2016年湖北省宜昌市中考数学试卷(含详细答案及解析)

合集下载

湖北省宜昌市 2016年中考数学真题试卷附解析

湖北省宜昌市 2016年中考数学真题试卷附解析

2016年湖北省宜昌市中考数学试卷参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分)1.(2016·湖北宜昌)如果“盈利5%”记作+5%,那么﹣3%表示()A.亏损3% B.亏损8% C.盈利2% D.少赚3%【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵盈利5%”记作+5%,∴﹣3%表示表示亏损3%.故选:A.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.(2016·湖北宜昌)下列各数:1.414,,﹣,0,其中是无理数的为()A.1.414 B.C.﹣D.0【考点】无理数.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,解答即可.【解答】解:是无理数.故选B.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.3.(2016·湖北宜昌)如图,若要添加一条线段,使之既是轴对称图形又是中心对称图形,正确的添加位置是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.4.(2016·湖北宜昌)把0.22×105改成科学记数法的形式,正确的是()A.2.2×103B.2.2×104C.2.2×105D.2.2×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将0.22×105用科学记数法表示为2.2×104.故选B.【点评】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(2016·湖北宜昌)设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是()A.a>b B.a=b C.a<b D.b=a+180°【考点】多边形内角与外角.【分析】根据多边形的内角和定理与多边形外角的关系即可得出结论.【解答】解:∵四边形的内角和等于a,∴a=(4﹣2)•180°=360°.∵五边形的外角和等于b,∴b=360°,∴a=b.故选B.【点评】本题考查的是多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键.6.(2016·湖北宜昌)在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是()A.甲组B.乙组C.丙组D.丁组【考点】模拟实验.【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.【解答】解:根据模拟实验的定义可知,实验相对科学的是次数最多的丁组.故选:D.【点评】考查了模拟实验,选择和抛硬币类似的条件的试验验证抛硬币实验的概率,是一种常用的模拟试验的方法.7.(2016·湖北宜昌)将一根圆柱形的空心钢管任意放置,它的主视图不可能是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据三视图的确定方法,判断出钢管无论如何放置,三视图始终是下图中的其中一个,即可.【解答】解:∵一根圆柱形的空心钢管任意放置,∴不管钢管怎么放置,它的三视图始终是,,,主视图是它们中一个,∴主视图不可能是.故选A,【点评】此题是简单几何体的三视图,考查的是三视图的确定方法,解本题的关键是物体的放置不同,主视图,俯视图,左视图,虽然不同,但它们始终就图中的其中一个.8.(2016·湖北宜昌)分式方程=1的解为()A.x=﹣1 B.x=C.x=1 D.x=2【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣1=x﹣2,解得:x=﹣1,经检验x=﹣1是分式方程的解,则分式方程的解为x=﹣1.故选:A.【点评】此题考查了分式方程的解,解分式方程利用了转化的思想,还有注意不要忘了检验.9.(2016·湖北宜昌)已知M、N、P、Q四点的位置如图所示,下列结论中,正确的是()A.∠NOQ=42° B.∠NOP=132°C.∠PON比∠MOQ大D.∠MOQ与∠MOP互补【考点】余角和补角.【分析】根据已知量角器上各点的位置,得出各角的度数,进而得出答案.【解答】解:如图所示:∠NOQ=138°,故选项A错误;∠NOP=48°,故选项B错误;如图可得:∠PON=48°,∠MOQ=42°,故∠PON比∠MOQ大,故选项C正确;由以上可得,∠MOQ与∠MOP不互补,故选项D错误.故选:C.【点评】此题主要考查了余角和补角,正确得出各角的度数是解题关键.10.(2016·湖北宜昌)如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短【考点】线段的性质:两点之间线段最短.【分析】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.【解答】解:∵用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选D.【点评】本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.11.(2016·湖北宜昌)在6月26日“国际禁毒日”来临之际,华明中学围绕“珍爱生命,远离毒品”主题,组织师生到当地戒毒所开展相关问题的问卷调查活动,其中“初次吸毒时的年龄”在17至21岁的统计结果如图所示,则这些年龄的众数是()A.18 B.19 C.20 D.21【考点】众数;条形统计图.【分析】根据众数的概念:一组数据中出现次数最多的数据叫做众数,求解即可.【解答】解:由条形图可得:年龄为20岁的人数最多,故众数为20.故选C.【点评】本题考查了众数的知识,解答本题的关键是掌握众数的概念:一组数据中出现次数最多的数据叫做众数.12.(2016·湖北宜昌)任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形D.△EHF为等腰三角形【考点】作图—基本作图;线段垂直平分线的性质.【分析】根据等腰三角形的定义、菱形的定义、等边三角形的定义一一判断即可.【解答】解:A、正确.∵EG=EH,∴△EGH是等边三角形.B、错误.∵EG=GF,∴△EFG是等腰三角形,若△EFG是等边三角形,则EF=EG,显然不可能.C、正确.∵EG=EH=HF=FG,∴四边形EHFG是菱形.D、正确.∵EH=FH,∴△EFH是等边三角形.故选B.【点评】本题考查线段的垂直平分线的性质、作图﹣基本作图、等腰三角形的定义等知识,解题的关键是灵活一一这些知识解决问题,属于中考常考题型.13.(2016·湖北宜昌)在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为()A.E、F、G B.F、G、H C.G、H、E D.H、E、F【考点】点与圆的位置关系.【专题】应用题.【分析】根据网格中两点间的距离分别求出,OE,OF,OG,OH然后和OA比较大小.最后得到哪些树需要移除.【解答】解:∵OA==,∴OE=2<OA,所以点E在⊙O内,OF=2<OA,所以点E在⊙O内,OG=1<OA,所以点E在⊙O内,OH==2>OA,所以点E在⊙O外,故选A【点评】此题是点与圆的位置关系,主要考查了网格中计算两点间的距离,比较线段长短的方法,计算距离是解本题的关键.点到圆心的距离小于半径,点在圆内,点到圆心的距离大于半径,点在圆外,点到圆心的距离大于半径,点在圆内.14.(2016·湖北宜昌)小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.宜晶游C.爱我宜昌D.美我宜昌【考点】因式分解的应用.【分析】对(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,即可得到结论.【解答】解:∵(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),∵x﹣y,x+y,a+b,a﹣b四个代数式分别对应爱、我,宜,昌,∴结果呈现的密码信息可能是“爱我宜昌”,故选C.【点评】本题考查了公式法的因式分解运用,熟练掌握因式分解的方法是解本题的关键.15.(2016·湖北宜昌)函数y=的图象可能是()A.B.C.D.【考点】反比例函数的图象.【分析】函数y=是反比例y=的图象向左移动一个单位,根据反比例函数的图象特点判断即可.【解答】解:函数y=是反比例y=的图象向左移动一个单位,即函数y=是图象是反比例y=的图象双曲线向左移动一个单位.故选C【点评】此题是反比例函数的图象,主要考查了反比例函数的图象是双曲线,掌握函数图象的平移是解本题的关键.二、解答题(共9小题,满分75分)16.(2016·湖北宜昌)计算:(﹣2)2×(1﹣).【考点】有理数的混合运算.【分析】直接利用有理数乘方运算法则化简,进而去括号求出答案.【解答】解:(﹣2)2×(1﹣)=4×(1﹣)=4×=1.【点评】此题主要考查了有理数的混合运算,正确掌握运算法则是解题关键.17.(2016·湖北宜昌)先化简,再求值:4x•x+(2x﹣1)(1﹣2x).其中x=.【考点】整式的混合运算—化简求值.【分析】直接利用整式乘法运算法则计算,再去括号,进而合并同类项,把已知代入求出答案.【解答】解:4x•x+(2x﹣1)(1﹣2x)=4x2+(2x﹣4x2﹣1+2x)=4x2+4x﹣4x2﹣1=4x﹣1,当x=时,原式=4×﹣1=﹣.【点评】此题主要考查了整式的混合运算,正确掌握整式乘法运算是解题关键.18.(2016·湖北宜昌)杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:如图,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于O,OD⊥CD.垂足为D,已知AB=20米,请根据上述信息求标语CD的长度.【考点】全等三角形的应用;平行线之间的距离.【分析】由AB∥CD,利用平行线的性质可得∠ABO=∠CDO,由垂直的定义可得∠CDO=90°,易得OB⊥AB,由相邻两平行线间的距离相等可得OD=OB,利用ASA定理可得△ABO≌△CDO,由全等三角形的性质可得结果.【解答】解:∵AB∥CD,∴∠ABO=∠CDO,∵OD⊥CD,∴∠CDO=90°,∴∠ABO=90°,即OB⊥AB,∵相邻两平行线间的距离相等,∴OD=OB,在△ABO与△CDO中,,∴△ABO≌△CDO(ASA),∴CD=AB=20(m)【点评】本题主要考查了平行线的性质和全等三角形的判定及性质定理,综合运用各定理是解答此题的关键.19.(2016·湖北宜昌)如图,直线y=x+与两坐标轴分别交于A、B两点.(1)求∠ABO的度数;(2)过A的直线l交x轴半轴于C,AB=AC,求直线l的函数解析式.【考点】待定系数法求一次函数解析式.【分析】(1)根据函数解析式求出点A、B的坐标,然后在Rt△ABO中,利用三角函数求出tan∠ABO 的值,继而可求出∠ABO的度数;(2)根据题意可得,AB=AC,AO⊥BC,可得AO为BC的中垂线,根据点B的坐标,得出点C的坐标,然后利用待定系数法求出直线l的函数解析式.【解答】解:(1)对于直线y=x+,令x=0,则y=,令y=0,则x=﹣1,故点A的坐标为(0,),点B的坐标为(﹣1,0),则AO=,BO=1,在Rt△ABO中,∵tan∠ABO==,∴∠ABO=60°;(2)在△ABC中,∵AB=AC,AO⊥BC,∴AO为BC的中垂线,即BO=CO,则C点的坐标为(1,0),设直线l的解析式为:y=kx+b(k,b为常数),则,解得:,即函数解析式为:y=﹣x+.【点评】本题考查了待定系数法求一次函数解析式,涉及了的知识点有:待定系数法确定一次函数解析式,一次函数与坐标轴的交点,坐标与图形性质,熟练掌握待定系数法是解答本题的关键.20.(2016·湖北宜昌)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是不可能事件;(可能,必然,不可能)(2)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.【考点】列表法与树状图法;随机事件.【分析】(1)根据随机事件的概念可知是随机事件;(2)求概率要画出树状图分析后得出.【解答】解:(1)小李同学在该天早餐得到两个油饼”是不可能事件;(2)树状图法即小张同学得到猪肉包和油饼的概率为=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21.(2016·湖北宜昌)如图,CD是⊙O的弦,AB是直径,且CD∥AB,连接AC、AD、OD,其中AC=CD,过点B的切线交CD的延长线于E.(1)求证:DA平分∠CDO;(2)若AB=12,求图中阴影部分的周长之和(参考数据:π=3.1,=1.4,=1.7).【考点】切线的性质;弧长的计算.【分析】(1)只要证明∠CDA=∠DAO,∠DAO=∠ADO即可.(2)首先证明==,再证明∠DOB=60°得△BOD是等边三角形,由此即可解决问题.【解答】证明:(1)∵CD∥AB,∴∠CDA=∠BAD,又∵OA=OD,∴∠ADO=∠BAD,∴∠ADO=∠CDA,∴DA平分∠CDO.(2)如图,连接BD,∵AB是直径,∴∠ADB=90°,∵AC=CD,∴∠CAD=∠CDA,又∵CD∥AB,∴∠CDA=∠BAD,∴∠CDA=∠BAD=∠CAD,∴==,又∵∠AOB=180°,∴∠DOB=60°,∵OD=OB,∴△DOB是等边三角形,∴BD=OB=AB=6,∵=,∴AC=BD=6,∵BE切⊙O于B,∴BE⊥AB,∴∠DBE=∠ABE﹣∠ABD=30°,∵CD∥AB,∴BE⊥CE,∴DE=BD=3,BE=BD×cos∠DBE=6×=3,∴的长==2π,∴图中阴影部分周长之和为2=4π+9+3=4×3.1+9+3×1.7=26.5.【点评】本题考查切线的性质、平行线的性质、等边三角形的判定和性质、弧长公式等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线,属于中考常考题型.22.(2016·湖北宜昌)某蛋糕产销公司A品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2104年底就投入资金10.89万元,新增一条B品牌产销线,以满足市场对蛋糕的多元需求,B品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年,A、B两品牌产销线销售量总和将达到11.4万份,B品牌产销线2017年销售获利恰好等于当初的投入资金数.(1)求A品牌产销线2018年的销售量;(2)求B品牌产销线2016年平均每份获利增长的百分数.【考点】一元二次方程的应用.【分析】(1)根据题意容易得出结果;(2)设A品牌产销线平均每份获利的年递减百分数为x,B品牌产销线的年销售量递增相同的份数为k万份;根据题意列出方程,解方程即可得出结果.【解答】解:(1)9.5﹣(2018﹣2015)×0.5=8(万份);答:品牌产销线2018年的销售量为8万份;(2)设A品牌产销线平均每份获利的年递减百分数为x,B品牌产销线的年销售量递增相同的份数为k万份;根据题意得:,解得:,或(不合题意,舍去),∴,∴2x=10%;答:B品牌产销线2016年平均每份获利增长的百分数为10%.【点评】此题主要考查了一元二次方程的应用中平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.23.(2016·湖北宜昌)在△ABC中,AB=6,AC=8,BC=10,D是△ABC内部或BC边上的一个动点(与B、C不重合),以D为顶点作△DEF,使△DEF∽△ABC(相似比k>1),EF∥BC.(1)求∠D的度数;(2)若两三角形重叠部分的形状始终是四边形AGDH.①如图1,连接GH、AD,当GH⊥AD时,请判断四边形AGDH的形状,并证明;②当四边形AGDH的面积最大时,过A作AP⊥EF于P,且AP=AD,求k的值.【考点】相似形综合题.【分析】(1)先判断△ABC是直角三角形,即可;(2)①先判断AB∥DE,DF∥AC,得到平行四边形,再判断出是正方形;=﹣AG2+8AG,②先判断面积最大时点D的位置,由△BGD∽△BAC,找出AH=8﹣GA,得到S矩形AGDH确定极值,AG=3时,面积最大,最后求k得值.【解答】解:(1)∵AB2+AC2=100=BC2,∴∠BAC=90°,∵△DEF∽△ABC,∴∠D=∠BAC=90°,(2)①四边形AGDH为正方形,理由:如图1,延长ED交BC于M,延长FD交BC于N,∵△DEF∽△ABC,∴∠B=∠C,∵EF∥BC,∴∠E=∠EMC,∴∠B=∠EMC,∴AB∥DE,同理:DF∥AC,∴四边形AGDH为平行四边形,∵∠D=90°,∴四边形AGDH为矩形,∵GH⊥AD,∴四边形AGDH为正方形;②当点D在△ABC内部时,四边形AGDH的面积不可能最大,理由:如图2,点D在内部时(N在△ABC内部或BC边上),延长GD至N,过N作NM⊥AC于M,∴矩形GNMA面积大于矩形AGDH,∴点D在△ABC内部时,四边形AGDH的面积不可能最大,只有点D在BC边上时,面积才有可能最大,如图3,点D在BC上,∵DG∥AC,∴△BGD∽△BAC,∴,∴,∴,∴AH=8﹣GA,=AG×AH=AG×(8﹣AG)=﹣AG2+8AG,S矩形AGDH当AG=﹣=3时,S最大,此时,DG=AH=4,矩形AGDH最大,即:当AG=3,AH=4时,S矩形AGDH在Rt△BGD中,BD=5,∴DC=BC﹣BD=5,即:点D为BC的中点,∵AD=BC=5,∴PA=AD=5,延长PA,∵EF∥BC,QP⊥EF,∴QP⊥BC,∴PQ是EF,BC之间的距离,∴D是EF的距离为PQ的长,在△ABC中,AB×AC=BC×AQ∴AQ=4.8∵△DEF∽△ABC,∴k===.【点评】此题是相似三角形的综合题,主要考查了相似三角形的性质和判定,平行四边形,矩形,正方形的判定和性质,极值的确定,勾股定理的逆定理,解本题的关键是作出辅助线,24.(2016·湖北宜昌)已知抛物线y=x2+(2m+1)x+m(m﹣3)(m为常数,﹣1≤m≤4).A(﹣m﹣1,y1),B(,y2),C(﹣m,y3)是该抛物线上不同的三点,现将抛物线的对称轴绕坐标原点O逆时针旋转90°得到直线a,过抛物线顶点P作PH⊥a于H.(1)用含m的代数式表示抛物线的顶点坐标;(2)若无论m取何值,抛物线与直线y=x﹣km(k为常数)有且仅有一个公共点,求k的值;(3)当1<PH≤6时,试比较y1,y2,y3之间的大小.【考点】二次函数综合题.【分析】(1)根据顶点坐标公式即可解决问题.(2)列方程组根据△=0解决问题.(3)首先证明y1=y3,再根据点B的位置,分类讨论,①令<﹣m﹣1,求出m的范围即可判断,②令=﹣m﹣1,则A与B重合,此情形不合题意,舍弃.③令>﹣m﹣1,求出m的范围即可判断,④令﹣≤<﹣m,求出m的范围即可判断,⑤令=﹣m,B,C重合,不合题意舍弃.⑥令>﹣m,求出m的范围即可判断.【解答】解:(1)∵﹣=﹣,==﹣,∴顶点坐标(﹣,﹣).(2)由消去y得x2+2mx+(m2+km﹣3m)=0,∵抛物线与x轴有且仅有一个公共点,∴△=0,即(k﹣3)m=0,∵无论m取何值,方程总是成立,∴k﹣3=0,∴k=3,(3)PH=|﹣﹣(﹣)|=||,∵1<PH≤6,∴当>0时,有1<≤6,又﹣1≤m≤4,∴<m,当<0时,1<﹣≤6,又∵﹣1≤m≤4,∴﹣1,∴﹣1≤m<﹣或<m≤,∵A(﹣m﹣1,y1)在抛物线上,∴y1=(﹣m﹣1)2+(2m+1)(﹣m﹣1)+m(m+3)=﹣4m,∵C(﹣m,y3)在抛物线上,∴y3=(﹣m)2+(2m+1)(﹣m)+m(m﹣3)=﹣4m,∴y1=y3,①令<﹣m﹣1,则有m<﹣,结合﹣1≤m≤﹣,∴﹣1≤m<﹣,此时,在对称轴的左侧y随x的增大而减小,如图1,∴y2>y1=y3,即当﹣1≤m<﹣时,有y2>y1=y3.②令=﹣m﹣1,则A与B重合,此情形不合题意,舍弃.③令>﹣m﹣1,且≤﹣时,有﹣<m≤﹣,结合﹣1≤m<﹣,∴﹣<m≤﹣,此时,在对称轴的左侧,y随x的增大而减小,如图2,∴y1=y3>y2,即当﹣<m≤﹣时,有y1=y3>y2,④令﹣≤<﹣m,有﹣≤m<0,结合﹣1≤m<﹣,∴﹣≤m<﹣,此时,在对称轴的右侧y随x的增大而增大,如图3,∴y2<y3=y1.⑤令=﹣m,B,C重合,不合题意舍弃.⑥令>﹣m,有m>0,结合<m≤,∴<m≤,此时,在对称轴的右侧,y随x的增大而增大,如图4,∴y2>y3=y1,即当<m≤时,有y2>y3=y1,综上所述,﹣1≤m<﹣或<m≤时,有y2>y1=y3,﹣<m<﹣时,有y2<y1=y3.【点评】本题考查二次函数综合题、顶点坐标公式等知识,解题的关键是熟练掌握利用根的判别式解决抛物线与直线的交点问题,学会分类讨论,学会利用函数图象判断函数值的大小,属于中考压轴题.2016年广西南宁市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(2016·广西南宁)﹣2的相反数是()A.﹣2 B.0 C.2 D.4【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣2的相反数是2.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(2016·广西南宁)把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.【考点】平行投影.【分析】根据平行投影特点以及图中正六棱柱的摆放位置即可求解.【解答】解:把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.故选A.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.3.(2016·广西南宁)据《南国早报》报道:2016年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为()A.0.332×106B.3.32×105C.3.32×104D.33.2×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将332000用科学记数法表示为:3.32×105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.(2016·广西南宁)已知正比例函数y=3x的图象经过点(1,m),则m的值为()A.B.3 C.﹣D.﹣3【考点】一次函数图象上点的坐标特征.【分析】本题较为简单,把坐标代入解析式即可求出m的值.【解答】解:把点(1,m)代入y=3x,可得:m=3,故选B【点评】此题考查一次函数的问题,利用待定系数法直接代入求出未知系数m,比较简单.5.(2016·广西南宁)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分【考点】加权平均数.【分析】利用加权平均数的公式直接计算即可得出答案.【解答】解:由加权平均数的公式可知===86,故选D.【点评】本题主要考查加权平均数的计算,掌握加权平均数的公式=是解题的关键.6.(2016·广西南宁)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD (D为底边中点)的长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米【考点】解直角三角形的应用.【分析】根据等腰三角形的性质得到DC=BD=5米,在Rt△ABD中,利用∠B的正切进行计算即可得到AD的长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.【点评】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.7.(2016·广西南宁)下列运算正确的是()A.a2﹣a=a B.ax+ay=axy C.m2•m4=m6D.(y3)2=y5【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案.【解答】解:A、a2和a不是同类项,不能合并,故本选项错误;B、ax和ay不是同类项,不能合并,故本选项错误;C、m2•m4=m6,计算正确,故本选项正确;D、(y3)2=y6≠y5,故本选项错误.故选C.【点评】本题考查了幂的乘方与积的乘方、合并同类项、同底数幂的乘法的知识,解答本题的关键在于掌握各知识点的运算法则.8.(2016·广西南宁)下列各曲线中表示y是x的函数的是()A.B.C.D.【考点】函数的概念.【分析】根据函数的意义求解即可求出答案.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.【点评】主要考查了函数的定义.注意函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.9.(2016·广西南宁)如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140° B.70° C.60° D.40°【考点】圆周角定理.【分析】先根据四边形内角和定理求出∠DOE的度数,再由圆周角定理即可得出结论.【解答】解:∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,∴∠DOE=180°﹣40°=140°,∴∠P=∠DOE=70°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.10.(2016·广西南宁)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=90【考点】由实际问题抽象出一元一次方程.【分析】设某种书包原价每个x元,根据题意列出方程解答即可.【解答】解:设某种书包原价每个x元,可得:0.8x﹣10=90,故选A【点评】本题考查一元一次方程,解题的关键是明确题意,能列出每次降价后的售价.11.(2016·广西南宁)有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()。

湖北省宜昌市中考数学试卷含答案解析版

湖北省宜昌市中考数学试卷含答案解析版

2017年湖北省宜昌市中考数学试卷一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)有理数﹣15的倒数为( ) A .5 B .15 C .−15 D .﹣52.(3分)如下字体的四个汉字中,是轴对称图形的是( )A .B .C .D .3.(3分)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是( )A .美B .丽C .宜D .昌4.(3分)谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为( )A .量角器B .直尺C .三角板D .圆规5.(3分)5月18 日,新华社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实现了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50 000个MCC 报验点,电缆拉放长度估计1200千米.其中准确数是( )A .27354B .40000C .50000D .12006.(3分)九一(1)班在参加学校4×100m 接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为( )A .1B .12C .13D .14 7.(3分)下列计算正确的是( )A .a 3+a 2=a 5B .a 3?a 2=a 5C .(a 3)2=a 5D .a 6÷a 2=a 38.(3分)如图,在△AEF 中,尺规作图如下:分别以点E ,点F 为圆心,大于12EF 的长为半径作弧,两弧相交于G ,H 两点,作直线GH ,交EF 于点O ,连接AO ,则下列结论正确的是( )A .AO 平分∠EAFB .AO 垂直平分EFC .GH 垂直平分EFD .GH 平分AF9.(3分)如图,要测定被池塘隔开的A ,B 两点的距离.可以在AB 外选一点C ,连接AC ,BC ,并分别找出它们的中点D ,E ,连接ED .现测得AC=30m ,BC=40m ,DE=24m ,则AB=( )A .50mB .48mC .45mD .35m10.(3分)如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是( )A .①②B .①③C .②④D .③④11.(3分)如图,四边形ABCD 内接⊙O ,AC 平分∠BAD ,则下列结论正确的是( )A .AB=ADB .BC=CDC .AB̂=AD ̂ D .∠BCA=∠DCA 12.(3分)今年5月21日是全国第27个助残日,某地开展“心手相连,共浴阳光”为主题的手工制品义卖销售活动.长江特殊教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的相关销售信息汇总如下表,其中销售率最高的是( )手工制品手串 中国结 手提包 木雕笔筒 总数量(个)200 100 80 70 销售数量(个) 190 100 76 68A .手串B .中国结C .手提包D .木雕笔筒13.(3分)△ABC 在网格中的位置如图所示(每个小正方形边长为1),AD ⊥BC 于D ,下列选项中,错误的是( )A .sin α=cos αB .tanC=2C .sin β=cos βD .tan α=114.(3分)计算(x+y)2−(x−y)24xy 的结果为( ) A .1 B .12 C .14 D .015.(3分)某学校要种植一块面积为100m 2的长方形草坪,要求两边长均不小于5m ,则草坪的一边长为y (单位:m )随另一边长x (单位:m )的变化而变化的图象可能是( )A. B.C. D.二、解答题(本大题共9小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(6分)计算:23×(1﹣14)×.17.(6分)解不等式组{x2≥−12(1−x)<4−3x..18.(7分)YC市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格.请回答下列问题:时间第一天7:00﹣8:00 第二天7:00﹣8:00第三天7:00﹣8:00第四天7:00﹣8:00第五天7:00﹣8:00需要租用自行车却未租到车的人数(人)1500 1200 1300 1300 1200 (1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00﹣8:00:需要租用公共自行车的人数是多少?19.(7分)“和谐号”火车从车站出发,在行驶过程中速度y(单位:m/s)与时间x(单位:s)的关系如图所示,其中线段BC∥x轴.(1)当0≤x≤10,求y关于x的函数解析式;(2)求C点的坐标.20.(8分)阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学着作《九章算术》,其勾股数组公式为:{a=12(m2−n2)b=mnc=12(m2+n2).其中m>n>0,m,n是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.21.(8分)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D.B点在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:四边形ABCD是菱形.22.(10分)某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在 2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.23.(11分)正方形ABCD 的边长为1,点O 是BC 边上的一个动点(与B ,C 不重合),以O 为顶点在BC 所在直线的上方作∠MON=90°.(1)当OM 经过点A 时,①请直接填空:ON (可能,不可能)过D 点;(图1仅供分析)②如图2,在ON 上截取OE=OA ,过E 点作EF 垂直于直线BC ,垂足为点F ,作EH ⊥CD 于H ,求证:四边形EFCH 为正方形.(2)当OM 不过点A 时,设OM 交边AB 于G ,且OG=1.在ON 上存在点P ,过P 点作PK 垂直于直线BC ,垂足为点K ,使得S △PKO =4S △OBG ,连接GP ,求四边形PKBG 的最大面积.24.(12分)已知抛物线y=ax 2+bx+c ,其中2a=b >0>c ,且a+b+c=0.(1)直接写出关于x 的一元二次方程ax 2+bx+c=0的一个根;(2)证明:抛物线y=ax 2+bx+c 的顶点A 在第三象限;(3)直线y=x+m 与x ,y 轴分别相交于B ,C 两点,与抛物线y=ax 2+bx+c 相交于A ,D 两点.设抛物线y=ax 2+bx+c 的对称轴与x 轴相交于E .如果在对称轴左侧的抛物线上存在点F ,使得△ADF 与△BOC 相似,并且S △ADF =12S △ADE ,求此时抛物线的表达式.2017年湖北省宜昌市中考数学试卷参考答案与试题解析一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017?宜昌)有理数﹣15的倒数为()A.5 B.15C.−15D.﹣5【考点】17:倒数.【分析】根据倒数的定义,找出﹣15的倒数为﹣5,此题得解.【解答】解:根据倒数的定义可知:﹣15的倒数为﹣5.故选D.【点评】本题考查了倒数,熟练掌握倒数的定义是解题的关键.2.(3分)(2017?宜昌)如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:根据轴对称图形的概念可知,A为轴对称图形.故选:A.【点评】本题考查轴对称图形的知识,要求掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(3分)(2017?宜昌)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是()A.美B.丽C.宜D.昌【考点】I8:专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴有“爱”字一面的相对面上的字是宜.故选C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)(2017?宜昌)谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为()A.量角器B.直尺 C.三角板D.圆规【考点】1O:数学常识.【分析】利用圆规的特点直接得到答案即可.【解答】解:圆规有两只脚,一铁脚固定,另一脚旋转,故选D.【点评】本题考查了简单的数学知识,稍有点数学常识的同学就会做出正确的回答,难度不大.5.(3分)(2017?宜昌)5月18 日,新华社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实现了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50 000个MCC报验点,电缆拉放长度估计1200千米.其中准确数是()A.27354 B.40000 C.50000 D.1200【考点】1H:近似数和有效数字.【分析】利用精确数和近似数的区别进行判断.【解答】解:27354为准确数,4000、50000、1200都是近似数.故选A.【点评】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.6.(3分)(2017?宜昌)九一(1)班在参加学校4×100m接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为()A.1 B.12C.13D.14【考点】X4:概率公式.【分析】根据概率公式进行解答.【解答】解:甲跑第一棒的概率为14.故选:D.【点评】本题考查了概率公式.随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数.7.(3分)(2017?宜昌)下列计算正确的是()A.a3+a2=a5B.a3?a2=a5C.(a3)2=a5D.a6÷a2=a3【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】由合并同类项、同底数幂的乘法法则、幂的乘方法则、同底数幂的除法法则即可得出结论.【解答】解:A、a3+a2=a5.不正确;B、a3?a2=a5正确;C、(a3)2=a6≠a5,不正确;D、a6÷a2=a4≠a3,不正确;故选:B.【点评】本题考查了合并同类项、同底数幂的乘法法则、幂的乘方法则、同底数幂的除法法则;熟记有关法则是关键.8.(3分)(2017?宜昌)如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列于12结论正确的是()A.AO平分∠EAF B.AO垂直平分EF C.GH垂直平分EF D.GH平分AF【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】直接根据线段垂直平分线的作法即可得出结论.【解答】解:由题意可得,GH垂直平分线段EF.故选C.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.9.(3分)(2017?宜昌)如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接ED.现测得AC=30m,BC=40m,DE=24m,则AB=()A.50m B.48m C.45m D.35m【考点】KX:三角形中位线定理.【分析】根据中位线定理可得:AB=2DE=48m.【解答】解:∵D是AC的中点,E是BC的中点,∴DE是△ABC的中位线,AB,∴DE=12∵DE=24m,∴AB=2DE=48m,故选B.【点评】本题考查了三角形的中位线定理,属于基础题,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半.10.(3分)(2017?宜昌)如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是()A.①② B.①③ C.②④ D.③④【考点】L3:多边形内角与外角.【分析】根据多边形的内角和定理即可判断.【解答】解:∵①剪开后的两个图形是四边形,它们的内角和都是360°,③剪开后的两个图形是三角形,它们的内角和都是180°;∴①③剪开后的两个图形的内角和相等,故选B.【点评】本题考查了三角形内角和、四边形的内角和以及多边形的内角和定理.11.(3分)(2017?宜昌)如图,四边形ABCD内接⊙O,AC平分∠BAD,则下列结论正确的是()A .AB=ADB .BC=CDC .AB̂=AD ̂ D .∠BCA=∠DCA 【考点】M4:圆心角、弧、弦的关系.【分析】根据圆心角、弧、弦的关系对各选项进行逐一判断即可.【解答】解:A 、∵∠ACB 与∠ACD 的大小关系不确定,∴AB 与AD 不一定相等,故本选项错误;B 、∵AC 平分∠BAD ,∴∠BAC=∠DAC ,∴BC=CD ,故本选项正确;C 、∵∠ACB 与∠ACD 的大小关系不确定,∴AB̂与AD ̂不一定相等,故本选项错误; D 、∠BCA 与∠DCA 的大小关系不确定,故本选项错误.故选B .【点评】本题考查的是圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.12.(3分)(2017?宜昌)今年5月21日是全国第27个助残日,某地开展“心手相连,共浴阳光”为主题的手工制品义卖销售活动.长江特殊教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的相关销售信息汇总如下表,其中销售率最高的是( )手工制品手串 中国结 手提包 木雕笔筒 总数量(个)200 100 80 70 销售数量(个) 190 100 76 68A .手串B .中国结C .手提包D .木雕笔筒【考点】18:有理数大小比较;1D :有理数的除法.【分析】分别求出各手工制品的销售率,再比较大小即可.【解答】解:∵手串的销售率=190200=1920<1;中国结的销售率=100100=1;手提包的销售率=7680=1920<1;木雕笔筒的销售率=6870=3435<1,∴销售率最高的是中国结.故选B.【点评】本题考查的是有理数的大小比较,熟知有理数大小比较的法则是解答此题的关键.13.(3分)(2017?宜昌)△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC于D,下列选项中,错误的是()A.sinα=cosαB.tanC=2 C.sinβ=cosβD.tanα=1【考点】T1:锐角三角函数的定义.【分析】观察图象可知,△ADB是等腰直角三角形,BD=AD=2,AB=2√2,AD=2,CD=1,AC=√5,利用锐角三角函数一一计算即可判断.【解答】解:观察图象可知,△ADB是等腰直角三角形,BD=AD=2,AB=2√2,AD=2,CD=1,AC=√5,∴sinα=cosα=√22,故①正确,tanC=ADCD=2,故②正确,tanα=1,故D正确,③∵sinβ=CDAC =√55,cosβ=2√55,∴sinβ≠cosβ,故C错误.故选C.【点评】本题考查锐角三角函数的应用.等腰直角三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14.(3分)(2017?宜昌)计算(x+y)2−(x−y)24xy 的结果为( ) A .1 B .12 C .14 D .0【考点】66:约分.【分析】分子利用平方差公式进行因式分解,然后通过约分进行化简.【解答】解:(x+y)2−(x−y)24xy =(x+y+x−y)(x+y−x+y)4xy =4xy 4xy =1.故选:A .【点评】本题考查了约分.约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.15.(3分)(2017?宜昌)某学校要种植一块面积为100m 2的长方形草坪,要求两边长均不小于5m ,则草坪的一边长为y (单位:m )随另一边长x (单位:m )的变化而变化的图象可能是( ) A . B . C .D .【考点】GA :反比例函数的应用.【分析】易知x 、y 是反比例函数,再根据边长的取值范围即可解题.【解答】解:∵草坪面积为100m 2,∴x 、y 存在关系y=100x ,∵两边长均不小于5m ,∴x ≥5、y ≥5,则x ≤20,故选 C .【点评】反比例函数确定y 的取值范围,即可求得x 的取值范围,熟练掌握是解题的关键.二、解答题(本大题共9小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(6分)(2017?宜昌)计算:23×(1﹣14)×.【考点】1G :有理数的混合运算.【专题】11 :计算题;511:实数.【分析】原式先计算括号中的减法运算,再计算乘方运算,最后算乘法运算即可得到结果.【解答】解:原式=8×34×12=3. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.(6分)(2017?宜昌)解不等式组{x 2≥−12(1−x)<4−3x.. 【考点】CB :解一元一次不等式组.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:{x2≥−1①2(1−x)<4−3x②,由①得:x≥﹣2,由②得:x<2,故不等式组的解集为﹣2≤x<2.【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.(7分)(2017?宜昌)YC市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格.请回答下列问题:时间第一天7:00﹣8:00 第二天7:00﹣8:00第三天7:00﹣8:00第四天7:00﹣8:00第五天7:00﹣8:00需要租用自行车却未租到车的人数(人)1500 1200 1300 1300 1200 (1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00﹣8:00:需要租用公共自行车的人数是多少?【考点】W4:中位数;V5:用样本估计总体.【分析】(1)表格中5个数据按从小到大的顺序排列后,中位数应是第3个数据;(2)根据平均数等于数据之和除以总个数求出平均每天需要租用自行车却未租到车的人数,再加上700即可.【解答】解:(1)表格中5个数据按从小到大的顺序排列为1200,1200,1300,1300,1500,所以中位数是1300;(2)平均每天需要租用自行车却未租到车的人数:(1500+1200+1300+1300+1200)÷5=1300,∵YC市首批一次性投放公共自行车700辆供市民租用出行,∴平均每天需要租用公共自行车的人数是1300+700=2000.【点评】本题考查了中位数,平均数以及用样本估计总体.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷总个数.19.(7分)(2017?宜昌)“和谐号”火车从车站出发,在行驶过程中速度y (单位:m/s )与时间x (单位:s )的关系如图所示,其中线段BC ∥x 轴.(1)当0≤x ≤10,求y 关于x 的函数解析式;(2)求C 点的坐标.【考点】FH :一次函数的应用.【分析】(1)根据函数图象和图象中的数据可以求得当0≤x ≤10,y 关于x 的函数解析式;(2)根据函数图象可以得到当10≤x ≤30时,y 关于x 的函数解析式,然后将x=30代入求出相应的y 值,然后线段BC ∥x 轴,即可求得点C 的坐标.【解答】解:(1)当0≤x ≤10时,设y 关于x 的函数解析式为y=kx ,10k=50,得k=5,即当0≤x ≤10时,y 关于x 的函数解析式为y=5x ;(2)设当10≤x ≤30时,y 关于x 的函数解析式为y=ax+b ,{10a +b =5025a +b =80,得{a =2b =30, 即当10≤x ≤30时,y 关于x 的函数解析式为y=2x+30,当x=30时,y=2×30+30=90,∵线段BC ∥x 轴,∴点C 的坐标为(60,90).【点评】本题考查了一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用一次函数的性质解答.20.(8分)(2017?宜昌)阅读:能够成为直角三角形三条边长的三个正整数a ,b ,c ,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学着作《九章算术》,其勾股数组公式为:{a =12(m 2−n 2)b =mn c =12(m 2+n 2).其中m >n >0,m ,n 是互质的奇数. 应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.【考点】KT :勾股数;KQ :勾股定理.【分析】由n=1,得到a=12(m 2﹣1)①,b=m ②,c=12(m 2+1)③,根据直角三角形有一边长为5,列方程即可得到结论.【解答】解:当n=1,a=12(m 2﹣1)①,b=m ②,c=12(m 2+1)③,∵直角三角形有一边长为5,∴Ⅰ、当a=5时,12(m 2﹣1)=5,解得:m=±√11(舍去),Ⅱ、当b=5时,即m=5,代入①③得,a=12,c=13,Ⅲ、当c=5时,12(m 2+1)=5,解得:m=±3,∵m >0,∴m=3,代入①②得,a=4,b=3,综上所述,直角三角形的另外两条边长分别为12,13或3,4.【点评】本题考查了勾股定理的逆定理,分类讨论是解题的关键.21.(8分)(2017?宜昌)已知,四边形ABCD 中,E 是对角线AC 上一点,DE=EC ,以AE 为直径的⊙O 与边CD 相切于点D .B 点在⊙O 上,连接OB .(1)求证:DE=OE ;(2)若CD ∥AB ,求证:四边形ABCD 是菱形.【考点】MC:切线的性质;L9:菱形的判定.【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.【解答】解:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE,∴AB=CD,∴四边形A∴D是平行四边形,∠DOE=30°,∴∠DAE=12∴∠1=∠DAE,∴CD=AD,∴?ABCD是菱形.【点评】此题是切线的性质,主要考查了同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO≌△CDE是解本题的关键.22.(10分)(2017?宜昌)某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在 2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.【考点】AD:一元二次方程的应用;B7:分式方程的应用.【分析】(1)由线路敷设三年总投资为54亿元及这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2,可得答案.(2)设2015年年初,对辅助配套的投资为x 亿元,则线路敷设的投资为2x 亿元,搬迁安置的投资是4x 亿元,根据“线路敷设三年总投资为54亿元、辅助配套三年的总投资为36亿元”列方程组,解之求得x 、b 的值可得答案.(3)由x=5得出2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y ,根据“2017年年初搬迁安置的为投资5亿”列方程求解可得.【解答】解:(1)三年用于辅助配套的投资将达到54×23=36(亿元);(2)设2015年年初,对辅助配套的投资为x 亿元,则线路敷设的投资为2x 亿元,搬迁安置的投资是4x 亿元,根据题意,得:{2x +2x +b +2x +2b =54x +(1+1.5b 2x )x +x +(1+1.5b 2x )x +4=36, 解得:{x =5b =8, ∴市政府2015年年初对三项工程的总投资是7x=35亿元;(3)由x=5得,2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y ,由题意,得:20(1﹣y )2=5,解得:y 1=,y 2=(舍)答:搬迁安置投资逐年递减的百分数为50%.【点评】本题主要考查一元二次方程、二元一次方程组的应用,理解题意、准确梳理题中所涉数量关系,找到题目蕴含的相等关系是解题的关键.23.(11分)(2017?宜昌)正方形ABCD 的边长为1,点O 是BC 边上的一个动点(与B ,C 不重合),以O 为顶点在BC 所在直线的上方作∠MON=90°.(1)当OM 经过点A 时,①请直接填空:ON 不可能 (可能,不可能)过D 点;(图1仅供分析)②如图2,在ON 上截取OE=OA ,过E 点作EF 垂直于直线BC ,垂足为点F ,作EH ⊥CD 于H ,求证:四边形EFCH 为正方形.(2)当OM 不过点A 时,设OM 交边AB 于G ,且OG=1.在ON 上存在点P ,过P 点作PK 垂直于直线BC,垂足为点K,使得S△PKO=4S△OBG,连接GP,求四边形PKBG的最大面积.【考点】LO:四边形综合题.【分析】(1)①若ON过点D时,则在△OAD中不满足勾股定理,可知不可能过D点;②由条件可先判业四边形EFCH为矩形,再证明△OFE≌△ABO,可证得结论;(2)由条件可证明△PKO∽△OBG,利用相似三角形的性质可求得OP=2,可求得△POG面积为定值及△PKO和△OBG的关系,只要△CGB的面积有最大值时,则四边形PKBG的面积就最大,设OB=a,BG=b,由勾股定理可用b表示出a,则可用a表示出△CBG的面积,利用二次函数的性质可求得其最大值,则可求得四边形PKBG面积的最大值.【解答】解:(1)①若ON过点D,则OA>AB,OD>CD,∴OA2>AD2,OD2>AD2,∴OA2+OD2>2AD2≠AD2,∴∠AOD≠90°,这与∠MON=90°矛盾,∴ON不可能过D点,故答案为:不可能;②∵EH⊥CD,EF⊥BC,∴∠EHC=∠EFC=90°,且∠HCF=90°,∴四边形EFCH为矩形,∵∠MON=90°,∴∠EOF=90°﹣∠AOB,在正方形ABCD中,∠BAO=90°﹣∠AOB,∴∠EOF=∠BAO,在△OFE和△ABO中{∠EOF =∠BAO∠EFO =∠BOE =AO∴△OFE ≌△ABO (AAS ),∴EF=OB ,OF=AB ,又OF=CF+OC=AB=BC=BO+OC=EF+OC ,∴CF=EF ,∴四边形EFCH 为正方形;(2)∵∠POK=∠OGB ,∠PKO=∠OBG ,∴△PKO ∽△OBG ,∵S △PKO =4S △OBG ,∴S △PKOS △OBG =(OP OG )2=4, ∴OP=2,∴S △POG =12OG?OP=12×1×2=1,设OB=a ,BG=b ,则a 2+b 2=OG 2=1,∴b=√1−a 2,∴S △OBG =12ab=12a √1−a 2=12√−a 4+a 2=12√−(a 2−12)2+14,∴当a 2=12时,△OBG 有最大值14,此时S △PKO =4S △OBG =1,∴四边形PKBG 的最大面积为1+1+14=94.【点评】本题为四边形的综合应用,涉及矩形的判定和性质、全等三角形的判定和性质、相似三角形的判定和性质、三角形的面积、二次函数的性质及方程思想等知识.在(1)①中注意反证法的应用,在(1)②中证得CE=EF是解题的关键,在(2)中确定出△OBG面积的最大值是解题的关键.本题考查知识点较多,综合性较强,难度适中.24.(12分)(2017?宜昌)已知抛物线y=ax2+bx+c,其中2a=b>0>c,且a+b+c=0.(1)直接写出关于x的一元二次方程ax2+bx+c=0的一个根;(2)证明:抛物线y=ax2+bx+c的顶点A在第三象限;(3)直线y=x+m与x,y轴分别相交于B,C两点,与抛物线y=ax2+bx+c相交于A,D两点.设抛物线y=ax2+bx+c的对称轴与x轴相交于E.如果在对称轴左侧的抛物线上存在点F,使得△ADF与△BOC相似,并且S△ADF=1S△ADE,求此时抛物线的表达式.2【考点】HF:二次函数综合题.【专题】15 :综合题;535:二次函数图象及其性质.【分析】(1)根据a+b+c=0,结合方程确定出方程的一个根即可;(2)表示出抛物线的对称轴,将2a=b代入,并结合a+b+c=0,表示出c,判断顶点坐标即可;(3)根据表示出的b与c,求出方程的解确定出抛物线解析式,由直线y=x+m与x,y轴交于B,C两点,表示出OB=OC=|m|,可得出三角形BOC为等腰直角三角形,确定出三角形三角形ADE面积,根据三角形ADF等于三角形ADE面积的一半求出a的值,即可确定出抛物线解析式.【解答】解:(1)∵抛物线y=ax2+bx+c,a+b+c=0,∴关于x的一元二次方程ax2+bx+c=0的一个根为x=1;(2)证明:∵2a=b,∴对称轴x=﹣b=﹣1,2a把b=2a 代入a+b+c=0中得:c=﹣3a ,∵a >0,c <0,∴△=b 2﹣4ac >0,∴4ac−b 24a <0,则顶点A (﹣1,4ac−b 24a )在第三象限;(3)由b=2a ,c=﹣3a ,得到x=−b±√b 2−4ac 2a =−2a±4a 2a ,解得:x 1=﹣3,x 2=1, 二次函数解析式为y=ax 2+2ax ﹣3a ,∵直线y=x+m 与x ,y 轴分别相交于点B ,C 两点,则OB=OC=|m|,∴△BOC 是以∠BOC 为直角的等腰直角三角形,即此时直线y=x+m 与对称轴x=﹣1的夹角∠BAE=45°,∵点F 在对称轴左侧的抛物线上,则∠DAF >45°,此时△ADF 与△BOC 相似,顶点A 只可能对应△BOC 的直角顶点O ,即△ADF 是以A 为直角顶点的等腰直角三角形,且对称轴为x=﹣1,设对称轴x=﹣1与OF 交于点G ,∵直线y=x+m 过顶点A (﹣1,﹣4a ),∴m=1﹣4a ,∴直线解析式为y=x+1﹣4a ,联立得:{y =x +1−4a y =ax 2+2ax −3a, 解得:{x =−1y =−4a 或{x =1a −1y =1a−4a , 这里(﹣1,﹣4a )为顶点A ,(1a ﹣1,1a﹣4a )为点D 坐标, 点D 到对称轴x=﹣1的距离为1a ﹣1﹣(﹣1)=1a ,AE=|﹣4a|=4a ,∴S △ADE =12×1a ×4a=2,即它的面积为定值,。

宜昌中考数学试题及答案中考 .doc

宜昌中考数学试题及答案中考 .doc

:2016年宜昌中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。

学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。

适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。

适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。

适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

湖北省宜昌市中考数学试卷含答案解析版

湖北省宜昌市中考数学试卷含答案解析版

2017年湖北省宜昌市中考数学试卷一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)有理数﹣15的倒数为( ) A .5 B .15 C .−15 D .﹣52.(3分)如下字体的四个汉字中,是轴对称图形的是( )A .B .C .D .3.(3分)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是( )A .美B .丽C .宜D .昌4.(3分)谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为( )A .量角器B .直尺C .三角板D .圆规5.(3分)5月18 日,新华社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实现了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50 000个MCC 报验点,电缆拉放长度估计1200千米.其中准确数是( )A .27354B .40000C .50000D .12006.(3分)九一(1)班在参加学校4×100m 接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为( )A .1B .12C .13D .14 7.(3分)下列计算正确的是( )A .a 3+a 2=a 5B .a 3?a 2=a 5C .(a 3)2=a 5D .a 6÷a 2=a 38.(3分)如图,在△AEF 中,尺规作图如下:分别以点E ,点F 为圆心,大于12EF 的长为半径作弧,两弧相交于G ,H 两点,作直线GH ,交EF 于点O ,连接AO ,则下列结论正确的是( )A .AO 平分∠EAFB .AO 垂直平分EFC .GH 垂直平分EFD .GH 平分AF9.(3分)如图,要测定被池塘隔开的A ,B 两点的距离.可以在AB 外选一点C ,连接AC ,BC ,并分别找出它们的中点D ,E ,连接ED .现测得AC=30m ,BC=40m ,DE=24m ,则AB=( )A .50mB .48mC .45mD .35m10.(3分)如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是( )A .①②B .①③C .②④D .③④11.(3分)如图,四边形ABCD 内接⊙O ,AC 平分∠BAD ,则下列结论正确的是( )A .AB=ADB .BC=CDC .AB̂=AD ̂ D .∠BCA=∠DCA 12.(3分)今年5月21日是全国第27个助残日,某地开展“心手相连,共浴阳光”为主题的手工制品义卖销售活动.长江特殊教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的相关销售信息汇总如下表,其中销售率最高的是( )手工制品手串 中国结 手提包 木雕笔筒 总数量(个)200 100 80 70 销售数量(个) 190 100 76 68A .手串B .中国结C .手提包D .木雕笔筒13.(3分)△ABC 在网格中的位置如图所示(每个小正方形边长为1),AD ⊥BC 于D ,下列选项中,错误的是( )A .sin α=cos αB .tanC=2C .sin β=cos βD .tan α=114.(3分)计算(x+y)2−(x−y)24xy 的结果为( ) A .1 B .12 C .14 D .015.(3分)某学校要种植一块面积为100m 2的长方形草坪,要求两边长均不小于5m ,则草坪的一边长为y (单位:m )随另一边长x (单位:m )的变化而变化的图象可能是( )A. B.C. D.二、解答题(本大题共9小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(6分)计算:23×(1﹣14)×.17.(6分)解不等式组{x2≥−12(1−x)<4−3x..18.(7分)YC市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格.请回答下列问题:时间第一天7:00﹣8:00 第二天7:00﹣8:00第三天7:00﹣8:00第四天7:00﹣8:00第五天7:00﹣8:00需要租用自行车却未租到车的人数(人)1500 1200 1300 1300 1200 (1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00﹣8:00:需要租用公共自行车的人数是多少?19.(7分)“和谐号”火车从车站出发,在行驶过程中速度y(单位:m/s)与时间x(单位:s)的关系如图所示,其中线段BC∥x轴.(1)当0≤x≤10,求y关于x的函数解析式;(2)求C点的坐标.20.(8分)阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学着作《九章算术》,其勾股数组公式为:{a=12(m2−n2)b=mnc=12(m2+n2).其中m>n>0,m,n是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.21.(8分)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D.B点在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:四边形ABCD是菱形.22.(10分)某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在 2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.23.(11分)正方形ABCD 的边长为1,点O 是BC 边上的一个动点(与B ,C 不重合),以O 为顶点在BC 所在直线的上方作∠MON=90°.(1)当OM 经过点A 时,①请直接填空:ON (可能,不可能)过D 点;(图1仅供分析)②如图2,在ON 上截取OE=OA ,过E 点作EF 垂直于直线BC ,垂足为点F ,作EH ⊥CD 于H ,求证:四边形EFCH 为正方形.(2)当OM 不过点A 时,设OM 交边AB 于G ,且OG=1.在ON 上存在点P ,过P 点作PK 垂直于直线BC ,垂足为点K ,使得S △PKO =4S △OBG ,连接GP ,求四边形PKBG 的最大面积.24.(12分)已知抛物线y=ax 2+bx+c ,其中2a=b >0>c ,且a+b+c=0.(1)直接写出关于x 的一元二次方程ax 2+bx+c=0的一个根;(2)证明:抛物线y=ax 2+bx+c 的顶点A 在第三象限;(3)直线y=x+m 与x ,y 轴分别相交于B ,C 两点,与抛物线y=ax 2+bx+c 相交于A ,D 两点.设抛物线y=ax 2+bx+c 的对称轴与x 轴相交于E .如果在对称轴左侧的抛物线上存在点F ,使得△ADF 与△BOC 相似,并且S △ADF =12S △ADE ,求此时抛物线的表达式.2017年湖北省宜昌市中考数学试卷参考答案与试题解析一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017?宜昌)有理数﹣15的倒数为()A.5 B.15C.−15D.﹣5【考点】17:倒数.【分析】根据倒数的定义,找出﹣15的倒数为﹣5,此题得解.【解答】解:根据倒数的定义可知:﹣15的倒数为﹣5.故选D.【点评】本题考查了倒数,熟练掌握倒数的定义是解题的关键.2.(3分)(2017?宜昌)如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:根据轴对称图形的概念可知,A为轴对称图形.故选:A.【点评】本题考查轴对称图形的知识,要求掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(3分)(2017?宜昌)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是()A.美B.丽C.宜D.昌【考点】I8:专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴有“爱”字一面的相对面上的字是宜.故选C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)(2017?宜昌)谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为()A.量角器B.直尺 C.三角板D.圆规【考点】1O:数学常识.【分析】利用圆规的特点直接得到答案即可.【解答】解:圆规有两只脚,一铁脚固定,另一脚旋转,故选D.【点评】本题考查了简单的数学知识,稍有点数学常识的同学就会做出正确的回答,难度不大.5.(3分)(2017?宜昌)5月18 日,新华社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实现了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50 000个MCC报验点,电缆拉放长度估计1200千米.其中准确数是()A.27354 B.40000 C.50000 D.1200【考点】1H:近似数和有效数字.【分析】利用精确数和近似数的区别进行判断.【解答】解:27354为准确数,4000、50000、1200都是近似数.故选A.【点评】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.6.(3分)(2017?宜昌)九一(1)班在参加学校4×100m接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为()A.1 B.12C.13D.14【考点】X4:概率公式.【分析】根据概率公式进行解答.【解答】解:甲跑第一棒的概率为14.故选:D.【点评】本题考查了概率公式.随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数.7.(3分)(2017?宜昌)下列计算正确的是()A.a3+a2=a5B.a3?a2=a5C.(a3)2=a5D.a6÷a2=a3【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】由合并同类项、同底数幂的乘法法则、幂的乘方法则、同底数幂的除法法则即可得出结论.【解答】解:A、a3+a2=a5.不正确;B、a3?a2=a5正确;C、(a3)2=a6≠a5,不正确;D、a6÷a2=a4≠a3,不正确;故选:B.【点评】本题考查了合并同类项、同底数幂的乘法法则、幂的乘方法则、同底数幂的除法法则;熟记有关法则是关键.8.(3分)(2017?宜昌)如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列于12结论正确的是()A.AO平分∠EAF B.AO垂直平分EF C.GH垂直平分EF D.GH平分AF【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】直接根据线段垂直平分线的作法即可得出结论.【解答】解:由题意可得,GH垂直平分线段EF.故选C.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.9.(3分)(2017?宜昌)如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接ED.现测得AC=30m,BC=40m,DE=24m,则AB=()A.50m B.48m C.45m D.35m【考点】KX:三角形中位线定理.【分析】根据中位线定理可得:AB=2DE=48m.【解答】解:∵D是AC的中点,E是BC的中点,∴DE是△ABC的中位线,AB,∴DE=12∵DE=24m,∴AB=2DE=48m,故选B.【点评】本题考查了三角形的中位线定理,属于基础题,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半.10.(3分)(2017?宜昌)如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是()A.①② B.①③ C.②④ D.③④【考点】L3:多边形内角与外角.【分析】根据多边形的内角和定理即可判断.【解答】解:∵①剪开后的两个图形是四边形,它们的内角和都是360°,③剪开后的两个图形是三角形,它们的内角和都是180°;∴①③剪开后的两个图形的内角和相等,故选B.【点评】本题考查了三角形内角和、四边形的内角和以及多边形的内角和定理.11.(3分)(2017?宜昌)如图,四边形ABCD内接⊙O,AC平分∠BAD,则下列结论正确的是()A .AB=ADB .BC=CDC .AB̂=AD ̂ D .∠BCA=∠DCA 【考点】M4:圆心角、弧、弦的关系.【分析】根据圆心角、弧、弦的关系对各选项进行逐一判断即可.【解答】解:A 、∵∠ACB 与∠ACD 的大小关系不确定,∴AB 与AD 不一定相等,故本选项错误;B 、∵AC 平分∠BAD ,∴∠BAC=∠DAC ,∴BC=CD ,故本选项正确;C 、∵∠ACB 与∠ACD 的大小关系不确定,∴AB̂与AD ̂不一定相等,故本选项错误; D 、∠BCA 与∠DCA 的大小关系不确定,故本选项错误.故选B .【点评】本题考查的是圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.12.(3分)(2017?宜昌)今年5月21日是全国第27个助残日,某地开展“心手相连,共浴阳光”为主题的手工制品义卖销售活动.长江特殊教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的相关销售信息汇总如下表,其中销售率最高的是( )手工制品手串 中国结 手提包 木雕笔筒 总数量(个)200 100 80 70 销售数量(个) 190 100 76 68A .手串B .中国结C .手提包D .木雕笔筒【考点】18:有理数大小比较;1D :有理数的除法.【分析】分别求出各手工制品的销售率,再比较大小即可.【解答】解:∵手串的销售率=190200=1920<1;中国结的销售率=100100=1;手提包的销售率=7680=1920<1;木雕笔筒的销售率=6870=3435<1,∴销售率最高的是中国结.故选B.【点评】本题考查的是有理数的大小比较,熟知有理数大小比较的法则是解答此题的关键.13.(3分)(2017?宜昌)△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC于D,下列选项中,错误的是()A.sinα=cosαB.tanC=2 C.sinβ=cosβD.tanα=1【考点】T1:锐角三角函数的定义.【分析】观察图象可知,△ADB是等腰直角三角形,BD=AD=2,AB=2√2,AD=2,CD=1,AC=√5,利用锐角三角函数一一计算即可判断.【解答】解:观察图象可知,△ADB是等腰直角三角形,BD=AD=2,AB=2√2,AD=2,CD=1,AC=√5,∴sinα=cosα=√22,故①正确,tanC=ADCD=2,故②正确,tanα=1,故D正确,③∵sinβ=CDAC =√55,cosβ=2√55,∴sinβ≠cosβ,故C错误.故选C.【点评】本题考查锐角三角函数的应用.等腰直角三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14.(3分)(2017?宜昌)计算(x+y)2−(x−y)24xy 的结果为( ) A .1 B .12 C .14 D .0【考点】66:约分.【分析】分子利用平方差公式进行因式分解,然后通过约分进行化简.【解答】解:(x+y)2−(x−y)24xy =(x+y+x−y)(x+y−x+y)4xy =4xy 4xy =1.故选:A .【点评】本题考查了约分.约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.15.(3分)(2017?宜昌)某学校要种植一块面积为100m 2的长方形草坪,要求两边长均不小于5m ,则草坪的一边长为y (单位:m )随另一边长x (单位:m )的变化而变化的图象可能是( ) A . B . C .D .【考点】GA :反比例函数的应用.【分析】易知x 、y 是反比例函数,再根据边长的取值范围即可解题.【解答】解:∵草坪面积为100m 2,∴x 、y 存在关系y=100x ,∵两边长均不小于5m ,∴x ≥5、y ≥5,则x ≤20,故选 C .【点评】反比例函数确定y 的取值范围,即可求得x 的取值范围,熟练掌握是解题的关键.二、解答题(本大题共9小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(6分)(2017?宜昌)计算:23×(1﹣14)×.【考点】1G :有理数的混合运算.【专题】11 :计算题;511:实数.【分析】原式先计算括号中的减法运算,再计算乘方运算,最后算乘法运算即可得到结果.【解答】解:原式=8×34×12=3. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.(6分)(2017?宜昌)解不等式组{x 2≥−12(1−x)<4−3x.. 【考点】CB :解一元一次不等式组.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:{x2≥−1①2(1−x)<4−3x②,由①得:x≥﹣2,由②得:x<2,故不等式组的解集为﹣2≤x<2.【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.(7分)(2017?宜昌)YC市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格.请回答下列问题:时间第一天7:00﹣8:00 第二天7:00﹣8:00第三天7:00﹣8:00第四天7:00﹣8:00第五天7:00﹣8:00需要租用自行车却未租到车的人数(人)1500 1200 1300 1300 1200 (1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00﹣8:00:需要租用公共自行车的人数是多少?【考点】W4:中位数;V5:用样本估计总体.【分析】(1)表格中5个数据按从小到大的顺序排列后,中位数应是第3个数据;(2)根据平均数等于数据之和除以总个数求出平均每天需要租用自行车却未租到车的人数,再加上700即可.【解答】解:(1)表格中5个数据按从小到大的顺序排列为1200,1200,1300,1300,1500,所以中位数是1300;(2)平均每天需要租用自行车却未租到车的人数:(1500+1200+1300+1300+1200)÷5=1300,∵YC市首批一次性投放公共自行车700辆供市民租用出行,∴平均每天需要租用公共自行车的人数是1300+700=2000.【点评】本题考查了中位数,平均数以及用样本估计总体.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷总个数.19.(7分)(2017?宜昌)“和谐号”火车从车站出发,在行驶过程中速度y (单位:m/s )与时间x (单位:s )的关系如图所示,其中线段BC ∥x 轴.(1)当0≤x ≤10,求y 关于x 的函数解析式;(2)求C 点的坐标.【考点】FH :一次函数的应用.【分析】(1)根据函数图象和图象中的数据可以求得当0≤x ≤10,y 关于x 的函数解析式;(2)根据函数图象可以得到当10≤x ≤30时,y 关于x 的函数解析式,然后将x=30代入求出相应的y 值,然后线段BC ∥x 轴,即可求得点C 的坐标.【解答】解:(1)当0≤x ≤10时,设y 关于x 的函数解析式为y=kx ,10k=50,得k=5,即当0≤x ≤10时,y 关于x 的函数解析式为y=5x ;(2)设当10≤x ≤30时,y 关于x 的函数解析式为y=ax+b ,{10a +b =5025a +b =80,得{a =2b =30, 即当10≤x ≤30时,y 关于x 的函数解析式为y=2x+30,当x=30时,y=2×30+30=90,∵线段BC ∥x 轴,∴点C 的坐标为(60,90).【点评】本题考查了一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用一次函数的性质解答.20.(8分)(2017?宜昌)阅读:能够成为直角三角形三条边长的三个正整数a ,b ,c ,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学着作《九章算术》,其勾股数组公式为:{a =12(m 2−n 2)b =mn c =12(m 2+n 2).其中m >n >0,m ,n 是互质的奇数. 应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.【考点】KT :勾股数;KQ :勾股定理.【分析】由n=1,得到a=12(m 2﹣1)①,b=m ②,c=12(m 2+1)③,根据直角三角形有一边长为5,列方程即可得到结论.【解答】解:当n=1,a=12(m 2﹣1)①,b=m ②,c=12(m 2+1)③,∵直角三角形有一边长为5,∴Ⅰ、当a=5时,12(m 2﹣1)=5,解得:m=±√11(舍去),Ⅱ、当b=5时,即m=5,代入①③得,a=12,c=13,Ⅲ、当c=5时,12(m 2+1)=5,解得:m=±3,∵m >0,∴m=3,代入①②得,a=4,b=3,综上所述,直角三角形的另外两条边长分别为12,13或3,4.【点评】本题考查了勾股定理的逆定理,分类讨论是解题的关键.21.(8分)(2017?宜昌)已知,四边形ABCD 中,E 是对角线AC 上一点,DE=EC ,以AE 为直径的⊙O 与边CD 相切于点D .B 点在⊙O 上,连接OB .(1)求证:DE=OE ;(2)若CD ∥AB ,求证:四边形ABCD 是菱形.【考点】MC:切线的性质;L9:菱形的判定.【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.【解答】解:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE,∴AB=CD,∴四边形A∴D是平行四边形,∠DOE=30°,∴∠DAE=12∴∠1=∠DAE,∴CD=AD,∴?ABCD是菱形.【点评】此题是切线的性质,主要考查了同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO≌△CDE是解本题的关键.22.(10分)(2017?宜昌)某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在 2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.【考点】AD:一元二次方程的应用;B7:分式方程的应用.【分析】(1)由线路敷设三年总投资为54亿元及这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2,可得答案.(2)设2015年年初,对辅助配套的投资为x 亿元,则线路敷设的投资为2x 亿元,搬迁安置的投资是4x 亿元,根据“线路敷设三年总投资为54亿元、辅助配套三年的总投资为36亿元”列方程组,解之求得x 、b 的值可得答案.(3)由x=5得出2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y ,根据“2017年年初搬迁安置的为投资5亿”列方程求解可得.【解答】解:(1)三年用于辅助配套的投资将达到54×23=36(亿元);(2)设2015年年初,对辅助配套的投资为x 亿元,则线路敷设的投资为2x 亿元,搬迁安置的投资是4x 亿元,根据题意,得:{2x +2x +b +2x +2b =54x +(1+1.5b 2x )x +x +(1+1.5b 2x )x +4=36, 解得:{x =5b =8, ∴市政府2015年年初对三项工程的总投资是7x=35亿元;(3)由x=5得,2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y ,由题意,得:20(1﹣y )2=5,解得:y 1=,y 2=(舍)答:搬迁安置投资逐年递减的百分数为50%.【点评】本题主要考查一元二次方程、二元一次方程组的应用,理解题意、准确梳理题中所涉数量关系,找到题目蕴含的相等关系是解题的关键.23.(11分)(2017?宜昌)正方形ABCD 的边长为1,点O 是BC 边上的一个动点(与B ,C 不重合),以O 为顶点在BC 所在直线的上方作∠MON=90°.(1)当OM 经过点A 时,①请直接填空:ON 不可能 (可能,不可能)过D 点;(图1仅供分析)②如图2,在ON 上截取OE=OA ,过E 点作EF 垂直于直线BC ,垂足为点F ,作EH ⊥CD 于H ,求证:四边形EFCH 为正方形.(2)当OM 不过点A 时,设OM 交边AB 于G ,且OG=1.在ON 上存在点P ,过P 点作PK 垂直于直线BC,垂足为点K,使得S△PKO=4S△OBG,连接GP,求四边形PKBG的最大面积.【考点】LO:四边形综合题.【分析】(1)①若ON过点D时,则在△OAD中不满足勾股定理,可知不可能过D点;②由条件可先判业四边形EFCH为矩形,再证明△OFE≌△ABO,可证得结论;(2)由条件可证明△PKO∽△OBG,利用相似三角形的性质可求得OP=2,可求得△POG面积为定值及△PKO和△OBG的关系,只要△CGB的面积有最大值时,则四边形PKBG的面积就最大,设OB=a,BG=b,由勾股定理可用b表示出a,则可用a表示出△CBG的面积,利用二次函数的性质可求得其最大值,则可求得四边形PKBG面积的最大值.【解答】解:(1)①若ON过点D,则OA>AB,OD>CD,∴OA2>AD2,OD2>AD2,∴OA2+OD2>2AD2≠AD2,∴∠AOD≠90°,这与∠MON=90°矛盾,∴ON不可能过D点,故答案为:不可能;②∵EH⊥CD,EF⊥BC,∴∠EHC=∠EFC=90°,且∠HCF=90°,∴四边形EFCH为矩形,∵∠MON=90°,∴∠EOF=90°﹣∠AOB,在正方形ABCD中,∠BAO=90°﹣∠AOB,∴∠EOF=∠BAO,在△OFE和△ABO中{∠EOF =∠BAO∠EFO =∠BOE =AO∴△OFE ≌△ABO (AAS ),∴EF=OB ,OF=AB ,又OF=CF+OC=AB=BC=BO+OC=EF+OC ,∴CF=EF ,∴四边形EFCH 为正方形;(2)∵∠POK=∠OGB ,∠PKO=∠OBG ,∴△PKO ∽△OBG ,∵S △PKO =4S △OBG ,∴S △PKOS △OBG =(OP OG )2=4, ∴OP=2,∴S △POG =12OG?OP=12×1×2=1,设OB=a ,BG=b ,则a 2+b 2=OG 2=1,∴b=√1−a 2,∴S △OBG =12ab=12a √1−a 2=12√−a 4+a 2=12√−(a 2−12)2+14,∴当a 2=12时,△OBG 有最大值14,此时S △PKO =4S △OBG =1,∴四边形PKBG 的最大面积为1+1+14=94.【点评】本题为四边形的综合应用,涉及矩形的判定和性质、全等三角形的判定和性质、相似三角形的判定和性质、三角形的面积、二次函数的性质及方程思想等知识.在(1)①中注意反证法的应用,在(1)②中证得CE=EF是解题的关键,在(2)中确定出△OBG面积的最大值是解题的关键.本题考查知识点较多,综合性较强,难度适中.24.(12分)(2017?宜昌)已知抛物线y=ax2+bx+c,其中2a=b>0>c,且a+b+c=0.(1)直接写出关于x的一元二次方程ax2+bx+c=0的一个根;(2)证明:抛物线y=ax2+bx+c的顶点A在第三象限;(3)直线y=x+m与x,y轴分别相交于B,C两点,与抛物线y=ax2+bx+c相交于A,D两点.设抛物线y=ax2+bx+c的对称轴与x轴相交于E.如果在对称轴左侧的抛物线上存在点F,使得△ADF与△BOC相似,并且S△ADF=1S△ADE,求此时抛物线的表达式.2【考点】HF:二次函数综合题.【专题】15 :综合题;535:二次函数图象及其性质.【分析】(1)根据a+b+c=0,结合方程确定出方程的一个根即可;(2)表示出抛物线的对称轴,将2a=b代入,并结合a+b+c=0,表示出c,判断顶点坐标即可;(3)根据表示出的b与c,求出方程的解确定出抛物线解析式,由直线y=x+m与x,y轴交于B,C两点,表示出OB=OC=|m|,可得出三角形BOC为等腰直角三角形,确定出三角形三角形ADE面积,根据三角形ADF等于三角形ADE面积的一半求出a的值,即可确定出抛物线解析式.【解答】解:(1)∵抛物线y=ax2+bx+c,a+b+c=0,∴关于x的一元二次方程ax2+bx+c=0的一个根为x=1;(2)证明:∵2a=b,∴对称轴x=﹣b=﹣1,2a把b=2a 代入a+b+c=0中得:c=﹣3a ,∵a >0,c <0,∴△=b 2﹣4ac >0,∴4ac−b 24a <0,则顶点A (﹣1,4ac−b 24a )在第三象限;(3)由b=2a ,c=﹣3a ,得到x=−b±√b 2−4ac 2a =−2a±4a 2a ,解得:x 1=﹣3,x 2=1, 二次函数解析式为y=ax 2+2ax ﹣3a ,∵直线y=x+m 与x ,y 轴分别相交于点B ,C 两点,则OB=OC=|m|,∴△BOC 是以∠BOC 为直角的等腰直角三角形,即此时直线y=x+m 与对称轴x=﹣1的夹角∠BAE=45°,∵点F 在对称轴左侧的抛物线上,则∠DAF >45°,此时△ADF 与△BOC 相似,顶点A 只可能对应△BOC 的直角顶点O ,即△ADF 是以A 为直角顶点的等腰直角三角形,且对称轴为x=﹣1,设对称轴x=﹣1与OF 交于点G ,∵直线y=x+m 过顶点A (﹣1,﹣4a ),∴m=1﹣4a ,∴直线解析式为y=x+1﹣4a ,联立得:{y =x +1−4a y =ax 2+2ax −3a, 解得:{x =−1y =−4a 或{x =1a −1y =1a−4a , 这里(﹣1,﹣4a )为顶点A ,(1a ﹣1,1a﹣4a )为点D 坐标, 点D 到对称轴x=﹣1的距离为1a ﹣1﹣(﹣1)=1a ,AE=|﹣4a|=4a ,∴S △ADE =12×1a ×4a=2,即它的面积为定值,。

2016年湖北省宜昌市中考试题

2016年湖北省宜昌市中考试题

2016年湖北省宜昌市初中毕业生学业考试数 学 试 题本试卷共24小题,满分120分,考试时间120分钟.注意事项: 1.本试卷分试题卷和答题卡两部分,请将答案答在答题卡上每题对应的答题区域内,写在试题卷上无效.2.考试结束,请将本试题卷和答题卡一并上交.3.参考公式:弧长180n r l π=; 二次函数y =ax 2+bx +c 图象的顶点坐标是2424()bac b a a --, ,对称轴为2b x a=-.一、选择题(下列各小题中,只有一个选项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号. 每小题3分,计45分)1.如果“盈利5%”记作+5%,那么—3%表示( ).A .亏损3%B .亏损8%C .盈利2%D .少赚2% 2.下列各数:1.414213-,0,其中是无理数的是( ). A .1.414 B 2 C .13- D .03.如下左图,若要添加一条线段,使之既是轴对称图形又是中心对称图形,正确的添加位置是( ).(第3题) A . B . C . D .4.把50.2210⨯改写成科学计数法的形式,正确的是( ).A .2.2×103B . 2.2×104C .2.2×105D .2.2×1065.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( ).A .a b >B .a b =C .a b <D .180b a =+6.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法来估算正面朝上的概率,其实验次数分别为10次,50次,100次,200次,其中实验相对科学的是( ).A .甲组B .乙组C .丙组D .丁组7.将一根圆柱形的空心钢管任意放置,它的主视图不可能是( ).A .B .C .D .8.分式方程2112x x -=-的解为 ( ). A .1x =- B .12x = C .1x = D .2x = 9.已知M ,N ,P ,Q 四点的位置如图所示,下列结论中,正确的是( ).A .42NOQ ∠=B .132NOP ∠=C .PON ∠比MOQ ∠大D .MOQ ∠与MOP ∠互补10.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( ).A .垂线段最短B .经过一点有无数条直线C .经过两点,有且仅有一条直线D .两点之间,线段最短11.在6月26日“国际禁毒日”来临之际,华明中学围绕“珍爱生命,远离毒品”主题,组织师生到当地戒毒所开展相关问题的问卷调查活动.其中“初次吸毒时的年龄”在17至21岁的统计结果如图所示,则这些年龄的众数是( ).A . 18B .19C .20D .2112.任意一条线段EF ,其垂直平分线的尺规作图痕迹如图所示,若连接EH ,HF ,FG ,GE ,。

2016年宜昌市中考数学试卷

2016年宜昌市中考数学试卷

2016年湖北省宜昌市初中毕业生学业考试数 学 试 题本试卷共24小题,满分120分,考试时间120分钟.注意事项:1.本试卷分试题卷和答题卡两部分,请将答案答在答题卡上每题对应的答题区域内,写在试题卷上无效.2.考试结束,请将本试题卷和答题卡一并上交. 3.参考公式:弧长180n rl π=; 二次函数y =ax 2+bx +c 图象的顶点坐标是2424()b ac b aa--, ,对称轴为2b x a=-.一、选择题(下列各小题中,只有一个选项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号. 每小题3分,计45分)1.如果“盈利5%”记作+5%,那么—3%表示( ).A .亏损3%B .亏损8%C .盈利2%D .少赚2%2.下列各数:1.41413-,0,其中是无理数的是( ).A .1.414BC .13- D .03.如下左图,若要添加一条线段,使之既是轴对称图形又是中心对称图形,正确的添加位置是( ).(第3题) A . B . C . D . 4.把50.2210⨯改写成科学计数法的形式,正确的是( ).A .2.2×103B . 2.2×104C .2.2×105D .2.2×1065.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( ).A .a b >B .a b =C .a b <D .180b a =+6.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法来估算正面朝上的概率,其实验次数分别为10次,50次,100次,200次,其中实验相对科学的是( ).A .甲组B .乙组C .丙组D .丁组 7.将一根圆柱形的空心钢管任意放置,它的主视图不可能是( ).A .B .C .D .8.分式方程2112x x -=-的解为 ( ). A .1x =- B .12x = C .1x = D .2x =9.已知M ,N ,P ,Q 四点的位置如图所示,下列结论中,正确的是( ).A .42NOQ ∠=B .132NOP ∠=C .PON ∠比MOQ ∠大D .MOQ ∠与MOP ∠互补10.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( ).A .垂线段最短B .经过一点有无数条直线C .经过两点,有且仅有一条直线D .两点之间,线段最短11.在6月26日“国际禁毒日”来临之际,华明中学围绕“珍爱生命,远离毒品”主题,组织师生到当地戒毒所开展相关问题的问卷调查活动.其中“初次吸毒时的年龄”在17至21岁的统计结果如图所示,则这些年龄的众数是( ).A . 18B .19C .20D .2112.任意一条线段EF ,其垂直平分线的尺规作图痕迹如图所示,若连接EH ,HF ,FG ,GE ,则下列结论中,不一定...正确的是( ). A .△EGH 为等腰三角形 B .△EGF 为等边三角形C .四边形EGFH 为菱形D .△EHF 为等腰三角形(第13题)13.在公园的O 处附近有E ,F ,G ,H 四棵树,位置如图所示(图中小正方形的边长均相等),现计划修建一座以O 为圆心,OA 为半径的圆形水池,要求池中不留树木,则E ,F ,G ,H 四棵树中需要被移除的为( ).A .E ,F ,GB .F ,G ,HC .G ,H ,ED .H ,E ,F 14.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a b -,x y -,x y +,a b +,22x y -,22a b -分别对应下列六个字:昌、爱、我、宜、游、美.现将()()222222x y a x y b ---因式分解,结果..呈现的密码信息可能是( ) . A .我爱美 B .宜昌游 C .爱我宜昌 D .美我宜昌 15.函数21y x =+的图像可能是( ) .二、解答题(将解答过程写在答题卡上指定的位置.本大题共有9小题,计75分) 16.(6分)计算:()23214⎛⎫-⨯- ⎪⎝⎭.17.(6分)先化简,再求值:()()42112x x x x ⋅+--,其中140x =.18.(7分)杨阳同学沿一段笔直的人行道行走,在由A 步行到达B 处的过程中,通过隔离带的空隙O ,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下,如图,AB ∥OH ∥CD ,相邻两平行线间的距离相等.AC ,BD 相交于O ,OD ⊥CD 垂足为D .已知AB =20米.请根据上述信息求标语CD 的长度.(第18题)19.(7分)如图,直线y =+A ,B 两点.(1)求∠ABO 的度数;(2)过点A 的直线l 交x 轴正半轴于C ,AB =AC ,求直线l 的函数解析式.(第19题) 20.(8分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个.食堂师傅在窗口随机发放(发放的食品价格一样).食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是 事件;(可能,必然,不可能) (2)请用列表或画树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率. 21.(8分)如图,CD 是⊙O 的弦,AB 是直径,且CD ∥AB .连接AC ,AD ,OD ,其中AC =CD .过点B 的切线交CD 的延长线于E. (1)求证:DA 平分∠CDO ;(2)若AB =12,求图中阴影部分的周长之和(参考数据: 3.1π≈ 1.4≈ 1.7≈).(第21题)22.(10分)某蛋糕产销公司A 品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2014年底就投入资金10.89万元,新增了一条B 品牌产销线,以满足市场对蛋糕的多元需求.B 品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年每年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年AB 两品牌产销线销售量总和将达到11.4万份,B 品牌产销线2017年销售获利恰好等于当初的投入资金数. (1)求A 品牌产销线2018年的销售量;(2)求B 品牌产销线2016年平均每份获利增长的百分数. 23.(11分)在 △ABC 中,AB =6,AC =8,BC =10.D 是△ABC 内部或BC 边上的一个动点(与B ,C 不重合).以D 为顶点作△DEF ,使△DEF ∽△ABC (相似比1k >), EF ∥BC .(1)求∠D 的度数;(2)若两三角形重叠部分的形状始终是四边形AGDH ,①如图1,连接GH ,AD ,当GH ⊥AD 时,请判断四边形AGDH 的形状,并证明; ②当四边形AGDH 的面积最大时,过A 作AP ⊥EF 于P ,且AP =AD ,求k 的值.(第23题图1) (第23题图2供参考用) (第23题图3供参考用)24.(12分)已知抛物线()()2213y x m x m m =+++-(m 为常数,14m -≤≤),A (1m --,1y ),B (2m,2y ),C (m -,3y )是该抛物线上不同的三点.现将抛物线的对称轴绕坐标原点O 逆时针旋转90°得到直线a ,过抛物线顶点P 作PH ⊥a 于H . (1)用含m 的代数式表示抛物线的顶点坐标;(2)若无论m 取何值,抛物线与直线y x km =-(k 为常数)有且仅有一个公共点,求k 的值; (3)当16PH <≤时,试比较1y ,2y ,3y 之间的大小.(第24题)。

宜昌中考数学试题及答案

宜昌中考数学试题及答案

宜昌中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. $\sqrt{4}$B. $0.\overline{3}$C. $\pi$D. $\frac{22}{7}$答案:C2. 如果一个多边形的内角和为900度,那么这个多边形有多少条边?A. 5B. 6C. 7D. 8答案:C3. 函数$y=2x+3$的图象与x轴的交点坐标是?A. $(-3,0)$B. $(0,3)$C. $(\frac{3}{2},0)$D. $(0,-3)$答案:A4. 下列哪个选项是二次函数?A. $y=x^2+2x+1$B. $y=2x+3$C. $y=\frac{1}{x}$D. $y=x^3-2x^2+3$答案:A5. 一个圆的半径为3厘米,那么它的面积是多少平方厘米?A. 9πB. 18πC. 27πD. 36π答案:C6. 一个等腰三角形的底角为45度,那么它的顶角是多少度?A. 45B. 60C. 90D. 120答案:C7. 一个正方体的体积为64立方厘米,那么它的表面积是多少平方厘米?A. 96B. 128C. 192D. 256答案:B8. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 10答案:A9. 下列哪个选项是不等式?A. $x+3=7$B. $2x>3$C. $y=5x+2$D. $3x-2=0$答案:B10. 一个数的绝对值是3,那么这个数可以是?A. 3或-3B. 3或0C. -3或0D. 0或1答案:A二、填空题(每题3分,共15分)11. 一个数的平方是25,那么这个数可以是______。

答案:±512. 一个三角形的两边长分别为3和4,第三边的长x满足的不等式是______。

答案:1 < x < 713. 函数$y=x^2-6x+8$的顶点坐标是______。

答案:(3, -1)14. 一个等差数列的首项为2,公差为3,那么第5项的值是______。

2016年度湖北地区宜昌市中考数学试卷

2016年度湖北地区宜昌市中考数学试卷
解得:x=﹣1,
经检验x=﹣1是分式方程的解,
则分式方程的解为x=﹣1.
故选:A.
9.(3分)(2016•宜昌)已知M、N、P、Q四点的位置如图所示,下列结论中,正确的是( )
A.∠NOQ=42°B.∠NOP=132°
C.∠PON比∠MOQ大D.∠MOQ与∠MOP互补
【分析】根据已知量角器上各点的位置,得出各角的度数,进而得出答案.
5.(3分)(2016•宜昌)设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是( )
A.a>bB.a=bC.a<bD.b=a+180°
【分析】根据多边形的内角和定理与多边形外角的关系即可得出结论.
【解答】解:∵四边形的内角和等于a,
∴a=(4﹣2)•180°=360°.
∵五边形的外角和等于b,
(1)用含m的代数式表示抛物线的顶点坐标;
(2)若无论m取何值,抛物线与直线y=x﹣km(k为常数)有且仅有一个公共点,求k的值;
(3)当1<PH≤6时,试比较y1,y2,y3之间的大小.
2016年湖北省宜昌市中考数学试卷
参考答案与试题解析
一、选择题(共15小题,每小题3分,满分45分)
1.(3分)(2016•宜昌)如果“盈利5%”记作+5%,那么﹣3%表示( )
A.18B.19C.20D.21
12.(3分)(2016•宜昌)任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是( )
A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形源自GFH为菱形D.△EHF为等腰三角形
13.(3分)(2016•宜昌)在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为( )

历年中考数学模拟试题(含答案) (131)

历年中考数学模拟试题(含答案) (131)

2016年湖北省宜昌市初中毕业生学业考试数 学 试 题本试卷共24小题,满分120分,考试时间120分钟.注意事项:1.本试卷分试题卷和答题卡两部分,请将答案答在答题卡上每题对应的答题区域内,写在试题卷上无效.2.考试结束,请将本试题卷和答题卡一并上交. 3.参考公式:弧长180n rl π=; 二次函数y =ax 2+bx +c 图象的顶点坐标是2424()b ac b aa--, ,对称轴为2b x a=-.一、选择题(下列各小题中,只有一个选项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号. 每小题3分,计45分)1.如果“盈利5%”记作+5%,那么—3%表示( ).A .亏损3%B .亏损8%C .盈利2%D .少赚2% 2.下列各数:1.414,2,13-,0,其中是无理数的是( ). A .1.414 B .2 C .13- D .03.如下左图,若要添加一条线段,使之既是轴对称图形又是中心对称图形,正确的添加位置是( ).(第3题) A . B . C . D . 4.把50.2210⨯改写成科学计数法的形式,正确的是( ).A .2.2×103B . 2.2×104C .2.2×105D .2.2×1065.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( ).A .a b >B .a b =C .a b <D .180b a =+o6.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法来估算正面朝上的概率,其实验次数分别为10次,50次,100次,200次,其中实验相对科学的是( ).A .甲组B .乙组C .丙组D .丁组 7.将一根圆柱形的空心钢管任意放置,它的主视图不可能是( ).A .B .C .D .8.分式方程2112x x -=-的解为 ( ). A .1x =- B .12x = C .1x = D .2x =9.已知M ,N ,P ,Q 四点的位置如图所示,下列结论中,正确的是( ).A .42NOQ ∠=oB .132NOP ∠=oC .PON ∠比MOQ ∠大D .MOQ ∠与MOP ∠互补10.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( ).A .垂线段最短B .经过一点有无数条直线C .经过两点,有且仅有一条直线D .两点之间,线段最短11.在6月26日“国际禁毒日”来临之际,华明中学围绕“珍爱生命,远离毒品”主题,组织师生到当地戒毒所开展相关问题的问卷调查活动.其中“初次吸毒时的年龄”在17至21岁的统计结果如图所示,则这些年龄的众数是( ).A . 18B .19C .20D .2112.任意一条线段EF ,其垂直平分线的尺规作图痕迹如图所示,若连接EH ,HF ,FG ,GE ,则下列结论中,不一定...正确的是( ). A .△EGH 为等腰三角形 B .△EGF 为等边三角形C .四边形EGFH 为菱形D .△EHF 为等腰三角形(第13题)13.在公园的O 处附近有E ,F ,G ,H 四棵树,位置如图所示(图中小正方形的边长均相等),现计划修建一座以O 为圆心,OA 为半径的圆形水池,要求池中不留树木,则E ,F ,G ,H 四棵树中需要被移除的为( ).A .E ,F ,GB .F ,G ,HC .G ,H ,ED .H ,E ,F 14.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a b -,x y -,x y +,a b +,22x y -,22a b -分别对应下列六个字:昌、爱、我、宜、游、美.现将()()222222xy a x y b ---因式分解,结果..呈现的密码信息可能是( ) . A .我爱美 B .宜昌游 C .爱我宜昌 D .美我宜昌 15.函数21y x =+的图像可能是( ) .二、解答题(将解答过程写在答题卡上指定的位置.本大题共有9小题,计75分) 16.(6分)计算:()23214⎛⎫-⨯- ⎪⎝⎭.17.(6分)先化简,再求值:()()42112x x x x ⋅+--,其中140x =.18.(7分)杨阳同学沿一段笔直的人行道行走,在由A 步行到达B 处的过程中,通过隔离带的空隙O ,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下, 如图,AB ∥OH ∥CD ,相邻两平行线间的距离相等.AC ,BD 相交于O ,OD ⊥CD 垂足为D .已知AB =20米.请根据上述信息求标语CD 的长度.(第18题)19.(7分)如图,直线y =+A ,B 两点.(1)求∠ABO 的度数;(2)过点A 的直线l 交x 轴正半轴于C ,AB =AC ,求直线l 的函数解析式.(第19题)20.(8分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个.食堂师傅在窗口随机发放(发放的食品价格一样).食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品. (1)按约定,“小李同学在该天早餐得到两个油饼”是 事件;(可能,必然,不可能)(2)请用列表或画树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率. 21.(8分)如图,CD 是⊙O 的弦,AB 是直径,且CD ∥AB .连接AC ,AD ,OD ,其中AC =CD .过点B 的切线交CD 的延长线于E . (1)求证:DA 平分∠CDO ;(2)若AB =12,求图中阴影部分的周长之和(参考数据: 3.1π≈,2 1.4≈,3 1.7≈).(第21题)22.(10分)某蛋糕产销公司A 品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2014年底就投入资金10.89万元,新增了一条B 品牌产销线,以满足市场对蛋糕的多元需求.B 品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年每年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年AB 两品牌产销线销售量总和将达到11.4万份,B 品牌产销线2017年销售获利恰好等于当初的投入资金数. (1)求A 品牌产销线2018年的销售量;(2)求B 品牌产销线2016年平均每份获利增长的百分数. 23.(11分)在 △ABC 中,AB =6,AC =8,BC =10.D 是△ABC 内部或BC 边上的一个动点(与B ,C 不重合).以D 为顶点作△DEF ,使△DEF ∽△ABC (相似比1k >), EF ∥BC .(1)求∠D 的度数;(2)若两三角形重叠部分的形状始终是四边形AGDH ,①如图1,连接GH ,AD ,当GH ⊥AD 时,请判断四边形AGDH 的形状,并证明; ②当四边形AGDH 的面积最大时,过A 作AP ⊥EF 于P ,且AP =AD ,求k 的值.HGFBDA EAA(第23题图1) (第23题图2供参考用) (第23题图3供参考用)24.(12分)已知抛物线()()2213y x m x m m =+++-(m 为常数,14m -≤≤),A (1m --,1y ),B (2m,2y ),C (m -,3y )是该抛物线上不同的三点.现将抛物线的对称轴绕坐标原点O 逆时针旋转90°得到直线a ,过抛物线顶点P 作PH ⊥a 于H . (1)用含m 的代数式表示抛物线的顶点坐标;(2)若无论m 取何值,抛物线与直线y x km =-(k 为常数)有且仅有一个公共点,求k 的值;(3)当16PH <≤时,试比较1y ,2y ,3y 之间的大小.(第24题)。

2016年湖北省宜昌市中考数学试卷

2016年湖北省宜昌市中考数学试卷

2016年湖北省宜昌市中考数学试卷一、选择题(共 小题,每小题 分,满分 分).( 分)( 宜昌)如果 盈利 记作 ,那么﹣ 表示() .亏损 .亏损 .盈利 .少赚.( 分)( 宜昌)下列各数: ,,﹣, ,其中是无理数的为(). . .﹣ ..( 分)( 宜昌)如图,若要添加一条线段,使之既是轴对称图形又是中心对称图形,正确的添加位置是(). . . ..( 分)( 宜昌)把 × 改成科学记数法的形式,正确的是(). × . × . × . ×.( 分)( 宜昌)设四边形的内角和等于 ,五边形的外角和等于 ,则 与 的关系是(). > . . < ..( 分)( 宜昌)在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为 次、 次、 次, 次,其中实验相对科学的是().甲组 .乙组 .丙组 .丁组.( 分)( 宜昌)将一根圆柱形的空心钢管任意放置,它的主视图不可能是(). . . ..( 分)( 宜昌)分式方程 的解为(). ﹣ . . ..( 分)( 宜昌)已知 、 、 、 四点的位置如图所示,下列结论中,正确的是()A.∠NOQ=42°B.∠NOP=132°C.∠PON比∠MOQ大D.∠MOQ与∠MOP互补10.(3分)(2016•宜昌)如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短11.(3分)(2016•宜昌)在6月26日“国际禁毒日”来临之际,华明中学围绕“珍爱生命,远离毒品”主题,组织师生到当地戒毒所开展相关问题的问卷调查活动,其中“初次吸毒时的年龄”在17至21岁的统计结果如图所示,则这些年龄的众数是()A.18 B.19 C.20 D.2112.(3分)(2016•宜昌)任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形D.△EHF为等腰三角形13.(3分)(2016•宜昌)在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为()A.E、F、G B.F、G、H C.G、H、E D.H、E、F14.(3分)(2016•宜昌)小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.宜昌游C.爱我宜昌 D.美我宜昌15.(3分)(2016•宜昌)函数y=的图象可能是()A.B.C.D.二、解答题(共9小题,满分75分)16.(6分)(2016•宜昌)计算:(﹣2)2×(1﹣).17.(6分)(2016•宜昌)先化简,再求值:4x•x+(2x﹣1)(1﹣2x).其中x=.18.(7分)(2016•宜昌)杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:如图,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于O,OD⊥CD.垂足为D,已知AB=20米,请根据上述信息求标语CD的长度.19.(7分)(2016•宜昌)如图,直线y=x+与两坐标轴分别交于A、B两点.(1)求∠ABO的度数;(2)过A的直线l交x轴正半轴于C,AB=AC,求直线l的函数解析式.20.(8分)(2016•宜昌)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是______事件;(可能,必然,不可能)(2)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.21.(8分)(2016•宜昌)如图,CD是⊙O的弦,AB是直径,且CD∥AB,连接AC、AD、OD,其中AC=CD,过点B的切线交CD的延长线于E.(1)求证:DA平分∠CDO;(2)若AB=12,求图中阴影部分的周长之和(参考数据:π=3.1,=1.4,=1.7).22.(10分)(2016•宜昌)某蛋糕产销公司A品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2014年底就投入资金10.89万元,新增一条B 品牌产销线,以满足市场对蛋糕的多元需求,B品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年,A、B两品牌产销线销售量总和将达到11.4万份,B 品牌产销线2017年销售获利恰好等于当初的投入资金数.(1)求A品牌产销线2018年的销售量;(2)求B品牌产销线2016年平均每份获利增长的百分数.23.(11分)(2016•宜昌)在△ABC中,AB=6,AC=8,BC=10,D是△ABC内部或BC边上的一个动点(与B、C不重合),以D为顶点作△DEF,使△DEF∽△ABC(相似比k>1),EF∥BC.(1)求∠D的度数;(2)若两三角形重叠部分的形状始终是四边形AGDH.①如图1,连接GH、AD,当GH⊥AD时,请判断四边形AGDH的形状,并证明;②当四边形AGDH的面积最大时,过A作AP⊥EF于P,且AP=AD,求k的值.24.(12分)(2016•宜昌)已知抛物线y=x2+(2m+1)x+m(m﹣3)(m为常数,﹣1≤m≤4).A(﹣m﹣1,y1),B(,y2),C(﹣m,y3)是该抛物线上不同的三点,现将抛物线的对称轴绕坐标原点O逆时针旋转90°得到直线a,过抛物线顶点P作PH⊥a于H.(1)用含m的代数式表示抛物线的顶点坐标;(2)若无论m取何值,抛物线与直线y=x﹣km(k为常数)有且仅有一个公共点,求k的值;(3)当1<PH≤6时,试比较y1,y2,y3之间的大小.2016年湖北省宜昌市中考数学试卷参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分)1.(3分)(2016•宜昌)如果“盈利5%”记作+5%,那么﹣3%表示()A.亏损3% B.亏损8% C.盈利2% D.少赚3%【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵盈利5%”记作+5%,∴﹣3%表示表示亏损3%.故选:A.2.(3分)(2016•宜昌)下列各数:1.414,,﹣,0,其中是无理数的为()A.1.414 B.C.﹣D.0【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,解答即可.【解答】解:是无理数.故选B.3.(3分)(2016•宜昌)如图,若要添加一条线段,使之既是轴对称图形又是中心对称图形,正确的添加位置是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选A.4.(3分)(2016•宜昌)把0.22×105改成科学记数法的形式,正确的是()A.2.2×103B.2.2×104C.2.2×105D.2.2×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将0.22×105用科学记数法表示为2.2×104.故选B.5.(3分)(2016•宜昌)设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是()A.a>b B.a=b C.a<b D.b=a+180°【分析】根据多边形的内角和定理与多边形外角的关系即可得出结论.【解答】解:∵四边形的内角和等于a,∴a=(4﹣2)•180°=360°.∵五边形的外角和等于b,∴b=360°,∴a=b.故选B.6.(3分)(2016•宜昌)在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是()A.甲组 B.乙组 C.丙组 D.丁组【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.【解答】解:根据模拟实验的定义可知,实验相对科学的是次数最多的丁组.故选:D.7.(3分)(2016•宜昌)将一根圆柱形的空心钢管任意放置,它的主视图不可能是()A.B.C.D.【分析】根据三视图的确定方法,判断出钢管无论如何放置,三视图始终是下图中的其中一个,即可.【解答】解:∵一根圆柱形的空心钢管任意放置,∴不管钢管怎么放置,它的三视图始终是,,,主视图是它们中一个,∴主视图不可能是.故选A,8.(3分)(2016•宜昌)分式方程=1的解为()A.x=﹣1 B.x= C.x=1 D.x=2【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣1=x﹣2,解得:x=﹣1,经检验x=﹣1是分式方程的解,则分式方程的解为x=﹣1.故选:A.9.(3分)(2016•宜昌)已知M、N、P、Q四点的位置如图所示,下列结论中,正确的是()A.∠NOQ=42°B.∠NOP=132°C.∠PON比∠MOQ大D.∠MOQ与∠MOP互补【分析】根据已知量角器上各点的位置,得出各角的度数,进而得出答案.【解答】解:如图所示:∠NOQ=138°,故选项A错误;∠NOP=48°,故选项B错误;如图可得:∠PON=48°,∠MOQ=42°,故∠PON比∠MOQ大,故选项C正确;由以上可得,∠MOQ与∠MOP不互补,故选项D错误.故选:C.10.(3分)(2016•宜昌)如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短【分析】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.【解答】解:∵用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选D.11.(3分)(2016•宜昌)在6月26日“国际禁毒日”来临之际,华明中学围绕“珍爱生命,远离毒品”主题,组织师生到当地戒毒所开展相关问题的问卷调查活动,其中“初次吸毒时的年龄”在17至21岁的统计结果如图所示,则这些年龄的众数是()A.18 B.19 C.20 D.21【分析】根据众数的概念:一组数据中出现次数最多的数据叫做众数,求解即可.【解答】解:由条形图可得:年龄为20岁的人数最多,故众数为20.故选C.12.(3分)(2016•宜昌)任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形D.△EHF为等腰三角形【分析】根据等腰三角形的定义、菱形的定义、等边三角形的定义一一判断即可.【解答】解:A、正确.∵EG=EH,∴△EGH是等边三角形.B、错误.∵EG=GF,∴△EFG是等腰三角形,若△EFG是等边三角形,则EF=EG,显然不可能.C、正确.∵EG=EH=HF=FG,∴四边形EHFG是菱形.D、正确.∵EH=FH,∴△EFH是等边三角形.故选B.13.(3分)(2016•宜昌)在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为()A.E、F、G B.F、G、H C.G、H、E D.H、E、F【分析】根据网格中两点间的距离分别求出,OE,OF,OG,OH然后和OA比较大小.最后得到哪些树需要移除.【解答】解:∵OA==,∴OE=2<OA,所以点E在⊙O内,OF=2<OA,所以点F在⊙O内,OG=1<OA,所以点G在⊙O内,OH==2>OA,所以点H在⊙O外,故选A14.(3分)(2016•宜昌)小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.宜昌游C.爱我宜昌 D.美我宜昌【分析】对(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,即可得到结论.【解答】解:∵(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),∵x﹣y,x+y,a+b,a﹣b四个代数式分别对应爱、我,宜,昌,∴结果呈现的密码信息可能是“爱我宜昌”,故选C.15.(3分)(2016•宜昌)函数y=的图象可能是()A.B.C.D.【分析】函数y=是反比例y=的图象向左移动一个单位,根据反比例函数的图象特点判断即可.【解答】解:函数y=是反比例y=的图象向左移动一个单位,即函数y=是图象是反比例y=的图象双曲线向左移动一个单位.故选C二、解答题(共9小题,满分75分)16.(6分)(2016•宜昌)计算:(﹣2)2×(1﹣).【分析】直接利用有理数乘方运算法则化简,进而去括号求出答案.【解答】解:(﹣2)2×(1﹣)=4×(1﹣)=4×=1.17.(6分)(2016•宜昌)先化简,再求值:4x•x+(2x﹣1)(1﹣2x).其中x=.【分析】直接利用整式乘法运算法则计算,再去括号,进而合并同类项,把已知代入求出答案.【解答】解:4x•x+(2x﹣1)(1﹣2x)=4x2+(2x﹣4x2﹣1+2x)=4x2+4x﹣4x2﹣1=4x﹣1,当x=时,原式=4×﹣1=﹣.18.(7分)(2016•宜昌)杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:如图,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于O,OD⊥CD.垂足为D,已知AB=20米,请根据上述信息求标语CD的长度.【分析】由AB∥CD,利用平行线的性质可得∠ABO=∠CDO,由垂直的定义可得∠CDO=90°,易得OB⊥AB,由相邻两平行线间的距离相等可得OD=OB,利用ASA定理可得△ABO≌△CDO,由全等三角形的性质可得结果.【解答】解:∵AB∥CD,∴∠ABO=∠CDO,∵OD⊥CD,∴∠CDO=90°,∴∠ABO=90°,即OB⊥AB,∵相邻两平行线间的距离相等,∴OD=OB,在△ABO与△CDO中,,∴△ABO≌△CDO(ASA),∴CD=AB=20(m)19.(7分)(2016•宜昌)如图,直线y=x+与两坐标轴分别交于A、B两点.(1)求∠ABO的度数;(2)过A的直线l交x轴正半轴于C,AB=AC,求直线l的函数解析式.【分析】(1)根据函数解析式求出点A、B的坐标,然后在Rt△ABO中,利用三角函数求出tan∠ABO的值,继而可求出∠ABO的度数;(2)根据题意可得,AB=AC,AO⊥BC,可得AO为BC的中垂线,根据点B的坐标,得出点C的坐标,然后利用待定系数法求出直线l的函数解析式.【解答】解:(1)对于直线y=x+,令x=0,则y=,令y=0,则x=﹣1,故点A的坐标为(0,),点B的坐标为(﹣1,0),则AO=,BO=1,在Rt△ABO中,∵tan∠ABO==,∴∠ABO=60°;(2)在△ABC中,∵AB=AC,AO⊥BC,∴AO为BC的中垂线,即BO=CO,则C点的坐标为(1,0),设直线l的解析式为:y=kx+b(k,b为常数),则,解得:,即函数解析式为:y=﹣x+.20.(8分)(2016•宜昌)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是不可能事件;(可能,必然,不可能)(2)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.【分析】(1)根据随机事件的概念可知是随机事件;(2)求概率要画出树状图分析后得出.【解答】解:(1)小李同学在该天早餐得到两个油饼”是不可能事件;(2)树状图法即小张同学得到猪肉包和油饼的概率为=.21.(8分)(2016•宜昌)如图,CD是⊙O的弦,AB是直径,且CD∥AB,连接AC、AD、OD,其中AC=CD,过点B的切线交CD的延长线于E.(1)求证:DA平分∠CDO;(2)若AB=12,求图中阴影部分的周长之和(参考数据:π=3.1,=1.4,=1.7).【分析】(1)只要证明∠CDA=∠DAO,∠DAO=∠ADO即可.(2)首先证明==,再证明∠DOB=60°得△BOD是等边三角形,由此即可解决问题.【解答】证明:(1)∵CD∥AB,∴∠CDA=∠BAD,又∵OA=OD,∴∠ADO=∠BAD,∴∠ADO=∠CDA,∴DA平分∠CDO.(2)如图,连接BD,∵AB是直径,∴∠ADB=90°,∵AC=CD,∴∠CAD=∠CDA,又∵CD∥AB,∴∠CDA=∠BAD,∴∠CDA=∠BAD=∠CAD,∴==,又∵∠AOB=180°,∴∠DOB=60°,∵OD=OB,∴△DOB是等边三角形,∴BD=OB=AB=6,∵=,∴AC=BD=6,∵BE切⊙O于B,∴BE⊥AB,∴∠DBE=∠ABE﹣∠ABD=30°,∵CD∥AB,∴BE⊥CE,∴DE=BD=3,BE=BD×cos∠DBE=6×=3,∴的长==2π,∴图中阴影部分周长之和为2=4π+9+3=4×3.1+9+3×1.7=26.5.22.(10分)(2016•宜昌)某蛋糕产销公司A品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2014年底就投入资金10.89万元,新增一条B 品牌产销线,以满足市场对蛋糕的多元需求,B品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年,A、B两品牌产销线销售量总和将达到11.4万份,B 品牌产销线2017年销售获利恰好等于当初的投入资金数.(1)求A品牌产销线2018年的销售量;(2)求B品牌产销线2016年平均每份获利增长的百分数.【分析】(1)根据题意容易得出结果;(2)设A品牌产销线平均每份获利的年递减百分数为x,B品牌产销线的年销售量递增相同的份数为k万份;根据题意列出方程,解方程即可得出结果.【解答】解:(1)9.5﹣(2018﹣2015)×0.5=8(万份);答:品牌产销线2018年的销售量为8万份;(2)设A品牌产销线平均每份获利的年递减百分数为x,B品牌产销线的年销售量递增相同的份数为k万份;根据题意得:,解得:,或(不合题意,舍去),∴,∴2x=10%;答:B品牌产销线2016年平均每份获利增长的百分数为10%.23.(11分)(2016•宜昌)在△ABC中,AB=6,AC=8,BC=10,D是△ABC内部或BC边上的一个动点(与B、C不重合),以D为顶点作△DEF,使△DEF∽△ABC(相似比k>1),EF∥BC.(1)求∠D的度数;(2)若两三角形重叠部分的形状始终是四边形AGDH.①如图1,连接GH、AD,当GH⊥AD时,请判断四边形AGDH的形状,并证明;②当四边形AGDH的面积最大时,过A作AP⊥EF于P,且AP=AD,求k的值.【分析】(1)先判断△ABC是直角三角形,即可;(2)①先判断AB∥DE,DF∥AC,得到平行四边形,再判断出是正方形;②先判断面积最大时点D的位置,由△BGD∽△BAC,找出AH=8﹣GA,得到S矩形AGDH=﹣AG2+8AG,确定极值,AG=3时,面积最大,最后求k得值.【解答】解:(1)∵AB2+AC2=100=BC2,∴∠BAC=90°,∵△DEF∽△ABC,∴∠D=∠BAC=90°,(2)①四边形AGDH为正方形,理由:如图1,延长ED交BC于M,延长FD交BC于N,∵△DEF∽△ABC,∴∠B=∠C,∵EF∥BC,∴∠E=∠EMC,∴∠B=∠EMC,∴AB∥DE,同理:DF∥AC,∴四边形AGDH为平行四边形,∵∠D=90°,∴四边形AGDH为矩形,∵GH⊥AD,∴四边形AGDH为正方形;②当点D在△ABC内部时,四边形AGDH的面积不可能最大,理由:如图2,点D在内部时(N在△ABC内部或BC边上),延长GD至N,过N作NM⊥AC于M,∴矩形GNMA面积大于矩形AGDH,∴点D在△ABC内部时,四边形AGDH的面积不可能最大,只有点D在BC边上时,面积才有可能最大,如图3,点D在BC上,∵DG∥AC,∴△BGD∽△BAC,∴,∴,∴,∴AH=8﹣GA,S矩形AGDH=AG×AH=AG×(8﹣AG)=﹣AG2+8AG,当AG=﹣=3时,S矩形AGDH最大,此时,DG=AH=4,即:当AG=3,AH=4时,S矩形AGDH最大,在Rt△BGD中,BD=5,∴DC=BC﹣BD=5,即:点D为BC的中点,∵AD=BC=5,∴PA=AD=5,延长PA,∵EF∥BC,QP⊥EF,∴QP⊥BC,∴PQ是EF,BC之间的距离,∴D是EF的距离为PQ的长,在△ABC中,AB×AC=BC×AQ∴AQ=4.8∵△DEF∽△ABC,∴k===.24.(12分)(2016•宜昌)已知抛物线y=x2+(2m+1)x+m(m﹣3)(m为常数,﹣1≤m≤4).A(﹣m﹣1,y1),B(,y2),C(﹣m,y3)是该抛物线上不同的三点,现将抛物线的对称轴绕坐标原点O逆时针旋转90°得到直线a,过抛物线顶点P作PH⊥a于H.(1)用含m的代数式表示抛物线的顶点坐标;(2)若无论m取何值,抛物线与直线y=x﹣km(k为常数)有且仅有一个公共点,求k的值;(3)当1<PH≤6时,试比较y1,y2,y3之间的大小.【分析】(1)根据顶点坐标公式即可解决问题.(2)列方程组根据△=0解决问题.(3)首先证明y1=y3,再根据点B的位置,分类讨论,①令<﹣m﹣1,求出m的范围即可判断,②令=﹣m﹣1,则A与B重合,此情形不合题意,舍弃.③令>﹣m﹣1,求出m的范围即可判断,④令﹣≤<﹣m,求出m的范围即可判断,⑤令=﹣m,B,C重合,不合题意舍弃.⑥令>﹣m,求出m的范围即可判断.【解答】解:(1)∵﹣=﹣,==﹣,∴顶点坐标(﹣,﹣).(2)由消去y得x2+2mx+(m2+km﹣3m)=0,∵抛物线与x轴有且仅有一个公共点,∴△=0,即(k﹣3)m=0,∵无论m取何值,方程总是成立,∴k﹣3=0,∴k=3,(3)PH=|﹣﹣(﹣)|=||,∵1<PH≤6,∴当>0时,有1<≤6,又﹣1≤m≤4,∴<m,当<0时,1<﹣≤6,又∵﹣1≤m≤4,∴﹣1,∴﹣1≤m<﹣或<m≤,∵A(﹣m﹣1,y1)在抛物线上,∴y1=(﹣m﹣1)2+(2m+1)(﹣m﹣1)+m(m+3)=﹣4m,∵C(﹣m,y3)在抛物线上,∴y3=(﹣m)2+(2m+1)(﹣m)+m(m﹣3)=﹣4m,∴y1=y3,①令<﹣m﹣1,则有m<﹣,结合﹣1≤m≤﹣,∴﹣1≤m<﹣,此时,在对称轴的左侧y随x的增大而减小,如图1,∴y2>y1=y3,即当﹣1≤m<﹣时,有y2>y1=y3.②令=﹣m﹣1,则A与B重合,此情形不合题意,舍弃.③令>﹣m﹣1,且≤﹣时,有﹣<m≤﹣,结合﹣1≤m<﹣,∴﹣<m≤﹣,此时,在对称轴的左侧,y随x的增大而减小,如图2,∴y1=y3>y2,即当﹣<m≤﹣时,有y1=y3>y2,④令﹣≤<﹣m,有﹣≤m<0,结合﹣1≤m<﹣,∴﹣≤m<﹣,此时,在对称轴的右侧y随x的增大而增大,如图3,∴y2<y3=y1.⑤令=﹣m,B,C重合,不合题意舍弃.⑥令>﹣m,有m>0,结合<m≤,∴<m≤,此时,在对称轴的右侧,y随x的增大而增大,如图4,∴y2>y3=y1,即当<m≤时,有y2>y3=y1,综上所述,﹣1≤m<﹣或<m≤时,有y2>y1=y3,﹣<m<﹣时,有y2<y1=y3.2012年河南省郑州市郑东新区教师招聘考试真题试卷(一)参与本试卷答题和审题的老师有:HJJ;caicl;CJX;星月相随;sd2011;sjzx;弯弯的小河;王学峰;gbl210;fangcao;733599;wdzyzmsy@(排名不分先后)菁优网2016年9月19日.21。

湖北省宜昌市中考数学试卷

湖北省宜昌市中考数学试卷

精品基础教育教学资料,请参考使用,祝你取得好成绩!湖北省宜昌市中考数学试卷一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)有理数﹣的倒数为()A.5 B.C.D.﹣52.(3分)如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.3.(3分)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是()A.美B.丽C.宜D.昌4.(3分)谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为()A.量角器B.直尺C.三角板D.圆规5.(3分)5月18 日,新华社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实现了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50 000个MCC报验点,电缆拉放长度估计1200千米.其中准确数是()A.27354 B.40000 C.50000 D.12006.(3分)九一(1)班在参加学校4×100m接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为()A.1 B.C.D.7.(3分)下列计算正确的是()A.a3+a2=a5 B.a3•a2=a5 C.(a3)2=a5D.a6÷a2=a38.(3分)如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于EF 的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分∠EAF B.AO垂直平分EF C.GH垂直平分EF D.GH平分AF 9.(3分)如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接ED.现测得AC=30m,BC=40m,DE=24m,则AB=()A.50m B.48m C.45m D.35m10.(3分)如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是()A.①②B.①③C.②④D.③④11.(3分)如图,四边形ABCD内接⊙O,AC平分∠BAD,则下列结论正确的是()A.AB=AD B.BC=CD C.D.∠BCA=∠DCA12.(3分)今年5月21日是全国第27个助残日,某地开展“心手相连,共浴阳光”为主题的手工制品义卖销售活动.长江特殊教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的相关销售信息汇总如下表,其中销售率最高的是()手工制品手串中国结手提包木雕笔筒总数量(个)2001008070销售数量(个)1901007668A.手串B.中国结C.手提包D.木雕笔筒13.(3分)△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC 于D,下列选项中,错误的是()A.sinα=cosαB.tanC=2 C.sinβ=cosβD.tanα=114.(3分)计算的结果为()A.1 B.C.D.015.(3分)某学校要种植一块面积为100m2的长方形草坪,要求两边长均不小于5m,则草坪的一边长为y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A .B .C .D .二、解答题(本大题共9小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(6分)计算:23×(1﹣)×0.5.17.(6分)解不等式组.18.(7分)YC市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格.请回答下列问题:时间第一天7:00﹣8:00第二天7:00﹣8:00第三天7:00﹣8:00第四天7:00﹣8:00第五天7:00﹣8:00需要租用自行车却未租到车的人数(人)15001200130013001200(1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00﹣8:00:需要租用公共自行车的人数是多少?19.(7分)“和谐号”火车从车站出发,在行驶过程中速度y(单位:m/s)与时间x(单位:s)的关系如图所示,其中线段BC∥x轴.(1)当0≤x≤10,求y关于x的函数解析式;(2)求C点的坐标.20.(8分)阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:其中m>n>0,m,n是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.21.(8分)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D.B点在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:四边形ABCD是菱形.22.(10分)某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b 亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从初开始遂年按同一百分数递减,依此规律,在 年初只需投资5亿元,即可顺利如期完工;辅助配套工程在年初的投资在前一年基础上的增长率是线路敷设投资增长率的1.5倍,年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.23.(11分)正方形ABCD 的边长为1,点O 是BC 边上的一个动点(与B ,C 不重合),以O 为顶点在BC 所在直线的上方作∠MON=90°.(1)当OM 经过点A 时,①请直接填空:ON (可能,不可能)过D 点;(图1仅供分析)②如图2,在ON 上截取OE=OA ,过E 点作EF 垂直于直线BC ,垂足为点F ,作EH ⊥CD 于H ,求证:四边形EFCH 为正方形.(2)当OM 不过点A 时,设OM 交边AB 于G ,且OG=1.在ON 上存在点P ,过P 点作PK 垂直于直线BC ,垂足为点K ,使得S △PKO =4S △OBG ,连接GP ,求四边形PKBG 的最大面积.24.(12分)已知抛物线y=ax 2+bx +c ,其中2a=b >0>c ,且a +b +c=0.(1)直接写出关于x 的一元二次方程ax 2+bx +c=0的一个根;(2)证明:抛物线y=ax 2+bx +c 的顶点A 在第三象限;(3)直线y=x +m 与x ,y 轴分别相交于B ,C 两点,与抛物线y=ax 2+bx +c 相交于A ,D 两点.设抛物线y=ax 2+bx +c 的对称轴与x 轴相交于E .如果在对称轴左侧的抛物线上存在点F ,使得△ADF 与△BOC 相似,并且S △ADF =S △ADE ,求此时抛XX学校--用心用情服务教育!物线的表达式.湖北省宜昌市中考数学试卷参考答案与试题解析一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•宜昌)有理数﹣的倒数为()A.5 B.C.D.﹣5【分析】根据倒数的定义,找出﹣的倒数为﹣5,此题得解.【解答】解:根据倒数的定义可知:﹣的倒数为﹣5.故选D.【点评】本题考查了倒数,熟练掌握倒数的定义是解题的关键.2.(3分)(2017•宜昌)如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:根据轴对称图形的概念可知,A为轴对称图形.故选:A.【点评】本题考查轴对称图形的知识,要求掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(3分)(2017•宜昌)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是()A.美B.丽C.宜D.昌【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴有“爱”字一面的相对面上的字是宜.故选C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)(2017•宜昌)谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为()A.量角器B.直尺C.三角板D.圆规【分析】利用圆规的特点直接得到答案即可.【解答】解:圆规有两只脚,一铁脚固定,另一脚旋转,故选D.【点评】本题考查了简单的数学知识,稍有点数学常识的同学就会做出正确的回答,难度不大.5.(3分)(2017•宜昌)5月18 日,新华社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实现了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50 000个MCC报验点,电缆拉放长度估计1200千米.其中准确数是()A.27354 B.40000 C.50000 D.1200【分析】利用精确数和近似数的区别进行判断.【解答】解:27354为准确数,4000、50000、1200都是近似数.故选A.【点评】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.6.(3分)(2017•宜昌)九一(1)班在参加学校4×100m接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为()A.1 B.C.D.【分析】根据概率公式进行解答.【解答】解:甲跑第一棒的概率为.故选:D.【点评】本题考查了概率公式.随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数.7.(3分)(2017•宜昌)下列计算正确的是()A.a3+a2=a5 B.a3•a2=a5 C.(a3)2=a5D.a6÷a2=a3【分析】由合并同类项、同底数幂的乘法法则、幂的乘方法则、同底数幂的除法法则即可得出结论.【解答】解:A、a3+a2=a5.不正确;B、a3•a2=a5正确;C、(a3)2=a6≠a5,不正确;D、a6÷a2=a4≠a3,不正确;故选:B.【点评】本题考查了合并同类项、同底数幂的乘法法则、幂的乘方法则、同底数幂的除法法则;熟记有关法则是关键.8.(3分)(2017•宜昌)如图,在△AEF中,尺规作图如下:分别以点E,点F 为圆心,大于EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF 于点O,连接AO,则下列结论正确的是()A.AO平分∠EAF B.AO垂直平分EF C.GH垂直平分EF D.GH平分AF 【分析】直接根据线段垂直平分线的作法即可得出结论.【解答】解:由题意可得,GH垂直平分线段EF.故选C.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.9.(3分)(2017•宜昌)如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接ED.现测得AC=30m,BC=40m,DE=24m,则AB=()A.50m B.48m C.45m D.35m【分析】根据中位线定理可得:AB=2DE=48m.【解答】解:∵D是AC的中点,E是BC的中点,∴DE是△ABC的中位线,∴DE=AB,∵DE=24m,∴AB=2DE=48m,故选B.【点评】本题考查了三角形的中位线定理,属于基础题,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半.10.(3分)(2017•宜昌)如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是()A.①②B.①③C.②④D.③④【分析】根据多边形的内角和定理即可判断.【解答】解:∵①剪开后的两个图形是四边形,它们的内角和都是360°,③剪开后的两个图形是三角形,它们的内角和都是180°;∴①③剪开后的两个图形的内角和相等,故选B.【点评】本题考查了三角形内角和、四边形的内角和以及多边形的内角和定理.11.(3分)(2017•宜昌)如图,四边形ABCD内接⊙O,AC平分∠BAD,则下列结论正确的是()A.AB=AD B.BC=CD C.D.∠BCA=∠DCA【分析】根据圆心角、弧、弦的关系对各选项进行逐一判断即可.【解答】解:A、∵∠ACB与∠ACD的大小关系不确定,∴AB与AD不一定相等,故本选项错误;B、∵AC平分∠BAD,∴∠BAC=∠DAC,∴BC=CD,故本选项正确;C、∵∠ACB与∠ACD的大小关系不确定,∴与不一定相等,故本选项错误;D、∠BCA与∠DCA的大小关系不确定,故本选项错误.故选B.【点评】本题考查的是圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.12.(3分)(2017•宜昌)今年5月21日是全国第27个助残日,某地开展“心手相连,共浴阳光”为主题的手工制品义卖销售活动.长江特殊教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的相关销售信息汇总如下表,其中销售率最高的是()手工制品手串中国结手提包木雕笔筒总数量(个)2001008070销售数量(个)1901007668A.手串B.中国结C.手提包D.木雕笔筒【分析】分别求出各手工制品的销售率,再比较大小即可.【解答】解:∵手串的销售率==<1;中国结的销售率==1;手提包的销售率==<1;木雕笔筒的销售率==<1,∴销售率最高的是中国结.故选B.【点评】本题考查的是有理数的大小比较,熟知有理数大小比较的法则是解答此题的关键.13.(3分)(2017•宜昌)△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC于D,下列选项中,错误的是()A.sinα=cosαB.tanC=2 C.sinβ=cosβD.tanα=1【分析】观察图象可知,△ADB是等腰直角三角形,BD=AD=2,AB=2,AD=2,CD=1,AC=,利用锐角三角函数一一计算即可判断.【解答】解:观察图象可知,△ADB是等腰直角三角形,BD=AD=2,AB=2,AD=2,CD=1,AC=,∴sinα=cosα=,故①正确,tanC==2,故②正确,tanα=1,故D正确,③∵sinβ==,cosβ=,∴sinβ≠cosβ,故C错误.故选C.【点评】本题考查锐角三角函数的应用.等腰直角三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14.(3分)(2017•宜昌)计算的结果为()A.1 B.C.D.0【分析】分子利用平方差公式进行因式分解,然后通过约分进行化简.【解答】解:===1.故选:A.【点评】本题考查了约分.约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.15.(3分)(2017•宜昌)某学校要种植一块面积为100m2的长方形草坪,要求两边长均不小于5m,则草坪的一边长为y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A.B. C.D.【分析】易知x、y是反比例函数,再根据边长的取值范围即可解题.【解答】解:∵草坪面积为100m2,∴x、y存在关系y=,∵两边长均不小于5m,∴x≥5、y≥5,则x≤20,故选C.【点评】反比例函数确定y的取值范围,即可求得x的取值范围,熟练掌握是解题的关键.二、解答题(本大题共9小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(6分)(2017•宜昌)计算:23×(1﹣)×0.5.【分析】原式先计算括号中的减法运算,再计算乘方运算,最后算乘法运算即可得到结果.【解答】解:原式=8××=3.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.(6分)(2017•宜昌)解不等式组.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,由①得:x≥﹣2,由②得:x<2,故不等式组的解集为﹣2≤x<2.【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.(7分)(2017•宜昌)YC市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格.请回答下列问题:时间第一天7:00﹣8:00第二天7:00﹣8:00第三天7:00﹣8:00第四天7:00﹣8:00第五天7:00﹣8:00需要租用自行车却未租到车的人数(人)15001200130013001200(1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00﹣8:00:需要租用公共自行车的人数是多少?【分析】(1)表格中5个数据按从小到大的顺序排列后,中位数应是第3个数据;(2)根据平均数等于数据之和除以总个数求出平均每天需要租用自行车却未租到车的人数,再加上700即可.【解答】解:(1)表格中5个数据按从小到大的顺序排列为1200,1200,1300,1300,1500,所以中位数是1300;(2)平均每天需要租用自行车却未租到车的人数:(1500+1200+1300+1300+1200)÷5=1300,∵YC市首批一次性投放公共自行车700辆供市民租用出行,∴平均每天需要租用公共自行车的人数是1300+700=2000.【点评】本题考查了中位数,平均数以及用样本估计总体.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷总个数.19.(7分)(2017•宜昌)“和谐号”火车从车站出发,在行驶过程中速度y(单位:m/s)与时间x(单位:s)的关系如图所示,其中线段BC∥x轴.(1)当0≤x≤10,求y关于x的函数解析式;(2)求C点的坐标.【分析】(1)根据函数图象和图象中的数据可以求得当0≤x≤10,y关于x的函数解析式;(2)根据函数图象可以得到当10≤x≤30时,y关于x的函数解析式,然后将x=30代入求出相应的y值,然后线段BC∥x轴,即可求得点C的坐标.【解答】解:(1)当0≤x≤10时,设y关于x的函数解析式为y=kx,10k=50,得k=5,即当0≤x≤10时,y关于x的函数解析式为y=5x;(2)设当10≤x≤30时,y关于x的函数解析式为y=ax+b,,得,即当10≤x≤30时,y关于x的函数解析式为y=2x+30,当x=30时,y=2×30+30=90,∵线段BC∥x轴,∴点C的坐标为(60,90).【点评】本题考查了一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用一次函数的性质解答.20.(8分)(2017•宜昌)阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:其中m>n>0,m,n是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.【分析】由n=1,得到a=(m2﹣1)①,b=m②,c=(m2+1)③,根据直角三角形有一边长为5,列方程即可得到结论.【解答】解:当n=1,a=(m2﹣1)①,b=m②,c=(m2+1)③,∵直角三角形有一边长为5,∴Ⅰ、当a=5时,(m2﹣1)=5,解得:m=(舍去),Ⅱ、当b=5时,即m=5,代入①③得,a=12,c=13,Ⅲ、当c=5时,(m2+1)=5,解得:m=±3,∵m>0,∴m=3,代入①②得,a=4,b=3,综上所述,直角三角形的另外两条边长分别为12,13或3,4.【点评】本题考查了勾股定理的逆定理,分类讨论是解题的关键.21.(8分)(2017•宜昌)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D.B点在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:四边形ABCD是菱形.【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.【解答】解:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE,∴AB=CD,∴四边形A∴D是平行四边形,∴∠DAE=∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴▱ABCD是菱形.【点评】此题是切线的性质,主要考查了同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO≌△CDE是解本题的关键.22.(10分)(2017•宜昌)某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从初开始遂年按同一百分数递减,依此规律,在年初只需投资5亿元,即可顺利如期完工;辅助配套工程在年初的投资在前一年基础上的增长率是线路敷设投资增长率的1.5倍,年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.【分析】(1)由线路敷设三年总投资为54亿元及这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2,可得答案.(2)设2015年年初,对辅助配套的投资为x亿元,则线路敷设的投资为2x亿元,搬迁安置的投资是4x 亿元,根据“线路敷设三年总投资为54亿元、辅助配套三年的总投资为36亿元”列方程组,解之求得x 、b 的值可得答案.(3)由x=5得出2015年初搬迁安置的投资为20亿元,设从初开始,搬迁安置投资逐年递减的百分数为y ,根据“年初搬迁安置的为投资5亿”列方程求解可得.【解答】解:(1)三年用于辅助配套的投资将达到54×=36(亿元);(2)设2015年年初,对辅助配套的投资为x 亿元,则线路敷设的投资为2x 亿元,搬迁安置的投资是4x 亿元, 根据题意,得:, 解得:, ∴市政府2015年年初对三项工程的总投资是7x=35亿元;(3)由x=5得,2015年初搬迁安置的投资为20亿元,设从初开始,搬迁安置投资逐年递减的百分数为y ,由题意,得:20(1﹣y )2=5,解得:y 1=0.5,y 2=1.5(舍)答:搬迁安置投资逐年递减的百分数为50%.【点评】本题主要考查一元二次方程、二元一次方程组的应用,理解题意、准确梳理题中所涉数量关系,找到题目蕴含的相等关系是解题的关键.23.(11分)(2017•宜昌)正方形ABCD 的边长为1,点O 是BC 边上的一个动点(与B ,C 不重合),以O 为顶点在BC 所在直线的上方作∠MON=90°.(1)当OM 经过点A 时,①请直接填空:ON 不可能 (可能,不可能)过D 点;(图1仅供分析) ②如图2,在ON 上截取OE=OA ,过E 点作EF 垂直于直线BC ,垂足为点F ,作EH ⊥CD 于H ,求证:四边形EFCH 为正方形.(2)当OM 不过点A 时,设OM 交边AB 于G ,且OG=1.在ON 上存在点P ,过P 点作PK 垂直于直线BC ,垂足为点K ,使得S △PKO =4S △OBG ,连接GP ,求四边形PKBG的最大面积.【分析】(1)①若ON过点D时,则在△OAD中不满足勾股定理,可知不可能过D点;②由条件可先判业四边形EFCH为矩形,再证明△OFE≌△ABO,可证得结论;(2)由条件可证明△PKO∽△OBG,利用相似三角形的性质可求得OP=2,可求得△POG面积为定值及△PKO和△OBG的关系,只要△CGB的面积有最大值时,则四边形PKBG的面积就最大,设OB=a,BG=b,由勾股定理可用b表示出a,则可用a表示出△CBG的面积,利用二次函数的性质可求得其最大值,则可求得四边形PKBG面积的最大值.【解答】解:(1)①若ON过点D,则OA>AB,OD>CD,∴OA2>AD2,OD2>AD2,∴OA2+OD2>2AD2≠AD2,∴∠AOD≠90°,这与∠MON=90°矛盾,∴ON不可能过D点,故答案为:不可能;②∵EH⊥CD,EF⊥BC,∴∠EHC=∠EFC=90°,且∠HCF=90°,∴四边形EFCH为矩形,∵∠MON=90°,∴∠EOF=90°﹣∠AOB,在正方形ABCD中,∠BAO=90°﹣∠AOB,∴∠EOF=∠BAO,在△OFE和△ABO中∴△OFE ≌△ABO (AAS ),∴EF=OB ,OF=AB ,又OF=CF +OC=AB=BC=BO +OC=EF +OC ,∴CF=EF ,∴四边形EFCH 为正方形;(2)∵∠POK=∠OGB ,∠PKO=∠OBG ,∴△PKO ∽△OBG ,∵S △PKO =4S △OBG , ∴=()2=4,∴OP=2,∴S △POG =OG•OP=×1×2=1,设OB=a ,BG=b ,则a 2+b 2=OG 2=1,∴b=,∴S △OBG =ab=a ==, ∴当a 2=时,△OBG 有最大值,此时S △PKO =4S △OBG =1,∴四边形PKBG 的最大面积为1+1+=.【点评】本题为四边形的综合应用,涉及矩形的判定和性质、全等三角形的判定和性质、相似三角形的判定和性质、三角形的面积、二次函数的性质及方程思想等知识.在(1)①中注意反证法的应用,在(1)②中证得CE=EF 是解题的关键,在(2)中确定出△OBG 面积的最大值是解题的关键.本题考查知识点较多,综合性较强,难度适中.24.(12分)(2017•宜昌)已知抛物线y=ax2+bx+c,其中2a=b>0>c,且a+b+c=0.(1)直接写出关于x的一元二次方程ax2+bx+c=0的一个根;(2)证明:抛物线y=ax2+bx+c的顶点A在第三象限;(3)直线y=x+m与x,y轴分别相交于B,C两点,与抛物线y=ax2+bx+c相交于A,D两点.设抛物线y=ax2+bx+c的对称轴与x轴相交于E.如果在对称轴左侧的抛物线上存在点F,使得△ADF与△BOC相似,并且S△ADF =S△ADE,求此时抛物线的表达式.【分析】(1)根据a+b+c=0,结合方程确定出方程的一个根即可;(2)表示出抛物线的对称轴,将2a=b代入,并结合a+b+c=0,表示出c,判断顶点坐标即可;(3)根据表示出的b与c,求出方程的解确定出抛物线解析式,由直线y=x+m 与x,y轴交于B,C两点,表示出OB=OC=|m|,可得出三角形BOC为等腰直角三角形,确定出三角形ADE面积,根据三角形ADF等于三角形ADE面积的一半求出a的值,即可确定出抛物线解析式.【解答】解:(1)∵抛物线y=ax2+bx+c,a+b+c=0,∴关于x的一元二次方程ax2+bx+c=0的一个根为x=1;(2)证明:∵2a=b,∴对称轴x=﹣=﹣1,把b=2a代入a+b+c=0中得:c=﹣3a,∵a>0,c<0,∴△=b2﹣4ac>0,∴<0,则顶点A(﹣1,)在第三象限;(3)由b=2a,c=﹣3a,得到x==,解得:x1=﹣3,x2=1,二次函数解析式为y=ax2+2ax﹣3a,∵直线y=x+m与x,y轴分别相交于点B,C两点,则OB=OC=|m|,∴△BOC是以∠BOC为直角的等腰直角三角形,即此时直线y=x+m与对称轴x=﹣1的夹角∠BAE=45°,∵点F在对称轴左侧的抛物线上,则∠DAF>45°,此时△ADF与△BOC相似,顶点A只可能对应△BOC的直角顶点O,即△ADF是以A为直角顶点的等腰直角三角形,且对称轴为x=﹣1,设对称轴x=﹣1与OF交于点G,∵直线y=x+m过顶点A(﹣1,﹣4a),∴m=1﹣4a,∴直线解析式为y=x+1﹣4a,联立得:,解得:或,这里(﹣1,﹣4a)为顶点A,(﹣1,﹣4a)为点D坐标,点D到对称轴x=﹣1的距离为﹣1﹣(﹣1)=,AE=|﹣4a|=4a,∴S=××4a=2,即它的面积为定值,△ADE这时等腰直角△ADF的面积为1,∴底边DF=2,而x=﹣1是它的对称轴,此时D、C重合且在y轴上,由﹣1=0,解得:a=1.此时抛物线解析式为y=x2+2x﹣3.【点评】此题属于二次函数综合题,涉及的知识有:二次函数的图象与性质,二次函数与一次函数的关系,以及待定系数法求函数解析式,熟练掌握各自的性质是解本题的关键.。

宜昌中考数学试题及答案中考 _1.doc

宜昌中考数学试题及答案中考 _1.doc

:2016年宜昌中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。

学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。

适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。

适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。

适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

湖北省宜昌市远安县2016届中考数学模拟试卷含答案解析

湖北省宜昌市远安县2016届中考数学模拟试卷含答案解析

2016年湖北省宜昌市远安县中考数学模拟试卷一.选择题1.地球赤道半径约为6378千米,这个数据用科学记数法表示为()千米.A.6.378×104B.63.78×102C.6378×10﹣4D.6.378×1032.在﹣,﹣2,0,1这四个数中,最小的数是()A.﹣B.﹣2 C.0 D.13.五边形的内角和为()A.360°B.540°C.720° D.900°4.某次数学测试,“奋发有为组”学习小组6个同学按照学号顺序,数学成绩分别为106,98,94.102,116,85,那么这个小组这次数学测试成绩的中位数是()A.89.5 B.98 C.102 D.1005.如图是由几个相同的小正方体搭成的一个几何体,它的左视图是()A.B.C.D.6.一个等腰三角形的两条边长为3,8,那么这个等腰三角形的周长是()A.19 B.14 C.19或14 D.以上均有可能7.下列计算正确的是()A.a2+a3=a5 B.a2•a3=a6C.(a2)3=a5D.(﹣3x2y)3=﹣27x6y38.JDF学校2015年春季学期组织一次校园文化知识竞赛,准备期间,拟从A,B,C,D四套卷中抽取两套题进行模拟训练,A卷恰好被抽中的概率是()A.B.C.D.以上都不对9.如图,四边形ABCD中,E,F,G,H分别是AB,BC,CD,AD边的中点,AC=6,BD=8,那么四边形EFGH的周长是()A.20 B.28C.14 D.以上答案均有可能10.如图,△ABC中,AB=AC,∠A=30°,以B为圆心,以BC为半径画弧交AC 于点D,那么∠DBC的度数是()A.30°B.45°C.40°D.60°11.代数式有意义,那么x的取值范围是()A.x≥1 B.x≠﹣2 C.x≥1且x≠﹣2 D.x≠112.如图,CD是圆O的直径,AC,BD是弦,C是弧AB的中点,且∠BDC=25°,则∠AOC的度数是()A.25°B.45°C.50°D.60°13.如图,在4×4的网格中,将△ABC绕B顺时针旋转90°得到△BDE,则A走过的路径的长是()A.πB.2πC.3πD.1.5π14.如图,点M,N在数轴上表示的数分别是m,n,则()A.m+n>0 B.m﹣n>0 C.|m|>|n|D.m2<n215.在同一坐标系下,y=ax2+bx和y=﹣ax+b的图象可能是()A. B.C.D.二.解答题(共9小题,计75分)16.(6分)计算:.17.(6分)先化简,÷,再选一个合适的a值代入求值.18.(8分)如图,在△ABC中,(1)请你作出AC边上的高BD (尺规作图);(2)若AB=AC=8,BC=6,求BD.19.(8分)如图,已知反比例函数y=与一次函数y=kx+b的图象交于A、B两点,且点A的横坐标是2,点B的纵坐标是﹣2.求:(1)一次函数的解析式;(2)△AOB的面积;(3)直接写出使反比例函数的值大于一次函数的值的x的取值范围.20.(8分)某车站在春运期间为改进服务,随机抽样调查了100名旅客从开始在购票窗口排队到购到车票所用的时间t(以下简称购票用时,单位为分钟).下面是这次调查统计分析得到的频率分布表和频率分布直方图.解答下列问题:(1)这次抽样的样本容量是多少?(2)在表中填写出缺失的数据并补全频率分布直方图:(3)旅客购票用时的平均数可能落在哪一小组?(4)若每增加一个购票窗口可以使平均购票用时降低5分钟,要使平均购票用时不超过10分钟,那么请你估计最少需增加几个窗口?21.(8分)如图,PB为⊙O的切线,B为切点,直线PO交⊙O于点E,F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)若BC=6,tan∠F=,求AC的长.22.(9分)A市2000年时,有m万人,每年人均用水20吨,当年库存水量刚好供全市使用一年;到2010年时,A市有2000万人,每年人均用水36吨,原有库存水量不足,须从外地调水满足需要,已知外调供水管道数为a条.预计到2020年时,与2010年相比,A市人数下降10%,每年人均用水量下降(1)预计2020年A市居民一年用水总量是多少万吨?(2)若A市的库存水量保持不变,到2010年,库存水量和a条外调供水管道供水一年的水量,刚好让全市居民使用一年,到2020年,库存水量和a条外调供水管道供水半年的水量,刚好满足A市居民使用一年;如果库存水量从2010年起,每一个10年都比前一个10年按一个相同百分数n增加,这样2020年比2010年的外调水量将减少94%,求百分数n.23.(10分)如图,▱ABCD中,AB=8,∠DAB的平分线交边CD于E(点E不与A,D重合),过点E作AE的垂线交BC所在直线于点G,交AB所在直线于点F.(1)当点G在CB的延长线上时(如图2),判断△BFG是什么三角形?说明理由.如果点G在B,C之间时此结论是否仍然成立?(不必说明理由)(2)当点G在B,C之间时(如图1),求AD的范围;(3)当2BG=BC时,求AD的长度.24.(12分)抛物线y=ax2和直线y=kx+b(k为正常数)交于点A和点B,其中点A的坐标是(﹣2,1),过点A作x轴的平行线交抛物线于点E,点D是抛物线上B.E之间的一个动点,设其横坐标为t,经过点D作两坐标轴的平行线分别交直线AB于点C.B,设CD=r,MD=m.(1)根据题意可求出a=,点E的坐标是.(2)当点D可与B、E重合时,若k=0.5,求t的取值范围,并确定t为何值时,r的值最大;(3)当点D不与B、E重合时,若点D运动过程中可以得到r的最大值,求k 的取值范围,并判断当r为最大值时m的值是否最大,说明理由.(下图供分析参考用)2016年湖北省宜昌市远安县中考数学模拟试卷参考答案与试题解析一.选择题1.地球赤道半径约为6378千米,这个数据用科学记数法表示为()千米.A.6.378×104B.63.78×102C.6378×10﹣4D.6.378×103【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:6378千米,这个数据用科学记数法表示为6.378×103千米,故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.在﹣,﹣2,0,1这四个数中,最小的数是()A.﹣B.﹣2 C.0 D.1【考点】2A:实数大小比较.【分析】根据实数的大小比较法则比较即可.【解答】解:在﹣,﹣2,0,1这四个数中,最小的数是﹣2,故选B.【点评】本题考查了实数的大小比较法则,能熟记法则的内容是解此题的关键.3.五边形的内角和为()A.360°B.540°C.720° D.900°【考点】L3:多边形内角与外角.【分析】n边形的内角和是(n﹣2)180°,由此即可求出答案.【解答】解:五边形的内角和是(5﹣2)×180°=540°.故选B.【点评】本题主要考查了多边形的内角和公式,是需要熟记的内容.4.某次数学测试,“奋发有为组”学习小组6个同学按照学号顺序,数学成绩分别为106,98,94.102,116,85,那么这个小组这次数学测试成绩的中位数是()A.89.5 B.98 C.102 D.100【考点】W4:中位数.【分析】根据中位数的定义先把这组数据从小到大排列,再求出最中间两个数的平均数即可.【解答】解:把这组数据从小到大排列为:85、94、98、102、106、116,最中间两个数的平均数是:(98+102)÷2=100;故选D.【点评】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,解答时应先排序,熟练掌握中位数的概念是本题的关键.5.如图是由几个相同的小正方体搭成的一个几何体,它的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找到从左面看所得到的图形即可.【解答】解:从物体左面看,左边2列,右边是1列.故选A.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.6.一个等腰三角形的两条边长为3,8,那么这个等腰三角形的周长是()A.19 B.14 C.19或14 D.以上均有可能【考点】KH:等腰三角形的性质;K6:三角形三边关系.【分析】题目给出等腰三角形有两条边长为8和3,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰为8时,周长=8+8+3=19;当腰长为3时,根据三角形三边关系可知此情况不成立;根据三角形三边关系可知:等腰三角形的腰长只能为8,这个三角形的周长是19.故选:A.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.7.下列计算正确的是()A.a2+a3=a5 B.a2•a3=a6C.(a2)3=a5D.(﹣3x2y)3=﹣27x6y3【考点】47:幂的乘方与积的乘方;24:立方根;35:合并同类项;46:同底数幂的乘法.【分析】结合幂的乘方与积的乘方、同底数幂的乘法的概念和运算法则进行求解即可.【解答】解:A、a2+a3≠a5,计算错误,不符合题意;B、a2•a3=a5≠a6,计算错误,不符合题意;C、(a2)3=a6≠a5,计算错误,不符合题意;D、(﹣3x2y)3=﹣27x6y3,计算正确,符合题意.故选D.【点评】本题考查了幂的乘方与积的乘方、同底数幂的乘法,解答本题的关键在于熟练掌握各知识点的概念和运算法则.8.JDF学校2015年春季学期组织一次校园文化知识竞赛,准备期间,拟从A,B,C,D四套卷中抽取两套题进行模拟训练,A卷恰好被抽中的概率是()A .B .C .D .以上都不对 【考点】X4:概率公式.【分析】根据题意先画出图形,再根据概率公式即可得出答案. 【解答】解:根据题意画图如下:∵一共有12种情况,A 卷恰好被抽中的有4种情况,∴A 卷恰好被抽中的概率是=;故选A .【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.9.如图,四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,AD 边的中点,AC=6,BD=8,那么四边形EFGH 的周长是( )A .20B .28C .14D .以上答案均有可能 【考点】LN :中点四边形.【分析】直接利用三角形中位线定理得出EH BD ,FGBD ,HGAC ,EFAC ,即可得出答案. 【解答】解:连接AC ,BD ,∵E ,F ,G ,H 分别是AB ,BC ,CD ,AD 边的中点,∴EHBD ,FGBD ,HGAC ,EFAC ,∴四边形EFGH 的周长是:(BD +BD +AC +AC )=×28=14.故选:C.【点评】此题主要考查了中点四边形,正确把握三角形中位线的性质性质是解题关键.10.如图,△ABC中,AB=AC,∠A=30°,以B为圆心,以BC为半径画弧交AC 于点D,那么∠DBC的度数是()A.30°B.45°C.40°D.60°【考点】KH:等腰三角形的性质.【分析】在△ABC中可求得∠ACB=∠ABC=75°,在△BCD中可求得∠DBC=45°,可求出∠ABD.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,又∵BC=BD,∴∠BDC=∠BCD=75°,∴∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=75°﹣30°=45°,故选D.【点评】本题主要考查等腰三角形的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.11.代数式有意义,那么x的取值范围是()A.x≥1 B.x≠﹣2 C.x≥1且x≠﹣2 D.x≠1【考点】72:二次根式有意义的条件.【分析】根据被开方数是非负数,分母不能为零,可得答案.【解答】解:由题意,得x﹣1≥0,且x+2≠0,∴x≥1且x≠﹣2,故选:C,【点评】本题考查了二次根式和分式有意义的条件,知道被开方数是非负数,分母不能为零是解题的关键.12.如图,CD是圆O的直径,AC,BD是弦,C是弧AB的中点,且∠BDC=25°,则∠AOC的度数是()A.25°B.45°C.50°D.60°【考点】M5:圆周角定理.【分析】根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得∠AOC=2∠CDB,进而可得答案.【解答】解:∵C是弧AB的中点,∴=,∴∠AOC=2∠CDB,∵∠BDC=25°,∴∠AOC=50°,故选:C.【点评】此题主要考查了圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.13.如图,在4×4的网格中,将△ABC绕B顺时针旋转90°得到△BDE,则A走过的路径的长是()A.πB.2πC.3πD.1.5π【考点】O4:轨迹;R2:旋转的性质.【分析】由每个小正方形的边长都为1,可求得AB长,然后由弧长公式,求得答案.【解答】解:∵每个小正方形的边长都为1,∴AB=4,∵将△ABC绕点B顺时针旋转90°得到△BDE,∴∠ABE=90°,∴A点运动的路径的长为:=2π.故选B.【点评】此题考查了旋转的性质以及弧长公式的应用.注意确定半径与圆心角是解此题的关键.14.如图,点M,N在数轴上表示的数分别是m,n,则()A.m+n>0 B.m﹣n>0 C.|m|>|n|D.m2<n2【考点】13:数轴;15:绝对值.【分析】根据M、N两点在数轴上的位置判断出其取值范围,再对各选项进行逐一分析即可.【解答】解:M、N两点在数轴上的位置可知:﹣3<m<﹣2,1<n<2,∵m+n<O,故A错误;∵m﹣n<0,故B错误;∵﹣3<m<﹣2,1<n<2,∴|m|>|n|,故C正确;∵﹣3<m<﹣2,1<n<2,∴m2>n2,故D错误.故选:C.【点评】本题考查了实数与数轴,解决本题的关键是根据M、N两点在数轴上的位置判断出其取值范围.15.在同一坐标系下,y=ax2+bx和y=﹣ax+b的图象可能是()A. B.C.D.【考点】H2:二次函数的图象;F3:一次函数的图象.【分析】根据二次函数的c值为0,确定二次函数图象经过坐标原点,再根据a 值确定出二次函数的开口方向与一次函数所经过的象限即可得解.【解答】解:∵y=ax2+bx(a≠0),c=0,∴二次函数经过坐标原点;A、B根据二次函数开口向上a>0,对称轴x=﹣<0,所以,b>0,∴﹣a<0,b>0,∴一次函数经过第一、三、四象限,∴A、B错误;C、D根据二次函数开口向下a<0,对称轴x=﹣<0,所以,b>0,∴﹣a>0,b>0,∴一次函数经过第一、二、三象限,∴C错误,D正确;故选D.【点评】本题考查了二次函数的图象,一次函数的图象,熟练掌握函数解析式的系数与图象的关系是解题的关键.二.解答题(共9小题,计75分)16.计算:.【考点】6F:负整数指数幂;1G:有理数的混合运算.【分析】根据有理数的混合运算,可得答案.【解答】解:原式=﹣9﹣10×(﹣2)+16=﹣9+20+16=27.【点评】本题考查了有理数的混合运算,先算乘方,再算乘除,最后算加减.17.先化简,÷,再选一个合适的a值代入求值.【考点】6D:分式的化简求值.【分析】首先把分式的分子、分母分解因式,然后进行约分,再通分相加即可化简,最后代入能使分式有意义的a的值求解即可.【解答】解:原式=﹣=﹣===.当a=2时,原式=.【点评】本题考查了分式的化简求值,正确对分式进行通分、约分是关键.18.如图,在△ABC中,(1)请你作出AC边上的高BD (尺规作图);(2)若AB=AC=8,BC=6,求BD.【考点】N2:作图—基本作图;73:二次根式的性质与化简;KQ:勾股定理.【分析】(1)过点B作AC的垂线,交AC于点D,则BD即为所求;(2)设AD=x,则CD=8﹣x,在Rt△ABD中,根据勾股定理可得BD2=AB2﹣AD2=82﹣x2,在Rt△BCD中,根据勾股定理可得BD2=BC2﹣CD2=62﹣(8﹣x)2,进而得到82﹣x2=62﹣(8﹣x)2,解得x的值,最后根据勾股定理即可求得BD.【解答】解:(1)如图所示,BD即为所求;(2)设AD=x,则CD=8﹣x,∵BD⊥AC,∴Rt△ABD中,BD2=AB2﹣AD2=82﹣x2,Rt△BCD中,BD2=BC2﹣CD2=62﹣(8﹣x)2,∴82﹣x2=62﹣(8﹣x)2,解得x=,∴Rt△ABD中,BD===.【点评】本题主要考查了基本作图和勾股定理的运用,解决问题的关键是掌握过直线外一点作已知直线的垂线的方法.解题时注意方程思想的运用.19.如图,已知反比例函数y=与一次函数y=kx+b的图象交于A、B两点,且点A的横坐标是2,点B的纵坐标是﹣2.求:(1)一次函数的解析式;(2)△AOB的面积;(3)直接写出使反比例函数的值大于一次函数的值的x的取值范围.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)由点A、B的横纵坐标结合反比例函数解析式即可得出点A、B的坐标,再由点A、B的坐标利用待定系数法即可得出直线AB的解析式;(2)设直线AB与y轴交于C,找出点C的坐标,利用三角形的面积公式结合A、B点的横坐标即可得出结论;(3)观察函数图象,根据图象的上下关系即可找出不等式的解集.【解答】解:(1)令反比例函数y=,x=2,则y=4,∴点A的坐标为(2,4);反比例函数y=中y=﹣2,则﹣2=﹣,解得:x=﹣4,∴点B的坐标为(﹣4,﹣2).∵一次函数过A、B两点,∴,解得:,∴一次函数的解析式为y=x+2.(2)设直线AB与y轴交于C,令为y=x+2中x=0,则y=2,∴点C的坐标为(0,2),=OC•(x A﹣x B)=×2×[4﹣(﹣2)]=6.∴S△AOB(3)观察函数图象发现:当x<﹣4或0<x<2时,反比例函数图象在一次函数图象上方,∴反比例函数的函数值大于一次函数的函数值时x的取值范围为x<﹣4或0<x <2.【点评】本题考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式以及三角形的面积公式,解题的关键是:(1)求出点A、B的坐标;(2)找出点C的坐标;(3)根据函数图象的上下关系解决不等式.本题属于基础题,难度不大,解决该题型题目时,找出点的坐标,再结合点的坐标利用待定系数法求出函数解析式是关键.20.某车站在春运期间为改进服务,随机抽样调查了100名旅客从开始在购票窗口排队到购到车票所用的时间t(以下简称购票用时,单位为分钟).下面是这次调查统计分析得到的频率分布表和频率分布直方图.解答下列问题:(1)这次抽样的样本容量是多少?(2)在表中填写出缺失的数据并补全频率分布直方图:(3)旅客购票用时的平均数可能落在哪一小组?(4)若每增加一个购票窗口可以使平均购票用时降低5分钟,要使平均购票用时不超过10分钟,那么请你估计最少需增加几个窗口?【考点】V8:频数(率)分布直方图;V2:全面调查与抽样调查;V3:总体、个体、样本、样本容量;V7:频数(率)分布表.【分析】(1)根据分布表即可直接求得总数,即样本容量;(2)本题需先根据已知条件和样本容量,然后根据数据和频数与频率之间的关系即可把表补充完整.(3)本题根据表中所给的频数和频率的数据,即可得出旅客购票用时的平均数落在哪一小组内.(4)本题需先设出旅客购票用时的平均数为t小时,再根据所要求的条件列出式子,即可求出得数.【解答】解:(1)样本容量是100.(2)第5组的频数是:100﹣30﹣10﹣10=50;第三组的频率是:10÷100=0.10;(3)设旅客购票用时的平均数为t小时,旅客购票用时的平均数可能落在:15≤t<20;∴旅客购票用时的平均数可能落在第4组.(4)设需增加x个窗口.则20﹣5x≤10.∴x≥2,∴至少需要增加2个窗口.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.如图,PB为⊙O的切线,B为切点,直线PO交⊙O于点E,F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)若BC=6,tan∠F=,求AC的长.【考点】ME:切线的判定与性质;T7:解直角三角形.【分析】(1)连接OB,根据垂径定理的知识,得出OA=OB,∠POA=∠POB,继而证明△PAO≌△PBO,然后利用全等三角形的性质结合切线的判定定理即可得出结论;(2)根据题意可确定OD是△ABC的中位线,设AD=x,然后利用三角函数的知识表示出FD、OA,在Rt△AOD中,利用勾股定理解出x的值,根据勾股定理计算即可.【解答】(1)证明:连接OB,∵PB是⊙O的切线,∴∠PBO=90°,∵OA=OB,BA⊥PO于D,∴AD=BD,∠POA=∠POB,在△PAO和△PBO中,,∴△PAO≌△PBO(SAS),∴∠PAO=∠PBO=90°,∴OA⊥PA,∴直线PA为⊙O的切线;(2)解:∵OA=OC,AD=DB,∴OD=BC=3,设AD=x,∵tan∠F=,∴FD=2x,则OA=OF=2x﹣3,在Rt△AOD中,OA2=OD2+AD2,即(2x﹣3)2=32+x2,解得,x=4,则AD=4,AB=8,∴AC==10.【点评】此题考查了切线的判定与性质、勾股定理、全等三角形的判定与性质,掌握圆的切线垂直于经过切点的半径、全等三角形的判定定理和性质定理是解题的关键.22.A市2000年时,有m万人,每年人均用水20吨,当年库存水量刚好供全市使用一年;到2010年时,A市有2000万人,每年人均用水36吨,原有库存水量不足,须从外地调水满足需要,已知外调供水管道数为a条.预计到2020年时,与2010年相比,A市人数下降10%,每年人均用水量下降(1)预计2020年A市居民一年用水总量是多少万吨?(2)若A市的库存水量保持不变,到2010年,库存水量和a条外调供水管道供水一年的水量,刚好让全市居民使用一年,到2020年,库存水量和a条外调供水管道供水半年的水量,刚好满足A市居民使用一年;如果库存水量从2010年起,每一个10年都比前一个10年按一个相同百分数n增加,这样2020年比2010年的外调水量将减少94%,求百分数n.【考点】AD:一元二次方程的应用.【分析】(1)根据题意可以分别求得2020年A市的人口数和用水总量,从而可以解答本题;(2)根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:(1)2020年A市有居民2000×(1﹣10%)=1800(万人),2020年A市每年人均用水36×(1﹣)=30(吨),∴2020年A市居民一年用水总量为1800×30=54000(万吨),答:2020年A市居民一年用水总量是54000万吨;(2)由题意可得,2000年库存水量为:20m万吨,设每条外调供水管道一年可以运送b吨水,,解得,n=27.8答:百分数n的值是27.8.【点评】本题考查一元二次方程的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用方程的思想解答.23.(10分)(2016•远安县模拟)如图,▱ABCD中,AB=8,∠DAB的平分线交边CD于E(点E不与A,D重合),过点E作AE的垂线交BC所在直线于点G,交AB所在直线于点F.(1)当点G在CB的延长线上时(如图2),判断△BFG是什么三角形?说明理由.如果点G在B,C之间时此结论是否仍然成立?(不必说明理由)(2)当点G在B,C之间时(如图1),求AD的范围;(3)当2BG=BC时,求AD的长度.【考点】LO:四边形综合题.【分析】(1)如图2,△BFG是等腰三角形,作平行线,构建菱形ADEH,证明AH=EH,所以∠EAH=∠AEH,再证明∠GFB=∠G,根据等角对等边得:BF=BG,所以△BFG是等腰三角形;如图1,同理可得:△BFG是等腰三角形;(2)由▱ABCD无限接近菱形,得AD<8,点G与D点重合时,AD取最小值,由AD=AH=HB得出AD的取值范围;(3)分两种情况:①当G在边BC上时,如图1,根据2AD=AF=AB+BF列式计算可得AD的长;②当G是边CB的延长线上时,如图2,根据AF=AB﹣BF列式可得AD的长.【解答】解:(1)如图2,△BFG是等腰三角形,理由是:过E作EH∥AD,交AB于H,∵四边形ABCD是平行四边形,∴DC∥AB,∴四边形ADEH是平行四边形,∵AE平分∠DAB,∴∠DAE=∠EAH,∵DC∥AB,∴∠DEA=∠EAH,∴∠DAE=∠DEA,∴AD=DE,∴▱ADEH是菱形,∴AH=EH,∴∠EAH=∠AEH,∵AE⊥EG,∴∠AEG=90°,∴∠EAH+∠HFE=90°,∠AEH+∠HEF=90°,∴∠HEF=∠HFE,∵EH∥AD,AD∥BC,∴EH∥BC,∴∠HEF=∠G,∵∠HFE=∠GFB,∴∠GFB=∠G,∴BF=BG,∴△BFG是等腰三角形;如图1,结论仍然成立,理由是:过E作EH∥AD,交AB于H,同理得:∠HEF=∠HFE,∵EH∥BC,∴∠HEF=∠BGF,∴∠HFE=∠BGF,∴BF=BG,∴△BFG是等腰三角形;(2)如图1,∵若点G无限接近C点时,E点也会无限接近C点,∴▱ABCD无限接近菱形,∴AD<8,又∵点G与D点重合时,AD取最小值,如图3,过E作EH∥AD,交AB于H,同理得:AD=AH=HB,∴AD=AB=×8=4,∵点G在B,C之间,∴AD的范围:4<AD<8;(3)当G在边BC上时,如图1,∵BG=BF=BC,AF=2AD,∴2AD=AF=AB+BF=8+BC=8+AD,∴AD=,当G是边CB的延长线上时,如图2,∵BG=BC,AF=2AD,BF=BG,∴AF=AB﹣BF=AB﹣BG,2AD=8﹣AD,AD=,综上所述,当2BG=BC时,AD的长度的长为或.【点评】本题四边形的综合题,考查了平行四边形、菱形的性质和判定,平行线的性质,等腰三角形的性质和判定,难度适中,关键是能作出平行线,运用了类比的解题思路,使问题得以解决.24.(12分)(2016•远安县模拟)抛物线y=ax2和直线y=kx+b(k为正常数)交于点A和点B,其中点A的坐标是(﹣2,1),过点A作x轴的平行线交抛物线于点E,点D是抛物线上B.E之间的一个动点,设其横坐标为t,经过点D 作两坐标轴的平行线分别交直线AB于点C.B,设CD=r,MD=m.(1)根据题意可求出a=,点E的坐标是(2,1).(2)当点D可与B、E重合时,若k=0.5,求t的取值范围,并确定t为何值时,r的值最大;(3)当点D不与B、E重合时,若点D运动过程中可以得到r的最大值,求k的取值范围,并判断当r为最大值时m的值是否最大,说明理由.(下图供分析参考用)【考点】HF:二次函数综合题.【分析】(1)利用二次函数图象上点的坐标特征知,点A的坐标满足抛物线的解析式,所以把点A的坐标代入抛物线的解析式,即可求得a的值;由抛物线y=ax2的对称性知,点A、点E关于y轴对称;(2)根据抛物线与直线的解析式求得点B的坐标为(4,4),则t的最小值是点E的横坐标,t的最大值是点B的横坐标;由于点C在直线y=x+2上,点D在抛物线y=x2上,CD∥x轴,所以D(t,t2),C(,t2);最后由两点间的距离公式求得r=|(t﹣1)2﹣|(2≤t≤4),所以根据二次函数最值的求法来求当r取最大值时t的值;(3)①设D(t,t2).由一次函数、二次函数图象上点的坐标特征求得点C的坐标为(t2﹣,t2).然后根据两点间的距离公式知r=﹣(t﹣2k)2+k+,易知当t=2k时,r取最大值.②根据一次函数y=kx+b中的k的几何意义知k==,即m=kr=﹣(t﹣2k)2+k2+b,显然,当t=2k时,m取最大值.【解答】解:(1)根据题意知,点A(﹣2,1)在抛物线y=ax2上,∴1=(﹣2)2a,解得,a=.∵抛物线y=ax2关于y轴对称,AE∥x轴,∴点A、E关于y轴对称,∴E(2,1).故答案是:,(2,1).(2)∵点A(﹣2,1)在直线y=kx+b(k为正常数)上,k=0.5,∴1=﹣2×0.5+b,解得,b=2,即直线AB的解析式为y=x+2.∵由(1)知,抛物线的解析式y=x2,抛物线y=x2和直线y=x+2(k为正常数)交于点A和点B,∴,解得,或,∴它们的交点坐标是(﹣2,1),(4,4),即B(4,4).当点D与点E重合时,t=2.当点D与点B重合时,t=4,∴t的取值范围是:2≤t≤4.∵点C在直线y=x+2上,点D在抛物线y=x2上,CD∥x轴,∴D(t,t2),C(,t2),∴r=t﹣=﹣(t﹣1)2+(2≤t≤4).∵在2≤t≤4范围内,r随t的增大而减小,t=2时,r取最大值.∴当t=2时,r最大=4.即当(3)∵点A、B是直线与抛物线的交点,∴kx+b=x2,即x2﹣4kx﹣4b=0,∴x A+x B=4k.∵x A=﹣2,∴x B=4k+2.又∵点D不与B、E重合,∴2<t<4k+2.设D(t,t2),则点C的纵坐标为t2,将其代入y=kx+b中,得x=t2﹣,∴点C的坐标为(t2﹣,t2),∴r=CD=t﹣(t2﹣)=﹣(t﹣2k)2+k+,当t=2k时,r取最大值.∴2<2k<4k+2,解得,k>1.又∵k==,∴m=kr=﹣(t﹣2k)2+k2+b,∴当t=2k时,m的值也最大.综上所述,当r为最大值时m的值也是最大.【点评】本题考查了二次函数综合题.其中涉及到的知识点由待定系数法求一次函数、二次函数的解析式,一次函数(二次函数)图象上点的坐标特征,二次函数最值的求法等.求二次函数最值时,此题采用了“配方法”.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年湖北省宜昌市中考数学试卷一、选择题(共15小题,每小题3分,满分45分)1.(3分)如果“盈利5%”记作+5%,那么﹣3%表示()A.亏损3% B.亏损8% C.盈利2% D.少赚3%2.(3分)下列各数:1.414,,﹣,0,其中是无理数的为()A.1.414 B.C.﹣ D.03.(3分)如图,若要添加一条线段,使之既是轴对称图形又是中心对称图形,正确的添加位置是()A.B.C.D.4.(3分)把0.22×105改成科学记数法的形式,正确的是()A.2.2×103B.2.2×104C.2.2×105D.2.2×1065.(3分)设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是()A.a>b B.a=b C.a<b D.b=a+180°6.(3分)在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是()A.甲组B.乙组C.丙组D.丁组7.(3分)将一根圆柱形的空心钢管任意放置,它的主视图不可能是()A.B.C.D.8.(3分)分式方程=1的解为()A.x=﹣1 B.x= C.x=1 D.x=29.(3分)已知M、N、P、Q四点的位置如图所示,下列结论中,正确的是()A.∠NOQ=42°B.∠NOP=132°C.∠PON比∠MOQ大D.∠MOQ与∠MOP互补10.(3分)如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短11.(3分)在6月26日“国际禁毒日”来临之际,华明中学围绕“珍爱生命,远离毒品”主题,组织师生到当地戒毒所开展相关问题的问卷调查活动,其中“初次吸毒时的年龄”在17至21岁的统计结果如图所示,则这些年龄的众数是()A.18 B.19 C.20 D.2112.(3分)任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形 D.△EHF为等腰三角形13.(3分)在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为()A.E、F、G B.F、G、H C.G、H、E D.H、E、F14.(3分)小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.宜昌游C.爱我宜昌D.美我宜昌15.(3分)函数y=的图象可能是()A.B.C.D.二、解答题(共9小题,满分75分)16.(6分)计算:(﹣2)2×(1﹣).17.(6分)先化简,再求值:4x•x+(2x﹣1)(1﹣2x).其中x=.18.(7分)杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:如图,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于O,OD⊥CD.垂足为D,已知AB=20米,请根据上述信息求标语CD的长度.19.(7分)如图,直线y=x+与两坐标轴分别交于A、B两点.(1)求∠ABO的度数;(2)过A的直线l交x轴正半轴于C,AB=AC,求直线l的函数解析式.20.(8分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是事件;(可能,必然,不可能)(2)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.21.(8分)如图,CD是⊙O的弦,AB是直径,且CD∥AB,连接AC、AD、OD,其中AC=CD,过点B的切线交CD的延长线于E.(1)求证:DA平分∠CDO;(2)若AB=12,求图中阴影部分的周长之和(参考数据:π=3.1,=1.4,=1.7).22.(10分)某蛋糕产销公司A品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2014年底就投入资金10.89万元,新增一条B品牌产销线,以满足市场对蛋糕的多元需求,B品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年,A、B两品牌产销线销售量总和将达到11.4万份,B品牌产销线2017年销售获利恰好等于当初的投入资金数.(1)求A品牌产销线2018年的销售量;(2)求B品牌产销线2016年平均每份获利增长的百分数.23.(11分)在△ABC中,AB=6,AC=8,BC=10,D是△ABC内部或BC边上的一个动点(与B、C不重合),以D为顶点作△DEF,使△DEF∽△ABC(相似比k>1),EF∥BC.(1)求∠D的度数;(2)若两三角形重叠部分的形状始终是四边形AGDH.①如图1,连接GH、AD,当GH⊥AD时,请判断四边形AGDH的形状,并证明;②当Ⅰ的面积最大时,过A作AP⊥EF于P,且AP=AD,求k的值.24.(12分)已知抛物线y=x2+(2m+1)x+m(m﹣3)(m为常数,﹣1≤m≤4).A (﹣m﹣1,y1),B(,y2),C(﹣m,y3)是该抛物线上不同的三点,现将抛物线的对称轴绕坐标原点O逆时针旋转90°得到直线a,过抛物线顶点P作PH⊥a于H.(1)用含m的代数式表示抛物线的顶点坐标;(2)若无论m取何值,抛物线与直线y=x﹣km(k为常数)有且仅有一个公共点,求k的值;(3)当1<PH≤6时,试比较y1,y2,y3之间的大小.2016年湖北省宜昌市中考数学试卷参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分)1.(3分)(2016•宜昌)如果“盈利5%”记作+5%,那么﹣3%表示()A.亏损3% B.亏损8% C.盈利2% D.少赚3%【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵“盈利5%”记作+5%,∴﹣3%表示表示亏损3%.故选:A.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.(3分)(2016•宜昌)下列各数:1.414,,﹣,0,其中是无理数的为()A.1.414 B.C.﹣ D.0【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,解答即可.【解答】解:是无理数.故选B.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.3.(3分)(2016•宜昌)如图,若要添加一条线段,使之既是轴对称图形又是中心对称图形,正确的添加位置是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.4.(3分)(2016•宜昌)把0.22×105改成科学记数法的形式,正确的是()A.2.2×103B.2.2×104C.2.2×105D.2.2×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将0.22×105用科学记数法表示为2.2×104.故选B.【点评】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2016•宜昌)设四边形的内角和等于a,五边形的外角和等于b,则a 与b的关系是()A.a>b B.a=b C.a<b D.b=a+180°【分析】根据多边形的内角和定理与多边形外角的关系即可得出结论.【解答】解:∵四边形的内角和等于a,∴a=(4﹣2)•180°=360°.∵五边形的外角和等于b,∴b=360°,∴a=b.故选B.【点评】本题考查的是多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键.6.(3分)(2016•宜昌)在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是()A.甲组B.乙组C.丙组D.丁组【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.【解答】解:根据模拟实验的定义可知,实验相对科学的是次数最多的丁组.故选:D.【点评】考查了模拟实验,选择和抛硬币类似的条件的试验验证抛硬币实验的概率,是一种常用的模拟试验的方法.7.(3分)(2016•宜昌)将一根圆柱形的空心钢管任意放置,它的主视图不可能是()A.B.C.D.【分析】根据三视图的确定方法,判断出钢管无论如何放置,三视图始终是下图中的其中一个,即可.【解答】解:∵一根圆柱形的空心钢管任意放置,∴不管钢管怎么放置,它的三视图始终是,,,主视图是它们中一个,∴主视图不可能是.故选A,【点评】此题是简单几何体的三视图,考查的是三视图的确定方法,解本题的关键是物体的放置不同,主视图,俯视图,左视图,虽然不同,但它们始终就图中的其中一个.8.(3分)(2016•宜昌)分式方程=1的解为()A.x=﹣1 B.x= C.x=1 D.x=2【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣1=x﹣2,解得:x=﹣1,经检验x=﹣1是分式方程的解,则分式方程的解为x=﹣1.故选:A.【点评】此题考查了分式方程的解,解分式方程利用了转化的思想,还有注意不要忘了检验.9.(3分)(2016•宜昌)已知M、N、P、Q四点的位置如图所示,下列结论中,正确的是()A.∠NOQ=42°B.∠NOP=132°C.∠PON比∠MOQ大D.∠MOQ与∠MOP互补【分析】根据已知量角器上各点的位置,得出各角的度数,进而得出答案.【解答】解:如图所示:∠NOQ=138°,故选项A错误;∠NOP=48°,故选项B错误;如图可得:∠PON=48°,∠MOQ=42°,故∠PON比∠MOQ大,故选项C正确;由以上可得,∠MOQ与∠MOP不互补,故选项D错误.故选:C.【点评】此题主要考查了余角和补角,正确得出各角的度数是解题关键.10.(3分)(2016•宜昌)如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短【分析】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.【解答】解:∵用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选D.【点评】本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.11.(3分)(2016•宜昌)在6月26日“国际禁毒日”来临之际,华明中学围绕“珍爱生命,远离毒品”主题,组织师生到当地戒毒所开展相关问题的问卷调查活动,其中“初次吸毒时的年龄”在17至21岁的统计结果如图所示,则这些年龄的众数是()A.18 B.19 C.20 D.21【分析】根据众数的概念:一组数据中出现次数最多的数据叫做众数,求解即可.【解答】解:由条形图可得:年龄为20岁的人数最多,故众数为20.故选C.【点评】本题考查了众数的知识,解答本题的关键是掌握众数的概念:一组数据中出现次数最多的数据叫做众数.12.(3分)(2016•宜昌)任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形 D.△EHF为等腰三角形【分析】根据等腰三角形的定义、菱形的定义、等边三角形的定义一一判断即可.【解答】解:A、正确.∵EG=EH,∴△EGH是等腰三角形.B、错误.∵EG=GF,∴△EFG是等腰三角形,若△EFG是等边三角形,则EF=EG,显然不可能.C、正确.∵EG=EH=HF=FG,∴四边形EHFG是菱形.D、正确.∵EH=FH,∴△EFH是等腰三角形.故选B.【点评】本题考查线段的垂直平分线的性质、作图﹣基本作图、等腰三角形的定义等知识,解题的关键是灵活一一这些知识解决问题,属于中考常考题型.13.(3分)(2016•宜昌)在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为()A.E、F、G B.F、G、H C.G、H、E D.H、E、F【分析】根据网格中两点间的距离分别求出,OE,OF,OG,OH然后和OA比较大小.最后得到哪些树需要移除.【解答】解:∵OA==,∴OE=2<OA,所以点E在⊙O内,OF=2<OA,所以点F在⊙O内,OG=1<OA,所以点G在⊙O内,OH==2>OA,所以点H在⊙O外,故选A【点评】此题是点与圆的位置关系,主要考查了网格中计算两点间的距离,比较线段长短的方法,计算距离是解本题的关键.点到圆心的距离小于半径,点在圆内,点到圆心的距离大于半径,点在圆外,点到圆心的距离大于半径,点在圆内.14.(3分)(2016•宜昌)小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.宜昌游C.爱我宜昌D.美我宜昌【分析】对(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,即可得到结论.【解答】解:∵(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),∵x﹣y,x+y,a+b,a﹣b四个代数式分别对应爱、我,宜,昌,∴结果呈现的密码信息可能是“爱我宜昌”,故选C.【点评】本题考查了公式法的因式分解运用,熟练掌握因式分解的方法是解本题的关键.15.(3分)(2016•宜昌)函数y=的图象可能是()A.B.C.D.【分析】函数y=是反比例y=的图象向左移动一个单位,根据反比例函数的图象特点判断即可.【解答】解:函数y=是反比例y=的图象向左移动一个单位,即函数y=是图象是反比例y=的图象双曲线向左移动一个单位.故选C【点评】此题是反比例函数的图象,主要考查了反比例函数的图象是双曲线,掌握函数图象的平移是解本题的关键.二、解答题(共9小题,满分75分)16.(6分)(2016•宜昌)计算:(﹣2)2×(1﹣).【分析】直接利用有理数乘方运算法则化简,进而去括号求出答案.【解答】解:(﹣2)2×(1﹣)=4×(1﹣)=4×=1.【点评】此题主要考查了有理数的混合运算,正确掌握运算法则是解题关键.17.(6分)(2016•宜昌)先化简,再求值:4x•x+(2x﹣1)(1﹣2x).其中x=.【分析】直接利用整式乘法运算法则计算,再去括号,进而合并同类项,把已知代入求出答案.【解答】解:4x•x+(2x﹣1)(1﹣2x)=4x2+(2x﹣4x2﹣1+2x)=4x2+4x﹣4x2﹣1=4x﹣1,当x=时,原式=4×﹣1=﹣.【点评】此题主要考查了整式的混合运算,正确掌握整式乘法运算是解题关键.18.(7分)(2016•宜昌)杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:如图,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于O,OD⊥CD.垂足为D,已知AB=20米,请根据上述信息求标语CD的长度.【分析】由AB∥CD,利用平行线的性质可得∠ABO=∠CDO,由垂直的定义可得∠CDO=90°,易得OB⊥AB,由相邻两平行线间的距离相等可得OD=OB,利用ASA 定理可得△ABO≌△CDO,由全等三角形的性质可得结果.【解答】解:∵AB∥CD,∴∠ABO=∠CDO,∵OD⊥CD,∴∠CDO=90°,∴∠ABO=90°,即OB⊥AB,∵相邻两平行线间的距离相等,∴OD=OB,在△ABO与△CDO中,,∴△ABO≌△CDO(ASA),∴CD=AB=20(m)【点评】本题主要考查了平行线的性质和全等三角形的判定及性质定理,综合运用各定理是解答此题的关键.19.(7分)(2016•宜昌)如图,直线y=x+与两坐标轴分别交于A、B两点.(1)求∠ABO的度数;(2)过A的直线l交x轴正半轴于C,AB=AC,求直线l的函数解析式.【分析】(1)根据函数解析式求出点A、B的坐标,然后在Rt△ABO中,利用三角函数求出tan∠ABO的值,继而可求出∠ABO的度数;(2)根据题意可得,AB=AC,AO⊥BC,可得AO为BC的中垂线,根据点B的坐标,得出点C的坐标,然后利用待定系数法求出直线l的函数解析式.【解答】解:(1)对于直线y=x+,令x=0,则y=,令y=0,则x=﹣1,故点A的坐标为(0,),点B的坐标为(﹣1,0),则AO=,BO=1,在Rt△ABO中,∵tan∠ABO==,∴∠ABO=60°;(2)在△ABC中,∵AB=AC,AO⊥BC,∴AO为BC的中垂线,即BO=CO,则C点的坐标为(1,0),设直线l的解析式为:y=kx+b(k,b为常数),则,解得:,即函数解析式为:y=﹣x+.【点评】本题考查了待定系数法求一次函数解析式,涉及了的知识点有:待定系数法确定一次函数解析式,一次函数与坐标轴的交点,坐标与图形性质,熟练掌握待定系数法是解答本题的关键.20.(8分)(2016•宜昌)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是不可能事件;(可能,必然,不可能)(2)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.【分析】(1)根据随机事件的概念可知是随机事件;(2)求概率要画出树状图分析后得出.【解答】解:(1)小李同学在该天早餐得到两个油饼”是不可能事件;(2)树状图法即小张同学得到猪肉包和油饼的概率为=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)(2016•宜昌)如图,CD是⊙O的弦,AB是直径,且CD∥AB,连接AC、AD、OD,其中AC=CD,过点B的切线交CD的延长线于E.(1)求证:DA平分∠CDO;(2)若AB=12,求图中阴影部分的周长之和(参考数据:π=3.1,=1.4,=1.7).【分析】(1)只要证明∠CDA=∠DAO,∠DAO=∠ADO即可.(2)首先证明==,再证明∠DOB=60°得△BOD是等边三角形,由此即可解决问题.【解答】证明:(1)∵CD∥AB,∴∠CDA=∠BAD,又∵OA=OD,∴∠ADO=∠BAD,∴∠ADO=∠CDA,∴DA平分∠CDO.(2)如图,连接BD,∵AB是直径,∴∠ADB=90°,∵AC=CD,∴∠CAD=∠CDA,又∵CD∥AB,∴∠CDA=∠BAD,∴∠CDA=∠BAD=∠CAD,∴==,又∵∠AOB=180°,∴∠DOB=60°,∵OD=OB,∴△DOB是等边三角形,∴BD=OB=AB=6,∵=,∴AC=BD=6,∵BE切⊙O于B,∴BE⊥AB,∴∠DBE=∠ABE﹣∠ABD=30°,∵CD∥AB,∴BE⊥CE,∴DE=BD=3,BE=BD×cos∠DBE=6×=3,∴的长==2π,∴图中阴影部分周长之和为2=4π+9+3=4×3.1+9+3×1.7=26.5.【点评】本题考查切线的性质、平行线的性质、等边三角形的判定和性质、弧长公式等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线,属于中考常考题型.22.(10分)(2016•宜昌)某蛋糕产销公司A品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2014年底就投入资金10.89万元,新增一条B品牌产销线,以满足市场对蛋糕的多元需求,B品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年,A、B两品牌产销线销售量总和将达到11.4万份,B品牌产销线2017年销售获利恰好等于当初的投入资金数.(1)求A品牌产销线2018年的销售量;(2)求B品牌产销线2016年平均每份获利增长的百分数.【分析】(1)根据题意容易得出结果;(2)设A品牌产销线平均每份获利的年递减百分数为x,B品牌产销线的年销售量递增相同的份数为k万份;根据题意列出方程,解方程即可得出结果.【解答】解:(1)9.5﹣(2018﹣2015)×0.5=8(万份);答:品牌产销线2018年的销售量为8万份;(2)设A品牌产销线平均每份获利的年递减百分数为x,B品牌产销线的年销售量递增相同的份数为k万份;根据题意得:,解得:,或(不合题意,舍去),∴,∴2x=10%;答:B品牌产销线2016年平均每份获利增长的百分数为10%.【点评】此题主要考查了一元二次方程的应用中平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a (1±x)2=b.23.(11分)(2016•宜昌)在△ABC中,AB=6,AC=8,BC=10,D是△ABC内部或BC边上的一个动点(与B、C不重合),以D为顶点作△DEF,使△DEF∽△ABC (相似比k>1),EF∥BC.(1)求∠D的度数;(2)若两三角形重叠部分的形状始终是四边形AGDH.①如图1,连接GH、AD,当GH⊥AD时,请判断四边形AGDH的形状,并证明;②当Ⅰ的面积最大时,过A作AP⊥EF于P,且AP=AD,求k的值.【分析】(1)先判断△ABC是直角三角形,即可;(2)①先判断AB∥DE,DF∥AC,得到平行四边形,再判断出是正方形;②先判断面积最大时点D的位置,由△BGD∽△BAC,找出AH=8﹣GA,得到S=﹣AG2+8AG,确定极值,AG=3时,面积最大,最后求k得值.矩形AGDH【解答】解:(1)∵AB2+AC2=100=BC2,∴∠BAC=90°,∵△DEF∽△ABC,∴∠D=∠BAC=90°,(2)①四边形AGDH为正方形,理由:如图1,延长ED交BC于M,延长FD交BC于N,∵△DEF∽△ABC,∴∠B=∠E,∵EF∥BC,∴∠E=∠EMC,∴∠B=∠EMC,∴AB∥DE,同理:DF∥AC,∴四边形AGDH为平行四边形,∵∠D=90°,∴四边形AGDH为矩形,∵GH⊥AD,∴四边形AGDH为正方形;②当点D在△ABC内部时,四边形AGDH的面积不可能最大,理由:如图2,点D在内部时(N在△ABC内部或BC边上),延长GD至N,过N作NM⊥AC于M,∴矩形GNMA面积大于矩形AGDH,∴点D在△ABC内部时,四边形AGDH的面积不可能最大,只有点D在BC边上时,面积才有可能最大,如图3,点D在BC上,∵DG∥AC,∴△BGD∽△BAC,∴,∴,∴,∴AH=8﹣GA,S矩形AGDH=AG×AH=AG×(8﹣AG)=﹣AG2+8AG,最大,此时,DG=AH=4,当AG=﹣=3时,S矩形AGDH即:当AG=3,AH=4时,S最大,矩形AGDH在Rt△BGD中,BD=5,∴DC=BC﹣BD=5,即:点D为BC的中点,∵AD=BC=5,∴PA=AD=5,延长PA,∵EF∥BC,QP⊥EF,∴QP⊥BC,∴PQ是EF,BC之间的距离,∴D到EF的距离为PQ的长,在△ABC中,AB×AC=BC×AQ∴AQ=4.8∵△DEF∽△ABC,∴k===.【点评】此题是相似三角形的综合题,主要考查了相似三角形的性质和判定,平行四边形,矩形,正方形的判定和性质,极值的确定,勾股定理的逆定理,解本题的关键是作出辅助线,24.(12分)(2016•宜昌)已知抛物线y=x2+(2m+1)x+m(m﹣3)(m为常数,﹣1≤m≤4).A(﹣m﹣1,y1),B(,y2),C(﹣m,y3)是该抛物线上不同的三点,现将抛物线的对称轴绕坐标原点O逆时针旋转90°得到直线a,过抛物线顶点P作PH⊥a于H.(1)用含m的代数式表示抛物线的顶点坐标;(2)若无论m取何值,抛物线与直线y=x﹣km(k为常数)有且仅有一个公共点,求k的值;(3)当1<PH≤6时,试比较y1,y2,y3之间的大小.【分析】(1)根据顶点坐标公式即可解决问题.(2)列方程组根据△=0解决问题.(3)首先证明y1=y3,再根据点B的位置,分类讨论,①令<﹣m﹣1,求出m 的范围即可判断,②令=﹣m﹣1,则A与B重合,此情形不合题意,舍弃.③令>﹣m﹣1,求出m的范围即可判断,④令﹣≤<﹣m,求出m的范围即可判断,⑤令=﹣m,B,C重合,不合题意舍弃.⑥令>﹣m,求出m 的范围即可判断.【解答】解:(1)∵﹣=﹣,==﹣,∴顶点坐标(﹣,﹣).(2)由消去y得x2+2mx+(m2+km﹣3m)=0,∵抛物线与x轴有且仅有一个公共点,∴△=0,即(k﹣3)m=0,∵无论m取何值,方程总是成立,∴k﹣3=0,∴k=3.(3)PH=|﹣﹣(﹣)|=||,∵1<PH≤6,∴当>0时,有1<≤6,又﹣1≤m≤4,∴<m,当<0时,1<﹣≤6,又∵﹣1≤m≤4,∴﹣1,∴﹣1≤m<﹣或<m≤,∵A(﹣m﹣1,y1)在抛物线上,∴y1=(﹣m﹣1)2+(2m+1)(﹣m﹣1)+m(m+3)=﹣4m,∵C(﹣m,y3)在抛物线上,∴y3=(﹣m)2+(2m+1)(﹣m)+m(m﹣3)=﹣4m,∴y1=y3,①令<﹣m﹣1,则有m<﹣,结合﹣1≤m<﹣,∴﹣1≤m<﹣,此时,在对称轴的左侧y随x的增大而减小,如图1,∴y2>y1=y3,即当﹣1≤m<﹣时,有y2>y1=y3.②令=﹣m﹣1,则A与B重合,此情形不合题意,舍弃.③令>﹣m﹣1,且≤﹣时,有﹣<m≤﹣,结合﹣1≤m<﹣,∴﹣<m≤﹣,此时,在对称轴的左侧,y随x的增大而减小,如图2,∴y1=y3>y2,即当﹣<m≤﹣时,有y1=y3>y2,④令﹣≤<﹣m,有﹣≤m<0,结合﹣1≤m<﹣,∴﹣≤m<﹣,此时,在对称轴的右侧y随x的增大而增大,如图3,∴y2<y3=y1.⑤令=﹣m,B,C重合,不合题意舍弃.⑥令>﹣m,有m>0,结合<m≤,∴<m≤,此时,在对称轴的右侧,y随x的增大而增大,如图4,∴y2>y3=y1,即当<m≤时,有y2>y3=y1,综上所述,﹣1≤m<﹣或<m≤时,有y2>y1=y3,﹣<m<﹣时,有y2<y1=y3.【点评】本题考查二次函数综合题、顶点坐标公式等知识,解题的关键是熟练掌握利用根的判别式解决抛物线与直线的交点问题,学会分类讨论,学会利用函数图象判断函数值的大小,属于中考压轴题.参与本试卷答题和审题的老师有:HJJ;caicl;CJX;星月相随;sd2011;sjzx;弯弯的小河;王学峰;gbl210;fangcao;733599;家有儿女(排名不分先后)菁优网2017年4月16日。

相关文档
最新文档