《并行算法的设计与分析》5-精品文档
高性能的并行计算算法设计与分析
高性能的并行计算算法设计与分析随着计算机技术的不断发展,越来越多的应用需要处理大量的数据和复杂的计算任务。
并行计算算法可以有效地将计算任务分解为多个子任务,并利用多个处理器同时进行计算,提高计算效率。
本文将探讨高性能的并行计算算法的设计与分析,介绍一些常用的并行计算算法和评估方法。
在设计高性能的并行计算算法时,首先需要考虑的是任务的划分与调度。
任务划分是将一个大的计算任务分解为多个子任务的过程,而任务调度是将这些子任务分配给不同的处理器进行计算的过程。
合理的任务划分和调度可以最大程度地提高并行计算的性能。
常用的任务划分策略包括数据划分和任务划分。
数据划分是将数据划分为多个小块,并将每个小块分配给不同的处理器进行计算。
而任务划分则是将计算任务分为多个子任务,并将每个子任务分配给不同的处理器进行处理。
这两种划分策略可以根据问题的特点和计算资源的分布选择合适的方式。
与任务划分相对应的是任务调度。
任务调度决定了每个处理器计算哪些子任务,并控制处理器之间的通信和同步。
常用的任务调度策略包括静态调度和动态调度。
静态调度在计算开始前就确定每个处理器的计算任务,而动态调度则是在计算过程中根据处理器的负载情况动态地调整任务分配。
除了任务划分与调度,算法设计中还需要考虑数据通信和同步的问题。
并行计算中,不同处理器之间需要进行数据交换和同步操作,以保证计算的正确性和一致性。
数据通信和同步的效率对并行计算的性能影响很大,因此需要精心设计和优化。
在进行高性能并行计算算法的分析时,可以采用多种评估指标。
常用的指标包括加速比、效率和可扩展性。
加速比定义为串行算法的执行时间与并行算法的执行时间的比值,反映了并行计算的效率。
效率表示并行计算的实际效果与理论效果之间的比例。
可扩展性表示并行算法在不同规模问题上的可扩展性能力。
为了更好地评估并行算法的性能,可以采用实际测试或者理论分析的方法。
实际测试包括在真实的并行计算环境中进行测试,收集运行时间等信息进行评估。
(2024年)并行计算第并行算法的设计ppt课件
运用并行计算技术加速基因序列的比对和分析,促进生物医学研究 的发展。
28
工程仿真领域
01
流体动力学仿真
通过并行算法模拟流体的运动状 态,以优化飞行器、汽车等交通 工具的设计。
02
03
结构力学仿真
电磁场仿真
利用并行计算技术对建筑物、桥 梁等结构进行力学分析和优化, 提高工程安全性。
运用并行算法模拟电磁场的分布 和传播,以改进电子设备和通信 系统的性能。
高速互联网络
用于连接处理器和存储器,提供高带宽和低延迟 的数据传输,保证并行计算的效率。
2024/3/26
5
并行计算的软件支持
并行编程模型
包括消息传递模型、数据并行模型和 共享内存模型等,为并行计算提供抽 象的编程接口。
并行编程语言
如MPI、OpenMP、CUDA等,这些 语言提供对并行硬件的直接支持,使 程序员能够方便地编写并行程序。
2024/3/26
并行最长公共子序列算法
通过并行处理多个子序列的比较和合并操作,加速 最长公共子序列的求解过程。
并行最短编辑距离算法
将编辑距离的计算过程拆分成多个步骤,每 个步骤可以在多个处理单元上并行执行,从 而加快计算速度。
18
04
现代并行算法设计
2024/3/26
19
分布式并行算法
2024/3/26
11
并行算法的性能评价
加速比
衡量并行算法相对于串行算法的速度提升程度。
效率
衡量并行算法在给定资源下的性能表现。
2024/3/26
12
并行算法的性能评价
• 可扩展性:衡量并行算法在增加处理单元 数量时的性能提升能力。
并行算法第五章并行算法的基本设计技术
流水线存在装入时间和排空时间,使得加速比降低
由于存在相关问题,会导致流水线停顿
32
流水线设计技术
设计思想
将算法流程划分成p个前后衔接的任务片断,每个 任务片断的输出作为下一个任务片断的输入; 所有任务片断按同样的速率产生出结果。
(1.1) p(k)=next(k);
(1.2)if(p(k)!=k) distance(k)=1;
else distance(k)=0; (2)for i=1 to log2 n (2.1) for all k∈L par-do if(p(k)!=p(p(k)) { distance(k)= distance(k)+ distance(p(k)); p(k)=p(p(k));} (2.2) for all k∈L par-do //O(log2n)
30 40
T a s k O r d e r
40
40
40 20 原则上尽可能早 地让工作开始
A
B C D
流水作业完成四人的洗衣任务只需要 3.5 hours
31
流水线技术要点
流水线技术并不能提高单个任务的执行效率,它可 以提高整个系统的吞吐率
流水线中的瓶颈是最慢的那一段
多个任务同时执行,但使用不同的资源
p台处理器并行地求解各子问题
划分原理
常见划分方法
均匀划分
方根划分
对数划分
功能划分
均匀划分技术
划分方法 n个元素A[1..n]分成p组,每组A[(i-1)n/p+1..in/p] 示例:并行正则采样排序(PSRS) Parallel Sorting by Regular Sampling
并行计算算法设计与分析
并行计算算法设计与分析一、引言在现代计算机系统中,并行计算已经成为一种重要的技术手段。
并行计算算法的设计与分析是研究并行计算的核心内容之一。
本文将详细介绍并行计算算法的设计与分析方法,并讨论其在实际应用中的意义与挑战。
二、并行计算算法的分类1. 数据并行算法数据并行算法采用将计算任务分割为多个子任务,每个子任务在不同的处理单元上并行执行的方式。
典型的数据并行算法包括矩阵乘法算法、并行排序算法等。
2. 任务并行算法任务并行算法是将计算任务分解为多个相互独立的子任务,并行执行的方式。
各个子任务之间没有数据依赖关系,可以同时进行计算。
典型的任务并行算法包括并行搜索算法、并行图算法等。
3. 流水线并行算法流水线并行算法是将计算任务分解为多个阶段,不同处理单元在不同阶段上并行执行,通过流水线的方式提高计算效率。
典型的流水线并行算法包括多级缓存机制的并行计算算法、指令级并行计算算法等。
三、并行计算算法的设计方法1. 并行分解并行分解是指将原始的计算任务分解为多个子任务的过程。
在并行分解过程中,需要考虑任务的划分方式、任务之间的依赖关系以及负载均衡等问题。
2. 并行通信并行通信是指多个处理单元之间的信息传递与同步。
在并行计算算法的设计中,合理的并行通信方式能够提高计算效率。
常用的并行通信方式包括消息传递接口MPI、共享内存等。
3. 并行合并并行合并是指将多个子任务的计算结果合并为最终的结果的过程。
在并行合并过程中,需要考虑合并方式以及结果的正确性验证等问题。
四、并行计算算法的分析方法1. 速度up与加速比速度up表示并行计算与串行计算相比的计算速度提升程度。
加速比表示并行计算中处理单元数量增加时,计算速度相对于串行计算的提升比例。
通过对速度up与加速比的分析,可以评估并行算法的性能优劣。
2. 并行性的度量与评估并行性是指并行计算中各个子任务可以同时进行的程度。
通过对并行性的度量与评估,可以确定并行计算算法的最佳并行度。
并行算法的设计与分析》培训课件
• Knuth ==>
CO M(En,n)O(nlon)g
• 当m=n=2t时,不难推得
CO ME(n,n)2CO ME(n/2,n/2)n122CO ME(n/2,n/2)(n1)12
2CO ME(n/2,n/2)(n1)2(2CO ME(n/4,n/4)n/21)(n1)
22CO ME(n/22,n/22)(n2)(n1)...
2020/10/2
Parallel Algorithms 9 / Ch3
3.1.3 双调归并网络
1. 定义及定理
定义3.5: 一个序列a1,a2,…,an是双调序列(Bitonic Sequence),如果: (1)存在一个ak(1≤k≤n), 使得a1≥…≥ak≤…≤an成立;或者 (2)序列能够循环移位满足条件(1)
6
3
1
4
4
5
5
6
8
8
1级交叉比较
(2,2)偶归并
Parallel Algorithms 7 / Ch3
3.1.2 奇偶归并网络
3. 复杂性分析 比较器个数
C O M (m E ,n ) C O M (E m 2 ,n 2 ) C O m M (E m 2 ,n n 2 ) m 2 n 1 m m 1 1 n n
3.2 (m, n)-选择网络
3.2.1 分组选择网络 3.2.2 平衡分组选择网络
2020/10/2
Parallel Algorithms 2 / Ch3
3.1 Batcher归并和排序
3.1.1 比较操作和[0, 1]原理 3.1.2 奇偶归并网络 3.1.3 双调归并网络 3.1.4 Batcher排序网络
2020/10/2
并行算法设计范文
并行算法设计范文
一、算法简介
分布式并行算法是一种把一个大的复杂的计算任务分解成若干个相对简单的计算任务,分别在多个处理器上并行计算的算法。
它利用多台计算机同时处理多项任务,不同的任务分别发送到不同的计算机上,通过网络进行数据的传输与分析。
而这些机器可以是单机的,也可以是分布式的,可以在不同的物理位置分布着。
分布式并行算法是指将一个大型计算任务分解成若干个小型子任务,将这些子任务分发给一组处理器进行处理,并将最终的结果通过网络进行同步,最终形成一个大的完整的计算结果。
分布式并行算法可以显著提升计算效率和准确度,改善原有的计算负荷,有助于提高企业的创新能力和竞争力。
二、典型应用
1、分布式存储系统:将数据保存到多台计算机上,从而使存储空间和计算能力大大增加;
2、分布式计算系统:实现多个计算机之间利用网络互相传递和处理数据,从而提高系统的运行效率;
3、大数据处理应用:将大数据保存到多台计算机上,并利用网络进行分布式处理,实现计算量巨大的数据处理任务;
4、虚拟机技术:将多台计算机组成集群,共享软件资源,实现虚拟机的建立和使用;。
并行算法的设计与
作业层调度针对若干个用户的多个并行应用程序构成的 一组作业 ,面向的一般是多应用程序系统,它的调度实体是 传统批处理意义下的作业,调度目标有多个,如最短的平均 作业响应时间、最大的资源利用率或最大的系统吞吐率等。
调度效率(Scheduling Efficiency)主要 指调度系统本身的复杂度。
任务调度的概念
? 并行计算中的任务调度
并行分布计算中的任务调度问题:根据一定的调度规则 和调度策略,把组成并行程序的一组任务或构成工作负载的 一组作业,按照一定执行时序分配到并行分布系统的多个计 算节点上,以期取得较好的系统执行性能。 ? 任务调度与作业调度
对于任务划分,我们通常用任务交互作用图(Task Interaction Graph)来表示并行算法(程序)模型
对于任务调度,通常用带权有向图(Weighted Direct Graph)来表示并行算法(程序)模型 。
பைடு நூலகம்
任务调度的概念
? 并行计算中任务调度的分类
? 静态调度、动态调度和混合调度 静态调度(Static Scheduling)在编译并行程序时,就决定每 个任务的执行处理器及执行时序,它经常用于任务图比较确定 的情况。
任务调度的概念
? 并行计算中任务调度的分类
? 最优调度和启发式调度
最优调度一般是指静态调度,如果一个调度算法能在多 项式复杂度的时间内获得最佳调度结果,那么称之为有效的最 优调度算法。
启发式调度方法将任务调度分配到各处理器上,它虽然不 能确保获得最优解,但可以获得最优调度的近似解。 ? 共享存储结构的任务调度和分布存储结构的任务调度
并行算法的设计与分析课件
2.3 分治策略
n设计思想
• 将原问题划分成若干个相同的子问题分而治之,若子问题仍然
较大,则可以反复递归应用分治策略处理这些子问题,直至子 问题易求解。
n求解步骤
• 将输入划分成若干个规模相等的子问题; • 同时(并行地)递归求解这些子问题; • 并行地归并子问题的解成为原问题的解。
n示例
• SIMD-SM模型上的FFT递归算法
Parallel Algorithms 3 / Ch2
2.1 平衡树方法
n算法2.1 SIMD-SM上求最大值算法
Begin for k=m-1 to 0 do for j=2k to 2k+1-1 par-do A[j]=max{A[2j], A[2j+1]} end for end for
end
时间分析 t(n)=m×O(1)=O(logn) p(n)=n/2 c(n)=O(nlogn) 非成本最优
2023/10/19
Y.Xu Copyright
USTC
Parallel Algorithms 4 / Ch2
2.1 平衡树方法
前缀和
n 问题定义
n个元素{x1,x2,…,xn},前缀和是n个部分和: Si=x1*x2*…*xi, 1≤i≤n 这里*可以是+或×
for j=1 to n/2h par-do B[h,j]=B[h-1,2j-1]*B[h-1,2j]
end for end for
时间分析:
(3)for h=logn to 0 do //反向遍历
for j=1 to n/2h par-do (i) if j=even then //该结点为其父结点的右儿子 C[h,j]=C[h+1,j/2]
《并行程序设计导论》第四章
并行程序设计导论第四章:并行算法的设计与分析并行算法是并行程序设计的核心,它直接影响着程序的性能和效率。
本章将介绍并行算法的设计方法,分析并行算法的性能,并探讨如何评估并行算法的效率。
一、并行算法的设计方法1.分治法分治法是一种常见的并行算法设计方法,它将问题分解成若干个子问题,分别解决后再合并结果。
分治法的关键在于子问题的划分和结果的合并。
在并行计算中,分治法可以充分利用多核处理器的并行性,提高程序的执行效率。
2.流水线法流水线法是一种将计算过程分解成多个阶段,每个阶段由不同的处理器并行执行的算法设计方法。
在流水线法中,数据在各个阶段之间流动,每个阶段只处理部分数据。
这种方法可以充分利用处理器的计算能力,提高程序的执行效率。
3.数据并行法数据并行法是一种将数据分解成多个部分,每个部分由不同的处理器并行处理的算法设计方法。
在数据并行法中,每个处理器处理相同的数据结构,执行相同的操作。
这种方法可以充分利用处理器的计算能力,提高程序的执行效率。
二、并行算法的性能分析1.时间复杂度时间复杂度是衡量算法性能的一个重要指标,它表示算法执行时间与输入规模之间的关系。
在并行算法中,时间复杂度通常表示为多个处理器执行时间的总和。
对于一个并行算法,我们希望其时间复杂度尽可能低,以提高程序的执行效率。
2.加速比加速比是衡量并行算法性能的另一个重要指标,它表示并行算法执行时间与最优串行算法执行时间的比值。
加速比越高,说明并行算法的性能越好。
在实际应用中,我们希望并行算法的加速比尽可能接近处理器的核心数量。
3.可扩展性可扩展性是衡量并行算法性能的另一个重要指标,它表示算法在增加处理器数量时的性能变化。
对于一个好的并行算法,我们希望其在增加处理器数量时,性能能够得到有效提升。
三、并行算法的效率评估1.性能模型性能模型是一种用于评估并行算法效率的工具,它将算法的性能与处理器数量、数据规模等因素联系起来。
通过性能模型,我们可以预测并行算法在不同条件下的性能表现,为算法设计和优化提供依据。
并行算法与并行程序设计 第01章 概论(新)
通信启动时间 t0 渐近带宽 r∞ MB/s
μs
0字节或短消息(如单字)的通信时间,也称为通信时延。
通信长消息的速率。
五、并行计算机模型
抽象机模型
PRAM模型
机器规模n可任意大。
指令同步,每一执行周期每个处理器执行一条指令。
每一周期中,各处理器蕴式同步,同步开销、通信开销、并行 性开销忽略不计,只计负载不平衡开销。 通过读写共享变量进行通信。 PRAM模型对零开销和指令同步的假设是不现实的,而且现行 机器规模n通常也比较小,复杂度并不能真实反映算法的性能。 PRAM模型对现实机器模型的模拟很不精确,但因其简单性, 仍是开发高级并行算法的一个良好的模型。
精品文档五并行计算机模型?物理机模型?simd?单指令多数据流机多为专用型计算机?mimd?并行向量处理机pvp?基本构件多采用定制?对称多处理机smp?大规模并行处理机mpp?工作站群计算机机群cow?分布共享存储器多处理机dsm精品文档五并行计算机模型?物理机模型?并行向量处理机pvp?vp
第一章 概论
《并行算法与并行程序设计》
三、并行与并发
并行 (Parallel) 并发 (Concurrence)
四、相关领域与概念
高性能计算 (High Performance Computing) 分布式计算 (Distributed Computing) 物联网 (The Internet of Things)
交互阶段:完成交互操作所需执行的任务,如通信、同步或是聚集操作。
五、并行计算机模型
物理机模型
SIMD
单指令多数据流机 – 多为专用型计算机
MIMD
并行向量处理机(PVP)
《并行算法的设计与分析》共28页文档
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
Parallel Algorithms
Chapter 3 Sorting and Selection on Comparison
Network
2021/8/12
Y.Xu Copyright
USTC
Parallel Algorithms 2 / Ch3
主要内容
3.1 Batcher归并和排序
3.1.1 比较操作和[0, 1]原理 3.1.2 奇偶归并网络 3.1.3 双调归并网络 3.1.4 Batcher排序网络
0
0
4 02
2
1
6 63
3
2
(2,2)奇归并
2021/8/12
8 36
6
3
0 41
1
4
1 14
4
5
(2,2)偶归并
3 85
5
6
5 58
8
8
1级交叉比较
Y.Xu Copyright
USTC
Parallel Algorithms 8 / Ch3
3.1.2 奇偶归并网络
3. 复杂性分析 比较器个数
C O M ( m E ,n ) C O M ( m 2 E , n 2 ) C O m M ( m 2 E , n n 2 ) m 2 n 1 m m 1 1 n n
并行计算模型设计与分析
并行计算模型设计与分析1. 引言并行计算模型是指在计算机系统中,多个处理器或计算单元同时执行不同的指令,以提高计算速度和系统性能。
随着科学技术的不断发展和计算需求的增加,设计高效的并行计算模型变得尤为重要。
本文将探讨并行计算模型的设计与分析,并分析其在科学研究和工程领域中的应用。
2. 并行计算模型2.1 任务并行模型任务并行模型是将一个大任务划分为多个小任务,并由多个处理器或计算单元同时执行这些小任务。
每个处理器独立地执行自己负责的小任务,并通过通信机制共享数据和结果。
这种模型适用于那些可以被划分为独立子问题的应用,如图像处理、数据挖掘等。
2.2 数据并行模型数据并行模型是将大量数据划分为多个子集,并由多个处理器或计算单元同时对这些子集进行操作。
每个处理器负责对自己负责的数据子集进行运算,并通过通信机制共享中间结果。
这种模型适用于那些可以被划分为相互依赖但相互独立的数据集的应用,如矩阵计算、图像处理等。
2.3 流水线模型流水线模型是将一个大任务划分为多个子任务,并由多个处理器或计算单元按照固定的顺序依次处理这些子任务。
每个处理器负责执行自己负责的子任务,并将结果传递给下一个处理器。
这种模型适用于那些具有明确执行顺序和依赖关系的应用,如编译器、图像渲染等。
3. 并行计算模型设计3.1 任务划分在设计并行计算模型时,首先需要对原始任务进行合理划分。
对于任务并行模型和数据并行模型,可以根据应用特点和需求将大任务划分为小任务或数据子集。
对于流水线模型,则需要明确每个子任务之间的依赖关系和执行顺序。
3.2 通信机制在并行计算中,不同处理器或计算单元之间需要进行通信以实现数据共享和结果传递。
设计合理的通信机制可以提高系统性能和效率。
常见的通信机制包括消息传递、共享内存等。
3.3 调度策略调度策略是指如何合理地安排不同处理器或计算单元之间的任务执行顺序。
合理的调度策略可以平衡负载,减少通信开销,提高系统的并行度。
高性能计算中的并行算法设计与分析
高性能计算中的并行算法设计与分析高性能计算是指利用高速计算机和优化算法来解决复杂问题的领域。
在高性能计算中,提升计算速度和效率的关键是并行算法的设计和分析。
本文将讨论高性能计算中的并行算法设计和分析的相关内容。
在高性能计算中,计算任务通常需要处理大规模的数据和复杂的计算操作。
为了提高计算速度和效率,可以利用并行计算的方式来同时进行多个计算操作。
并行算法是为并行计算设计的算法,可以将计算任务划分为多个可以并行执行的子任务,以实现更快的计算速度。
在设计并行算法时,首先需要考虑如何将计算任务合理地划分为多个子任务。
这种划分通常基于数据的分解或者任务的分解。
数据的分解是将大规模的数据分为多个小数据集,每个小数据集在一个计算节点上进行独立的计算。
任务的分解是将一个大型的计算任务分为多个小任务,每个小任务在一个计算节点上进行独立的计算。
根据计算任务的特点和计算机集群的架构,选择合适的划分方式能够充分利用计算资源并提高计算效率。
其次,需要考虑并行算法的通信和同步机制。
在并行计算中,不同的计算节点需要进行通信来交换数据或者共享计算结果。
通信的开销会影响并行计算的效率,因此需要选择高效的通信方式和合适的通信模式,以减少通信开销。
同时,不同的子任务在并行计算过程中可能存在依赖关系,需要进行同步操作来保证计算的正确性。
有效的通信和同步机制是设计并行算法的关键。
另外,考虑并行算法的负载均衡也是十分重要的。
负载均衡是指将计算任务合理地分配给不同的计算节点,以使得各个节点的计算负载相对均衡。
负载均衡的好坏直接影响了整体计算的效率和性能。
因此,在设计并行算法时,需要在各个计算节点之间动态地分配计算任务,以保持负载均衡。
除了并行算法的设计之外,对于高性能计算中并行算法的分析也是十分重要的。
分析并行算法的性能可以评估其计算速度和资源利用效率,为优化算法和改进设计提供指导。
常用的分析指标包括加速比、效率和可扩展性等。
加速比是指并行算法相对于串行算法的计算速度提升程度。
并行计算多媒体课件并行算法设计与分析ch15GraphA.ppt
=G
Parallel Algorithms 17 / Ch15
15.3 图的连通分量
012345678
0100100101
1010010010
2001001000
3100100101 4010010010
=C
5001001000
6100100101
7010000010
8100100101
15.1 图的并行搜索
3.三种并行搜索示例 (1)p-深度优先搜索
6
5
4
1
7
2
3
9
8
(a) 图G
(5)
1
(1)
(1)
2
3
(2)
7
(2)
8
(3)
6
(6)
(3) 9
5 (4)
(7)
4
(b) 两个处理器的p-深度优先搜索
2019/10/20
优秀课件,精彩无限!
Parallel Algorithms 4 / Ch15
2019/10/20
优秀课件,精彩无限!
Parallel Algorithms 2 / Ch15
15.1 图的并行搜索
15.1.1 算法原理 1.并行搜索的一般方法
(1)建立一个主表和p个子表; (2)开始时主表空, 任取一个顶点作为待搜索顶点, 并置入主表; (3)p个处理器分别搜索与该顶点相邻的边, 将搜索到的顶点加入子表; (4)以一定的策略, 将子表链到主表, 并从主表中任取一个作为待搜索顶点; (5)重复(3)、(4)直至所有的顶点加入到主表.
ij有长为0或1的有向路径
对于B2=(A+I)2=(b(2)ij)n×n, b(2)ij=∨k=1~nb(1)ikb(1)kj, 这里∨为逻辑或
高性能计算环境下的并行算法设计与分析
高性能计算环境下的并行算法设计与分析在当今的信息时代,随着数据量的爆炸式增长和计算任务的复杂性不断提升,高性能计算环境下的并行算法设计与分析变得愈发重要。
在这样的背景下,如何有效利用计算资源,提高计算效率,成为了计算机科学领域的研究热点之一。
一、并行计算的背景与发展随着信息技术的快速发展,传统的串行计算已经无法满足日益增长的计算需求。
并行计算作为一种有效的计算模式迅速崭露头角。
并行计算是指将计算任务分解成多个子任务,同时在不同的处理单元上并行执行,以提高计算效率。
并行计算的主要形式包括多线程、多进程、分布式计算等。
在高性能计算环境下,如何设计高效的并行算法成为了重要课题。
二、并行算法设计的基本原则在设计并行算法时,需要考虑以下几个基本原则:1. 任务划分:将计算任务合理地划分成多个子任务,以便并行执行。
2. 数据划分:将数据分配给不同的处理单元,避免数据冗余和数据传输造成的性能损失。
3. 通信开销:减少处理单元之间的通信开销,避免通信成为性能瓶颈。
4. 负载均衡:保持各个处理单元的负载均衡,避免因部分处理单元工作负载过重而造成整体性能下降。
三、典型的并行算法1. 并行排序算法:如快速排序、归并排序等,并行排序算法可以显著提高排序效率。
2. 并行图算法:如最短路径算法、聚类算法等,图算法的数据结构复杂性和计算复杂性往往需要并行计算来提高效率。
3. 并行深度学习算法:如卷积神经网络、循环神经网络等,深度学习算法通常需要大量的计算资源来进行训练和推断,因此并行计算具有重要意义。
四、并行算法性能分析在设计并行算法之后,性能分析是必不可少的一环。
主要包括以下几个方面:1. 加速比分析:衡量并行算法相对于串行算法的加速比,即并行计算相对于串行计算的性能提升程度。
2. 效率分析:衡量并行算法的计算资源利用率,让所有处理单元都能尽可能充分地工作。
3. 精度分析:对比并行算法的计算结果与串行算法的结果的精度差异,确保并行算法的正确性。
并行算法设计与分析
并行算法设计与分析并行算法旨在提高计算系统的性能和效率,通过同时执行多个子任务来加速计算过程。
并行算法设计与分析是计算机科学和工程领域的重要研究方向,它涉及到算法设计、并行计算模型、并行算法分析以及性能优化等方面。
在并行算法设计过程中,首先需要选择合适的并行计算模型。
常用的并行计算模型包括共享内存模型和分布式内存模型。
共享内存模型中,多个处理器通过共享同一块内存来进行通信和同步;而分布式内存模型中,不同处理器之间的通信通过消息传递来实现。
根据具体问题的特点和要求,选择合适的并行计算模型对于算法的设计和实现至关重要。
在并行算法设计阶段,还需要考虑任务的划分和调度。
任务的划分是将原始任务分解为多个可并行执行的子任务,从而实现任务的并行化。
划分任务的方式可以是任务划分成相等的子任务,也可以根据任务的特点和计算资源的情况划分不等大小的子任务。
同时,需要合理调度子任务的执行顺序和调度策略,以最大程度地减小通信开销和提高计算效率。
随后,通过对并行算法进行分析,评估其时间复杂度、空间复杂度以及并行性等指标。
并行算法的时间复杂度是衡量算法效率的重要指标,它描述了算法所需的计算时间与问题规模的关系。
并行算法的空间复杂度则描述了算法所需的存储空间与问题规模的关系。
并行算法的并行性指标可以用来评估算法的可扩展性和负载均衡性。
通过对并行算法的分析,可以更好地了解算法的性能特点和优化空间,并对算法进行优化和改进。
在并行算法设计与分析过程中,还需要关注并行算法的正确性和稳定性。
并行算法的正确性是指并行执行的结果与串行执行的结果一致,即所得到的并行解为问题的有效解。
为了保证并行算法的正确性,需要正确处理并发问题、同步问题和竞态条件等并行计算中常见的问题。
稳定性则指并行算法在不同硬件平台和输入数据集上的性能表现稳定,具有一定的鲁棒性和可复现性。
此外,还需要进行并行算法的性能优化。
性能优化的目标是提高并行算法的运行效率和性能,包括减少时间开销、降低通信开销、增加负载均衡性等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019/3/6
Y.Xu Copyright
USTC
Parallel Algorithms 3 / Ch5
5.1.1 MIMD异步算法的基本框架 ①开始时所有处理器空闲,用某个开始算法, 产生一些过程或进程(算法的一段),进入进程
等待队列;
②若有空闲的机器,分配进程;进程执行完之后,
2 . 1 步( 8 与 8 )( 8 与 6 )( 8 与 6 )( 8 与 9 ) ( 8 与 7 ) 2 . 3 步 2 . 2 步
(3)进程2: 1+3+3+3+3+3+1=17 类似地,进程3(18),进程4(13),进程5(15)
P 1 : P 2 :
2019/3/6
进 程 1进 程 3
2019/3/6
Y.Xu Copyright
USTC
Parallel Algorithms 8 / Ch5
5.2 MIMD-TC模型上的异步快排序算法 5.2.1 SISD上的快排序算法
5.2.2 SIMD-CRCW上的快排序算法
5.2.3 MIMD-TC模型上的异步快排序算法
2019/3/6
(3)for i=q+1 to r do
if Ai≤x then (i)s=s+1 (ii)swap(As, Ai) end if (4)swap(Aq, As) (5)QUICKSORT(A, q, s)
(6)QUICKSORT(A, s+1, r)
2019/3/6
end
Y.Xu Copyright
(4)n个处理器Pi存有A[i]
(5)得到二叉排序树后,只要中序遍历即可得到排序序列 (6)二叉排序树如下:
A [L c[root]] A [root] A [R c[root]]
A [L c[L c[root]]] A [Rc[L c[root]]]
2019/3/6
Y.Xu Copyright
USTC
1 4 3 2
时 间 时 间
Parallel Algorithms 6 / Ch5
进 程 2进 程 4进 程 5
1 7 3 0 4 5
ห้องสมุดไป่ตู้USTC
Y.Xu Copyright
5.1.4 异步枚举排序算法的时间分析
1.假定:第(1)步之前无任何进程启动; 可在常数时间内解决读冲突; 不考虑进程间的调度时间 2.MIMD-异步枚举排序算法时间 n个进程:每个进程时间O(n)
5.2 MIMD-TC模型上的异步快排序算法 5.3 分布式k-选择算法
2019/3/6
Y.Xu Copyright
USTC
Parallel Algorithms 2 / Ch5
5.1 MIMD-CREW模型上的异步枚举排序算法 5.1.1 MIMD异步算法的基本框架
5.1.2 异步枚举排序算法
Y.Xu Copyright
USTC
Parallel Algorithms 9 / Ch5
5.2.1 SISD上的快排序算法
Procedure QUICKSORT(A, q, r) //输入无序序列(Aq,…,Ar);输出有序序列(Aq,…,Ar) begin if q<r then (1)x= Aq (2)s=q
机器进入等待;
③若无等待进程,机器空闲,排队进入等待状态。 注:SIMD每个时刻各处理器执行的操作相同
2019/3/6
Y.Xu Copyright
USTC
Parallel Algorithms 4 / Ch5
5.1.2 异步枚举排序算法
1.输入待排序数组X[1..n],输出已排序数组T[1..n]。 2.算法:MIMD-CREW枚举排序
USTC
Parallel Algorithms 10 / Ch5
5.2.2 SIMD-CRCW上的快排序算法
1.算法说明
(1)SIMD-CRCW上的快排序算法的核心是构造二叉排序树。
(2)排序树的树根为root,左孩子为Lc[root],右孩子为Rc[root] (3)SM变量root, Lc[1..n], Rc[1..n], 及待排序数组A[1..n]
n n2 t(n) O(n) O( ) p p p(n) p c(n) O(n2)
2019/3/6
Y.Xu Copyright
USTC
Parallel Algorithms 7 / Ch5
主要内容
5.1 MIMD-CREW模型上的异步枚举排序算法
5.2 MIMD-TC模型上的异步快排序算法 5.3 分布式k-选择算法
注:算法生成n个进程,第i个进程计算X中比xi小的元素数k,将xi置于SM 数组T[k+1],各进程间无通讯要求,可互相独立完成。
2019/3/6
Y.Xu Copyright
USTC
Parallel Algorithms 5 / Ch5
5.1.3 异步枚举排序算法示例
输入X={8,6,6,7,9},p(n)=2,P1生成5个进程,设进程调度按 FIFO,P1与P2首先执行进程1和进程2 (1)进程内的运算(假定各操作时间相同,X数组已在本地) k=0, X(i)>X[j], X(i)=X[j], i>j, k=k+1, T[k+1]=X[i] (2)进程1: 1 + 3 + 2 + 2 + 3 + 2 + 1=1 4
Parallel Algorithms 11 / Ch5
5.2.2 SIMD-CRCW上的快排序算法
2.SIMD-CRCW上的快排序二叉树构造算法
begin
(1)for i=1 to n do create process i end for (2)process i: (2.1)k=0
(2.2)for j=1 to n do
if X[i]>X[j] then k=k+1 else if (X[i]=X[j] and i>j) then k=k+1 end if (2.3)T[K+1]=X[i] end
Parallel Algorithms
Chapter 5 Sorting and Selecting in Asynchronous
2019/3/6
Y.Xu Copyright
USTC
Parallel Algorithms 1 / Ch5
主要内容
5.1 MIMD-CREW模型上的异步枚举排序算法