二项分布。记为 。
当 时, , ,这就是(0-1)分布,所以(0-1)分布是二项分布的特例。
泊松分布
设随机变量 的分布律为
, , ,
则称随机变量 服从参数为 的泊松分布,记为 或者P( )。
泊松分布为二项分布的极限分布(np=λ,n→∞)。
超几何分布
随机变量X服从参数为n,N,M的超几何分布,记为H(n,N,M)。
在已知X=xi的条件下,Y取值的条件分布为
在已知Y=yj的条件下,X取值的条件分布为
连续型
在已知Y=y的条件下,X的条件分布密度为
;
在已知X=x的条件下,Y的条件分布密度为
(7)独立性
一般型
F(X,Y)=FX(x)FY(y)
离散型
有零不独立
连续型
f(x,y)=fX(x)fY(y)
直接判断,充要条件:
试验的可能结果称为随机事件。
(5)基本事件、样本空间和事件
在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:
①每进行一次试验,必须发生且只能发生这一组中的一个事件;
②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用 来表示。
基本事件的全体,称为试验的样本空间,用 表示。
概率论与数理统计基础公式大全
第一章 随机事件和概率
(1)排列组合公式
从m个人中挑出n个人进行排列的可能数。
从m个人中挑出n个人进行组合的可能数。
(2)加法和乘法原理
加法原理(两种方法均能完成此事):m+n
某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。
-A称为事件A的逆事件,或称A的对立事件,记为 。它表示A不发生的事件。互斥未必对立。
②运算:
结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C
分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)
德摩根率: ,
(7)概率的公理化定义
设 为样本空间, 为事件,对每一个事件 都有一个实数P(A),若满足下列三个条件:
若事件 、 相互独立,且 ,则有
若事件 、 相互独立,则可得到 与 、 与 、 与 也都相互独立。
必然事件 和不可能事件Ø与任何事件都相互独立。
Ø与任何事件都互斥。
②多个事件的独立性
设ABC是三个事件,如果满足两两独立的条件,
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
若 ,则 的分布函数为
。。
参数 、 时的正态分布称为标准正态分布,记为 ,其密度函数记为
, ,
分布函数为
。
是不可求积函数,其函数值,已编制成表可供查用。
Φ(-x)=1-Φ(x)且Φ(0)= 。
如果 ~ ,则 ~ 。
。
(6)分位数
下分位表: ;
上分位表: 。
(7)函数分布
离散型
已知 的分布列为
,
的分布列( 互不相等)如下:
则称上式为离散型随机变量 的概率分布或分布律。有时也用分布列的形式给出: