八年级数学数据的分析单元复习测试附答案

合集下载

(常考题)人教版初中数学八年级数学下册第五单元《数据的分析》测试(包含答案解析)

(常考题)人教版初中数学八年级数学下册第五单元《数据的分析》测试(包含答案解析)

一、选择题1.某中学足球队的18名队员的年龄情况如下表:则这些队员年龄的众数和中位数分别是( ) A .15,15 B .15,15.5C .15,16D .16,152.若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为( ). A .1 B .6 C .1或6 D .5或63.小亮同学想知道自己的体重在班级中是否属于中等水平,则需了解全班同学体重的( ) A .平均数 B .中位数C .众数D .极差4.将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,则原来那组数据的平均数是( ) A .50B .52C .48D .25.如果将所给定的数据组中的每个数都减去一个非零常数,那么该数组的 ( ) A .平均数改变,方差不变 B .平均数改变,方差改变C .平均数不变,方差改变 D .平均数不变,方差不变 6.给出下列命题:①三角形的三条高相交于一点;②如果一组数据中有一个数据变动,那么它的平均数、众数、中位数都随之变动; ③如果不等式()33m x m ->-的解集为1x <,那么3m <;④如果三角形的一个外角等于与它相邻的一个内角则这个三角形是直角三角形; 其中正确的命题有( ) A .1个B .2个C .3个D .4个7.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是( )①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②8.已知数据x,4,0,3,-1的平均数是1,那么它的众数是()A.4 B.0 C.3 D.-19.有一组数据:1,1,1,1,m.若这组数据的方差是0,则m为()A.4-B.1-C.0 D.110.某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为()A.40,37B.40,39C.39,40D.40,3811.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择( )A.甲B.乙C.丙D.丁12.为了解某小区“全民健身”活动的开展情况,随机对居住在该小区的40名居民一周的体育锻炼时间进行了统计,结果如下表:锻炼时间(时)34567人数(人)6131452这40名居民一周体育锻炼时间的众数和中位数是( )A.14,5 B.14,6 C.5,5 D.5,6第II卷(非选择题)请点击修改第II卷的文字说明参考答案二、填空题13.据统计,某车间10名员工的日平均生产零件个数为8个,方差为2.5个2,引入新技术后,每名员工每天都比原先多生产1个零件,则现在日平均生产零件个数为______个,方差为______个2.14.如图是甲、乙两人6次投篮测试(每次投篮10个)成绩的统计图,甲、乙两人测试成绩的方差分别记作2S 甲、2S 乙,则2S 甲____2S 乙.(填“>”,“=”或“<”)15.若这8个数据-3, 2,-1,0,1,2,3,x 的极差是11,则这组数据的平均数是______. 16.已知一组数据-1,x ,0, 1,-2的平均数是0,这组数据的极差和标准差分别是 _____17.若一组数据4,,5,,7,9x y 的平均数为6,众数为5,则这组数据的方差为__________. 18.某校在“爱护地球,绿化祖国“的创建活动中,组织了100名学生开展植数造林活动,其植树情况整理如下表: 植树棵数(单位:棵) 4 5 6 8 10 人数(人)302225158则这100名学生所植树棵数的中位数为_____.19.一组数据:1,2,x ,y ,4,6,其中x <y ,中位数是2.5,众数是2.则这组数据的平均数是______;方差是______.20.某同学记录了自己一周每天的零花钱(单位:元),分别如下:5,4.5,5,5.5,5.5,5,4.5这组数据的众数和平均数分别是_______和_______.三、解答题21.“绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵): 1 1 2 3 2 3 2 3 3 4 3 3 4 3 3 5 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析:①绘制如下的统计图,请补充完整;②求这30户家庭2018年4月份义务植树数量的平均数是和中位数分别是多少?(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有多少户?22.在全民读书月活动中,某校随机抽样调查了一部分学生本学期计划购买课外书的费用情况,根据图中的相关信息,解答下面问题;(1)这次调查获取的样本容量是________;(2)由统计图可知,这次调查获取的样本数据的众数是________;中位数是________;(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.23.某校学生会向全校2400名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答系列问题:(1)本次接受随机抽样调查的学生人数为人,图1中m的值是;(2)求本次调查获取的样本数据的平均数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.24.某校八年级有800名学生,在一次跳绳模拟测试中,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为______,扇形统计图中m的值为______.(2)本次调查获取的样本数据的众数是_____(分),中位数是_____(分).(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?25.某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第1次第2次第3次第4次第5次第6次甲10988109乙101081079根据表格中的数据,可计算出甲、乙两人的平均成绩都是9环.(1)分别计算甲、乙六次测试成绩的方差;(2)根据数据分析的知识,你认为选______名队员参赛.26.八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(单位:分):)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4 分2,则成绩较为整齐的是队.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据众数和中位数的定义求解即可.【详解】解:这组数据按从小到大顺序排列为:14,14,14,15,15,15,15,15,15,16,16,16,16,17,17,17,17,18,则众数为:15,中位数为:(15+16)÷2=15.5.故答案为B.【点睛】本题考查了众数和中位数的知识,属于基础题,解答本题的关键是掌握众数和中位数的定义.2.C解析:C【解析】根据数据x1,x2,…x n与数据x1+a,x2+a,…x n+a的方差相同这个结论即可解决问题.解:∵一组数据2,2,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,∴这组数据可能是2,3,4,5,6或1,2,3,4,5,∴x=1或6,故选C.“点睛”本题考查方差、平均数等知识,解题的关键领域结论:数据x1,x2,…x n与数据x1+a,x2+a,…x n+a的方差相同解决问题,属于中考常考题型.3.B解析:B【分析】根据中位数的定义进行解答即可. 【详解】∵小亮同学想知道自己的体重在班级中是否属于中等水平, ∴需了解全班同学体重数据的中间的数据,即中位数, 故选:B . 【点睛】本题主要考查统计的有关知识,中位数是一组数据中,最中间的数据;对统计量进行合理的选择和恰当的运用是解题关键.4.B解析:B 【详解】解:由题意知,新的一组数据的平均数=1n[(1x ﹣50)+(2x ﹣50+…+(n x ﹣50)]= 1n[(12x x ++…+n x )﹣50n]=2, ∴1n(12x x ++…+n x )﹣50=2, ∴1n(12x x ++…+n x )=52, 即原来的一组数据的平均数为52. 故选B .5.A解析:A 【解析】试题分析:根据平均数、方差的计算公式即可判断. 由题意得该数组的平均数改变,方差不变,故选A. 考点:本题考查的是平均数,方差点评:数学公式的计算与应用是初中数学学习中的一个基本能力,此类问题往往考查学生对数学公式的理解能力,难度不大.6.B解析:B 【分析】根据三角形的高、平均数、众数、中位数的定义、不等式的基本性质和邻补角的定义逐一判断即可. 【详解】①钝角三角形的三条高不相交(三条高所在的直线交于一点),故错误;②如果一组数据中有一个数据变动,那么它的平均数会随之变动,但众数和中位数不一定变动,故错误;③如果不等式()33m x m ->-的解集为1x <,可得m -3<0,那么3m <,故正确;④如果三角形的一个外角等于与它相邻的一个内角,根据邻补角的定义可得这个外角和与它相邻的一个内角之和为180°, ∴三角形的这个内角为180°÷2=90° 则这个三角形是直角三角形,故正确. 综上:正确的有2个 故选B . 【点睛】此题考查的是三角形的相关性质、定义、数据的平均数、众数、中位数的定义和不等式的基本性质,掌握三角形的相关性质、定义、数据的平均数、众数、中位数的定义和不等式的基本性质是解决此题的关键.7.C解析:C 【分析】根据频数分布直方图中的数据,求得众数,平均数,中位数,即可得出结论. 【详解】解:①根据频数分布直方图,可得众数为60−80元范围,故每人乘坐地铁的月均花费最集中的区域在60−80元范围内,故①不正确;②每人乘坐地铁的月均花费的平均数=876001000=87.6=87.6元,所以每人乘坐地铁的月均花费的平均数范围是80~100元,故②错误;③每人乘坐地铁的月均花费的中位数约为80元,在60~100元范围内,故③正确;④为了让市民享受到更多的优惠,若使50%左右的人获得折扣优惠,则乘坐地铁的月均花费达到80元以上的人可以享受折扣,故④正确. 故选:C 【点睛】本题主要考查了频数分布直方图,平均数以及中位数的应用,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8.D解析:D 【分析】先根据平均数的定义求出x .这组数据中出现次数最多的数是众数. 【详解】∵x ,4,0,3,-1的平均数是1, ∴403115x +++-=⨯ ∴1x =-∴这组数据是14031--,,,, ∴众数是1-故选:D.【点睛】本题考查了平均数的定义和确定一组数据的众数的能力.要明确定义,找到这组数据中出现次数最多的数.9.D解析:D【分析】方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.【详解】依题意可得,平均数:45mx∴224441555m mm解得m=1,故选D.【点睛】本题考查了方差,熟练运用方差公式是解题的关键.10.B解析:B【分析】根据众数和中位数的概念求解可得.【详解】将数据重新排列为37,37,38,39,40,40,40所以这组数据的众数为40,中位数为39,故选B.【点睛】本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.11.C解析:C【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,选出方差最小,而且平均数较大的同学参加数学比赛.【详解】∵3.6<7.4<8.1,∴甲和丙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴丙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择丙.故选C.【点睛】此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.12.C解析:C【解析】【分析】众数是一组数据中出现次数最多的数据,中位数是将一组数据按大小依次排列,把处在最中间位置的一个数据或者最中间两个数据的平均数叫这组数据的中位数.本组数据中,把数据按照从大到小的顺序排列,最中间的两个数的平均数即为中位数.【详解】由统计表可知:体育锻炼时间最多的是5小时,故众数是5小时;统计表中是按从小到大的顺序排列的,最中间两个人的锻炼时间都是5小时,故中位数是5小时.故选C.【点睛】本题考查了确定一组数据的众数和中位数的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数,则找中间两位数的平均数.二、填空题13.925【分析】根据平均数与方差的定义计算即可得答案【详解】∵每名员工每天都比原先多生产1个零件∴现在日平均生产零件个数为=9设原先每人日生产零件的个数为:x1x2x3……x10∴原先的方差为=25∴解析:9 2.5【分析】根据平均数与方差的定义计算即可得答案.【详解】∵每名员工每天都比原先多生产1个零件,∴现在日平均生产零件个数为8101010⨯+=9, 设原先每人日生产零件的个数为:x 1、x 2、x 3、……x 10,∴原先的方差为22212101(8)(8)(8)10x x x ⎡⎤-+-+-⎣⎦…+=2.5, ∴现在的方差为22212101(19)(19)(19)10x x x ⎡⎤+-++-++-⎣⎦…+=22212101(8)(8)(8)10x x x ⎡⎤-+-+-⎣⎦…+=2.5, 故答案为:9,2.5【点睛】本题考查平均数与方差,熟练掌握定义与计算公式是解题关键.14.【分析】先分别求出甲乙的平均数再根据方差公式计算各自的方差进行比较即可得【详解】即故答案为【点睛】本题考查了方差的计算熟练掌握方差的计算公式是解题的关键解析:<【分析】先分别求出甲、乙的平均数,再根据方差公式计算各自的方差,进行比较即可得.【详解】87869823==63x +++++甲, 74795713==62x +++++乙, 222221232323238S =38769=633339⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⨯-+-+-+-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦甲, 2222211313131331S =37459=6222212⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⨯-+-+-+-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦乙, 831912<, 即22S S <甲乙,故答案为<.【点睛】本题考查了方差的计算,熟练掌握方差的计算公式是解题的关键.15.15或-05【分析】根据极差的概念求出x 的值然后根据平均数的概念求解【详解】一组数据-32-10123x 的极差是11当x 为最大值时x ﹣(﹣3)=11x=8平均数是:;当x 是最小值时3﹣x=11解得:解析:1.5或-0.5【分析】根据极差的概念求出x 的值,然后根据平均数的概念求解.【详解】一组数据-3, 2,-1,0,1,2,3,x 的极差是11,当x 为最大值时,x ﹣(﹣3)=11,x=8,平均数是:[3+ 2+1+0+1+2+3+8]8 1.5--÷=() ;当x 是最小值时,3﹣x=11,解得:x=﹣8,平均数是:[3+ 2+1+0+1+2+3+(8)]80.5--÷=-()-,故答案为:1.5或-0.5【点睛】本题考查了极差和平均数,掌握平均数是所有数据的和除以数据的个数;极差就是这组数中最大值与最小值的差,是解题的关键16.4【解析】试题解析:4【解析】试题∵x=0-(-1+0-2+1),解得x=2,故极差为:2-(-2)=4,则方差s 2=15[(-1-0)2+(2-0)2+(0-0)2+(1-0)2+(-2-0)2]=2,.17.【分析】根据平均数的计算公式可得再根据众数是5所以可得xy 中必须有一个5则另一个就是6通过方差的计算公式计算即可【详解】解:∵一组数据的平均数为6众数为5∴中至少有一个是5∵一组数据的平均数为6∴∴ 解析:83【分析】根据平均数的计算公式,可得11x y +=,再根据众数是5,所以可得x,y 中必须有一个5,则另一个就是6,通过方差的计算公式计算即可.【详解】解:∵一组数据4,,5,,7,9x y 的平均数为6,众数为5,∴,x y 中至少有一个是5,∵一组数据4,,5,,7,9x y 的平均数为6, ∴()4579166x y +++++=,∴11x y +=,∴,x y 中一个是5,另一个是6,∴这组数据的方差为()()()()()22222846256661[]676963-+-+-+-+-=; 故答案为83. 【点睛】 本题是一道数据统计中的综合性题目,涉及知识点较多,应当熟练掌握,特别是记忆方差的计算公式.18.5【解析】【分析】直接利用中位数定义求解【详解】第50个数和第55个数都是5所以这100名学生所植树棵数的中位数为5(棵)故答案为5【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排解析:5【解析】【分析】直接利用中位数定义求解.【详解】第50个数和第55个数都是5,所以这100名学生所植树棵数的中位数为5(棵).故答案为5.【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.19.3【解析】【分析】由中位数及众数的定义和给定的条件求出xy 的值然后根据平均数的定义求出平均数即可;利用方差公式计算即可求出方差【详解】由一组数据12xy46的中位数是25众数是2则有x=2y=3∴这解析:3 83【解析】【分析】由中位数及众数的定义和给定的条件求出x ,y 的值,然后根据平均数的定义求出平均数即可;利用方差公式计算即可求出方差.【详解】由一组数据1,2,x ,y ,4,6的中位数是2.5,众数是2,则有x=2,y=3,,∴这组数据的平均数为:12234636+++++=.∴这组数据的平均数为3; 这组数据的方差为:22222218(13)(23)(23)(33)(43)(63)63⎡⎤-+-+-+-+-+-=⎣⎦. ∴这组数据的方差为83. 故答案为3;83. 【点睛】本题考查数据的平均数、中数、方差,掌握平均数、中数、方差的的定义是解题的关键. 20.55【解析】【分析】根据众数和平均数的定义求解【详解】解:5出现了三次出现次数最多所以这组数据的众数是5这组数据的平均数=(5+45+5+55+55+5+45)=5故答案为:5;5【点睛】本题考查平解析:5 5【解析】【分析】根据众数和平均数的定义求解.【详解】解:5出现了三次,出现次数最多,所以这组数据的众数是5,这组数据的平均数=17(5+4.5+5+5.5+5.5+5+4.5)=5. 故答案为:5;5.【点睛】本题考查平均数的求法以及众数的定义:一组数据中出现次数最多的数据叫做众数. 三、解答题21.(1)①补图见解析;②这30户家庭2018年4月份义务植树数量的平均数是3.4棵,中位数是3棵;(2)估计该小区采用这种形式的家庭有70户.【分析】(1)①由已知数据知3棵的有12人、4棵的有8人,据此补全图形可得;②根据平均数和众数的定义求解可得;(2)用总户数乘以样本中采用了网上预约义务植树这种方式的户数所占比例可得.【详解】(1)①由已知数据知3棵的有12人、4棵的有8人,补全图形如下:②这30户家庭2018年4月份义务植树数量的平均数是1223312485461 3.430⨯+⨯+⨯+⨯+⨯+⨯=(棵) 中位数:从小到大排列,中位数应为第15位和第16位的数的平均值:3332+=(棵) 答:这30户家庭2018年4月份义务植树数量的平均数是3.4棵,中位数是3棵. (2)估计该小区采用这种形式的家庭有300×730=70户, 答:估计该小区采用这种形式的家庭有70户.【点睛】 本题主要考查了频数分布直方图,中位数、平均数的定义及样本估计总体思想的运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.(1)40;(2)30元,50元;(3)50500元.【分析】(1)根据条形统计图的信息把计划购买课外书的不同费用的人数相加计算即可; (2)根据众数的定义,中位数的定义,逐一进行求解即可;(3)先根据条形统计图展现的数据,计算样本中每个学生平均花费,再用全校总人数×每个学生平均花费,即可估算全校购买课外书的总花费.【详解】解:(1)6121084=40++++(2)购买30元课外书的人数最多,所以这次抽样的众数是30元;购买课外书排第20,第21的费用均为50元,所以这次抽样的中位数是50元; (3)样本中平均每个学生的费用是620123010508804100=50.56121084⨯+⨯+⨯+⨯+⨯++++(元) 因此该校1000学生购买课外书的总花费约为100050.5=50500⨯(元)答:该校本学期计划购买课外书的总花费约为50500元.【点睛】本题主要考查抽样调查中样本容量,众数,中位数的定义及由样本数据估算总体数量的知识.23.(1)50,32;(2)16,15;(3)768.【分析】(1)根据题意由5元的人数及其所占百分比可得抽样调查的学生人数,用10元人数除以抽样调查的学生人数可得m 的值;(2)由题意根据统计图可以分别得到本次调查获取的样本数据的平均数和中位数;(3)由题意根据全校总人数捐款金额为10元的学生人数所占乘以抽样调查的学生人数的比例,即可估计该校本次活动捐款金额为10元的学生人数.【详解】解:(1)本次接受随机抽样调查的学生人数为4÷8%=50人, ∵16100%32%50⨯=, 32m ∴=.故答案为:50;32.(2)本次调查获取的样本数据的平均数是:451610121510208301650⨯+⨯+⨯+⨯+⨯=(元); 本次调查获取的样本数据的中位数是:15元.(3)估计该校本次活动捐款金额为10元的学生人数为2400×32%=768人.【点睛】本题考查条形统计图和扇形统计图、用样本估计总体、平均数、中位数,解题的关键是明确题意,找出所求问题需要的条件.24.(1)50;28;(2)12,11;(3)八年级模拟体测中得12分的学生约有256人.【分析】(1)根据得8分的学生人数和所占的百分比可以求得本次调查的人数,然后根据扇形统计图中的数据可以求得m 的值;(2)根据统计图中的数据可以求得本次调查获取的样本数据的众数和中位数;(3)根据统计图中的数据可以计算出我校九年级模拟模拟体测中得12分的学生约有多少人.【详解】:(1)本次抽取到的学生人数为:4÷8%=50,m%=1-8%-10%-22%-32%=28%,故答案为:50,28;(2)本次调查获取的样本数据的众数是12分,中位数是11分;(3)800×32%=256人;答:八年级模拟体测中得12分的学生约有256人;【点睛】此题考查扇形统计图、条形统计图、用样本估计总体、中位数、众数,解题的关键是明确题意,利用数形结合的思想解答.25.(1)甲、乙六次测试成绩的方差分别是223S =甲,243S =乙;(2)甲【分析】(1)根据方差的定义,利用方差公式分别求出甲、乙的方差即可;(2)根据平均数相同,利用(1)所求方差比较,方差小的成绩稳定,即可得答案.【详解】(1)甲、乙六次测试成绩的方差分别是: (222222212[(109)(99)(89)(89)(109)99)63S ⎤=⨯-+-+-+-+-+-=⎦甲, (222222214[(109)(109)(89)(109)(79)99)63S ⎤=⨯-+-+-+-+-+-=⎦乙, (2)推荐甲参加全国比赛更合适,理由如下:∵两人的平均成绩相等,∴两人实力相当;∵甲的六次测试成绩的方差比乙小,∴甲发挥较为稳定,∴推荐甲参加比赛更合适.故答案为:甲【点睛】 本题考查方差的求法及利用方差做决策,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;熟练掌握方差公式是解题关键.26.(1)9.5,10;(2)9分,1分2;(3)乙【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【详解】(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:()104827939110⨯+⨯++⨯=⨯(分), 则方差是:()()()()22224109211089793991⎡⎤⨯-+⨯-+-+⨯-=⎣⎦⨯(分2) ; (3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.【点睛】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n 个数据x 1,x 2,…x n 的平均数为x ,则方差S 2=()()()()22221231n x x x x x x x x n ⎡⎤-+-+-++-⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大.。

人教新版八年级下册数学《第20章 数据的分析》单元测试卷和答案详解(PDF可打印)

人教新版八年级下册数学《第20章 数据的分析》单元测试卷和答案详解(PDF可打印)

人教新版八年级下册《第20章数据的分析》单元测试卷(1)一、选择题:(每题3分,共18分,请将答案填写在表格中)1.(3分)数据2,3,5,5,4的众数是()A.2B.3C.4D.52.(3分)两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数B.中位数C.方差D.以上都不对3.(3分)某校五个绿化小组一天植树的棵树如下:10、10、12、x、8.已知这组数据的众数与平均数相同,那么这组数据的平均数是()A.12B.10C.8D.94.(3分)从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为:1.5,1.6,1.4,1.3,1.5,1.2,1.7,1.8(单位:千克),那么可估计这240条鱼的总质量大约为()A.300千克B.360千克C.36千克D.30千克5.(3分)若样本x1+1,x2+1,…,x n+1的平均数为10,方差为2,则对于样本x1+2,x2+2,…,x n+2,下列结论正确的是()A.平均数为10,方差为2B.平均数为11,方差为3C.平均数为11,方差为2D.平均数为12,方差为46.(3分)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参加人数中位数方差平均数甲55149 1.91135乙55151 1.10135某同学分析上表后得出如下结论:①甲、乙两班学生成绩平均水平相等;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是()A.①②③B.①②C.①③D.②③二、填空题(每小题3分,共18分)7.(3分)若x,y,z的平均数是6,则5x+3、5y﹣2、5z+5的平均数是.8.(3分)一组数据1,3,2,5,2,a的众数是a,这组数据的中位数是.9.(3分)已知样本方差S2=,则这个样本的容量是,样本的平均数是.10.(3分)某校体育期末考核“立定跳远”、“800米”、“仰卧起坐”三项,并按3:5:2的比重算出期末成绩.已知小林这三项的考试成绩分别为80分、90分、100分,则小林的体育期末成绩为分.11.(3分)一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的中位数是环,众数是环.12.(3分)已知一组数据的平均数是3,方差是2,把这组数据扩大2倍,那么新数据的平均数是,方差是.三、计算题:(共28分)13.(8分)学期末,某班评选一名优秀学生干部,下表是班长、学习委员和团支部书记的得分情况:班长学习委员团支部书记思想表现242826学习成绩262624工作能力282426假设在评选优秀干部时,思想表现、学习成绩、工作能力这三方面的重要比为3:3:4,通过计算说明谁应当选为优秀学生干部.14.(10分)某快餐店共有10名员工,所有员工工资的情况如下表:人员店长厨师甲厨师乙会计服务员甲服务员乙勤杂工人数111113220000700040002500220018001200工资额(元)请解答下列问题:(1)餐厅所有员工的平均工资是;所有员工工资的中位数是.(2)用平均数还是用中位数描述该餐厅员工工资的一般水平比较恰当?(3)去掉店长和厨师甲的工资后,其他员工的平均工资是多少?它是否也能反映该快餐店员工工资的一般水平?15.(10分)下表是七年级三班30名学生期末考试数学成绩表(已破损)成绩(分)5060708090100人数(人)2573已知该班学生期末考试数学成绩平均分是76分.(1)求该班80分和90分的人数分别是多少?(2)设该班30名学生成绩的众数为a,中位数为b,求a+b的值.四、综合题:(共36分)16.(12分)随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业旅游年消费情况进行了问卷调查,随机抽取部分员工,记录每个人消费金额,并将调查数据适当调整,绘制成如图两幅尚不完整的表和图.频数(人数)频率组别个人年消费金额x(元)A x≤2000180.15B2000<x≤4000a bC4000<x≤6000D6000<x≤8000240.20E x>8000120.10合计c 1.00根据以上信息回答下列问题:(1)a=,b=,c=.并将条形统计图补充完整;(2)这次调查中,个人年消费金额的中位数出现在组;(3)若这个企业有3000多名员工,请你估计个人旅游年消费金额在6000元以上的人数.17.(12分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少?(2)在条形统计图中,请把空缺部分补充完整.(3)在扇形统计图中,请计算185型校服所对应的扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.18.(12分)班主任要从甲、乙两名跳远运动员中挑选一人参加校运动会比赛.在最近的10次选拔赛中,他们的成绩如下(单位:cm):甲584594608596608597602600612599乙615618580579618593585590598624(1)他们的平均成绩分别是多少?(2)甲、乙两名运动员这10次比赛成绩的极差、方差分别是多少?(3)怎样评价这两名运动员的运动成绩?(4)历届比赛表明,成绩达到5.96m就有可能夺冠,你认为为了夺冠应选择谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10m就能打破纪录,那么你认为为了打破纪录应选择谁参加这项比赛?人教新版八年级下册《第20章数据的分析》单元测试卷(1)参考答案与试题解析一、选择题:(每题3分,共18分,请将答案填写在表格中)1.(3分)数据2,3,5,5,4的众数是()A.2B.3C.4D.5【考点】众数.【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【解答】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故选:D.2.(3分)两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数B.中位数C.方差D.以上都不对【考点】统计量的选择.【分析】根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生三级蛙跳测试成绩的方差.【解答】解:由于方差能反映数据的稳定性,需要比较这两名学生三级蛙跳成绩的方差.故选:C.3.(3分)某校五个绿化小组一天植树的棵树如下:10、10、12、x、8.已知这组数据的众数与平均数相同,那么这组数据的平均数是()A.12B.10C.8D.9【考点】众数;算术平均数.【分析】根据题意先确定x的值,再根据定义求解即可.【解答】解:当x=8或12时,有两个众数,而平均数只有一个,不合题意舍去,当众数为10,根据题意得=10,解得x=10,∵这组数据的众数与平均数相同,∴这组数据的平均数是10;故选:B.4.(3分)从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为:1.5,1.6,1.4,1.3,1.5,1.2,1.7,1.8(单位:千克),那么可估计这240条鱼的总质量大约为()A.300千克B.360千克C.36千克D.30千克【考点】用样本估计总体;算术平均数.【分析】先计算出8条鱼的平均质量,然后乘以240即可.【解答】解:8条鱼的质量总和为(1.5+1.6+1.4+1.3+1.5+1.2+1.7+1.8)=12千克,每条鱼的平均质量=12÷8=1.5(千克),可估计这240条鱼的总质量大约为1.5×240=360(千克).故选:B.5.(3分)若样本x1+1,x2+1,…,x n+1的平均数为10,方差为2,则对于样本x1+2,x2+2,…,x n+2,下列结论正确的是()A.平均数为10,方差为2B.平均数为11,方差为3C.平均数为11,方差为2D.平均数为12,方差为4【考点】方差;算术平均数.【分析】一般地设n个数据,x1,x2,…x n,平均数=(x1+x2+x3…+x n),方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].直接用公式计算.【解答】解:由题知,x1+1+x2+1+x3+1+…+x n+1=10n,∴x1+x2+…+x n=10n﹣n=9nS12=[(x1+1﹣10)2+(x2+1﹣10)2+…+(x n+1﹣10)2]=[(x12+x22+x32+…+x n2)﹣18(x1+x2+x3+…+x n)+81n]=2,∴(x12+x22+x32+…+x n2)=83n另一组数据的平均数=[x1+2+x2+2+…+x n+2]=[(x1+x2+x3+…+x n)+2n]=[9n+2n]=×11n=11,另一组数据的方差=[(x1+2﹣11)2+(x2+2﹣11)2+…+(x n+2﹣11)2]=[(x12+x22+…+x n2)﹣18(x1+x2+…+x n)+81n]=[83n﹣18×9n+81n]=2,故选:C.6.(3分)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参加人数中位数方差平均数甲55149 1.91135乙55151 1.10135某同学分析上表后得出如下结论:①甲、乙两班学生成绩平均水平相等;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是()A.①②③B.①②C.①③D.②③【考点】方差;算术平均数;中位数.【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【解答】解:从表中可知,平均字数都是135,①正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,②正确;甲班的方差大于乙班的,又说明甲班的波动情况大,所以③也正确.①②③都正确.故选:A.二、填空题(每小题3分,共18分)7.(3分)若x,y,z的平均数是6,则5x+3、5y﹣2、5z+5的平均数是32.【考点】算术平均数.【分析】5x+3,5y﹣2,5z+5的平均数是(5x+3+5y﹣2+5z+5)÷3=[5(x+y+z)+6]÷3,因为x,y,z的平均数是6,则x+y+z=18;再整体代入即可求解.【解答】解:∵x,y,z的平均数是6,∴x+y+z=18;∴(5x+3+5y﹣2+5z+5)÷3=[5(x+y+z)+6]÷3=[5×18+6]÷3=96÷3=32.故答案为:32.8.(3分)一组数据1,3,2,5,2,a的众数是a,这组数据的中位数是2.【考点】中位数;众数.【分析】一组数据中出现次数最多的数据叫做众数,由此可得出a的值,将数据从小到大排列可得出中位数.【解答】解:1,3,2,5,2,a的众数是a,∴a=2,将数据从小到大排列为:1,2,2,2,3,5,中位数为:2.故答案为:2.9.(3分)已知样本方差S2=,则这个样本的容量是4,样本的平均数是3.【考点】方差;总体、个体、样本、样本容量;算术平均数.【分析】从方差公式中可以得到样本容量和平均数.【解答】解:根据样本方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2,其中n是这个样本的容量,是样本的平均数,所以本题中这个样本的容量是4,样本的平均数是3.故填4,3.10.(3分)某校体育期末考核“立定跳远”、“800米”、“仰卧起坐”三项,并按3:5:2的比重算出期末成绩.已知小林这三项的考试成绩分别为80分、90分、100分,则小林的体育期末成绩为89分.【考点】加权平均数.【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:根据题意得:(80×3+90×5+100×2)÷(3+5+2)=89(分);故答案为:89.11.(3分)一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的中位数是8.5环,众数是8环.【考点】众数;条形统计图;中位数.【分析】根据众数和中位数的概念求解.【解答】解:把数据按照从小到大的顺序排列为:7,8,8,8,9,9,10,10,中位数为:=8.5,众数为:8.故答案为:8.5,8.12.(3分)已知一组数据的平均数是3,方差是2,把这组数据扩大2倍,那么新数据的平均数是6,方差是8.【考点】方差;算术平均数.【分析】由题意可知,将这组数据的每个数都扩大2倍,那它的和也将扩大2倍,它的平均数也扩大2倍;根据方差的性质可知,数据中的每个数据都扩大2倍,则方差扩大4倍,即可得出答案.【解答】解:设这组数有x个,这组数的平均数是3,那么这组数的和为3x,如果这组数据的每个数都扩大2倍,则这组数的总和为3x×2,平均数为3x×2÷x=6.将这组数据中的每个数据都扩大2倍,所得到的一组数据的方差将扩大4倍,∴新数据的方差是2×4=8,故答案为:6;8.三、计算题:(共28分)13.(8分)学期末,某班评选一名优秀学生干部,下表是班长、学习委员和团支部书记的得分情况:班长学习委员团支部书记思想表现242826学习成绩262624工作能力282426假设在评选优秀干部时,思想表现、学习成绩、工作能力这三方面的重要比为3:3:4,通过计算说明谁应当选为优秀学生干部.【考点】加权平均数.【分析】根据三项成绩的不同权重,分别计算三人的成绩.【解答】解:班长的成绩=24×0.3+26×0.3+28×0.4=26.2(分);学习委员的成绩=28×0.3+26×0.3+24×0.4=25.8(分);团支部书记的成绩=26×0.3+24×0.3+26×0.4=25.4(分);∵26.2>25.8>25.4,∴班长应当选.14.(10分)某快餐店共有10名员工,所有员工工资的情况如下表:人员店长厨师甲厨师乙会计服务员甲服务员乙勤杂工人数1111132 20000700040002500220018001200工资额(元)请解答下列问题:(1)餐厅所有员工的平均工资是4350;所有员工工资的中位数是2000.(2)用平均数还是用中位数描述该餐厅员工工资的一般水平比较恰当?(3)去掉店长和厨师甲的工资后,其他员工的平均工资是多少?它是否也能反映该快餐店员工工资的一般水平?【考点】中位数;加权平均数.【分析】(1)根据加权平均数的定义和中位数的定义即可得到结论;(2)中位数描述该餐厅员工工资的一般水平比较恰当;(3)由平均数的定义即可得到结论.【解答】解:(1)平均工资为(20000+7000+4000+2500+2200+1800×3+1200×2)=4350元;工资的中位数为=2000元;故答案为:4350,2000;(2)由(1)可知,用中位数描述该餐厅员工工资的一般水平比较恰当;(3)去掉店长和厨师甲的工资后,其他员工的平均工资是2062.5元,和(2)的结果相比较,能反映餐厅员工工资的一般水平.15.(10分)下表是七年级三班30名学生期末考试数学成绩表(已破损)成绩(分)5060708090100人数(人)2573已知该班学生期末考试数学成绩平均分是76分.(1)求该班80分和90分的人数分别是多少?(2)设该班30名学生成绩的众数为a,中位数为b,求a+b的值.【考点】众数;二元一次方程组的应用;统计表;中位数.【分析】(1)根据题意:设该班80分和90分的人数分别是x、y;得方程=76与x+y=30﹣2﹣5﹣7﹣3;解方程组即可.(2)众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.求出a,b的值就可以.【解答】解:(1)据题意得,∴∴该班80分和90分的人数分别是8人,5人.成绩(分)5060708090100人数(人)257853(2)据题意得a=80,b=(80+80)÷2=80∴a+b=160四、综合题:(共36分)16.(12分)随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业旅游年消费情况进行了问卷调查,随机抽取部分员工,记录每个人消费金额,并将调查数据适当调整,绘制成如图两幅尚不完整的表和图.组别个人年消费金额x(元)频数(人数)频率A x ≤2000180.15B 2000<x ≤4000abC 4000<x ≤6000D 6000<x ≤8000240.20Ex >8000120.10合计c1.00根据以上信息回答下列问题:(1)a =36,b =0.30,c =120.并将条形统计图补充完整;(2)这次调查中,个人年消费金额的中位数出现在C组;(3)若这个企业有3000多名员工,请你估计个人旅游年消费金额在6000元以上的人数.【考点】频数(率)分布表;条形统计图;中位数;用样本估计总体.【分析】(1)首先根据A 组的人数和所占的百分比确定c 的值,然后确定a 和b 的值;(2)根据样本容量和中位数的定义确定中位数的位置即可;(3)利用样本估计总体即可得到正确的答案.【解答】解:(1)观察频数分布表知:A 组有18人,频率为0.15,∴c =18÷0.15=120,∵a =36,∴b =36÷120=0.30;∴C 组的频数为120﹣18﹣36﹣24﹣12=30,补全统计图为:故答案为:36,0.30,120;(2)∵共120人,∴中位数为第60和第61人的平均数,∴中位数应该落在C小组内;(3)个人旅游年消费金额在6000元以上的人数3000×(0.10+0.20)=900人.17.(12分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少?(2)在条形统计图中,请把空缺部分补充完整.(3)在扇形统计图中,请计算185型校服所对应的扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.【考点】条形统计图;中位数;众数;扇形统计图.【分析】(1)根据穿165型的人数与所占的百分比列式进行计算即可求出学生总人数,再乘以175型所占的百分比计算即可得解;(2)求出185型的人数,然后补全统计图即可;(3)用185型所占的百分比乘以360°计算即可得解;(4)根据众数的定义以及中位数的定义解答.【解答】解:(1)15÷30%=50(名),50×20%=10(名),即该班共有50名学生,其中穿175型校服的学生有10名;(2)185型的学生人数为:50﹣3﹣15﹣15﹣10﹣5=50﹣48=2(名),补全统计图如图所示;(3)185型校服所对应的扇形圆心角为:×360°=14.4°;(4)165型和170型出现的次数最多,都是15次,故众数是165和170;共有50个数据,第25、26个数据都是170,故中位数是170.18.(12分)班主任要从甲、乙两名跳远运动员中挑选一人参加校运动会比赛.在最近的10次选拔赛中,他们的成绩如下(单位:cm):甲584594608596608597602600612599乙615618580579618593585590598624(1)他们的平均成绩分别是多少?(2)甲、乙两名运动员这10次比赛成绩的极差、方差分别是多少?(3)怎样评价这两名运动员的运动成绩?(4)历届比赛表明,成绩达到5.96m就有可能夺冠,你认为为了夺冠应选择谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10m就能打破纪录,那么你认为为了打破纪录应选择谁参加这项比赛?【考点】方差;算术平均数;极差.【分析】(1)根据平均数的公式进行计算即可;(2)根据极差和方差的计算公式计算即可;(3)从方差和极差两个数比较即可;(4)根据成绩稳定性与目标进行分析即可.【解答】解:(1)甲的平均数=(584+594+…+599)=600(cm),乙的平均数=(615+618+…+624)=600(cm);(2)甲的极差为:612﹣584=28;乙的极差为:624﹣579=45;S甲2=[(584﹣600)2+(594﹣600)2+…+(599﹣600)2]=59.4,S乙2=[(615﹣600)2+(618﹣600)2+…+(624﹣600)2]=266.8.(3)甲的方差较小,成绩较稳定,乙的方差较大,波动较大,但最好成绩较好,爆发力强.(4)若只想夺冠,选甲参加比赛,因为甲的方差较小,成绩较稳定,且大于或等于5.96m 的次数有8次;若要打破纪录,应选乙参加比赛,因为有四次超过6.10m,最好成绩较好,爆发力强.。

最新八年级数学第六章数据的分析单元测试题及答案

最新八年级数学第六章数据的分析单元测试题及答案

最新八年级数学第六章数据的分析单元测试题及答案一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1.数学老师计算同学们的一学期的平均成绩时,将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、80分、100分,则小红一学期的数学平均成绩是( )A. 90分B. 91分C. 92分D. 93分2.每天登录“学习强国”App进行学习,在获得积分的同时,还可获得“点点通”附加奖励,李老师最近一周每日“点点通”收入明细如表,则这组数据的中位数和众数分别是( )星期一二三四五六日收入(点)15212727213021A. 27点,21点B. 21点,27点C. 21点,21点D. 24点,21点3.若样本x1,x2,x3,⋯,x n的平均数为10,方差为4,则对于样本x1−3,x2−3,x3−3,⋯,x n−3,下列结论正确的是( )A. 平均数为10,方差为2B. 众数不变,方差为4C. 平均数为7,方差为2D. 中位数变小,方差不变4.为了解新冠肺炎疫情防控期间,学生居家进行“线上学习”情况,某班进行了某学科单元基础知识“线上测试”,其中抽查的10名学生的成绩如图所示,对于这10名学生的测试成绩,下列说法正确( )A. 中位数是95分B. 众数是90分C. 平均数是95分D. 方差是155.小明同学对数据26,36,46,5■,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则分析结果与被涂污数字无关的是( )A. 平均数B. 方差C. 中位数D. 众数6.计算一组数据方差的算式为s2=1×[(x1−10)2+(x2−10)2+⋯+(x5−10)2],则下列信息中,不5正确的是( )A. 这组数据中有5个数据B. 这组数据的平均数是10C. 计算出的方差是一个非负数D. 当x1增加时,方差的值一定随之增加7.甲,乙两个班参加了学校组织的2019年“国学小名士”国学知识竞赛选拔赛,他们成绩的平均数、中位数、方差如下表所示,规定成绩大于等于95分为优异,则下列说法正确的是( )参加人数平均数中位数方差甲459493 5.3乙459495 4.8A. 甲、乙两班的平均水平相同B. 甲、乙两班竞赛成绩的众数相同C. 甲班的成绩比乙班的成绩稳定D. 甲班成绩优异的人数比乙班多8.某校八(1)班50名学生积极参加献爱心慈善捐款活动,班长将捐款情况进行统计,并绘制成了统计图.根据统计图提供的信息,捐款金额的众数和中位数分别是.( )A.20元、20元B. 30元、20元C. 20元、30元D. 30元、30元9.某电脑公司销售部为了制定下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售员本月销售量的平均数、中位数、众数分别是( )A. 19台、20台、14台B. 19台、20台、20台C.18.4台、20台、20台 D. 18.4台、25台、20台10.某班体育委员对本班所有学生一周锻炼时间(单位:小时)进行了统计,绘制了统计图,根据统计图提供的信息,下列推断正确的是( )A.该班学生共有44人B. 该班学生一周锻炼12小时的有9人C. 该班学生一周锻炼时间的众数是10D. 该班学生一周锻炼时间的中位数是11二、填空题(本大题共5小题,共15.0分)11.已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是___________.12.一组数据1,2,a的平均数为2,另一组数据−2,a,2,1,b的众数为−2,则数据−2,a,2,1,b的中位数为.13.若干名同学制作卡通图片,他们制作的卡通图片张数的条形统计图如图所示,设他们制作的卡通图片张数的平均数为a,中位数为b,众数为c,则a,b,c的大小关系为.(用“>”连接)14. 已知一组数据共有5个数,它们的方差是0.4,众数、中位数和平均数都是8,最大的数是9,则最小的数是 .15. 在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,9,则这位选手五次射击环数的方差为______.三、解答题(本大题共10小题,共75.0分。

八年级数学上册试题 第6章 数据的分析 单元培优卷 (含详解)

八年级数学上册试题 第6章   数据的分析   单元培优卷  (含详解)

第6章《 数据的分析》(单元培优卷)一、单选题(本大题共10小题,每小题3分,共30分)1.某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是( )A .87B .87.5C .87.6D .882.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x ;去掉一个最低分,平均分为y ;同时去掉一个最高分和一个最低分,平均分为z ,则( )A .y >z >xB .x >z >yC .y >x >zD .z >y >x3.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是( )A .21,21B .21,21.5C .21,22D .22,224.下列数据:,则这组数据的众数和极差是( )A .B .C .D .5.小明、小聪参加了100m 跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如图两个统计图.75,80,85,85,8585,1085,580,8580,10根据图中信息,有下面四个推断:①这5期的集训共有56天;②小明5次测试的平均成绩是11.68秒;③从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑;④从测试成绩看,两人的最好成绩都是在第4期出现,建议集训时间定为14天.所有合理推断的序号是( )A .①③B .②④C .②③D .①④6.一组数据的方差可以用式子表示,则式子中的数字50所表示的意义是( )A .这组数据的个数B .这组数据的平均数C .这组数据的众数D .这组数据的中位数7.一组数据的方差为,将这组数据中每个数据都除以3,所得新数据的方差是( )A .B .3C .D .98.已知a 、b 均为正整数,则数据a 、b 、10、11、11、12的众数和中位数可能分别是( )A .10、10B .11、11C .10、11.5D .12、10.59.小明统计了某校八年级(3)班五位同学每周课外阅读的平均时间,其中四位同学每周课外阅读时间分别是小时、小时、小时、小时,第五位同学每周的课外阅读时间既是这五位同学每周课外阅读时间的中位数,又是众数,则第五位同学每周课外阅读时间是( )A .小时B .小时C .或小时D .或或小时10.有5个正整数,,,,.某数学兴趣小组的同学对5个正整数作规律探索,找出同时满足以下3个条件的数.①,,是三个连续偶数,②,是两个连续奇数,③.该小组成员分别得到一个结论:甲:取,5个正整数不满足上述3个条件()()()()22221231025050505010x x x x s-+-+-++-=2s 213s2s 219s2s 58104585858101a 2a 3a 4a 5a 1a 2a 3a ()123a a a <<4a 5a ()45a a <12345aa a a a ++=+26a =乙:取,5个正整数满足上述3个条件丙:当满足“是4的倍数”时,5个正整数满足上述3个条件丁:5个正整数,,,,满足上述3个条件,则(为正整数)戊:5个正整数满足上述3个条件,则,,的平均数与,的平均数之和是(为正整数)以上结论正确的个数有( )个.A .2B .3C .4D .5二、填空题(本大题共8小题,每小题4分,共32分)11.下表是某学习小组一次数学测验的成绩统计表:分数708090100人数13x1已知该小组本次数学测验的平均分是85分,则x =_____.12.春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为__.13.某人学习小组在寒假期间进行线上测试,其成绩(分)分别为:,方差为.后来老师发现每人都少加了分,每人补加分后,这人新成绩的方差__________.14.数据,,,的平均数是4,方差是3,则数据,,,的平均数和方差分别是_____________.15.我们把三个数的中位数记作,直线与函数的图象有且只有2个交点,则的取值为212a =2a 2a 1a 2a 3a 4a 5a 5a =k k 1a 2a 3a 4a 5a 10p p 586,88,90,92,9428.0s =2252s =新1x 2x 3x 4x 011x +21x +31x +41x +,,a b c ,,Z a b c 1(0)2y kx k =+>21,1,1y Z x x x =-+-+k___________________16.已知一组数据a1,a2,a3,……,an的方差为3,则另一组数a1+1,a2+1,a3+1,……,an+1的方差为 _____.17.已知 5 个数据:8,8,x,10,10.如果这组数据的某个众数与平均数相等,那么这组数据的中位数是__________.18.某单位设有6个部门,共153人,如下表:部门部门1部门2部门3部门4部门5部门6人数261622324314参与了“学党史,名师德、促提升”建党100周年,“党史百题周周答活动”,一共10道题,每小题10分,满分100分;在某一周的前三天,由于特殊原因,有一个部门还没有参与答题,其余五个部门全部完成了答题,完成情况如下表:分数1009080706050及以下比例521110综上所述,未能及时参与答题的部门可能是_______.三、解答题(本大题共6小题,共58分)19.(8分)某一食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:这批样品的平均质量比标准质量多还是少?多或少几克,若每袋的标准质量为450克,则抽样检测的总质量是多少?20.(8分)个体户王某经营一家饭馆,下面是饭馆所有工作人员在某个月份的工资;王某3000元,厨师甲450元,厨师乙400元,杂工320元,招待甲350元,招待乙320元,会计410元.计算工作人员的平均工资;计算出的平均工资能否反映帮工人员这个月收入的一般水平?去掉王某的工资后,再计算平均工资;后一个平均工资能代表一般帮工人员的收入吗?根据以上计算,从统计的观点看,你对的结果有什么看法?21.(10分)某餐厅共有10名员工,所有员工工资的情况如下表:请解答下列问题:(1)、餐厅所有员工的平均工资是多少? (2)、所有员工工资的中位数是多少?(3)、用平均数还是中位数描述该餐厅员工工资的一般水平比较恰当? (4)、去掉经理和厨师甲的工资后,其他员工的平均工资是多少?它是否能反映餐厅员工工资的一般水平?()1()2()3()4()5()()3422.(10分)某市民用水拟实行阶梯水价,每人每月用水量中不超过w 吨的部分按4元/吨收费,超出w 吨的部分按10元/吨收费,该市随机调查居民,获得了他们3月份的每人用水量数据,绘制出如图不完整的两张统计图表:请根据以下图表提供的信息,解答下列问题:表1组别月用水量x 吨/人频数频率第一组1000.1第二组n第三组2000.2第四组m 0.25第五组1500.15第六组500.050.51x <≤1 1.5x <≤1.52x <≤2 2.5x <≤2.53x <≤3 3.5x <≤第七组500.05第八组500.05合计1(1) 观察表1可知这次抽样调查的中位数落在第_______组,表1中m 的值为_________,n 的值为_______;表2扇形统计图中“用水量”部分的的圆心角为___________.(2) 如果w 为整数,那么根据此次调查,为使80%以上居民在3月份的每人用水价格为4元/吨,w 至少定为多少吨?(3) 利用(2)的结论和表1中的数据,假设表1中同组中的每个数据用该组区间的右端点值代替,估计该市居民3月份的人均水费.23.(10分)某商店3,4月份销售同一品牌各种规格空调的情况如表所示:3.54x <≤4 4.5x <≤ 2.5 3.5x <≤1匹 1.2匹 1.5匹2匹3月1220844月1630148根据表中数据,解答下列问题:(1)该商店3,4月份平均每月销售空调______台.(2)该商店售出的各种规格的空调中,中位数与众数的大小关系如何?(3)在研究6月份进货时,你认为哪种空调应多进,哪种空调应少进?24.(12分)甲、乙两名队员参加射击训练,每次射击的环数均为整数.其成绩分别被制成如下统计图表(乙队员射击训练成绩统计图部分被污染):平均成绩/环中位数/环众数/环方差/环2甲7712乙78根据以上信息,解决下列问题:(1)求出的值;(2)直接写出乙队员第7次的射击环数及的值,并求出的值;(3)若要选派其中一名参赛,你认为应选哪名队员?请说明你的理由.参考答案一、单选题abca b c1.C【分析】将三个方面考核后所得的分数分别乘上它们的权重,再相加,即可得到最后得分.解:小王的最后得分为:90×+88×+83×=27+44+16.6=87.6(分),故选C .2.A【分析】根据题意,可以判断x 、y 、z 的大小关系,从而可以解答本题.解:由题意可得,去掉一个最低分,平均分为y 最大,去掉一个最高分,平均分为x 最小,其次就是同时去掉一个最高分和一个最低分,平均分为z即y >z >x ,故选:A .3.C解:这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是22,所以中位数是22.故选C.4.A解:【分析】根据众数和极差的定义分别进行求解即可得.解:数据85出现了3次,出现次数最多,所以众数是85,最大值是85,最小值是75,所以极差=85-75=10,故选A.5.A【分析】根据条形统计图将每期的天数相加即可得到这5期的集训共有多少天;根据折线统计图可以求得小明5次测试的平均成绩;根据图中的信息和题意可知,平均成绩最好是在第1期.解:对于①:这5期的集训共有5+7+10+14+20=56(天),故正确;对于②:小明5次测试的平均成绩是:(11.83+11.72+11.52+11.58+11.65)÷5=11.66(秒),故错误;对于③:从集训时间看,集训时间不是越多越好,集训时间过长,可能造成3352++5352++2352++劳累,导致成绩下滑,故正确;对于④:从测试成绩看,两人的最好的平均成绩是在第1期出现,建议集训时间定为5天.故错误;故选:A .6.B【分析】根据方差公式的特点进行解答即可.解:方差的定义:一般地设n 个数据,x 1,x 2,…xn 的平均数为,则方差S 2[(x 1)2+(x 2)2+…+(xn )2],所以50是这组数据的平均数.故答案选:B 7.C【分析】本题主要考查的是方差的求法.解答此类问题,通常用x 1,x 2,…,x n 表示出已知数据的平均数与方差,再根据题意用x 1,x 2,…,x n 表示出新数据的平均数与方差,寻找新数据的平均数与原来数据平均数之间的关系.解:设原数据为x 1,x 2,…,x n ,其平均数为,方差为s 2.根据题意,得新数据为,,…,,其平均数为.根据方差的定义可知,新数据的方差为.故选C.8.B【分析】根据众数和中位数的定义即可解答.解:分情况讨论:①当a=b=10时,这组数据的众数是10,则其中位数是10.5②当a=b=12时,这组数据的众数是12,其中位数是11.5③当a=b=11时,这组数据的众数是11,其中位数是11④当a ≠b ≠11时,这组数据的众数是11,其中位数要分类讨论,无法确定故选B9.Cx 1n =x -x -x -x 113x 213x 13n x 13x ()()(222222212121111111111])33333399n n x x x x x x x x x x x x s n n ⎡⎛⎫⎛⎫⎛⎫⎡⎤-+-++-=⨯-+-++-=⎢ ⎪ ⎪ ⎪⎦⎣⎝⎭⎝⎭⎝⎭⎢⎣【分析】利用众数及中位数的定义解答即可.解:当第五位同学的课外阅读时间为4小时时,此时五个数据为4,4,5,8,10,众数为4,中位数为5,不合题意;当第五位同学的课外阅读时间为5小时时,此时五个数据为4,5,5,8,10,众数为5,中位数为5,符合题意;当第五位同学的课外阅读时间为8小时时,此时五个数据为4,5,8,8,10,众数为8,中位数为8,符合题意;当第五位同学的课外阅读时间为10小时时,此时五个数据为4,5,8,10,10,众数为10,中位数为8,不合题意;故第五位同学的每周课外阅读时间为5或8小时.故答案为C .10.B【分析】甲:根据条件求出,从而求出即可判断甲;乙:同甲判断方法即可;丙:设(n 是正整数),则,,同理求得,即可判断丙;丁:设(m 是正整数),则,,同理求得,即可判断丁;戊:设(k 是正整数),则,,由条件③得,由此求出、、的平均数与与的平均数之和为,即可判断戊.解:甲:若,则,,由条件②得,由条件③得,解得,∵是奇数,∴甲结论正确;乙:若,则,,由条件②得,由条件③得,解得,∵是奇数,∴乙结论正确;丙:若是4的倍数,设(n 是正整数),则,,由条件②得,由条件③得,14a =38a =48a =24a n =142a n =-342a n =+461a n =-12a m =222a m =+324a m =+534a m =+12a k =222a k =+324a k =+4566a a k +=+1a 2a 3a 4a 5a ()5551k k +=+26a =14a =38a =542a a =+4518a a +=48a =4a 212a =110a =314a =542a a =+4536a a +=417a =4a 2a 24a n =142a n =-342a n =+542a a =+4512a a n +=解得,∵是奇数,∴丙结论正确;丁:设(m 是正整数),则,,由条件②得,由条件③得,解得,∵当m 为偶数时,也为偶数不符合题意,∴丁结论错误;戊: 设(k 是正整数),则,,由条件③得,∴、、的平均数为,与的平均数为,∴、、的平均数与与的平均数之和为,∵是正整数,∴一定是5的倍数,但不一定是10的倍数,∴戊错误,故选B .二、填空题11.3【分析】利用加权平均数的计算公式列出方程求解即可.解:由题意,得70+80×3+90x+100=85×(1+3+x+1),解得x =3.故答案为3.12.23.4解:【分析】将折线统计图中的数据按从小到大进行排序,然后根据中位数的定义即可确定.解:从图中看出,五天的游客数量从小到大依次为21.9,22.4,23.4,24.9,25.4,则中位数应为23.4,故答案为23.4.461a n =-4a 12a m =222a m =+324a m =+542a a =+4566a a m +=+534a m =+534a m =+12a k =222a k =+324a k =+4566a a k +=+1a 2a 3a 22224223k k k k ++++=+4a 5a 33k +1a 2a 3a 4a 5a ()5551k k +=+k ()51k +13.8.0【分析】根据一组数据中的每一个数据都加上同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.解:∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,方差不变,∴所得到的一组新数据的方差为S 新2=8.0;故答案为:8.0.14.41,3解:试题分析:根据题意可知原数组的平均数为,方差为=3,然后由题意可得新数据的平均数为,可求得方程为.故答案为:41,3.15.<k ≤1或k =【分析】根据题意画出函数的图象,要使直线与函数的图象有且只有2个交点,只需直线经过(2,3)和经过(-1,0)之间,以此进行分析即可.解:函数的图象如图所示,∵直线与函数的图象有且只有2个交点,当直线经过点(2,3)时,则3=2k+,解得:k=,1234414x x x x x +++==()()()()22222123414s x x x x x x x x ⎡⎤=-+-+-+-⎣⎦1234+1+1+1+1414x x x x x +++==2=3s 125421,1,1y Z x x x =-+-+1(0)2y kx k =+>21,1,1y Z x x x =-+-+21,1,1y Z x x x =-+-+1(0)2y kx k =+>21,1,1y Z x x x =-+-+1(0)2y kx k =+>1254当直线经过点(-1,0)时,解得:k=,当k=1时,平行于y=x+1,与函数的图象也有且仅有两个交点;∴直线与函数的图象有且只有2个交点,则k 的取值为:<k ≤1或k =.故答案为:<k ≤1或k =.16.3【分析】设数据a 1,a 2,a 3,……,an 的平均数为,则可求得a 1+1,a 2+1,a 3+1,……,an+1的平均数,根据数据a 1,a 2,a 3,……,an 的方差为3,即可求得另一组数据a 1+1,a 2+1,a 3+1,……,an+1的方程.解:设数据a 1,a 2,a 3,……,an 的平均数为,即,则此组数据的方差为; ∵a 1+1,a 2+1,a 3+1,……,an+1的平均数为:,所以此数据的方差为:故答案为:3.17.8 或 10【分析】根据这组数据的某个众数与平均数相等,得出平均数等于8或10,求出x 从而得出中位数,即是所求答案.解:设众数是8,则由 ,解得:x=4,故中位数是8;1(0)2y kx k =+>1221,1,1y Z x x x =-+-+1(0)2y kx k =+>21,1,1y Z x x x =-+-+12541254x x 1231()n a a a a x n++++= 22221231()()+()++(3n a x a x a x a x n ⎡⎤-+---=⎣⎦…12312311(1111)()11n n a a a a a a a a x n n++++++++=+++++=+ 22221231(11)(11)+(11)++(11)n a x a x a x a x n ⎡⎤+--++--+--+--⎣⎦…22221231()()+()++()n a x a x a x a x n ⎡⎤=-+---⎣⎦ (3)=3685x +=设众数是10,则由,解得:x=14,故中位数是10.故答案为8或10.18.5【分析】各分数人数比为5:2:1:1:1,可以求出100分占总人数,90分占总人数,80、70、60分占总人数的,即各分数人数为整数,总参与人数应该为10的倍数,6个部门总共有153人,即未参加部分人数个位数有3,即可求得结果.解:各分数人数比为5:2:1:1:1,即100分占总参与人数的,90分占总参与人数的,80、70、60分占总参与人数的,各分数人数为整数,即×总参与人数=整数,∴总参与人数是10的倍数,6个部门有153人,即26+16+22+32+43+14=153人,则未参与部门人数个位一定为3,∴未参与答题的部门可能是5.故答案为:5.三、解答题19.解:与标准质量的差值的和为-5×1+(-2)×4+0×3+1×4+3×5+6×3=24,其平均数为24÷20=1.2,即这批样品的平均质量比标准质量多,多1.2克.则抽样检测的总质量是(450+1.2)×20=9024(克).36105x +=121511051521112=++++21521115=++++115211110=++++11020.解:根据题意得:元,答:工作人员的平均工资是750元;因为工作人员的工资都低于平均水平,所以不能反映工作人员这个月的月收入的一般水平.根据题意得:元,答:去掉王某的工资后,他们的平均工资是375元;由于该平均数接近于工作人员的月工资收入,故能代表一般工作人员的收入;从本题的计算中可以看出,个别特殊值对平均数具有很大的影响.21.(1)平均工资为(20000+7000+4000+2500+2200+1800×3+1200×2)=4350元;(2)工资的中位数为=2000元;(3)由(1)可知,用中位数描述该餐厅员工工资的一般水平比较恰当;(4)去掉店长和厨师甲的工资后,其他员工的平均工资是2062.5元,和(2)的结果相比较,能反映餐厅员工工资的一般水平.22.解:(1)n=1-(0.1+0.2+0.25+0.15+0.05+0.05+0.05)=0.15,(人),(人),(人),∵100+150+200=450<500,100+150+200+250=700>501,∴第500与第501个数在第四组,中位数落在第四组;故答案为,四;0.15;250;72°;()1()30004504003203503204107750(++++++÷=)()2()3()4504003203503204106375(+++++÷=)()4()5110220018002+1000.11000÷=10000.25250m =⨯=150+50360=721000︒︒⨯10000.15=150⨯(2)∵0.1+0.15+0.2+0.25+0.15=0.85=85%>80%,∴为使80%以上居民在3月份的每人用水价格为4元/吨,w 至少定为3吨;(3)(元).答:估计该市居民3月份的人均水费为8.8元.23.解:(1)56(台),所以该商店3,4月份平均每月销售空调56台.(2)从总体上看,由于1.2匹售出50台,售出台数大于其他三种规格的售出台数,故其众数是1.2匹.将这112个数据由小到大排列,得中位数是1.2匹,所以中位数与众数相等.(3)由(2)可知l.2匹空调的销售量最多,所以l.2匹空调应多进;由题表可知2匹空调的销售量最少,所以2匹空调应少进.24.解:(1)甲的平均成绩a =(环);(2)∵已知的环数分别是: 3、4、6、7、8、8、9、10,平均数是7,可知剩余两次的成绩和为:70-55=15(环),根据统计图可知不可能是9和6,只能是7和8,所以乙队员第7次的射击环数是7环或8环;把乙的成绩从小到大排列:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数b ==7.5(环),其方差c =×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]=×(16+9+1+3+4+9)=4.2;()()11002200 2.52503300 1.515040.51 1.5501010008.8⎡⎤⨯+⨯+⨯+⨯+⨯⨯+++⨯⨯÷=⎣⎦1220841630148562x +++++++==5162748291712421⨯+⨯+⨯+⨯+⨯=++++782+110110(3)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看乙的成绩比甲的成绩稳定;综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.。

人教版八年级下册数学《第20章 数据的分析》单元测试卷03(含答案)

人教版八年级下册数学《第20章 数据的分析》单元测试卷03(含答案)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!人教版八年级下册数学《第20章数据的分析》单元测试卷一、选择题(共8小题,满分40分)1.一组数据5,3,3,2,5,7的中位数是()A .2B .2.5C .3D .42.一组数据x 、0、1、﹣2、3的平均数是1,则x 的值是()A .3B .1C .2.5D .03.某校九年级有9名同学参加“建党一百周年”知识竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这9名同学成绩的()A .中位数B .众数C .平均数D .方差4.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均数都是8环,方差分别为S 甲2=1.4,S 乙2=0.6,则两人射击成绩波动情况是()A .甲波动大B .乙波动大C .甲、乙波动一样D .无法比较5.在一次科技作品制作比赛中,某小组六件作品的成绩(单位:分)分别是:7,10,9,8,7,9.对这组数据,下列说法正确的是()A .平均数是7B .众数是7C .极差是5D .中位数8.56.2022年杭州亚运会以“中国新时代•杭州新亚运”为定位.“中国风范、浙江特色、杭州韵味、共建共享”为目标,秉持“绿色、智能、节俭、文明”的办会理念,坚持“以杭州为主,全省共享”的办赛原则,高质量推进亚运会筹办工作,某校对亚运知识进行了相关普及,学生会为了了解学生掌握情况,从中抽取50名学生成绩,列表如下:分数(分)9092949698100人数(人)241081511根据表格提供的信息可知,这组数据的众数与中位数分别是()A .100分,95分B .98分.95分C .98分,98分D .97分,98分7.某校评价项目化成果展示,对甲、乙、丙、丁展示成果进行量化评分,具体成绩(百分制)如表,如果按照创新性占55%,实用性占45%计算总成绩,并根据总成绩择优推广,那么应推广的作品是()项目作品甲乙丙丁创新性87939091实用性90919093A.甲B.乙C.丙D.丁8.已知一组数据x1,x2,…,x n的平均数x=2,则数据3x1+2,3x2+2,…,3x n+2的平均数是()A.8B.6C.4D.2二、填空题(共8小题,满分40分)9.一组数据1,6,3,﹣4,5的极差是.10.在某学校开展的艺术作品征集活动中,五个班上交的作品数量(单位:件)分别为:46,45,49,42,50,则这组数据的中位数是.11.某同学用计算器求20个数据的平均数时,错将一个数据75输入为15,那么由此求出的平均数与实际平均数的差是.12.某校有31名同学参加某比赛,预赛成绩各不同,要取前16名参加决赛,小红已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这31名同学成绩的.13.某快餐店某天销售3种盒饭的有关数据如图所示,则3种盒饭的价格平均数是元.14.一鞋店试销一种新款式鞋,试销期间卖出情况如表:型号2222.52323.52424.525数量(双)351015832鞋店经理最关心哪种型号鞋畅销,则下列统计量对鞋店经理来说最有意义的是.(填“平均数”、“众数”或“中位数”)15.已知一组数据a,b,c的方差为4,那么数据3a﹣2,3b﹣2,3c﹣2的方差是.16.某电力公司需招聘一名电工技师,对应聘者李某从形象、实践操作、理论检测三个方面进行量化考核.李某各项得分如表:考查项目形象实践操作理论检测李技师85分90分80分该公司规定:形象、实践操作、理论检测得分分别按20%,50%,30%的比例计入总分,则应聘者李某的总分为分.三、解答题(共6小题,满分40分)17.某工厂有220名员工,财务科要了解员工收入情况.现在抽测了10名员工的本月收入,结果如下:(单位:元)1660,1540,1510,1670,1620,1580,1580,1600,1620,1620(1)全厂员工的月平均收入是多少?(2)平均每名员工的年薪是多少?(3)财务科本月应准备多少钱发工资?18.近日,“复旦学霸图书馆”新闻引发网友热议,其中,“风雨无阻爱学习”的潘同学一年时间图书馆打卡301次,更是成为众多学子膜拜的对象.某大学图书馆为了更好服务学子,对某周来馆人数进行统计,统计数据如下(单位:人):时间周一周二周三周四周五周六周日人数65055071042065023203100(1)该周到馆人数的平均数为人、众数为人、中位数为人;(2)周一至周五到馆人数相差不多,用这五天的数据估算该周的平均数合适吗?为什么?(3)选择合适的数据,估算该校一个月的到馆人数(一个月按30天计).19.为了让同学们了解自己的体育水平,初二1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表平均分方差中位数众数男生 1.9987女生7.92 1.99368根据以上信息,解答下列问题:(1)这个班共有男生人,共有女生人;(2)补全初二1班体育模拟测试成绩分析表;(3)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并说明理由.(至少从两个不同的角度说明推断的合理性)20.21世纪已经进入了中国太空时代,2021年到2022年,我国会通过11次航天发射完成空间站建设,空间站由“天和”核心舱、“问天”和“梦天”两个实验舱,我国空间站的建成将为开展太空实验及更广泛的国际合作提供精彩舞台.校团委以此为契机,组织了“中国梦•航天情”系列活动.下面是八年级甲,乙两个班各项目的成绩(单位:分):(1)如果根据三项成绩的平均分计算最后成绩,请通过计算说明甲、乙两班谁将获胜;(2)如果将知识竞赛、演讲比赛、版面创作按5:3:2的比例确定最后成绩,请通过计算说明甲乙两班谁将获胜.项目班次知识竞赛演讲比赛版面创作甲859188乙90848721.在学校组织的社会实践活动中,甲、乙两人参加了射击比赛,每人射击七次,命中的环数如表:序号一二三四五六七甲命中的环数(环)78869810乙命中的环数(环)5106781010根据以上信息,解决以下问题:(1)写出甲、乙两人命中环数的众数;(2)已知通过计算器求得甲x=8,s甲2≈1.43,试比较甲、乙两人谁的成绩更稳定?22.河南省对居民生活用电采用阶梯电价,鼓励居民节约用电,其中年用电量为2160千瓦时及以下执行基础电价0.56元/千瓦时;2160~3120千瓦时的部分按0.61元/千瓦时收费;超过3120千瓦时的部分按0.86元/千瓦时收费.为了解某小区居民生活用电情况.调查小组从该小区随机调查了200户居民的月平均用电量x(千瓦时),并将全部调查数据分组统计如下:组别60<x≤100100<x≤140140<x≤180180<x≤220220<x≤260260<x≤300频数(户数)2842a302010把这200个数据从小到大排列后,其中第96到第105(包含第96和第105这两个数据)个数据依次为:148148150152152154160161161162根据以上信息,回答下列问题:(1)本次调查中,该小区居民月平均用电量的中位数为,表中a=;(2)估计该小区能享受基础电价的居民占全小区的百分比;(3)国家在制订收费标准时,为了减轻居民用电负担,制订的收费标准能让85%的用户享受基础电价.请你根据以上信息对该小区居民的用电情况进行评价,并写出一条建议.参考答案一、选择题(共8小题,满分40分)1.D2.A3.A4.A5.D6.C7.B8.A二、填空题(共8小题,满分40分)9.10.10.46.11.﹣3.12.中位数.13.9.55.14.众数.15.36.16.86.三、解答题(共6小题,满分40分)17.解:(1)员工的月平均收入为:1600(元);(2)平均每名员工的年薪是1600×12=19200(元);(3)从(2)得到员工的月平均收入为1600元,工厂共有220名员工,所以,财务科本月应准备1600×220=35.2(万元).18.解:(1)该周到馆人数平均数为:´71(650+550+710+420+650+2320+3100)=1200(人),众数为650人,中位数为650人,故答案为:1200,650,650;(2)由于周六、周日比周一至周五到馆人数多得多,所以用周一至周五这五天的数据估算该周的平均数不合适;(3)估算该校一个月的到馆人数为:1200×30=36000(人).19.解:(1)这个班共有男生1+2+6+3+5+3=20(人),共有女生45﹣20=25(人),故答案为:20、25;(2)男生的平均分为´201(5+6×2+7×6+8×3+9×5+10×3)=7.9(分),女生的众数为8分,补全表格如下:平均分方差中位数众数男生7.9 1.9987女生7.921.993688(3)我认为女生队表现更突出.理由为:女生队的平均数较高,表示女生队测试成绩较好;女生队的众数较高,女生队的众数为8,中位数也为8,而男生队众数为7低于中位数8,表示女生队的测试成绩高分较多.20.解:(1)甲班的平均分为:(85+91+88)÷3=88(分),乙班的平均分为:(90+84+87)÷3=87(分),∵88>87,∴甲班将获胜;(2)由题意可得,甲班的平均分为:87.4(分),乙班的平均分为:87.6(分),∵87.4<87.6,∴乙班将获胜.21.解:(1)由题意可知:甲的众数为8,乙的众数为10;(2)乙的平均数:8,乙的方差为:S乙271=[(5﹣8)2+(10﹣8)2+…+(10﹣8)2]»3.71.∵得甲x=8,s甲2≈1.43,∴甲乙的平均成绩一样,而甲的方差小于乙的方差,∴甲的成绩更稳定.22.解:(1)根据中位数的定义,中位数为按照从小到大排好顺序的数据的第100个和第101个数的平均值,∴中位数为:153,∵28+42+a+30+20+10=200,∴a=70,故答案为:153,70;(2)年用电量为2160千瓦时及以下执行基础电价,∴每月平均电量为2160÷12=180(千瓦时),从表中可知,200户中,能享受基础电价的户数为:28+42+70=140,∴该小区能享受基础电价的居民占全小区的百分比为:70%;(3)∵70%<85%,∴不能达到让85%的用户享受基础电价的目标,故该小区用电量较多,应该节约用电,例如离开天气不是太热或太冷时少开空调.。

北师大版八年级数学上册第6章《数据的分析》单元复习测试题(含答案)

北师大版八年级数学上册第6章《数据的分析》单元复习测试题(含答案)

北师大版八年级数学上册第6章《数据的分析》单元复习测试题一、选择题(共8小题,4*8=32)1. 有一组数据:1,3,3,4,5,这组数据的众数为( )A.1B.3C.4D.52. 小明和小强同学分别统计了自己最近10次“一分钟跳绳”的成绩,下列统计量中能用来比较两人成绩稳定程度的是( )A.平均数B.中位数C.方差D.众数3. 在2016年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是( )A.18,18,1 B.18,17.5,3 C.18,18,3 D.18,17.5,14. 小明在统计某市6月1日到10日每一天最高气温的变化情况时制作的折线图如图所示,则这10天最高气温的中位数和众数分别是()A.33℃,33℃B.33℃,32℃C.34℃,33℃D.35℃,33℃5. 某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是()A.1小时B.2小时C.3小时D.4小时6. 丽华根据演讲比赛中九位评委所给的分数作了如下表格:平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,则表中数据不发生变化的是( )A.平均数B.众数C.方差D.中位数7. 某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差(环2)两个因素进行分析,甲、乙、丙的成绩分析如下表所示,丁的成绩如图所示.甲乙丙平均数7.9 7.9 8.0方差 3.29 0.49 1.8根据以上图表信息,参赛选手应选()A.甲B.乙C.丙D.丁8. 如果一组数据a1,a2,a3,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n的方差是()A.2 B.4 C.8 D.16二.填空题(共6小题,4*6=24)9.已知某一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是__ __.10. 某项目六名礼仪小姐的身高(单位:cm)如下:168,166,168,167,169,168,则她们身高的众数是_____________________.11. 一组数据:1,2,3,4,x,其中位数与平均数相同,则x的值为______________________.12. 为了解某班学生体育锻炼的用时情况,收集了该班学生一天用于体育锻炼的时间(单位:小时),整理成如图的统计图.则该班学生这天用于体育锻炼的平均时间为_______小时.13. 甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是________.14. 某班进行个人投篮比赛,受污损的下表记录了在规定时间内投进几个球的人数分布情况,已知进球3个或3个以上的人平均每人投进3.5个球,进球4个或4个以下的人平均每人投进2.5个球,则投进3个球的有__ __人,投进4个球的有__ __人.进球数n(个) 0 1 2 3 4 5投进n个球的人数 1 2 7 2三.解答题(共5小题,44分)15.(6分) 在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调本获取的样本数据的众数是__ __;(2)这次调查获取的样本数据的中位数是__ __;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有多少人?16.(8分) )某乡镇外出务工人员共40名,为了了解他们在一个月内的收入情况,随机抽取10名外出务工人员在某月的收入(单位:元)情况为:2500,2100,3000,2500,3000,4000,3000,2400,2400,3000.(1)求这10名务工人员在这一个月内收入的众数、中位数;(2)求这10名务工人员在这一个月内收入的平均数,并根据计算结果估计该乡镇所有务工人员在这一个月的总收入.17.(8分) 八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):(1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是队.18.(10分) 我市自开展“学习新思想,做好接班人”主题阅读活动以来,受到各校的广泛关注和同学们的积极响应,某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.某校抽查的学生文章阅读的篇数统计表文章阅读的篇数(篇) 3 4 5 6 7及以上人数(人) 20 28 m 16 12请根据统计图表中的信息,解答下列问题:(1)求被抽查的学生人数和m的值;(2)求本次抽查的学生文章阅读篇数的中位数和众数;(3)若该校共有800名学生,根据抽查结果,估计该校学生在这一周内文章阅读的篇数为4篇的人数.19.(12分) 我校准备挑选一名跳高运动员参加江东区中学生运动会,对跳高运动队的甲、乙两名运动员进行了8次选拔比赛,他们的成绩(单位:cm)如下:甲:170165168169172173168167乙:160173172161162171170175(1)甲、乙两名运动员的跳高平均成绩分别是多少?(2)哪名运动员的成绩更为稳定?为什么?(3)若预测,跳过165cm(包括165cm)就很可能获得冠军.该校为了获得冠军,可能选哪位运动员参赛?若预测跳过170cm(包括170cm)才能获得冠军呢?参考答案1-4BCAA 5-8CBDC 9.4 10.168 cm 11.0或2.5或5 12.1.15 13.乙 14.9,3 15.解:(1)30元 (2)50元 (3)250人16.解:(1)众数为3000,中位数是2750 (2)平均数是2790,该乡镇所有务工人员在这一个月的总收入为111600元 17.解:(1)9.5 10(2)乙队的平均成绩是110(10×4+8×2+7+9×3)=9,则方差是110[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1. (3)乙18.解:(1)被调查的总人数为16÷16%=100(人),m =100-(20+28+16+12)=24 (2)由于共有100个数据,其中位数为第50,51个数据的平均数,而第50,51个数据均为5篇,所以中位数为5篇,出现次数最多的是4篇,所以众数为4篇(3)估计该校学生在这一周内文章阅读的篇数为4篇的人数为800×28100=224(人)19.解:(1)甲的平均成绩为18(170+165+168+169+172+173+168+167)=169(cm),乙的平均成绩为18(160+173+172+161+162+171+170+175)=168(cm).(2)s 2甲=18×[(170-169)2+(165-169)2+…+(168-169)2+(167-169)2]=6(cm 2),s 2乙=18×[(160-168)2+(173-168)2+…+(170-168)2+(175-168)2]=31.5(cm 2).∵s 2甲<s 2乙,∴甲运动员的成绩更稳定.(3)若跳过165cm(包括165cm)就很可能获得冠军,则在8次成绩中,甲8次都跳过了165cm ,而乙只有5次,所以应选甲运动员参赛;若跳过170cm(包括170cm)才能获得冠军,则在8次成绩中,甲只有3次都跳过了170cm ,而乙有5次,所以应选乙运动员参赛。

人教新版八年级下册数学《第20章 数据的分析》单元测试卷及答案详解(PDF可打印)

人教新版八年级下册数学《第20章 数据的分析》单元测试卷及答案详解(PDF可打印)

人教新版八年级下册《第20章数据的分析》单元测试卷(2)一、选择题1.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差2.(3分)一组数据2,3,5,5,5,6,9.若去掉一个数据5,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差3.(3分)某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为()A.85B.90C.92D.894.(3分)人民商场对上周女装的销售情况进行了统计,如下表所示:色黄色绿色白色紫色红色数量(件)10018022080520经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A.平均数B.中位数C.众数D.方差5.(3分)期中考试后,班里有两位同学议论他们小组的数学成绩,小晖说:“我们组考分是82分的人最多”,小聪说:“我们组的7位同学成绩排在最中间的恰好也是82分”.上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数6.(3分)如图,是学校举行“爱国主义教育”比赛活动中获得前10名学生的参赛成绩,对于这些成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是157.(3分)某科普小组有5名成员,身高(单位:cm)分别为:160,165,170,163,172.把身高160cm的成员替换成一位165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数变小,方差变小B.平均数变大,方差变大C.平均数变大,方差不变D.平均数变大,方差变小8.(3分)某校为了解八年级参加体育锻炼情况,在八年级学生中随机调查了50名学生一周参加体育锻炼的时间,并根据数据绘成统计图如下,则关于这50个数据的说法错误的是()A.平均数是9B.众数是9C.中位数是9D.方差是9 9.(3分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如表:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021关于以上数据,下列说法错误的是()A.甲命中环数的中位数是8环B.乙命中环数的众数是9环C.甲的平均数和乙的平均数相等D.甲的方差小于乙的方差10.(3分)甲、乙两名同学五次引体向上的测试成绩(个数)如图所示,下列判断正确的是()A.甲的最好成绩比乙好B.甲的成绩的中位数比乙大C.甲的成绩比乙稳定D.甲的成绩的平均数比乙大二、填空题11.(3分)若一组数据8,9,7,8,x,3的平均数是7,则这组数据的众数是.12.(3分)某班一次体育测试中得100分的有4人,90分的有11人,80分的有11人,70分的有8人,60分的有5人,剩下8人,一共得了300分,则平均数是(精确到0.1),众数是,中位数是.13.(3分)某班学生理化生实验操作测试成绩的统计结果如下表.则这些学生成绩的众数为.成绩/分345678910人数112289151214.(3分)某校为了了解九年级男生的体能情况,规定参加测试的每名男生从“仰卧起坐”、“引体向上”、“耐久跑1000米”三个项目中随机抽取一项作为测试项目.(1)九(1)班的全体25名男生积极参加,参加各项测试项目的统计结果如图所示,则参加“引体向上”测试的男生有名;(2)九(1)班男生参加“耐久跑1000米”测试的部分成绩(单位:分)为:95,100,82,90,95,85.①若九(1)班所有参加“耐久跑1000米”测试的男生成绩的众数是90分,则中位数是分;②如果将不低于90分的成绩评为优秀,请你估计该校九年级抽中“耐久跑1000米”的120名男生的成绩为优秀的约有多少人?15.(3分)如图,是甲、乙两人10次射击成绩(环数)的条形统计图,则甲、乙两人成绩较稳定的是;如果甲又连续射击了5次,且环数均为9环,那么甲的方差变化情况是(填“变大”“变小”或“不变”).三、解答题16.已知有理数﹣3,1,m.(1)计算﹣3,1这两个数的平均数;(2)如果这三个数的平均数是2,求m的值.17.(10分)为了强化学生的环保意识,某校团委在全校举办了“保护环境,人人有责”知识竞赛活动,初、高中根据初赛成绩,各选出5名选手组成初中代表队和高中代表队进行复赛,两个队学生的复赛成绩如图所示:(1)根据图示填写表:平均数中位数众数方差初中队8.50.7高中队8.510(2)小明同学说:“这次复赛我得了8分,在我们队中排名属中游偏下!”小明是初中队还是高中队的学生?为什么?(3)结合两队成绩的平均数、中位数和方差,分析哪个队的复赛成绩较好.18.(10分)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1:所有评委所给分的平均数.方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3:所有评委所给分的中位数.方案4:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验,如图是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.19.(80分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:7072747576767777777879c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有人;(2)表中m的值为;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.人教新版八年级下册《第20章数据的分析》单元测试卷(2)参考答案与试题解析一、选择题1.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差【考点】标准差;算术平均数;中位数;方差.【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断.【解答】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:B.2.(3分)一组数据2,3,5,5,5,6,9.若去掉一个数据5,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差【考点】统计量的选择.【分析】依据平均数、中位数、众数、方差的定义和公式分别进行求解即可.【解答】解:A、原来数据的平均数是(2+3+5+5+5+6+9)=5,去掉一个数据5后平均数仍为5,故A与要求不符;B、原来数据的众数是5,去掉一个数据5后众数仍为5,故B与要求不符;C、原来数据的中位数是5,去掉一个数据5后中位数仍为5,故C与要求不符;D、原来数据的方差是:[(2﹣5)2+(3﹣5)2+3×(5﹣5)2+(6﹣5)2+(9﹣5)2]=,去掉一个数据5后,方差是[(2﹣5)2+(3﹣5)2+2×(5﹣5)2+(6﹣5)2+(9﹣5)2]=5,发生变化的是方差;故选:D.3.(3分)某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为()A.85B.90C.92D.89【考点】加权平均数.【分析】根据加权平均数的计算方法计算即可.【解答】解:她本学期的学业成绩为:20%×85+30%×90+50%×92=90(分).故选:B.4.(3分)人民商场对上周女装的销售情况进行了统计,如下表所示:色黄色绿色白色紫色红色数量(件)10018022080520经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A.平均数B.中位数C.众数D.方差【考点】统计量的选择.【分析】在决定本周进女装时多进一些红色的,主要考虑的是各色女装的销售的数量,而红色上周销售量最大.【解答】解:在决定本周进女装时多进一些红色的,主要考虑的是各色女装的销售的数量,而红色上周销售量最大.由于众数是数据中出现次数最多的数,故考虑的是各色女装的销售数量的众数.故选:C.5.(3分)期中考试后,班里有两位同学议论他们小组的数学成绩,小晖说:“我们组考分是82分的人最多”,小聪说:“我们组的7位同学成绩排在最中间的恰好也是82分”.上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数【考点】统计量的选择.【分析】根据中位数和众数的定义回答即可.【解答】解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,故选:D.6.(3分)如图,是学校举行“爱国主义教育”比赛活动中获得前10名学生的参赛成绩,对于这些成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是15【考点】方差;算术平均数;中位数;众数.【分析】根据众数、中位数、平均数、方差的定义和统计图中提供的数据分别列出算式,求出答案.【解答】解:A、众数是90分,人数最多,正确;B、中位数是90分,错误;C、平均数是=91(分),错误;D、×[(85﹣91)2×2+(90﹣91)2×5+(100﹣91)2+2(95﹣91)2]=19(分2),错误;故选:A.7.(3分)某科普小组有5名成员,身高(单位:cm)分别为:160,165,170,163,172.把身高160cm的成员替换成一位165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数变小,方差变小B.平均数变大,方差变大C.平均数变大,方差不变D.平均数变大,方差变小【考点】方差;算术平均数.【分析】根据平均数、中位数的意义、方差的意义,可得答案.【解答】解:原数据的平均数为×(160+165+170+163+172)=166(cm)、方差为×[(160﹣166)2+(165﹣166)2+(170﹣166)2+(163﹣166)2+(172﹣166)2]=19.6(cm2),新数据的平均数为×(165+165+170+163+172)=167(cm),方差为×[2×(165﹣167)2+(170﹣167)2+(163﹣167)2+(172﹣167)2]=11.6(cm2),所以平均数变大,方差变小,故选:D.8.(3分)某校为了解八年级参加体育锻炼情况,在八年级学生中随机调查了50名学生一周参加体育锻炼的时间,并根据数据绘成统计图如下,则关于这50个数据的说法错误的是()A.平均数是9B.众数是9C.中位数是9D.方差是9【考点】条形统计图;加权平均数;中位数;众数;方差.【分析】利用加权平均数公式、方差公式以及众数、中位数的定义即可求解.【解答】解:A、平均数是:=9,故命题正确;B、众数是9,命题正确;C、中位数是9,命题正确;D、方差是:【2(7﹣9)2+12(8﹣9)2+20(9﹣9)2+10(10﹣9)2】=0.6,故命题错误.故选:D.9.(3分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如表:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021关于以上数据,下列说法错误的是()A.甲命中环数的中位数是8环B.乙命中环数的众数是9环C.甲的平均数和乙的平均数相等D.甲的方差小于乙的方差【考点】方差;加权平均数;中位数;众数.【分析】根据中位数、众数、平均数的定义以及方差的计算公式分别对每一项进行分析,即可得出答案.【解答】解:A、把甲命中环数从小到大排列为7,8,8,8,9,最中间的数是8,则中位数是8环,故本选项正确;B、在乙命中环数中,6和9都出现了2次,出现的次数最多,则乙命中环数的众数是6和9,故本选项错误;C、甲的平均数是:(7+8+8+8+9)÷5=8(环),乙的平均数是:(6+6+9+9+10)÷5=8(环),则甲的平均数和乙的平均数相等,故本选项正确;D、甲的方差是:[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4,乙的方差是:[2×(6﹣8)2+2×(9﹣8)2+(10﹣8)2]=2.8,则甲的方差小于乙的方差,故本选项正确;故选:B.10.(3分)甲、乙两名同学五次引体向上的测试成绩(个数)如图所示,下列判断正确的是()A.甲的最好成绩比乙好B.甲的成绩的中位数比乙大C.甲的成绩比乙稳定D.甲的成绩的平均数比乙大【考点】方差;算术平均数;中位数.【分析】分别计算出两人成绩的平均数、中位数、方差可得出答案.【解答】解:甲同学的成绩依次为:7、8、8、8、9,则其中位数为8,平均数为8,方差为×[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4;乙同学的成绩依次为:6、7、8、9、10,则其中位数为8,平均数为8,方差为×[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,∴甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低,故选:C.二、填空题11.(3分)若一组数据8,9,7,8,x,3的平均数是7,则这组数据的众数是7和8.【考点】众数;算术平均数.【分析】根据平均数先求出x,再确定众数.【解答】解:因为数据的平均数是7,所以x=42﹣8﹣9﹣7﹣8﹣3=7.根据众数的定义可知,众数为7和8.故答案为:7和8.12.(3分)某班一次体育测试中得100分的有4人,90分的有11人,80分的有11人,70分的有8人,60分的有5人,剩下8人,一共得了300分,则平均数是 6.4(精确到0.1),众数是80和90,中位数是80.【考点】众数;加权平均数;中位数.【分析】根据平均数的定义,用总分除以总人数即可求出平均数,找出出现的次数最多数就是众数,把这47个数从小到大排列,最中间的数是第24个数,即可求出中位数.【解答】解;平均数是:300÷(4+11+11+8+5+8)=300÷47≈6.4,90分的有11人,80分的有11人,出现的次数最多,则众数是80和90,把这47个数从小到大排列,最中间的数是第24个数,是80,则中位数是80;故答案为;6.4,80和90,80.13.(3分)某班学生理化生实验操作测试成绩的统计结果如下表.则这些学生成绩的众数为9.成绩/分345678910人数1122891512【考点】众数.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:本题中数据9出现了15次,出现的次数最多,所以本题的众数是9.故填9.14.(3分)某校为了了解九年级男生的体能情况,规定参加测试的每名男生从“仰卧起坐”、“引体向上”、“耐久跑1000米”三个项目中随机抽取一项作为测试项目.(1)九(1)班的全体25名男生积极参加,参加各项测试项目的统计结果如图所示,则参加“引体向上”测试的男生有9名;(2)九(1)班男生参加“耐久跑1000米”测试的部分成绩(单位:分)为:95,100,82,90,95,85.①若九(1)班所有参加“耐久跑1000米”测试的男生成绩的众数是90分,则中位数是90分;②如果将不低于90分的成绩评为优秀,请你估计该校九年级抽中“耐久跑1000米”的120名男生的成绩为优秀的约有多少人?【考点】众数;用样本估计总体;中位数.【分析】(1)由统计结果图即可得出结果;(2)①根据已知数据通过由小到大排列确定出众数与中位数即可;②求出8名男生成绩的平均数,然后用92与平均数进行比较即可;③求出成绩不低于90分占的百分比,乘以80即可得到结果.【解答】解:(1)由统计结果图得,参加“引体向上”测试的男生有9名;故答案为:9;(2)①九(1)班男生参加“耐久跑1000米”测试的部分成绩从高到低排列为:100,95,95,90,85,82,共有8名男生参加“耐久跑1000米”.若九(1)班所有参加“耐久跑1000米”测试的男生成绩的众数是90分,故答案为:90;则这8名男生中共有三名男生得分为90分,则参加“耐久跑1000米”测试的男生成绩的中位数是.则6÷8×120=90(人),∴该校九年级抽中“耐久跑1000米”的120名男生的成绩为优秀的约有90人.15.(3分)如图,是甲、乙两人10次射击成绩(环数)的条形统计图,则甲、乙两人成绩较稳定的是乙;如果甲又连续射击了5次,且环数均为9环,那么甲的方差变化情况是变小(填“变大”“变小”或“不变”).【考点】条形统计图;方差.【分析】根据条形统计图中提供的数据分别计算甲、乙两组的平均数、方差,通过方差的大小比较,得出稳定性.【解答】解:甲的平均数是:=9(环),甲的方差是:×[(8﹣9)2×4+(9﹣9)2×2+(10﹣9)2×4]=0.8,乙的平均数是:=9(环),乙的方差是:×[(8﹣9)2×3+(9﹣9)2×4+(10﹣9)2×3]=0.6,∵0.8>0.6,∴乙成绩稳定.甲又连续射击5次,环数均为9环,则平均数还为9,则方差为×[(8﹣9)2×4+(9﹣9)2×2+(10﹣9)2×4]=<0.8,故方差变小.故答案为:乙;变小.三、解答题16.已知有理数﹣3,1,m.(1)计算﹣3,1这两个数的平均数;(2)如果这三个数的平均数是2,求m的值.【考点】算术平均数.【分析】(1)根据平均数的计算公式列出算式,再进行计算即可得出答案;(2)根据这三个数的平均数是2,得出=2,然后求解即可得出答案.【解答】解:(1)﹣3,1这两个数的平均数为=﹣1;(2)∵这三个数的平均数是2,∴=2,∴m=8.17.(10分)为了强化学生的环保意识,某校团委在全校举办了“保护环境,人人有责”知识竞赛活动,初、高中根据初赛成绩,各选出5名选手组成初中代表队和高中代表队进行复赛,两个队学生的复赛成绩如图所示:(1)根据图示填写表:平均数中位数众数方差初中队8.58.58.50.7高中队8.5810 1.6(2)小明同学说:“这次复赛我得了8分,在我们队中排名属中游偏下!”小明是初中队还是高中队的学生?为什么?(3)结合两队成绩的平均数、中位数和方差,分析哪个队的复赛成绩较好.【考点】方差;算术平均数;中位数;众数.【分析】(1)由条形图得出初中队和高中队成绩,再根据中位数、众数及方差的概念求解可得;(2)根据中位数的意义求解可得;(3)从平均数、中位数及方差的意义求解可得.【解答】解:(1)由图知初中队的成绩从小到大排列为:7.5、8、8.5、8.5、10,所以初中队成绩的中位数是8.5,众数是8.5;高中队成绩从小到大排列为:7、7.5、8、10、10,所以高中队成绩的中位数为8,方差为×[(7﹣8.5)2+(7.5﹣8.5)2+(8﹣8.5)2+2×(10﹣8.5)2]=1.6,补全表格如下:平均数中位数众数方差初中队8.58.58.50.7高中队8.5810 1.6(2)小明在初中队.理由如下:根据(1)可知,初中、高中队的中位数分别为8.5分和8分,∵8<8.5,∴小明在初中队.(3)初中队的成绩好些.因为两个队的平均数相同,初中队的中位数高,而且初中队的方差小于高中队的方差,所以在平均数相同的情况下中位数高、方差小的初中队成绩较好.18.(10分)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1:所有评委所给分的平均数.方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3:所有评委所给分的中位数.方案4:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验,如图是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.【考点】中位数;众数;条形统计图;算术平均数.【分析】本题关键是理解每种方案的计算方法:(1)方案1:平均数=总分数÷10.方案2:平均数=去掉一个最高分和一个最低分的总分数÷8.方案3:10个数据,中位数应是第5个和第6个数据的平均数.方案4:求出评委给分中,出现次数最多的分数.(2)考虑不受极值的影响,不能有两个得分等原因进行排除.【解答】解:(1)方案1最后得分:×(3.2+7.0+7.8+3×8+3×8.4+9.8)=7.7;方案2最后得分:(7.0+7.8+3×8+3×8.4)=8;方案3最后得分:8;方案4最后得分:8或8.4.(2)因为方案1中的平均数受极端数值的影响,不适合作为这个同学演讲的最后得分,所以方案1不适合作为最后得分的方案.因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案.19.(80分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:7072747576767777777879c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有23人;(2)表中m的值为77.5;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.【考点】频数(率)分布直方图;加权平均数;中位数;用样本估计总体.【分析】(1)根据条形图及成绩在70≤x<80这一组的数据可得;(2)根据中位数的定义求解可得;(3)将各自成绩与该年级的中位数比较可得答案;(4)用总人数乘以样本中七年级成绩超过平均数76.9分的人数所占比例可得.【解答】解:(1)在这次测试中,七年级在80分以上(含80分)的有15+8=23人,故答案为:23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为77、78,∴m==77.5,故答案为:77.5;(3)甲学生在该年级的排名更靠前,∵七年级学生甲的成绩大于中位数77.5分,其名次在该年级抽查的学生数的25名之前,八年级学生乙的成绩小于中位数79.5分,其名次在该年级抽查的学生数的25名之后,∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为400×=224(人).。

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)一、单选题1.已知一组数据:12,5,9,5,14,下列说法不正确的是( ) A .平均数是9B .中位数是9C .众数是5D .极差是52.在方差的计算公式s 2=110[(x 1-20)2+(x 2-20)2+……+(x 10-20)2]中,数字10和20分别表示的意义可以是( ) A .数据的个数和方差 B .平均数和数据的个数 C .数据的个数和平均数D .数据组的方差和平均数3.某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表:根据上表中的信息判断,下列结论中错误的是( ) A .该班一共有42名同学B .该班学生这次考试成绩的众数是8C .该班学生这次考试成绩的平均数是27D .该班学生这次考试成绩的中位数是27分4.若一组数据12345,,,,x x x x x 的方差是3,则1234523,23,23,23,23x x x x x -----的方差是( ) A .3B .6C .9D .125.某市6月份某周气温(单位:℃)为23、25、28、25、28、31、28,则这组数据的众数和中位数分别是( ) A .25、25B .28、28C .25、28D .28、316.中国六个城市某日的污染指数如下表:在这组数据中的中位数是( ) 城市 北京 合肥 南京 哈尔滨 成都 郑州 污染指数 342 163 165 45 227 163 A .105B .163C .164D .1657. 一组数据1,4,5,2,8,它们的数据分析正确的是( )A.平均数是5 B.中位数是4 C.方差是30 D.极差是68.九年级1班30位同学的体育素质测试成绩统计如表所示,其中有两个数据被遮盖成绩24 25 26 27 28 29 30人数▄▄ 2 3 6 7 9下列关于成绩的统计量中,与被遮盖的数据无关的是()A.平均数,方差B.中位数,方差C.中位数,众数D.平均数,众数9.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是010.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7分B.8分C.9分D.10分11.数据2,2,6,2,3,4,3,2,6,5,4,5,4的众数是().A.2 B.3 C.4 D.612.小华续五次数学测验成绩与班级每次测试成绩平均分的差值分别为0,1,-1,3,2;与小华同班的小梅这五次数学测验成绩的方差为15,小华与小梅这五次数学测试的平均成绩恰好相等,则下列说法正确的是()A.小华的数学成绩更稳定B.小梅的数学成绩更稳定C.小华与小梅的数学成绩一样稳定D.无法判定谁的成绩更稳定二、填空题13.李老师为了了解学生的数学周考成绩,在班级随机抽查了10名学生的成绩,其统计数据如下表:则这10名学生的数学周考成绩的中位数是________分. 14.已知一组数据2,3,4,5,x 2的众数为4,则x=________. 15.某种蔬菜按品质分成三个等级销售,销售情况如表:则售出蔬菜的平均单价为________元/千克.16.在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心.他们捐款的数额分别是(单位:元)50,20,50,30,25,55,25,这组数据的众数_____.17.一组数据-1、-2、x 、1、2其中x 是小于10的非负整数,且数据的方差是整数,则数据的标准差是_______________18.某中学随机调查了15名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:那么这15名学生这一周在校参加体育锻炼的时间的中位数是 小时.19.甲、乙两人参加某网站的招聘测试,测试由网页制作和语言两个项目组成,他们各自的成绩(百分制)如下表所示:乙 70 80该网站根据成绩在两人之间录用了甲,则本次招聘测试中权重较大的是_____项目. 20.甲乙两组数据的平均数相同,方差分别为2=0.26S 甲和2=0.18S 乙,甲乙两组数据那一组数据较为稳定 .(填甲或乙)三、解答题21.某校八年级学生开展踢毽子比赛活动,每班派5名学生参加.按团体总分多少排列名次,在规定时间每人踢100个以上(含100个)为优秀,表--是 成绩最好的甲班和乙班5名学生的比赛数据(单位:个),经统计发现两班总分相等,而冠军只能有一个,怎样才能确定冠军呢?此时有学生建议,可通过考查数据中的其他信息作为参考进行名次排列.请你完成下列解答:(1)根据表中提供的数据求出表二中a 1、b 1、c 1、a 2、b 2、c 2数据; (2)根据表二信息,你认为应该把冠军奖状发给哪一个班级?简述理由.22.为了让同学们了解自己的体育水平,初二1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表平均分方差中位数众数男生________ 2 8 7女生7.92 1.99 8 ________根据以上信息,解答下列问题:(1)这个班共有男生________人,共有女生________人;(2)补全初二1班体育模拟测试成绩分析表;(3)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由.23.某校围绕“扫黑除恶”专项斗争进行了普法宣传,然后在各班级分别随机抽取了5名同学进行了测试.规定:95分或以上为优秀。

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)一、单选题1.初三•一班五个劳动竞赛小组一天植树的棵数是:10,10,12,x,8,如果这组数据的众数与平均数相等,那么这组数据的中位数是()A.12 B.10 C.9 D.82.在社会实践活动中,某同学对甲、乙、丙、丁四个城市一至五月份的白菜价格进行调查.四个城市5个月白菜的平均值均为3.50元,方差分别为S甲2=18.3,S乙2=17.4,S丙2=20.1,S丁2=12.5.一至五月份白菜价格最稳定的城市是()A.甲B.乙C.丙D.丁3.某班派9名同学参加红五月歌咏比赛,他们的身高分别是(单位:厘米):167,159,161,159,163,157,170,159,165.这组数据的众数和中位数分别是()A.159,163 B.157,161 C.159,159 D.159,1614.为了预防新冠病毒,6名学生准备了口罩,口罩数量(单位:个)分别为:87、88、73、88、79、85,这组数据的众数是()A.79 B.87 C.88 D.855.2011年春季因干旱影响,政府鼓励居民节约用水,为了解居民用水情况,在某小区随机抽查了20户家庭的月用水量,结果如下表:则关于这20户家庭的月用水量,下列说法错误的是()A.中位数是6吨B.平均数是5.8吨C.众数是6吨D.极差是4吨6.数据5,2,3,0,5的众数是( )A.0 B.3 C.6 D.57.某同学在一次期末测试中,七科的成绩分别是92,100,96,93,96,98,95,则这位同学成绩的中位数和众数分别是().A.93,96 B.96,96 C.96,100 D.93,1008.从整体中抽取一个样本,计算出样本方差为1,可以估计总体方差()A.一定大于1 B.约等于1 C.一定小于1 D.与样本方差无关9.甲、乙两台机床同时生产一种零件,在5天中,两台机床每天出次品的数量如下表:甲0 1 2 0 2乙 2 1 0 1 1关于以上数据的平均数、中位数、众数和方差,说法不正确...的是( )A.甲、乙的平均数相等B.甲、乙的众数相等C.甲、乙的中位数相等D.甲的方差大于乙的方差10.如图是我市4月1日至7日一周内“日平均气温变化统计图”,在这组数据中,众数和中位数分别是()A.13;13 B.14;10 C.14;13 D.13;1411.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小明和小刚进行米短道速滑训练,他们的五次成绩如下表所示:设两个人的五次成绩的平均数依次为、,方差依次为、,则下列判断正确的是()A.B.C.D.12.某中学为了解学生参加“青年大学习”网上班课的情况,对九年级6个班的学习人数进行了统计,得到各班参加班课的人数数据为5,10,10,12,14,9.对于这组数据,下列说法错误的是()A.平均数是10B.众数是10C.中位数是11D.方差是23 3二、填空题13.某衬衫店为了准确进货,对一周中商店各种尺码的衬衫的销售情况进行统计,结果如下:38码的5件、39码的3件、40码的6件、41码的4件、42码的2件、43码的1件.则该组数据中的中位数是码.14.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是______.15.在学校艺术节文艺汇演中,甲、乙两个舞蹈队队员的身高的方差依次是1.5、2.5,那么身高更整齐的是______队(填“甲”或“乙”).16.某班10名学生校服尺寸与对应人数如图所示,那么这10名学生校服尺寸的中位数为_____cm.17.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是________.18.一组数据3,4,x,6,7的平均数为5.则这组数据的方差是______.19.数据组:26,28,25,24,28,26,28的众数是.20.若一组数据1,3,5,x,的众数是3,则这组数据的方差为______.三、解答题21.在“停课不停学”期间,某中学要求学生合理安排学习和生活,主动做一些力所能及的家务劳动,并建议同学们加强体育锻炼,坚持做“仰卧起坐”等运动项目.开学后,七年级甲、乙两班班主任想了解学生做“仰卧起坐”的情况,他们分别在各自班中随机抽取了5名女生和5名男生,测试了这些学生一分钟所做“仰卧起坐”的个数,测试结果统计如表:甲班组别个数x 人数A 25≤x<30 1B 30≤x<35 3C 35≤x<40 4D 40≤x<45 2请根据图中提供的信息,回答下列问题:(1)测得的甲班这10名学生所做“仰卧起坐”个数的中位数落在哪个组?(2)求测得的乙班这10名学生所做“仰卧起坐”个数的平均数;(3)请估计这两个班中哪个班的学生“仰卧起坐”做得更好一些?并说明理由.22.某中学为了培养学生的社会实践能力,今年“五一”长假期间要求学生参加一项社会调查活动.为此,小明在他所居住小区的600个家庭中,随机调查了50个家庭在新工资制度实施后的收入情况,并绘制了如下的频数分布表和频数分布直方图(收入取整数,单位:元).请你根据以上提供的信息,解答下列问题: (1)补全频数分布表和频数分布直方图;(2)这50个家庭收入的中位数落在 小组; (3)请你估算该小区600个家庭中收入较低(不足1400元)的家庭个数大约有多少?23.某市开展“环境治理留住青山绿水,绿色发展赢得金山银山”活动,对其周边的环境污染进行综合治理.2018年对A 、B 两区的空气量进行监测,将当月每天的空气污染指数(简称:API )的平均值作为每个月的空气污染指数,并将2018年空气污染指数绘制如下表.据了解,空气污染指数50≤时,空气质量为优:50<空气污染指数100≤时,空气质量为良:100<空气污染指数150≤时,空气质量为轻微污染.月份地区12 3 4 5 6 7 8 9 10 11 12A 区115 108 85 100 95 5080 70 50 50 100 45 B 区1059590 80 90 60 9085 60709045(1)请求出A 、B 两区的空气污染指数的平均数;(2)请从平均数、众数、中位数、方差等统计量中选两个对A区、B区的空气质量进行有效对比,说明哪一个地区的环境状况较好.24.在全民读书月活动中,某校随机调查了部分同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题.(1)这次调查获取的样本容量是.(直接写出结果)(2)这次调查获取的样本数据的众数是,中位数是.(直接写出结果)(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.25.在“新冠肺炎防控”知识宣传活动中,某社区对居民掌握新冠肺炎防控知识的情况进行调查.其中A、B两区分别有500名居民,社区从中各随机抽取50名居民进行相关知识测试,并将成绩进行整理得到部分信息:(信息一)A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值);(信息二)图中,A小区从左往右第四组的成绩如下75 75 79 79 79 79 80 8081 82 82 83 83 84 84 84(信息三)A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A75.1 79 40%277B75.1 77 76 45%211根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数;(2)请估计A小区500名居民中能超过平均数的有多少人?(3)请尽量从多个角度比较、分析A,B两小区居民掌握新冠防控知识的情况.26.某市甲、乙两个汽车销售公司,去年一至十月份每月销售同种品牌汽车的情况如图所示:(1)请你根据左图填写右表:销售公司平均数方差中位数众数甲9乙9 17.0 8(2)请你从以下两个不同的方面对甲、乙两个汽车销售公司去年一至十月份的销售情况进行分析:①从平均数和方差结合看;②从折线图上甲、乙两个汽车销售公司销售数量的趋势看(分析哪个汽车销售公司较有潜力).27.某中学由6名师生组成一个排球队.他们的年龄(单位:岁)如下:15 16 17 17 17 40 (1)这组数据的平均数为,中位数为,众数为.(2)用哪个值作为他们年龄的代表值较好?28.某中学对全校学生60秒跳绳的次数进行了统计,全校学生60秒跳绳的平均次数是100次,某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如图所示(每个分组包括左端点,不包括右端点).(1)该班学生60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数.”请你给出该生跳绳成绩所在的范围.29.某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:(1)根据上述信息可知:甲命中环数的众数是环;(2)通过计算说明甲、乙两人的成绩谁比较稳定.(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会.(填“变大”、“变小” 或“不变”)参考答案1.B2.D3.D4.C5.D6.D7.B8.B9.B10.C11.B12.C13.40.14.715.甲16.17017.4.518.219.28.20.221.(1)∵甲班共有10名学生,处于中间位置的是第5、第6个数的平均数,∴测得的甲班这10名学生所做“仰卧起坐”个数的中位数落在C组;(2)乙班这10名学生所做“仰卧起坐”个数的平均数是:110(22+30×3+35×4+37+41)=33(个);(3)甲班的平均数是:110(27×1+32×3+37×4+42×2)=35.5(个),乙班的平均数是:110(22+30×3+35×4+37+41)=33(个),∵35.5>33,∴甲班的学生“仰卧起坐”的整体情况更好一些.22.(1)A区的空气污染指数的平均数是:112(115+108+85+100+95+50+80+70+50+50+100+45)=79;B区的空气污染指数的平均数是:112(105+95+90+80+90+60+90+85+60+70+90+45)=80;(2)∵A区的众数是50,B区的众数是90,∴A地区的环境状况较好.∵A区的平均数小于B区的平均数,∴A区的环境状况较好.24.(1)40;(2)30,50;(3)50500元25.(1)75;(2)240人;(3)从平均数看,两个小区居民对新冠肺炎防控知识掌握情况的平均水平相同;从方差看,B小区居民新冠肺炎防控知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.26.(1)(2)①甲、乙两个汽车销售公司去年一至十月份的销售平均数一样,都是9辆,但甲销售公司的方差较小,说明甲销售公司的销售情况更稳定。

北师大版八年级数学上册《第六章 数据的分析》单元检测卷-带答案

北师大版八年级数学上册《第六章 数据的分析》单元检测卷-带答案

北师大版八年级数学上册《第六章数据的分析》单元检测卷-带答案核心考点整合考点1 平均数1.下表是小红参加一次“阳光体育”活动比赛的得分情况:项目跑步花样跳绳跳绳得分90 80 70评总分时,按跑步占50%,花样跳绳占30%,跳绳占20%考评,则小红的最终得分为分.2. 某新能源车销售网点2023 年7月至12月的销售数量如图所示,则这半年来平均每月的销售量为辆(结果保留整数).考点2 中位数3.2024 年4 月24 日是我国第九个“中国航天日”,某校开展了一次航天知识竞赛,共选拔5名选手参加总决赛,他们的决赛成绩(单位:分)分别是92,93,94,90,96.则这5名选手决赛成绩的中位数是.4.已知一组数据:7,6,8,x,3,它们的平均数是6,则这组数据的中位数是( )A.2B.6C.8D.7考点3 众数5.为了解某班学生参加体育锻炼的情况,从该班学生中随机抽取5名同学进行调查.经统计,他们这天的体育锻炼时间(单位;分钟)分别为65,60,75,60,80.这组数据的众数为( )A.65B.60C.75D.80考点4 方差,由公式提供的信息判断:①样本容量为3;②样本中6.某组数据的方差计算公式为s2=2(2−x̅)2+3(3−x̅)2+2(5−x̅)2n位数为3;③样本众数为3;④样本平均数为10₃.其说法正确的( )3A.①②④B.②④C.②③D.③④考点5 极差7.在杭州亚运会的跳水比赛中,对某运动员的第一个动作,8位裁判的打分如下(单位:分):9,8.5,7.5,8.5,8.5, 7.5,7,8,这组数据的极差是.考点6 标准差8.对于一次函数y=3x+4,自变量分别取值x₁,x₂,…,xₙ,若这组数据的方差为5,则对应的函数值为y ₁,y₂,…, yn 这组数据的标准差为.考点7 平均数、众数、中位数的应用9.某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,满意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,如图是根据这20 份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改.(2)工作人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求工作人员抽取的问卷所评分数为几分? 与(1)相比,中位数是否发生变化?考点8 方差的应用10.超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g)平均数和方差分别为x,s²,i该顾客选购的鸡蛋的质量平均数和方差分别为x₁,s²,则下列结论一定成立的是( )A.x̅<x̅1B.x̅>x̅1C.s2>s12D.s2<s1211.某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中投进球的个数统计如下表:(1)求甲、乙两名队员投进球个数的平均数;(2)如果从甲、乙两名队员中选出一人去参加定点投篮比赛,应选哪名队员? 请说明理由.思想方法整合思想1 整体思想12.已知一组数据a₁,a₂,a₃,a₄,a₅的平均数为8,则另一组数据a₁+10,a₂−10,a₃+10,a₄−10,a₅+10的平均数为( )A.6B.8C.10D.12思想2 方程思想13.8名学生在一次数学测试中的成绩(单位:分)为80,82,79,69,74,78,x,81,这组成绩的平均数是77 分,则x的值为( )A.76B.75C.74D.73参考答案1 832 470 3.93分4. B 5. B 6. C 7.28. √5【点拨】因为这组数据x₁,x₂,…,x₀的方差为5所以函数值y₁,y₁,…,yₙ这组数据的方差是:3²×5 =45,所以这组数据的标准差为√45=3√5,【解】(1)由统计图可知,第10个数据是3分,第11个数据是4分,所以中位数为3.5分,由统计图可得平均数为1×1+3×2+6×3+5×4+5×5=3.5(分),所以客户所评分数的平均数和中位数都不低于3.5分20所以该部门不需要整改.>3.55,解得x>4.55(2) 设工作人员抽取的问卷所评分数为x 分,则有 3.5×20+x20+1因为满意度从低到高为1分,2分,3分,4分,5分,共5档.所以工作人员抽取的问卷所评分数为5分所以加入这个数据,客户所评分数按从小到大排列后,第11 个数据是4 分,即加入这个数据后,中位数是4 分所以与(1)相比,中位数发生了变化,由3.5分变成4 分。

北师大版八年级数学上册《数据的分析》单元测试卷及答案解析

北师大版八年级数学上册《数据的分析》单元测试卷及答案解析

北师大版八年级数学上册《数据的分析》单元测试卷一、选择题1、已知下面一组数据:5、-2、0、1、4,这组数据的中位数是()A.0 B.-2 C.1 D.42、已知甲、乙两名同学在四次模拟测试中的数学平均成绩都是112分,但他们的方差不同,分别是s=5,s=12,那么成绩比较稳定的是()A.甲B.乙C.甲和乙一样D.无法确定3、甲、乙、丙、丁四名射击运动员参加了预选赛,其平均环数及方差s2如下表所示.假如要从两人中选出一个成绩较好且状态稳定的一个去参赛,那么应选()A. 甲B. 乙C. 丙D. 丁4、已知一组数据3,5,7,m ,n的平均数是6,那么m,n的平均数是( )A.7.5 B.7 C.6.5 D.65、下列哪种说法是错误的?()A.选举中,人们通常最关心的数据是众数B.从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大C.甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为,,则甲的射击成绩较稳定D.数据3,5,4,1,-2的中位数是46、甲、乙、丙三种糖果每千克售价分别是6元、7元、8元,如果把甲种8千克、乙种10千克和丙种3千克混合在一起,那么每千克售价应定为多少元?().A.6.7元B.6.8元C.7.5元D.8.6元7、一位同学使用计算器求30个数据的平均数时,将其中一个数据108错误地输成18,那么由此求出的平均数与实际平均数的差是()A.3.5 B.3 C.0.5 D.﹣38、假如数据、、的平均数是3,那么数据、、的平均数是 ( )A.2 B.3 C.4 D.69、已知一组数据从小到大依次为-1,0,4,x,6,15,中位数为5,那么其众数为 ( ) A.4 B.5 C.5.5 D.610、如果将一组数据中的每一个数都减去40后,得到新的一组数据的平均数是2,那么原来那组数据的平均数是()A.40 B.42 C.38 D.2二、填空题11、在大华中学七年级(1)班随机抽取 7 名女同学,称得她们的体重(单位:kg)分别是:53、40、42、42、35、36、45 。

人教版八年级下册数学《数据的分析》单元测试卷(含答案)

人教版八年级下册数学《数据的分析》单元测试卷(含答案)

人教版八年级下册数学《数据的分析》单元测试卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15~20次之间的频率是( ) A .0.1B .0.17C .0.33D .0.42.在一组数据中加入它的中位数,则新数据组中( )A .中位数不变B .平均数不变C .众数不变D .以上说法均有错误3.某男子排球队20名队员的身高如下表:身高(cm ) 180 186 188 192 208 人数(个)46532则此男子排球队20名队员的身高的众数和中位数分别是( ) A .186cm ,186cmB .186cm ,187cm C .208cm ,188cmD .188cm ,187cm4.一位数学教师在录入班级50 名同学的数学成绩时,有一名同学的成绩录入错了,则该组数据一定会发生改变的是( ) A .中位数 B .众数 C .平均数 D .中位数、众数、平均数都一定发生改变5.某商场用加权平均数来确定什锦糖的单价,由单价为15元/千克的甲种糖果人12 10 50 15 20 25 30 35 次10千克,单价为12元/千克的乙种糖果20千克,单价为10元/千克的丙种糖果30千克混合成的什锦糖果的单价应定为( )A .11元/千克B .11.5元/千克C .12元/千克D .12.5元/千克6.10名同学分成甲、乙两队进行篮球比赛,它们的身高(单位:cm )如下表所示:设两队队员身高的平均数依次为甲x ,乙x ,身高的方差依次为2甲S ,2乙S ,则下列关系中完全正 确的是( )A .甲x =乙x ,2甲S >2乙SB .甲x =乙x ,2甲S <2乙SC .甲x >乙x ,2甲S >2乙SD .甲x <乙x ,2甲S >2乙S7.为了从甲、乙、丙、丁四位同学中选派两位选手参加数学竞赛,老师对他们的五次数学测验成绩进行统计,得出他们的平均分均为85分,且、、、. 根据统计结果,派去参加竞赛的两位同学是( )A .甲、乙B .甲、丙C .甲、丁D .乙、丙8.5个整数从小到大排列,中位数是4,平均数是6,且有唯一的众数3,则这样的5个整数( )A.不存在B.有且只有一组C.不止一组,但有有限组D.有无限组9.如果一组数据中有惟一的一个众数,在该组数据中加入它的众数,则新数据组中( )1002=甲s 1102=乙s 1202=丙s 902=丁sA .中位数不变B .平均数不变C .众数不变D .以上说法都有错误10.下列说法有错误的是( )A .一组数据总有众数B .众数是出现频数最多的数据值C .当有多个数据出现的频数并列最多时,则这多个数据都是众数D .众数不一定是整数二 、填空题(本大题共5小题,每小题3分,共15分)11.一组数据从小到大排列为1,2,4,x ,6,9,这组数据的中位数为5,那么这组数据的众数为12.说一说你对下列问题的看法:鞋厂为开发新产品,抽样调查了100名16至18岁女学生穿鞋的尺码,厂方对于调查所得的平均数、中位数和众数中最关注的是13.如果a ,b ,c 的平均数为2,则5a +,2b -,3c +的平均数是14.已知数据1x ,2x ,3x 的平均数是m ,那么数据137x +,237x +,337x +的平均数是15.计算:若10个数据平均数是3,标准差是2,则方差是 ,这10个数据的平方和是 .三 、解答题(本大题共7小题,共55分)16.一组数据3,3,5,x 的中位数与平均数相等,则x 的值为多少?17.某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:请你根据上述内容,解答下列问题:(1)该公司“高级技工”有名;(2)所有员工月工资的平均数为2 500元,中位数为元,众数为元;(3)小张到这家公司应聘普通工作人员,请你回答图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y(结果保留整数),并判断y能否反映该公司员工的月工资实际水平.18.分别求出下列两组数据的平均数、中位数和众数:(1)2,4,4,5,3,9,4,5,1,8;(2)54,5,4,6,4,6,6,5,4,56.19.当五个整数从小到大排列后,其中位数为4,如果这组数据的惟一众数是6,那么这5个整数可能的最大的和是多少?20.某学校规定,初二学年的单科平均成绩的计算方法如下:初二上学期期中考试成绩占10%,期末考试成绩占30%;下学期期中成绩占20%,期末考试成绩占40%;如果某个学生初二四次数学考试成绩如下:初二上学期期中数学成绩:108;初二上学期期末数学成绩:104;初二下学期期中数学成绩:110;初二下学期期末数学成绩:115;求这个学生初二学年的数学平均成绩.(每次考试数学总分120分)21.一组数据5,7,7,x的中位数与平均数相等,则x的值为多少?22.甲、乙、丙、丁四支足球队在世界杯预选赛中进球数分别是9,9,x,7,若这组数据的众数与平均数相等,则这组数据的中位数为多少?人教版八年级下册数学《数据的分析》单元测试卷答案解析一 、选择题 1.2.A3.B4.C5.B6.B7.C8.C ;根据题意,前三数必是3,3,4,后两数之和为20,且第四个数大于4,因此可以得到以下五组整数满足条件:3,3,4,5,15;3,3,4,6,14;3,3,4,7,13;3,3,4,8,12;,3,4,9,11.故选C.9.C 10.A二 、填空题11.6 12.众数13.5;5a +,2b -,3c +的平均数是:(5)(2)(3)623533a b c a b c ++-+++++==+=14.37m +;123123[(37)(37)(37)]337373x x x x x x m +++++++÷=⨯+=+15.4,130;方差=(标准差)2,∴方差=224=又方差22222121[()]n S x x x nx n=+++-222221210(49)130n x x x nS nx +++=+=⨯+=三 、解答题16.⑴x ,3,3,5,所以中位数为3,那么有:33534x +++=,得1x =,符合排序;⑵3,3,x ,5,若3x ≠,那么333524x x ++++=,得5x =,符合排序;若3x =,显然不符合题意;⑶3,3,5,x ,中位数为4,所以5x =,符合排序;总上所述x 为5或1. 【解析】注意分类讨论,按从小到大排列可分成几种情况.17.⑴16;⑵1700,1600;⑶这个经理的介绍不能反映该公司员工的月工资实际水平,用1700或1600元来介绍更合理些; ⑷2500502100084003171346y ⨯--⨯=≈(元),y 能反映员工的月工资实际水平.18.⑴众数、中位数与平均数分别为4,4,4.5.⑵将数据重新排列:4,4,4,5,5,6,6,6,54,56,容易得到平均数是15,中位数是5.5,众数有两个:4和6.19.21;把这组数据由小到大排列,根据中位数是4,则第三个是4,6是惟一的众数,则第4个和第5个都是6,而且前两个小于4,并且不相等,最大是第一个2,第二个是3,和的最大值为:2346621++++=.20.这是因为这四个成绩在总成绩所占的比重不一样,即每个成绩都有自己的权,应该利用加权平均数.该生平均成绩为:10810%10430%11020%11540%110x =⨯+⨯+⨯+⨯=21.①x ,5,7,7,所以中位数为6,那么有:57764x +++=,得5x =,符合排序;②5,x ,7,7,若7x ≠,那么757724x x ++++=,得5x =,符合排序;若7x =,显然不符合题意;③5,7,7,x ,中位数为7,所以9x =,符合排序;总上所述x 为5或9. 【解析】注意分类讨论,按从小到大排列可分成几种情况.22.9.若7x=;x≠,那么众数就为9,则易得11若7x=,平均数为8 ,显然不成立.所以这组数为:7,9,9,11,中位数为:(99)29+÷=;。

人教版八年级数学下册单元复习:第20章 数据的分析单元综合检测+答案

人教版八年级数学下册单元复习:第20章 数据的分析单元综合检测+答案

第20章数据的分析单元综合检测(五)一、选择题(每小题4分,共28分)1.(岳阳中考)某组7名同学在一学期里阅读课外书籍的册数分别是:14,12,13,12,17,18,16.则这组数据的众数和中位数分别是( )A.12,13B.12,14C.13,14D.13,162.(天水中考)一组数据:3,2,1,2,2的众数、中位数、方差分别是( )A.2,1,0.4B.2,2,0.4C.3,1,2D.2,1,0.23.四个数据:8,10,x,10的平均数与中位数相等,则x等于( )A.8B.10C.12D.8或124.某次射击训练中,一小组的成绩如下表所示:环数7 8 9人数 2 3已知该小组的平均成绩为8.1环,那么成绩为8环的人数是( )A.5人B.6人C.4人D.7人5.(雅安中考)一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数、中位数分别为( )A.3.5,3B.3,4C.3,3.5D.4,36.八年级一、二班的同学在一次数学测验中的成绩统计情况如下表:班级参加人数中位数平均数方差一50 84 80 186二50 85 80 161某同学分析后得到如下结论:①一、二班学生的平均成绩相同;②二班优生人数多于一班(优生线85分);③一班学生的成绩相对稳定.其中正确的是( )A.①②B.①③C.①②③D.②③7.某校A,B两队10名参加篮球比赛的队员的身高(单位:cm)如下表所示:队员1号2号3号4号5号A队176 175 174 171 174B队170 173 171 174 182设两队队员身高的平均数分别为,,身高的方差分别为,,则正确的选项是( ) A.=,> B.<,<C.>,>D.=,<二、填空题(每小题5分,共25分)8.(重庆中考)某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如表:时间(单位:h) 4 3 2 1 0人数 2 4 2 1 1则这10名学生周末利用网络进行学习的平均时间是h.9.(营口中考)甲、乙、丙三人进行射击测试,每人10次射击成绩的平均数均是9.1环,方差分别为=0.56,=0.45,=0.61,则三人中射击成绩最稳定的是.10.某学生数学的平时成绩、期中考试成绩、期末考试成绩分别是:84分、80分、90分.如果按平时成绩∶期中考试成绩∶期末考试成绩=3∶3∶4进行总评,那么他本学期数学总评分应为分.11.某班同学进行知识竞赛,将所得成绩进行整理后,如图,竞赛成绩的平均数为分.12.某农科所在8个试验点对甲,乙两种玉米进行对比试验,这两种玉米在各个试点的亩产量如下:(单位:kg)甲:450 460 450 430 450 460 440 460乙:440 470 460 440 430 450 470 440在这些试验点中, 种玉米的产量比较稳定(填“甲”或“乙”).三、解答题(共47分)13.(11分)某市2018年的一次中学生运动会上,参加男子跳高比赛的有17名运动员,通讯员在将成绩表送组委会时不慎用墨水将成绩表污染掉一部分(如下表),但他记得这组运动员的成绩的众数是 1.75m,表中每个成绩都至少有一名运动员.根据这些信息,计算这17名运动员的平均跳高成绩(精确到0.01m).14.(11分)(扬州中考)为了声援扬州“世纪申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分均为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包括9分)为优秀,这次竞赛中,甲、乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:组别平均分中位数方差合格率优秀率甲组 6.7 3.41 90% 20%乙组7.5 1.69 80% 10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是组的学生.(填“甲”或“乙”)(3)甲组同学说他们的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩更好于甲组.请你给出两条支持乙组同学观点的理由.15.(12分)(威海中考)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分满分均为100分.前六名选手的得分如下:序号1 2 3 4 5 6项目笔试成绩(分) 85 92 84 90 84 80面试成绩(分) 90 88 86 90 80 85根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100分).(1)这6名选手笔试成绩的中位数是分,众数是分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余5名选手的综合成绩,并以综合成绩排序确定前两名人选.16.(13分)(黄冈中考)为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中的100户家庭一年的月平均用水量(单位:t),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整.(2)求这100个样本数据的平均数、众数和中位数.(3)根据样本数据,估计黄冈市市直机关500户家庭中月平均用水量不超过12t的约有多少户?答案解析1.【解析】选B.在这组数据中,12出现了2次,出现的次数最多,因此,这组数据的众数是12,把这组数据从小到大排列为:12,12,13,14,16,17,18,最中间的数是14,因此这组数据的中位数是14.2.【解析】选B.从大到小排列此数据为:3,2,2,2,1;数据2出现了三次,次数最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为[(3-2)2+3×(2-2)2+(1-2)2]=0.4,即中位数是2,众数是2,方差为0.4.3.【解析】选D.①x最小时,数据为x,8,10,10,中位数是(8+10)÷2=9,则(8+10+x+10)÷4=9,所以x=8;②x最大时,数据为8,10,10,x,中位数是(10+10)÷2=10,则(8+10+x+10)÷4=10,所以x=12;③当8≤x≤10时,中位数是(x+10)÷2,则(x+10)÷2=(8+10+x+10)÷4,可求得x=8.故选D.4.【解析】选A.设成绩为8环的人数是x人,由题意得(7×2+8x+9×3)÷(2+x+3)=8.1,解得x=5.5.【解析】选A.∵一组数据2,4,x,2,4,7的众数是2,∴x=2,∴中位数为3,==3.5.6.【解析】选A.由平均数都是80知①正确;由二班的中位数大于一班的中位数知②正确;一班的方差大,其成绩相对不稳定,故③不正确.7.【解析】选D.∵=(176+175+174+171+174)=174(cm),=(170+173+171+174+182)=174(cm).=[(176-174)2+(175-174)2+(171-174)2+(174-174)2+(174-174)2]=2.8(cm2);=[(170-174)2+(173-174)2+(174-174)2+(171-174)2+(182-174)2]=18(cm2),∴=,<.8.【解析】由题意,可得这10名学生周末利用网络进行学习的平均时间是:(4×2+3×4+2×2+1×1+0×1)=2.5(h).答案:2.59.【解析】∵=0.56,=0.45,=0.61,∴<<,∴三人中射击成绩最稳定的是乙.答案:乙10.【解析】本学期数学总评分=84×30%+80×30%+90×40%=85.2(分).答案:85.211.【解析】==74(分).答案:7412.【解析】两种玉米的平均数都是450 kg,而=100,=200,所以甲种玉米的产量比较稳定.答案:甲13.【解析】设成绩是1.75m的有x人,1.80m的有y人,由题意得x+y=5,又x>3,y≠0,所以x=4,y=1.=≈1.69(m).答:这17名运动员的平均跳高成绩约是1.69m.14.【解析】(1)从条形统计图上看,甲组的成绩分别为3,6,6,6,6,6,7,8,9,10,因此甲组中位数为6,乙组成绩分别为5,5,6,7,7,8,8,8,8,9,平均分为×(5×2+6+7×2+8×4+9)=7.1(分),故填表如下:组别平均分中位数方差合格率优秀率甲组 6.7 6 3.41 90% 20%乙组7.1 7.5 1.69 80% 10%(2)观察上表可知,甲组的中位数是6,乙组的中位数是7.5,小明是7分,超过甲组的中位数,低于乙组的中位数,所以小明应该是甲组的学生.答案:甲(3)从统计图和表格中可以看出:乙组的平均分、中位数都高于甲组,方差小于甲组,且集中在中上游,所以支持乙组同学的观点,即乙组成绩好于甲组.15.【解析】(1)先将六位选手的笔试成绩按照大小顺序进行排序,位于第三位和第四位选手的平均分为中位数,笔试成绩出现次数最多的为众数.答案:84.5 84(2)设笔试成绩和面试成绩所占的百分比分别为x,y,由题意得解这个方程组得∴笔试成绩和面试成绩所占的百分比分别为40%和60%.(3)2号选手的综合成绩=92×0.4+88×0.6=89.6(分),3号选手的综合成绩=84×0.4+86×0.6=85.2(分),4号选手的综合成绩=90×0.4+90×0.6=90(分),5号选手的综合成绩=84×0.4+80×0.6=81.6(分),6号选手的综合成绩=80×0.4+85×0.6=83(分),∴综合成绩最高的两名选手是4号和2号.16.【解析】(1)100户家庭中月平均用水量为11t的家庭数量为:100-(20+10+20+10)=40(户).条形图补充完整如下:(2)平均数:==11.6.中位数:11.众数:11.(3)×500=350(户).答:估计不超过12t的用户约有350户.。

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)一、单选题1.如图是嘉淇同学完成的作业,则他做错的题数是()A.0个B.1个C.2个D.3个2.在某校初三年级古诗词比赛中,初三(1)班42名学生的成绩统计如下:分数50 60 70 80 90 100人数 1 2 8 13 14 4 则该班学生成绩的中位数和众数分别是()A.70,80 B.70,90 C.80,90 D.80,1003.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为S甲2=0.51,S乙2=0.62,S丙2=0.48,S丁2=0.45,则四人中成绩最稳定的是( )A.甲B.乙C.丙D.丁4.为了解学校九年级学生某次知识问卷的得分情况,小红随机调查了50名九年级同学,结果如表:知识问卷得分(单位:分)65 70 75 80 85人数 1 15 15 16 3则这50名同学问卷得分的众数和中位数分别是()A.75,75 B.75,80 C.80,75 D.80,855.某校规定学生的学期数学成绩由研究性学习成绩与期末卷面成绩共同确定,其中研究性学习成绩占40%,期末卷面成绩占60%,小明研究性学习成绩为80分,期末卷面成绩为90分,则小明的学期数学成绩是()A.80分B.82分C.84分D.86分6.某课外小组的同学们在社会实践活动中调查了20户家庭莱月的用电量,如表所示则这20户家庭该月用电量的众数和中位数、平均数分别是()A.180,160,164 B.160,180;164 C.160,160,164 D.180,180,164 7.为参加电脑汉字输入比赛,甲和乙两位同学进行了6次测试,成绩如下表:甲和乙两位同学6次测试成绩(每分钟输入汉字个数)及部分统计数据表第1次第2次第3次第4次第5次第6次平均数方差甲134 137 136 136 137 136 136 1.0乙135 136 136 137 136 136 136有四位同学在进一步算得乙测试成绩的方差后分别作出了以下判断,其中说法正确的是()A.甲的方差小于乙的方差,所以甲的成绩比较稳定;B.乙的方差小于甲的方差,所以乙的成绩比较稳定;C.甲的方差大于乙的方差,所以甲的成绩比较稳定;D.乙的方差大于甲的方差,所以乙的成绩比较稳定;8.已知一组数据:46,44,x,50,48,42的众数是46,则这组数据的平均数和中位数分别()A.44,43 B.43,45C.46,46 D.45,449.某校八年级共有四个班,在一次英语测试中四个班的平均分与各班参加考试的人数如表:班级一班二班三班四班参加人数51 49 50 60班平均分/分83 89 82 79.5则该校八年级参加这次英语测试的所有学生的平均分约为(精确到0.1)()A.83.1分B.83.2分C.83.4分D.83.5分10.某班50名学生的一次安全知识竞赛成绩分布如表所示(满分10分)这次安全知识竞赛成绩的众数是( ) A .5分B .6分C .9分D .10分11.下列说法正确的是( )A .中位数就是一组数据中最中间的一个数B .8,9,9,10,10,11这组数据的众数是9C .如果x 1,x 2,x 3,…,x n 的平均数是x ,那么()()()12n x x x x x x 0-+-+⋅⋅⋅+-=D .一组数据的方差是这组数据的极差的平方12.九年级(1)班15名男同学进行引体向上测试,每人只测一次,测试结果统计如下:这15名男同学引体向上数的中位数是( ) A .2 B .3C .4D .5二、填空题13.已知1x ,2x ,3x ,...,20x 的平均数是5,方差是2,则132x +,232x +,332x +, (2032)x +的平均数是_____,方差是____.14.五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是______. 15.某公司销售部有五名销售员,2007年平均每人每月的销售额分别是6,8,11,9,8(万元),现公司需增加一名销售员,三人应聘试用三个月,平均每人每月的销售额分别为:甲是上述数据的平均数,乙是中位数,丙是众数,最后录用三人中平均月销售额最高的人是___. 16.某校合唱团成员的年龄分布如下表:对于不同的x,则表中数据的中位数是______.17.一组数据-4,-2,0,2,4的方差是.18.甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲5kg种,乙种10kg,丙种10kg混在一起,则售价应定为每千克__________.19.某中学八年级开展“光盘行动”宣传活动,6个班级参加该活动的人数统计结果为:52,60,62,54,58,62,对于这组统计数据的众数是_____.20.如图,是某班50名同学的视力频数分布直方图,则这个班同学的视力众数为_______.三、解答题21.初二(1)班对数学期末总评成绩规定如下:总评成绩由考试成绩和平时成绩(满分120分)两部分组成,其中考试成绩占80%,平时成绩占20%,且总评成绩大于或等于100分时,该生综合评定为A等.(1)小敏的考试成绩为90分,它的综合评定有可能达到A等吗?为什么?(2)小浩的平时成绩为120分,综合评定若要达到A等,他的考试成绩至少要多少分?22.在学校组织的科学常识竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为90分,80分,70分,60分,学校将八年级一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在70分以上(包括70分)的人数为;(2)请你将表格补充完整:平均数(分)中位数(分)众数(分)一班77.6 80二班90(3)请从不同角度对这次竞赛成绩的结果进行分析.(至少两个角度)23.甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.分数7分8分9分10分人数11 0 8(1)请将甲校成绩统计表和图2的统计图补充完整;(2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.24.为了参加“中小学生诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(1)班:85,86,82,91,86,八(2)班:80,85,85,92,88,通过数据分析,列表如下:(1)直接写出表中a,b,c,d的值;(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?请说明理由.25.某校举办的八年级学生数学素养大赛共设3个项目:七巧板拼图,趣题巧解,数学应用,每个项目得分都按一定百分比折算后计入总分,总分高的获胜,下表为小米和小麦两位同学的得分情况(单位:分):七巧板拼图趣题巧解数学应用小米809088小麦908685()1若七巧板拼图,趣题巧解,数学应用三项得分分别40%,20%,40%按折算计入总分,最终谁能获胜?()2若七巧板拼图按20%折算,小麦(填“可能”或“不可能”)获胜.26.城南中学九年级共有12个班,每班48名学生,学校要对该年级学生数学学科学业水平测试成绩进行抽样分析,请按要求回答下列问题:收集数据(1)若要从全年级学生中抽取一个48人的样本,你认为以下抽样方法中比较合理的有.①随机抽取一个班级的48名学生;②在全年级学生中随机抽取48名学生;③在全年级12个班中分别各随机抽取4名学生.整理数据(2)将抽取的48名学生的成绩进行分组,绘制出的频数分布表和成绩分布扇形统计图如下.请根据图表中数据填空:①C类和D类部分的圆心角度数分别为;;②估计全年级A、B类学生大约一共有名.成绩(单位:分)频数频率分析数据(3)教育主管部门为了解学校教学情况,将同层次的城南、城北两所中学的抽样数据进行对比,得下表:你认为哪所学校的教学效果较好?结合数据,请提出一个解释来支持你的观点.27.某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.温馨提示:确定一个适当的月销售目标是一个关键问题;如果目标定得太高,多数营业员完不成任务,会使营业员失去信心;如果目标定得太低,不能发挥营业员的潜力.28.下面的表格是李刚同学一学期数学成绩的记录,根据表格提供的信息回答下面的问题考试类别平时期中考试期末考试第一单元第二单元第三单元第四单元成绩88 86 90 92 90 96(1)李刚同学6次成绩的极差是.(2)李刚同学6次成绩的中位数是.(3)李刚同学平时成绩的平均数是.(4)如果用下图的权重给李刚打分,他应该得多少分?(满分100分,写出解题过程)29.某企业生产部统计了15名工人某月加工的零件数:(1)写出这15人该月加工的零件数的平均数、中位数和众数;(2)若生产部领导把每位工人的月加工零件数定为260件,你认为是否合理,为什么?参考答案1.C2.C3.D4.C5.D6.A7.B8.C9.B11.C12.C13.17 1814.18915.甲16.1417.818.7.2元.19.6220.4.421.(1)设小敏的平时成绩为x分,根据题意得:90×80%+20%x≥100,解得:x≥140,∵满分是120分,∴小敏的综合评定不可能达到A等;(2)设小浩的考试成绩为x,根据题意得:80%x+20%×120≥100,解得:x≥95,∴他的考试成绩至少要95分.22.(1)一班参赛人数为:6+12+2+5=25(人),∵两班参赛人数相同,∴二班成绩在70分以上(包括70分)的人数为25×84%=21人;(2)二班成绩的平均数:90×44%+80×4%+70×36%+60×16%=77.6(分);二班成绩的中位数:70(分);一班成绩的众数:80(分).填表如下:平均数(分)中位数(分)众数(分)一班77.68080二班77.6 70 90(3)①平均数相同的情况下,二班的成绩更好一些.②请一班的同学加强基础知识训练,争取更好的成绩.23.(1)根据已知10分的有5人,所占扇形圆心角为90°,可以求出总人数为:5÷90360=20(人),即可得出8分的人数为:20-8-4-5=3(人),画出图形如图:甲校9分的人数是:20-11-8=1(人),(2)甲校的平均分为=120(7×11+8×0+9×1+10×8)=8.3分,分数从低到高,第10人与第11人的成绩都是7分,∴中位数=12(7+7)=7(分);平均分相同,乙的中位数较大,因而乙校的成绩较好.24.(1)86,86,85,8.4;(2)八(1)班前5名同学成绩较好25.(1)小麦获胜;(2)不可能26.(1)②、③;(2)432;(3)本题答案不唯一27.(1)平均数为278,中位数为180,众数为90;(2)中位数最适合作为月销售目标,理由见解析.28.(1)10分;(2)90分;(3)89分;(4)93.5分29.(1)平均数为260(件);中位数为240件;众数为240件;(2)不合理。

人教版八年级数学下册第二十章《数据的分析》单元测试卷附答案

人教版八年级数学下册第二十章《数据的分析》单元测试卷附答案

第二十章《数据的分析》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.一组数据2,3,5,7,8的平均数是()A.2B.3C.4D.52.已知n个数据的和为108,平均数为12,则n为()A.7B.8C.9D.103.(跨学科融合)“青年大学习”是共青团中央为组织引导广大青少年,深入学习贯彻习近平新时代中国特色社会主义思想的青年学习行动.某校为了解同学们某季度学习“青年大学习”的情况,从中随机抽取5位同学,经统计他们的学习时间(单位:分钟)分别为78,80,85,90,80,则这组数据的众数为()A.78B.80C.85D.904.在以下一列数3,3,5,6,7,8中,中位数是()A.3B.5C.5.5D.65.现有相同个数的甲、乙两组数据,经计算得x甲=x乙,且s甲2=0.35,s乙2=0.25,比较这两组数据的稳定性,下列说法正确的是()A.甲比较稳定B.乙比较稳定C.甲、乙一样稳定D.无法确定6.八年级某同学6次数学小测验的成绩分别为80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分7.(跨学科融合)奥林匹克官方旗舰店统计了某一段时间内各款“冰墩墩”销售情况(如下表),厂家决定多生产20 cm高的“冰墩墩”,则依据的统计量是()A.平均数8.对于一组统计数据3,3,6,5,3,下列说法错误的是()A.众数是3B.平均数是4C.方差是1.6D.中位数是69.学校食堂午餐供应6元、8元和10元三种价格的盒饭,如图是食堂某月销售三种午餐盒饭数量的统计图,则该月食堂销售午餐盒饭的平均价格为()A.7.9元B.8元C.8.9元D.9.2元10.某市举行了一次数学竞赛,分段统计参赛同学的成绩,从中抽查了50名学生的成绩如下表:A.81分B.82分C.79分D.75.5分二、填空题(共5小题,每小题3分,共15分)11.冬天某地区一周最高气温的走势图如图所示,则这组数据的众数是℃.12.某班50人一次测验成绩(10分制)如下:10分4人,9分7人,8分14人,7分18人,6分5人,5分2人,则本次测验的中位数是分.13.学校组织“我的青春我做主”演讲比赛,小红演讲内容得100分,语言表达得80分,若按演讲内容占40%,语言表达占60%的比例计算总成绩,则她的总成绩是分.14.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的(从“平均数、中位数、众数、方差”中选择答案).15.(创新题)某学校随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图(如图),其中条形图被墨迹遮盖了一部分,则被调查的学生读课外书册数的中位数为.三、解答题(一)(共3小题,每小题8分,共24分)16.某饮料店为了解某一种罐装饮料上半年的销售情况,随机调查了6天该种饮料的日销售量,结果如下(单位:听):33,32,28,32,24,31.求这6天的日销售量的众数和平均数.17.在一次大学生一年级新生训练射击比赛中,某小组10人的成绩如下表:(1)该小组射击数据的众数是,中位数是;(2)该小组的平均成绩为多少?18.在校体育集训队中,跳高运动员小军和小明的9次成绩如下(单位:m):小军:1.41,1.42,1.42,1.43,1.43,1.43,1.44,1.44,1.45;。

人教版八年级数学下册第20章《数据的分析》单元测试题(含答案)

人教版八年级数学下册第20章《数据的分析》单元测试题(含答案)

第二十章《数据的分析》单元测试题(检测时间:120分钟满分:120分)班级:________ 姓名:_________ 得分:_______一、选择题(3分×10分=30分)1.为了了解参加某运动会的200名运动员的年龄情况,从中抽查了20名运动员的年龄,就这个问题来说,下面说法正确的是()A.200名运动员是总体 B.每个运动员是总体C.20名运动员是所抽取的一个样本 D.样本容量是202.一城市准备选购一千株高度大约为2m的某种风景树来进行街道绿化,•有四个苗圃生产基地投标(单株树的价格都一样).•采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下:树苗平均高度(单位:m)标准差甲苗圃 1.8 0.2 乙苗圃 1.8 0.6 丙苗圃 2.0 0.6 丁苗圃2.0 0.2请你帮采购小组出谋划策,应选购()A.甲苗圃的树苗 B.乙苗圃的树苗; C.丙苗圃的树苗 D.丁苗圃的树苗3.将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,•则原来那组数据的平均数是()A.50 B.52 C.48 D.24.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为()A.8,9 B.8,8 C.8.5,8 D.8.5,95.为鼓励市民珍惜每一滴水,某居委会表扬了100个节约用水模范户,8月份节约用水的情况如下表:每户节水量(单位:吨) 1 1.2 1.5 节水户数 52 30 18 那么,8月份这100户平均节约用水的吨数为(精确到0.01t)()A.1.5t B.1.20t C.1.05t D.1t6.已知一组数据-2,-2,3,-2,-x,-1的平均数是-0.5,•那么这组数据的众数与中位数分别是()A.-2和3 B.-2和0.5 C.-2和-1 D.-2和-1.57.方差为2的是()A.1,2,3,4,5 B.0,1,2,3,5C.2,2,2,2,2 D.2,2,2,3,38.甲、乙两班举行电脑汉字输入速度比赛,•参赛学生每分钟输入汉字的个数经统计计算后结果如下表:班级参加人数中位数方差平均数甲 55 149 191 135 乙 55 151 110 135 某同学根据上表分析得出如下结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀)(3)甲班成绩的波动情况比乙班成绩的波动小上述结论中正确的是()A.(1)(2)(3) B.(1)(2) C.(1)(3) D.(2)(3)9.某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%•、•30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、•丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是()纸笔测试实践能力成长记录甲 90 83 95 乙 98 90 95 丙 80 88 90A.甲 B.乙丙 C.甲乙 D.甲丙10.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有()A.1个 B.2个 C.3个 D.4个二、填空题(3分×10=30分)11.(2005,深圳)下图是根据某地近两年6•月上旬日平均气温情况绘制的折线统计图,通过观察图形,可以判断这两年6月上旬气温比较稳定的年份是_____年.12.某日天气预报说今天最高气温为8℃,气温的极差为10℃,则该日最低气温为_________.13.在演唱比赛中,8位评委给一名歌手的演唱打分如下:9.3,9.5,9.9,9.4,9.3,8.9,9.2,9.6,若去掉一个最高分和一个最低分后的平均分为得分,则这名歌手最后得分约为________.14.一个样本,各个数据的和为515,如果这个样本的平均数为5,那么这个样本的容量是_________.15.为了估计湖里有多少鱼,我们从湖里捕上150条鱼作上标记,然后放回湖里去,经过一段时间再捕上300条鱼,其中带标记的鱼有30条,•则估计湖里约有鱼_______条.16.一名学生军训时连续射靶10次,命中的环数分别为4,7,8,6,8,5,9,10,7.•则这名学生射击环数的方差是_________.17.某人开车旅行100km,在前60km内,时速为90km,在后40km内,时速为120km,则此人的平均速度为_________.18.小明家去年的旅游、教育、饮食支出分别出3600元,1200元,7200元,今年这三项支出依次比去年增长10%,20%,30%,则小时家今年的总支出比去年增长的百分数是_________.19.将5个整数从大到小排列,中位数是4;如果这个样本中的惟一众数是6,•则这5个整数可能的最大的和是_____.20.某公司欲招聘工人,对候选人进行三项测试:语言、创新、综合知识,并按测试得分1:4:3的比例确定测试总分,已知三项得分分别为88,72,50,•则这位候选人的招聘得分为________.三、解答题(60分)21.(6分)某校规定学生期末数学总评成绩由三部分构成:卷面成绩、•课外论文成绩、平日表现成绩(三部分所占比例如图),若方方的三部分得分依次是92、80、•84,则她这学期期末数学总评成绩是多少?22.(8分)为了了解某小区居民的用水情况,随机抽查了该小区10•户家庭的月用水量,结果如下:月用水量(吨) 10 13 14 17 18 户数 2 2 3 2 1 (1)计算这10户家庭的平均月用水量;(2)如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水多少吨?23.(8分)下表是某校八年级(1)班20名学生某次数学测验的成绩统计表成绩(分) 60 70 80 90 100 人数(人) 1 5 x y 2 (1)若这20名学生成绩的平均分数为82分,求x和y的值;(2)在(1)的条件下,设这20名学生本次测验成绩的众数为a,中位数为b,求a,b的值.24.(8分)某乡镇企业生产部有技术工人15人,•生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:每人加工件数 540 450 300 240 210 120 人数 1 1 2 6 3 2 (1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),•你认为这个定额是否合理,为什么?25.(8分)题中给出的条形图是截止到2002年44位费尔兹奖得主获奖时的年龄统计图.经计算费尔兹奖得主获奖时的平均年龄是35岁.根据条形图回答问题:(1)费尔兹奖得主获奖时的年龄超过中位数的有多少人?(2)费尔兹奖得主获奖时年龄的众数是多少?(3)•费尔兹奖得主获奖时的年龄高于平均年龄的人数占获奖人数的百分比是多少?26.(10分)某学校对初中毕业班经过初步比较后,决定从九年级(1)、(4)、(8)•班这三个班中推荐一个班为市级先进班集体的候选班,•现对这三个班进行综合素质考评,下表是它们五项素质考评的得分表:(以分为单位,每项满分为10分)班级行为规范学习成绩校运动会艺术获奖劳动卫生九年级(1)班 10 10 6 10 7 九年级(4)班 10 8 8 9 8 九年级(8)班 9 10 9 6 9 (1)请问各班五项考评分的平均数、•中位数和众数中哪个统计量不能反映三个班的考评结果的差异?并从中选择一个能反映差异的统计量将他们的得分进行排序.(2)根据你对表中五个项目的重要程度的认识,•设定一个各项考评内容的占分比例(比例的各项须满足:①均为整数;②总和为10;③不全相同),•按这个比例对各班的得分重新计算,比较出大小关系,并从中推荐一个得分最高的班作为市级先进班集体的候选班.27.(12分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,•下图是其中的甲、乙两段台阶的示意图.请你用所学过的有关统计的知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.(图中的数字表示每一级台阶的高度(•单位:cm).并且数据15,16,16,14,14,15的方差S甲2=,数据11,15,18,17,10,19的方差S乙2=).答案:1.D 2.D 3.B 4.B 5.A 6.D 7.A 8.B 9.C 10.A11.2005 12.-2 ℃ 13.9.4分 14.103 15.1500 16.3 17.100km/h18.27.3% 19.21 20.65.•75分21.解:=88.8(分)22.(1)=14(吨);(2)7000吨.23.(1)x=5,y=7;(2)a=90,b=80.24.(1)平均数:260(件)中位数:240(件)众数:240(件);(2)不合理,•因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,•尽管260是平均数,但不利于调动多数员工的积极性,因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.25.解:(1)中位数为35.5岁,•年龄超过中位数的有22人.(2)众数是38岁.(3)高于平均年龄的人数为22人,22÷44=50%.26.(1)平均数不能反映三个班的考评结果的差异,用中位数或众数可以反映.(2)行为规范:学习成绩:校运动会:艺术获奖:劳动卫生=3:3:2:1:1.1=1.78,4=•1.74,8=1.8 ∴8>1>4,所以推荐九年级(8)班作为市场先进班集体的候选班级合适.27.(1)相同点:两段台阶路台阶高度的平均数相同.不同点:•两段台阶路台阶高度的中位数、方差和极差均不相同.(2)甲段路走起来更舒服一些,因为它的台阶高度的方差小.(3)每个台阶高度均为15cm(原平均数)使得方差为0.。

人教版初中数学八年级数学下册第五单元《数据的分析》测试(含答案解析)(1)

人教版初中数学八年级数学下册第五单元《数据的分析》测试(含答案解析)(1)

一、选择题1.某市连续10天的最低气温统计如下(单位:℃):4,5,4,7,7,8,7,6,5,7,该市这10天的最低气温的中位数是( ) A .6℃B .6.5℃C .7℃D .7.5℃2.若数据 4,x ,2,8 ,的平均数是 4,则这组数据的中位数和众数是( ) A .3 和 2B .2 和 3C .2 和 2D .2 和43.某学习小组的5名同学在一次数学文化节竞赛活动中的成绩分别是:92分,96分,90分,92分,85分,则下列结论正确的是( ) A .平均数是92 B .中位数是90 C .众数是92 D .极差是7 4.一组数据,6、4、a 、3、2的平均数是5,这组数据的方差为( )A .8B .5C .6D .35.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选( ) A .丁B .丙C .乙D .甲6.方差计算公式()()()()()2222221476787117675s ⎡⎤=-+-+-+-+-⎣⎦中,数字5和7分别表示( ) A .数据个数、平均数 B .方差、偏差 C .众数、中位数D .数据个数、中位数7.通过统计甲、乙、丙、丁四名同学某学期的四次数学测试成绩,得到甲、乙、丙、丁三明同学四次数学测试成绩的方差分别为S 甲2=17,S 乙2=36,S 丙2=14,丁同学四次数学测试成绩(单位:分).如下表:则这四名同学四次数学测试成绩最稳定的是( ) A .甲B .乙C .丙D .丁8.今年上半年,我市某俱乐部举行山地越野车大赛,其中8名选手某项得分如下表:得分 82 85 88 90 人数1232则这8名选手得分的平均数是( ) A .88B .87C .86D .859.某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表: 成绩(分) 24 25 26 27 28 29 30 人数(人)6558774根据上表中的信息判断,下列结论中错误的是( ) A .该班一共有42名同学B .该班学生这次考试成绩的众数是8C .该班学生这次考试成绩的平均数是27D .该班学生这次考试成绩的中位数是27分10.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的( ) A .平均数B .方差C .众数D .中位数11.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是( ) A .中位数B .平均数C .方差D .极差12.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )A .甲队员成绩的平均数比乙队员的大B .乙队员成绩的平均数比甲队员的大C .甲队员成绩的中位数比乙队员的大D .甲队员成绩的方差比乙队员的大二、填空题13.已知一组样本数据1x ,2x ,3x ,⋅⋅⋅,n x 的平均数为2,方差为3,则数据12+5x ,22+5x ,325x +,⋅⋅⋅,2+5n x 的平均数为__________,方差为__________.14.有一组数据:1,3,5,3,若再添加一个数,所得的新一组数据与原数据的中位数,众数,平均数都没有发生变化,则添加的数为____.15.已知点(x 1,y 1),(x 2,y 2),(x 3,y 3)都在函数y=-2x +7的图象上,若数据x 1,x 2,x 3的方差为5,则另一组数据y 1,y 2,y 3的方差为_________.16.若一组数据4,,5,,7,9x y 的平均数为6,众数为5,则这组数据的方差为__________.17.已知一个样本的方差s 2=113[(x 1﹣8)2+(x 2﹣8)2+…+(x 13﹣8)2],那么这个样本的平均数是_____,样本中数据的个数是_____.18.小明五次数学测验的平均成绩是85,中位数为86,众数是89,则最低两次测验的成绩之和为________.19.在新年晚会的投飞镖游戏环节中,7名同学的投掷成绩(单位:环)分别是:7,9,9,6,9,8,8,则这组数据的方差是______________________ .20.已知5个数据的平均数是7,另外还有3个数据的平均数是k , 则这 8个数据的平均数是_______(用关于 k 的代数式表示).参考答案三、解答题21.某校举办了一次趣味数学竞赛,满分100分,学生得分均为整数,达到成绩60分及以上为合格,达到90分及以上为优秀,这次竞赛中,甲、乙两组学生成绩如下(单位:分)甲组:30,60,60,60,60,60,70,90,90,100; 乙组:50,60,60,60,70,70,70,70,80,90. (1)以上成绩统计分析表如表:则表中a = ,b = ,c = .(2)如果你是该校数学竞赛的教练员,现在需要你根据成绩的稳定性选一组同学代表学校参加复赛,你会选择哪一组?并说明理由.22.某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案:一户家庭的月均用水量不超过m (单位:t )的部分按平价收费,超出m 的部分按议价收费.为此拟召开听证会,以确定一个合理的月均用水量标准m .通过抽样,获得了前一年1000户家庭每户的月均用水量(单位:t ),将这1000个数据按照04x ≤<,48x ≤<,…,2832x ≤<分成8组,制成了如图所示的频数分布直方图.(1)写出a的值,并估计这1000户家庭月均用水量的平均数;(同一组中的数据以这组数据所在范围的组中值作代表)(2)假定该市政府希望70%的家庭的月均用水量不超过标准m,请判断若以(1)中所求得的平均数作为标准m是否合理?并说明理由.23.某初中要调查学校学生(总数 1000 人)双休日课外阅读情况,随机调查了一部分学生,调查得到的数据分别制成频数直方图(如图 1)和扇形统计图(如图 2).(1)请补全上述统计图(直接填在图中);(2)试确定这个样本的中位数和众数;(3)请估计该学校 1000 名学生双休日课外阅读时间不少于 4 小时的人数.24.某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第1次第2次第3次第4次第5次第6次甲10988109乙101081079根据表格中的数据,可计算出甲、乙两人的平均成绩都是9环.(1)分别计算甲、乙六次测试成绩的方差;(2)根据数据分析的知识,你认为选______名队员参赛.25.某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,数据如下(单位:分).甲9582888193798478乙8375808090859295(1)请你计算这两组数据的平均数、中位数.(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.26.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲a77 1.2乙7b8 4.2(1)写出表格中a,b的值;(2)从方差的角度看,若选派其中一名参赛,你认为应选哪名队员?并说明理.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由于10天天气,根据数据可以知道中位数是按从小到大排序,第5个与第6个数的平均数.【详解】解:10天的气温排序为:4,4,5,5,6,7,7,7,7,8, 中位数为:6+72=6.5, 故选B . 【点睛】本题属于基础题,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.2.A解析:A 【分析】根据平均数的计算公式先求出x 的值,再根据中位数和众数的概念进行求解即可. 【详解】∵数据2,x ,4,8的平均数是4,∴这组数的平均数为2484x +++=4,解得:x =2; 所以这组数据是:2,2,4,8,则中位数是242+=3. ∵2在这组数据中出现2次,出现的次数最多,∴众数是2. 故选A . 【点睛】本题考查了平均数、中位数和众数,平均数的计算方法是求出所有数据的和,然后除以数据的总个数;据此先求得x 的值,再将数据按从小到大排列,将中间的两个数求平均值即可得到中位数,众数是出现次数最多的数.3.C解析:C 【分析】根据平均数、中位数、众数以及极差的定义、计算公式对各选项进行判断. 【详解】解:A .这组数据的平均分15×(85+90+92+92+96)=91分,所以A 选项错误; B 、这组数据按从小到大排列为:85、90、92、92、96,所以这组数据的中位数为92(分),所以B 选项错误;C 、这组数据的众数为92(分),所以C 选项正确;D .这组数据极差是96﹣85=11,所以D 选项错误; 故选C . 【点睛】本题查平均数,中位数,众数以及极差,解题关键是正确熟练运用公式.4.A【分析】先由平均数的公式计算出a 的值,再根据方差的公式计算即可. 【详解】∵数据6、4、a 、3、2平均数为5, ∴(6+4+2+3+a )÷5=5, 解得:a=10, ∴这组数据的方差是15[(6-5)2+(4-5)2+(10-5)2+(2-5)2+(3-5)2]=8. 故选:A . 【点睛】此题考查平均数,方差,解题关键在于掌握它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5.B解析:B 【分析】先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛. 【详解】∵甲、丙的平均数比乙、丁大, ∴甲和丙成绩较好, ∵丙的方差比甲的小, ∴丙的成绩比较稳定,∴丙的成绩较好且状态稳定,应选的是丙, 故选:B . 【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.6.A解析:A 【分析】根据方差的计算公式可直接得出结果. 【详解】()()()()()2222221476787117675s ⎡⎤=-+-+-+-+-⎣⎦∴5是数据的个数,7是平均数, 故选:A本题考查方差的定义.熟记方差公式是解题的关键.7.C解析:C【分析】求得丁同学的方差后与前三个同学的方差比较,方差最小的成绩最稳定.【详解】丁同学的平均成绩为:14⨯(80+80+90+90)=85;方差为S丁214=[2×(80﹣85)2+2×(90﹣85)2]=25,所以四个人中丙的方差最小,成绩最稳定.故选C.【点睛】本题考查了方差的意义及方差的计算公式,解题的关键是牢记方差的公式,难度不大.8.B解析:B【分析】由表可知,得分82的有1人,得分85的有2人,得分88的有3人,得分90的有2人.再根据平均数概念求解;【详解】解:(82×1+85×2+88×3+90×2)÷8= 87(分),所以平均数是87分.故选:B.【点睛】本题考查加权平均数的概念和计算方法,解题关键是熟练掌握加权平均数的计算公式. 9.B解析:B【解析】【分析】根据众数,中位数,平均数的定义解答.【详解】解:该班共有6+5+5+8+7+7+4=42(人),成绩27分的有8人,人数最多,众数为27;该班学生这次考试成绩的平均数是=142(24×6+25×5+26×5+27×8+28×7+29×7+30×4)=27,该班学生这次考试成绩的中位数是第21名和第22名成绩的平均数为27分,错误的为B,故选:B.【点睛】本题考查的是众数,中位数,平均数,熟练掌握众数,中位数,平均数的定义是解题的关键.10.B解析:B【分析】平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.【详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.【点睛】考核知识点:均数、众数、中位数、方差的意义.11.A解析:A【分析】根据中位数的定义解答可得.【详解】解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最高成绩写得更高了,计算结果不受影响的是中位数,故选A.【点睛】本题主要考查方差、极差、中位数和平均数,解题的关键是掌握中位数的定义.12.D解析:D【解析】【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882=8,甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8,乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4;乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2,综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差,故选D.【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.二、填空题13.912【分析】利用平均数求法和方差的方法分别列式求得平均数和方差得出答案即可【详解】∵x1x2…xn 的平均数为2∴x1+x2+…+xn=2n ∴=2×2+5=9∵原平均数为2新数据的平均数变为9则原来解析:9 12 【分析】利用平均数求法和方差的方法分别列式求得平均数和方差得出答案即可. 【详解】∵x 1、x 2、…x n 的平均数为2, ∴x 1+x 2+…+x n =2n , ∴12252525n x x x n++++⋯++ =2×2+5=9,∵原平均数为2,新数据的平均数变为9, 则原来的方差S 12=1n[(x 1-2)2+(x 2-2)2+…+(x n -2)2]=3, 现在的方差S 22=1n[(2x 1+5-9)2+(2x 2+5-9)2+…+(2x n +5-9)2] =1n[4(x 1-2)2+4(x 2-2)2+…+4(x n -2)2]=4×3=12. 故答案为:9,12.【点睛】此题考查平均数与方差的意义,掌握平均数与方差的计算方法是解题的关键.14.3【分析】依据定义和公式分别计算新旧两组数据的平均数中位数众数求解即可【详解】原数据的1335的平均数为=3中位数为=3众数为3;添加的数为3后新数据13335的平均数为=3中位数为3众数为3;故答解析:3. 【分析】依据定义和公式分别计算新旧两组数据的平均数、中位数、众数求解即可. 【详解】原数据的1、3、3、5的平均数为13354+++ =3,中位数为332+=3,众数为3;添加的数为3后,新数据1、3、3、3、5的平均数为133355++++ =3,中位数为3,众数为3; 故答案为:3. 【点睛】此题考查众数、中位数、平均数,熟练掌握相关概念和公式是解题的关键.15.20【解析】【分析】把x1x2x3分别代入y=-2x+7得出y1y2y3设这组数据x1x2x3的平均数为由方差S2=5则另一组新数据-2x1+7-2x2+7-2x3+7的平均数为-2+7方差为S′2解析:20.【解析】【分析】把x 1、x 2、x 3分别代入y=-2x+7,得出y 1、y 2、y 3,设这组数据x 1,x 2,x 3的平均数为x ,由方差S 2=5,则另一组新数据-2x 1+7,-2x 2+7,-2x 3+7的平均数为-2x +7,方差为S′2,代入公式S 2=()()()222121n x x x x x x n ⎡⎤-+-+⋯+-⎣⎦计算即可. 【详解】 设这组数据x 1,x 2,x 3的平均数为x ,则另一组新数据-2x 1+7,-2x 2+7,-2x 3+7的平均数为-2x +7,∵S 2=13[(x 1-x )2+(x 2-x )2+(x 3-x )2]=5, ∴方差为S′2=13 [(-2x 1+7+2x -7)2+(-2x 2+7+2x -7)2+(-2x 3+7+2x -7)2] =13[4(x 1-x )2+4(x 2-x )2+4(x 3-x )2] =4S 2=4×5=20,故答案为:20.【点睛】本题说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.16.【分析】根据平均数的计算公式可得再根据众数是5所以可得xy 中必须有一个5则另一个就是6通过方差的计算公式计算即可【详解】解:∵一组数据的平均数为6众数为5∴中至少有一个是5∵一组数据的平均数为6∴∴ 解析:83【分析】根据平均数的计算公式,可得11x y +=,再根据众数是5,所以可得x,y 中必须有一个5,则另一个就是6,通过方差的计算公式计算即可.【详解】解:∵一组数据4,,5,,7,9x y 的平均数为6,众数为5,∴,x y 中至少有一个是5,∵一组数据4,,5,,7,9x y 的平均数为6, ∴()4579166x y +++++=, ∴11x y +=,∴,x y 中一个是5,另一个是6, ∴这组数据的方差为()()()()()22222846256661[]676963-+-+-+-+-=; 故答案为83. 【点睛】 本题是一道数据统计中的综合性题目,涉及知识点较多,应当熟练掌握,特别是记忆方差的计算公式.17.813【解析】【分析】样本方差其中n 是这个样本的容量是样本的平均数根据方差公式直接求解【详解】因为一个样本的方差s2=(x1﹣8)2+(x2﹣8)2+…+(x13﹣8)2所以本题样本的平均数是8样本解析:8, 13.【解析】【分析】 样本方差()()()2222121n S x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦,其中n 是这个样本的容量, x 是样本的平均数.根据方差公式直接求解.【详解】因为一个样本的方差s 2=113[(x 1﹣8)2+(x 2﹣8)2+…+(x 13﹣8)2], 所以本题样本的平均数是8,样本数据的个数是13.故填8,13.【点睛】一般地设n 个数据,x 1、x 2、…x n 的平均数为x ,则方差()()()2222121n S x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.161【解析】分析:知道平均数可以求出5次成绩之和又知道中位数和众数就能求出最低两次成绩详解:由五次数学测验的平均成绩是85分∴5次数学测验的总成绩是425分∵中位数是86分众数是89分∴最低两次测解析:161【解析】分析:知道平均数可以求出5次成绩之和,又知道中位数和众数,就能求出最低详解:由五次数学测验的平均成绩是85分,∴5次数学测验的总成绩是425分,∵中位数是86分,众数是89分,∴最低两次测试成绩为425-86-2×89=161,故答案为:161.点睛:本题主要考查平均数和众数等知识点.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.19.【解析】分析:先计算出这组数据的平均数再根据方差公式进行计算即可详解:故答案为:点睛:此题考查了方差用到的知识点是方差公式一般地设n 个数据x1x2…xn 的平均数为则方差它反映了一组数据的波动大小方差 解析:87【解析】分析:先计算出这组数据的平均数,再根据方差公式进行计算即可. 详解:1(7996988)87x =++++++=, 2222218[(78)3(98)(68)2(88)]77S =-+-+-+-=. 故答案为:87点睛:此题考查了方差,用到的知识点是方差公式,一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差2222121[()()...()]n S x x x x x x n=-+-++-,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 20.【解析】【详解】根据平均数的概念和公式可知5个数据的和为5×7=353个数据的和为3k 因此这8个数的和为35+3k 因此其平均数为(35+3k )÷8即故答案为: 解析:35+38k 【解析】【详解】根据平均数的概念和公式,可知5个数据的和为5×7=35,3个数据的和为3k ,因此这8个数的和为35+3k ,因此其平均数为(35+3k )÷8,即35+38k . 故答案为:35+38k .21.(1)60,68,70;(2)乙组,理由见解析【分析】(1)利用中位数的定义确定a 、c 的值,根据平均数的定义计算出b 的值;(2)先计算出乙组成绩的方差,然后选择甲乙两组成绩的方差较小的一组.【详解】解:(1)甲组学生成绩的中位数为60602+=60,即a =60; 乙组学生成绩的平均数为110(50+3×60+4×70+80+90)=68; 乙组学生成绩的中位数为70702+=70,即b =68,c =70; 故填:60,68,70;(2)选择乙组.理由如下: 乙组学生成绩的方差为110[(50﹣68)2+3(60﹣68)2+4(70﹣68)2+(80﹣68)2+(90﹣68)2]=116,因为甲乙两组学生成绩的平均数相同,而乙组学生成绩的方差较小,成绩比较稳定,所以选择乙组.【点睛】本题考查众数、中位数、平均数的意义和计算方法,理解各个统计量的意义及各个统计量所反映数据的特点是解决问题的关键.22.(1)100,14.72;(2)不合理,见解析【分析】(1)先确定a 的值,然后求这些数据的加权平均数即可;(2)由14.72在1216x ≤<内,然后确定小于16t 的户数,再求出小于16t 的户数占样本的百分比,最后用这个百分比和70%相比即可说明.【详解】解:(1)依题意得a=(1000-40-180-280-220-60-20)÷2=100.这1000户家庭月均用水量的平均数为: 2406100101801428018220221002660302014.721000x ⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯==, ∴估计这1000户家庭月均用水量的平均数是14.72.(2)不合理.理由如下:由(1)可得14.72在1216x ≤<内,∴这1000户家庭中月均用水量小于16t 的户数有40100180280600+++=(户),∴这1000户家庭中月均用水量小于16t的家庭所占的百分比是600100%60%⨯=,1000∴月均用水量不超过14.72t的户数小于60%.∵该市政府希望70%的家庭的月均用水量不超过标准m,<,而60%70%∴用14.72作为标准m不合理.【点睛】本题考查了频数分布直方图、用样本估计总体、加权平均数,正确求得加权平均数是解答本题的关键.23.(1)画图见解析;(2)中位数是3小时,众数是4小时;(3)400人.【分析】(1)根据阅读5小时以上频数为6,所占百分比为12%,求出数据的总数,再用数据总数减去其余各组频数得到阅读3小时以上频数,然后补全频数分布直方图,分别求得阅读0小时和4小时的人数所占百分比,补全扇形图;(2)利用各组频数和总数之间的关系确定中位数和众数;(3)用1000乘以每周课外阅读时间不小于4小时的学生所占百分比即可.【详解】解:(1)总人数:6÷12%= 50 (人),阅读3小时以上人数:50-4-6-8-14-6= 12 (人),阅读3小时以上人数的百分比为12÷50= 24% ,阅读0小时以上人数的百分比为4÷50= 8% .图如下:(2)中位数是3小时,众数是4小时;(3) 1000⨯(28% + 12%)= 1000⨯40%= 400(人)答:该学校1000名学生双休日课外阅读时间不少于4小时的人数为400人.【点睛】此题考查数据的收集,主要有中位数,众数,扇形图和直方图的画法及表达的意义. 24.(1)甲、乙六次测试成绩的方差分别是223S =甲,243S =乙;(2)甲 【分析】(1)根据方差的定义,利用方差公式分别求出甲、乙的方差即可;(2)根据平均数相同,利用(1)所求方差比较,方差小的成绩稳定,即可得答案.【详解】(1)甲、乙六次测试成绩的方差分别是: (222222212[(109)(99)(89)(89)(109)99)63S ⎤=⨯-+-+-+-+-+-=⎦甲, (222222214[(109)(109)(89)(109)(79)99)63S ⎤=⨯-+-+-+-+-+-=⎦乙, (2)推荐甲参加全国比赛更合适,理由如下:∵两人的平均成绩相等,∴两人实力相当;∵甲的六次测试成绩的方差比乙小,∴甲发挥较为稳定,∴推荐甲参加比赛更合适.故答案为:甲【点睛】 本题考查方差的求法及利用方差做决策,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;熟练掌握方差公式是解题关键.25.(1)甲、乙两组数据的平均数都是85分,中位数分别为83分、84分;(2)派乙参赛更合适.理由见解析.【分析】(1)根据平均数、中位数的计算方法分别计算即可;(2)从平均数、中位数、方差以及数据的变化趋势分析.【详解】()1()19582888193798478858x =+++++++=甲(分), ()18375808090859295858x =+++++++=乙 将甲工人的测试成绩从小到大排序,处在第45、位的平均数为()8284283+÷=(分), 因此甲工人测试成绩的中位数是83分,将乙工人的测试成绩从小到大排序,处在第45、位的平均数为()8385284+÷=(分), 因此乙工人测试成绩的中位数是84分,答:甲、乙两组数据的平均数都是85分,中位数分别为83分、84分.()2(答案不唯一,合理即可)()()()2222195858285...788535.58S =-+-+⎤⎣⎦=⎡+-甲(分2) ()()()2222183857585...9585418S =-+-+-⎡⎤⎣⎦+=乙(分2) ①从平均数看,甲、乙均为85分,平均水平相同;②从中位数看,乙的中位数大于甲,乙的成绩好于甲;③从方差来看,因为22S S <甲乙,所以甲的成绩较稳定;④从数据特点看,获得85分以上(含85分)的次数,甲有3次,而乙有4次,故乙的成绩好些;⑤从数据的变化趋势看,乙后几次的成绩均高于甲,且呈上升趋势,因此乙更具潜力. 综上分析可知,甲的成绩虽然比乙稳定,但从中位数、获得好成绩的次数及发展势头等方面分析,乙具有明显优势,所以派乙参赛更合适.【点睛】考查平均数、中位数、方差的意义及计算方法,从多角度分析数据的发展趋势是一项基本的能力.26.(1)7,7.5;(2)甲,理由略.【分析】(1)利用加权平均数的计算公式、中位数的概念解答即可;(2)根据方差的性质判断即可.【详解】解:∵甲队员的射击成绩为:5,6,6,7,7,7,7,8,8,9,∴甲队员的射击成绩平均数为:a=(5+6×2+7×4+8×2+9)÷10=7∵乙队员的射击成绩为:3,6,4,8,7,8,7,8,10,9,从小数到大数依次排列为:3,4,6,7,7,8,8,8,9,10,∴乙队员射击成绩的中位数为:b=7.5∴a=7, b=7.5(2)从方差的角度看,选派甲队员去参赛,理由是:从表中可知:S 甲2=1.2,S 乙2=4.2,∴S 甲2<S 乙2∴甲队员的射击成绩较稳定,∴选甲队员去参赛【点睛】本题考查的是加权平均数、中位数、方差的计算,掌握加权平均数的计算公式、方差的计算公式是解题的关键.。

八年级数学上册《第二十章 数据的分析》单元测试卷附带答案-人教版

八年级数学上册《第二十章 数据的分析》单元测试卷附带答案-人教版

八年级数学上册《第二十章数据的分析》单元测试卷附带答案-人教版一、单选题1.在中国共产主义青年团成立100周年之际,某校团委招募志愿者到六个社区开展“书香成都”全民阅读服务活动,报名人数分别为:56,60,63,60,60,72,则这组数据的众数和中位数分别是()A.56,60B.60,72C.60,63D.60,602.小杭同学将自己前7次体育模拟测试成绩(单位一分)统计如表,第8次测试的成绩为a分,若这8次成绩的众数不止一个,则a的值为()次数第1次第2次第3次第4次第5次第6次第7次成绩272830282929283.已知甲、乙两同学1分钟跳绳的平均数相同,若甲同学1分钟跳绳成绩的方差2S甲=0.06,乙同学1分钟跳绳的方差2S乙=0.35,则()A.甲的成绩比乙的成绩更稳定B.乙的成绩比甲的成绩更稳定C.甲、乙两人的成绩-样稳定D.甲、乙两人的成绩稳定性不能比较4.某校团委组织团员开展“百年党史”知识竞赛,九(1)班6位参赛同学成绩为:83,87,80,83,88,83.则以下说法不正确...的是()A.6位同学成绩的平均数是84B.6位同学成绩的众数是83C.6位同学成绩的方差约为7.3D.6位同学成绩的中位数是81.55.对一组数据:-2,1,2,1,下列说法错误的是()A.平均数是1B.众数是1C.中位数是1D.方差是2.256.某班七个兴趣小组人数分别为4,4,5,X,6,6,7已知这组数据的平均数是5,则这组数据的中位数是()A.4B.5C.6D.77.为了从四名同学中选出一人参加计算机编程比赛,对他们进行了多次测试,并对每个人的测试成绩的平均数及方差进行了统计(如下表),则应选的同学是()学生学生一学生二学生三学生四平均数95969695方差55 4.8 4.88.某社区计划组织以“全民健身,‘毽’步如飞”为主题的踢毽子比赛活动,为了了解参赛成员踢毽子水平及稳定程度,在比赛前期甲、乙、丙、丁四名参赛成员分别记录了自己在规定时间内5 次踢毽子的数量,并计算出了各自的平均个数x及方差S2,如下表所示:甲乙丙丁x9010395108S226518512185)A.甲B.乙C.丙D.丁9.在某校举行的“我的中国梦”演讲比赛中,10名参赛学生的成绩统计如图所示,对于这10名学生的参赛成绩,下列说法中错误的是()A.中位数是80B.众数是80C.平均数是82D.极差是4010.甲、乙、丙三名射击运动员在集训期间的测试成绩如下表所以,若需要在其中遴选一名成绩优异并稳定的运动员参加比赛,比较适合的运动员是()成绩/(环)测试一测试二测试三测试四平均数方差甲9.28.89.48.69.00.1乙8.88.68.79.18.80.035丙8.88.99.19.39.00.035二、填空题11.已知数据x1,x2的平均数是2,数据x3,x4,x5的平均数是4,则x1,x2,x3,x4,x5这组数据的平均数是12.在校园歌手大奖赛上,比赛规则是:七位评委打分,去掉一个最高分和一个最低分后,所剩数据取平均数即为选手的最后得分.七位评委给某位歌手打出的分数如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0,则这位歌手的最后得分是.13.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数(x单位:千克)及方差2s,如表所示.今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是 .(填“甲”或“乙”或“丙”或“丁”)甲 乙 丙 丁 x24 24 23 20 2S2.11.921.914次的平均环数是8.3x x ==甲乙,8x =丙方差分别是2 1.5s=甲,2 2.8s =乙和2 1.5s =丙,那么根据以上提供的信息,你认为应该被推荐参加全市射击比赛的同学是 .三、解答题15.某公司对应聘者进行面试,按专业知识、工作经验、仪表形象给应聘者打分,这三个方面的重要性之比为6:3:1.对应聘的王丽、张瑛两人的打分如下表:如果两人中只录取一人,根据表格确定个人成绩,谁将被录用?王丽 张瑛 专业知识 14 18 工作经验 16 16 仪表形象181216.11次航天发射完成空间站建设,空间站由“天和”楼心舱、“问天”和“梦天”两个实验舱,我国空间站的建成将为开展太空实验及更广泛的国际合作提供精彩舞台.校团委以此为契机,组织了“中国梦·航天情”系列活动.下面是八年级甲、乙两个班各项目的成绩(单位:分):项目班次知识竞赛演讲比赛甲 80 90 乙9582的最终成绩较高.17.如图,是甲、乙两名射击运动员一次训练中10次射击环数折线统计图.选出方差小的计算方差.18.甲、乙两个小组各6名学生的英语口试测验成绩如下(单位:分).甲组:76,90,88,82,85,83.乙组:81,90,91,89,79,74.请你利用统计知识,说明哪个小组学生的成绩比较稳定.19.某社区为了增强居民节约用水的意识,随机调查了部分家庭一年的月均用水量(单位:t).根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的家庭个数为,图①中m的值为;(Ⅰ)求统计的这组月均用水量数据的平均数、众数和中位数.四、综合题20.2022年3月,新冠疫情突袭,社会各界众志成城,共同抗疫.严酷战疫中,我们又一次感受到祖国的强大,口罩也成为人们防护防疫的必备武器.钟楼区某药店有2500枚口罩准备出售,从中随机抽取了一部分口罩,根据它们的价格(单位:元),绘制出如图的统计图.请根据相关信息,解答下列问题:(1)图①中m的值为;(2)统计的这组数据的平均数为,众数为,中位数为;(3)根据样本数据,估计这2500枚口罩中,价格为2.0元的约有为多少枚?21.近年来,网约车给人们的出行带来了便利,杨林和数学兴趣小组的同学对“美团”和“滴滴”两家网约车公司司机月收入进行了一项抽样调查,两家公司分别抽取的10名司机月收入(单位:千元)如图所示:“滴滴”网约车司机收入的频数分布表:月收入4千元5千元9千元11千元人数(个)4321平均月收入/千元中位数众数方差“滴滴”64 6.2“美团”6 1.2(2)杨林的叔叔决定从两家公司中选择一家做网约车司机,如果你是杨林,请从平均数、中位数,众数,方差这几个统计量中选择两个统计量进行分析,并建议他的权权选择哪家公司?22.某中学280名学生参加植树节活动,要求每人植3至6棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A:3棵;B:4棵;C:5棵;D:6棵,将各类的人数绘制成扇形图(如图1)和条形图(如图2) .回答下列问题:(1)这次调查一共抽查了名学生的植树量;请将条形图补充完整;(2)被调查学生每人植树量的众数是棵,中位数是棵;(3)求被调查学生每人植树量的平均数,并估计这280名学生共植树多少棵?参考答案与解析1.【答案】D【解析】【解答】解:将这组数据按从小到大排列为:56、60、60、60、63、72这组数据中出现次数最多的数据是60,故这组数据的众数是60这组数据共6个,排第3与第4位的数据都是60,所以中位数是60.故答案为:D.【分析】众数:在一组数据中,出现次数最多的数据叫做众数,(众数可能有多个),中位数:将一组数据按从小到大(或者从大到小)的顺序排列后,如果数据的个数是奇数个时,则处在最中间的那个数据叫做这组数据的中位数;如果数据的个数是偶数个时,则处在最中间的两个数据的平均数叫做这组数据的中位数,据此并结合题意,即可得出答案.2.【答案】C【解析】【解答】解:∵前7次体育模拟测试成绩27和30出现了1次,28出现了3次,29出现了2次,这8次成绩的众数不止一个∴第8次测试的成绩为29分∴a=29.故答案为:C.【分析】根据众数是出现次数最多的次数结合众数不止一个就可得到a的值.3.【答案】A【解析】【解答】解:∵0.06<0.35∴S甲2<S乙2∴甲的成绩比乙的成绩更稳定.故答案为:A【分析】利用方差越小,成绩越稳定,比较甲乙两个同学的方差大小,可得答案.4.【答案】D【解析】【解答】解:把6位参赛同学成绩从小到大排列:80,83,83,83,87,88.∴平均数为808383838788846+++++=,故选项A正确;众数是83,故选项B正确;方差为()()()()()()222222 8084838483848384878488846-+-+-+-+-+-≈7.3,故选项C正确;中位数是83,故选项D错误.故答案为:D.【分析】众数:在一组数据中,出现次数最多的数据叫做众数,(众数可能有多个),中位数:将一组数据按从小到大(或者从大到小)的顺序排列后,如果数据的个数是奇数个时,则处在最中间的那个数据叫做这组数据的中位数;如果数据的个数是偶数个时,则处在最中间的两个数据的平均数叫做这组数据的中位数;用数据的总和除以数据的总个数可得这组数据的平均数;各个数据与平均数差的平方和的平均数就是这组数据的方差,据此即可一一判断得出答案.5.【答案】A【解析】【解答】解:A、这组数据的平均数是:(-2+1+2+1)÷4=0.5,符合题意;B、1出现了2次,出现的次数最多,则众数是1,不符合题意;C、把这组数据从小到大排列为:-2,1,1,2,中位数是1,不符合题意;D、极方差为14×[(-2-0.5)2+(1-0.5)2+(2-0.5)2+(1-0.5)2]=2.25,不符合题意.故答案为:A.【分析】根据平均数,众数,中位数和方差的定义计算求解即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第20章 数据的分析单元复习测试
班别___________姓名_____________学号_______成绩__________
一、选择题(每小题4分,共36分)
1、为了解我校八年级800名学生期中数学考试情况,从中抽取了200名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②800名学生是总体;③每名学生的期中考试数学成绩是个体;④200名学生是总体的一个样本;⑤200名学生是样本容量.其中正确的判断有( )
A.1个
B.2个
C.3个
D.4个
2、人数相同的八年级甲、乙两班学生在同一次数学单元测试,班级平均分和方差如下:
80==乙甲x x ,2402
=甲s ,1802=乙
s ,则成绩较为稳定的班级是( ) A.甲班 B.乙班 C.两班成绩一样稳定 D.无法确定 3、某地连续9天的最高气温统计如下:
这组数据的中位数和众数别是( )
A.24,25
B.24.5,25
C.25,24
D.23.5,24
4、在学校对学生进行的晨检体温测量中,学生甲连续10天的体温与36℃的上下波动数据为0.2,0.3,0.1,0.1,0,0.2,0.1,0.1,0, 0.1,则在这10天中该学生的体温波动数据中不正确的是( )
A.平均数为0.12
B.众数为0.1
C.中位数为0.1
D. 方差为0.02 5、甲、乙、丙、丁四人的数学测验成绩分别为90分、90分、x 分、80分,若这组数据的众数与平均数恰好相等,则这组数据的中位数是( ) A.100分 B.95分 C.90分 D.85分
6、已知三年四班全班35人身高的算术平均数与中位数都是150厘米,但后来发现其中有
一位同学的身高登记错误,误将160厘米写成166厘米,正确的平均数为a厘米,中位数为b厘米关于平均数a的叙述,下列何者正确()
A.大于158
B.小于158
C.等于158
D.无法确定
7、在上题中关于中位数b的叙述。

下列何者正确()
A.大于158
B.小于158
C.等于158
D.无法确定
8、已知一组数据1、2、y的平均数为4,那么()
A.y=7
B.y=8
C.y=9
D.y=10
9、若一组数据a1,a2,…,a n的方差是5,则一组新数据2a1,2a2,…,2a n的方差是()
A.5
B.10
C.20
D.50
二、填空题(每空3分,共45分)
10、数学期末总评成绩由作业分数,课堂参与分数,期考分数三部分组成,并按3:3:4
的比例确定。

已知小明的期考80分,作业90分,课堂参与85分,则他的总评成绩为________
11、在一次测验中,某学习小组的5名学生的成绩如下(单位:分)
68 、75、67、66、99
这组成绩的平均分x= ,中位数M= ;若去掉一个最高分后的平均分'x= ;那么所求的x,M,'x这三个数据中,你认为能描述该小组学生这次测验成绩的一般水平的数据是 .
12、从一个班抽测了6名男生的身高,将测得的每一个数据(单位:cm)都减去165.0cm,
其结果如下:
−1.2,0.1,−8.3,1.2,10.8,−7.0
这6名男生中最高身高与最低身高的差是 __________ ;这6名男生的平均身高约为________ (结果保留到小数点后第一位)
13、已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是 .
14、甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:
某同学分析上表后得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是 _________ (把你认为正确结论的序号都填上).
15、某班同学进行知识竞赛,将所得成绩进行整理后,如右图:竞赛成绩的平均数为
_____ .
16、物理老师布置了10道选择题作为课堂练习,右图是全班解题情况的统计,平均每个学生做对了 _________ 道题;做对题数的中位数为;众数为_________ ;
17、现有A、B两个班级,每个班级各有45名学生参加一次测试,每名参加者可获得0,1,
2,3,4,5,6,7,8,9分这几种不同的分值中的一种.测试结果A班的成绩如下表所示,B班的成绩如右图所示.
(分)
题数
(1)由观察可知,______班的方差较大;
(2)若两班合计共有60人及格,问参加者最少获______分才可以及格.
三、解答题(19分)
18、某工厂有220名员工,财务科要了解员工收入情况。

现在抽测了10名员工的本月收入,结果如下:(单位:元)。

1660 1540 1510 1670 1620 1580 1580 1600 1620 1620
(1)全厂员工的月平均收入是多少?
(2)平均每名员工的年薪是多少?
(3)财务科本月应准备多少钱发工资?
(4)一名本月收入为1570元的员工收入水平如何?
答案:
1-9:BBADC,BCCC
10. 84.5分
11. 75分,68分, 69分 , M
12. 19.1cm,164.3cm
13.2
14. ①②③
15. 74分
16.9(或8.78), 9,8和10
17.A,4
18. 解:(1)依题意得,
1
x=+++++++++=1600 (1660154015101670162015801580160016201620) 10
因此样本的平均数是1600元,由此可以推测出全厂员工的月平均收入约是1600元。

(2)由(1)得这个厂220名员工的月平均收入约是1600元,
⨯=(元)
16001219200
由此可以推测出这个厂平均每名员工的年薪约是19200元。

(3)由(1)得这个厂220名员工的本月平均收入约是1600元,
⨯=(元)
1600220352000
由此可以推测出财务科本月应准备约352000元发工资。

(4)样本的中位数是1610元,由此可以推测出全厂员工本月收入的中位数是1610元。

因为1570元小于1610元,由此推测出一名本月收入为1570元的员工的收入可能是中下水平。

或由(1)得这个厂220名员工的本月平均收入约是1600元。

因为1570元小于1600元,由此推测出一名本月收入为1570元的员工的收入可能是低于平均水平。

相关文档
最新文档