铁碳合金平衡组织观察与分析
实验3--铁碳合金平衡组织观察

实验3 铁碳合金平衡组织观察一、实验目的1.认识铁碳合金的平衡组织。
2.了解含碳量对铁碳合金平衡组织的影响规律。
.二、概述铁碳合金的显微组织是研究和分析铁碳材料性能的基础,所谓平衡状态的显微组织是指合金在极为缓慢的冷条件下(退火状态,即接近平衡状态)所得到的组织。
因此我们可以根据Fe -Fe3C相图来分析铁碳合金在平衡状态下的显微组织(图1-1所示)。
图1-1 Fe-Fe3C相图铁碳合金的平衡组织主要是指碳钢和白口铸铁组织,其中碳钢是工业上应用最广泛的金属材料,它们的性能与其显微组织密切有关。
此外,对碳钢和白口铸铁显微组织的观察和分析,有助于加深对Fe-Fe3C相图的理解。
从Fe-Fe3C相图上可以看出,所有碳钢和白口铸铁的室温组织均由铁素体(F)和渗碳体(Fe3C)这两个基本相组成。
但是由于含碳量不同,因而呈现各种不同的组织形态。
用侵蚀剂显露的碳钢和白口铸铁,在金相显微镜下具有下面几种基本组织。
1.工业纯铁(C<0.02%),显微组织是单相铁素体,如图11.1。
2.碳钢随含碳量不同可分为:亚共析钢(含C<0.8%);共析钢(含C:0.8%),过共析钢(0.8%<含C<2.06%)。
共析钢的显微组织是片状铁素体和渗碳体的机械混合物,由于试片浸蚀后表面具有珍珠的光泽,故称为珠光体,其显微组织如图11.2图11.1 图11. 2材料:工业纯铁材料:T8(0.8%C)处理方法:退火热处理方法;退火腐蚀剂:4%HNO3,酒精溶液腐蚀剂:4%HNO3,酒精溶液显微组织:铁素体(白亮块是晶显微组织:珠光体,(白亮基体粒,黑线是晶粒边界) 是铁素体,细夹条是渗碳体)放大倍数:100×放大倍数;400×图中的白亮基体是铁素体,细夹条是渗碳体,黑线是铁素体和渗碳体的相界面。
如放大倍数低或片层过薄时,则看不到片层结构,而呈暗黑色块状物。
亚共析钢的显微组织是由铁素体与珠光体组成。
铁碳合金平衡组织的显微分析及观察

实验一铁碳合金平衡组织地显微分析及观察一.实验目地1.认识不同成分地铁碳合金在平衡状态下地组织形态.2.加深理解铁碳合金地化学成分-组织-性能之间地关系.3.分析含碳量对铁碳合金显微组织地影响.二.实验原理在金相显微镜下观察到地金属内部结构称为显微组织,平衡状态地显微组织是指合金在极为缓慢地冷却条件下所得到地组织.铁碳合金地平衡组织主要指碳钢和白口铸铁.从铁碳合金状态图上可以看出,所有碳钢和白口铸铁地室温均由铁素体(F)和渗碳体(Fe3C)这两个基本相所组成.但由于碳地质量分数不同,铁素体和渗碳体地相对数量.析出条件以及分布情况均有所不同,因而呈现出各种不同地组织状态.在金相显微镜下铁碳合金地几种基本组织:1.铁素体(F)它是碳溶于α-Fe中地间隙固溶体.在金相显微镜观察为白色晶粒,亚共析钢中地铁素体呈块状分布,随着钢中含碳量地增加,铁素体数量减少,其形状也由多边形块状逐渐变成在珠光体边界呈断续网状分布.2.渗碳体(Fe3C)它是铁和碳形成地化合物,其碳地质量分数为6.69%,抗浸蚀能力较强,经3-5%硝酸酒精溶液浸市蚀后呈亮白色,若用苦味酸钠溶液浸蚀,则被染成暗黑色.由此可以区别铁素体和渗碳体.3.珠光体(P)它是铁素体和渗碳体地机械混合物,在一般退火处理下,是由铁素体和渗碳体相互混合交替排列形成地层片状组织,经4%硝酸酒精溶液浸蚀后,在高倍放大时能清楚地看到珠光体中平行相间地宽条铁素体和条状渗碳体;当放大倍数较低时,这时所观察到地珠光体中地渗碳体呈一条黑线.当组织较细而放大倍数较低时,珠光体地片层就不能分辨,而呈黑色.4.莱氏体(L'd)它是在室温时,由珠光体.共晶渗碳体及二次渗碳体所组成地机械混合物.经4%硝酸酒精溶液浸蚀后,莱氏体地组织特征氏,在白亮色地渗碳体基体上分布着许多黑色点(块)状或条状地珠光体.二次渗碳体和共晶渗碳体连在一起,没有边界线无法分辨开.三.实验内容观察给出试样地显微组织,画出所观察到组织地示意图.1四.实验设备及材料1.金相显微镜.2.金相试样:20钢.45钢.T8钢.T12钢.共晶白口铸铁.亚共晶白口铸铁.过共晶白口铸铁等七块试样.3.金相图谱.五.实验要求1.根据设备条件,1~2人为一组,每组备有显微镜一台.试样七块.金相图谱一本.2.按观察要求,选择物镜和目镜,并装在显微镜上.按照金相显微镜地操作程序,将其调节到所看见地组织最为清晰为止.六.金相显微镜地结构和使用金相显微镜通常由光学系统.照明系统和机械系统三大部分组成.现以XJB-1型台式金相显微镜为例说明.XJB-1型金相显微镜地光学系统如图1所示,灯泡发出地光线经聚光透镜组及反光镜聚集到孔径光栏,再经过聚光竟聚集到物竟地后焦面,最后通过物镜平行照射到试样地表面.从试样表面反射回来地光线经物镜组和辅助透镜,由半反射经转向,经过辅助透镜及棱镜形成一个倒立地放大实像,该像再经过目镜放大,就成为在目镜视场中能看到地放大映像.XJB-1型金相显微镜地外形如图2所示.现将分别介绍其各部件地功能及使用.照明系统:在底座内装有一低压灯泡作为光源,聚光镜.孔径光栏及反光镜等均安置在圆形底座上,视场光栏及另一聚光镜则安在支架上,她们组成显微镜地照明系统,使试样表面获得充分均匀地照明.显微镜调焦装置:在显微镜地两侧有粗调焦和微调焦手轮,粗调手轮地转动可使栽物台地弯臂作上下移动,微调手轮使显微镜沿滑轮缓慢移动,在右侧手轮上刻有分度格,每一格表示物镜座上下移动0.002mm.载物台:用于放置金相样品,观察面须向下.载物台和下面托盘之间有导架,用手推动,可使载物台栽水平面上作一定范围地十字定向移动,以改变试样地观察部位.2孔径光栏和视场光栏:孔径光栏装在照明反射镜座上面,调整孔径光栏能够控制入射光束地粗细,以保证物像达到清晰地程度.视场光栏设在物镜支架下面,其作用是控制视场范围,使目镜中视场明亮而无阴影.物镜转换器:转换器呈球面状,上面有三个螺孔,可安装不同放大倍数地物镜,转动转动器可使各物镜镜头进入光路,与不同地目镜搭配使用,以获得各种放大倍数.目镜筒:目镜筒呈45°倾斜安装在附有棱镜地半球座上,还可将目镜转向45°呈水平状态以配合照相装置进行金相摄影.图1 XJB-1型金相显微镜地光学系统图2 XJB-1型金相显微镜外形结构图3。
铁碳合金平衡组织观察

3-4%硝酸酒精溶液 ×450
3-4%硝酸酒精溶液 ×450
实验设备及材料 金相显微镜; 金相图册; 各种铁碳合金的显微样品
实验内容及步骤 验前学生应复习讲课中的有关内容和阅读实 验指导书, 为实验做好理论方面的准备; 在显微镜下观察和分析铁碳合金标准试样的 平衡组织, 识别钢和铸铁组织形态的特征, 根据 Fe-Fe3C相图分析各合金的形成过程;建立成 分、组织之间相互关系的概念。
纯铁的室温平衡组织(0.01C/%) 铁素体
45钢的室温平衡组织(0.45C/%) 铁素体+珠光体
T8钢的室温平衡组织(0.77C/%) 珠光体
T12钢的室温平衡组织(1.2C/%) 珠光体+二次渗碳体
亚共晶白口铸铁室温平衡组织
共晶白口铸铁室温平衡组织
过共晶白口铸铁室温平衡组织
铁碳合金标准试样的平衡组织
编号 1 2 3 4 5 6 7
材料 工业纯铁
45 T8 T12 亚共晶白口铁 共晶白口铁 过共晶白口铁
处理状态 退火 退火 退火 退火 铸造 铸造 铸造
侵蚀剂
放大倍数
ቤተ መጻሕፍቲ ባይዱ
3-4%硝酸酒精溶液 ×450
3-4%硝酸酒精溶液 ×450
3-4%硝酸酒精溶液 ×450
3-4%硝酸酒精溶液 ×450
3-4%硝酸酒精溶液 ×450
绘出所观察的显微组织示意 图,画时抓住组织形态的典型特 征,并在图中表示出来。
根据显微组织近似确定亚共 析钢的含碳量: C%= (P×0.77)/ 100 + (F×0.0218)/100, 式中: P和F分别为珠光体和 铁素体所占面积(%)
实验报告要求 实验目的 画出所观察显微组织示意图,并注明材 料名称、含碳量、侵蚀剂和放大倍数, 显微组织画在直径为30-50mm的圆内, 并将组成物名称以箭头引出标明。
铁碳合金平衡组织观察实验

铁碳合金平衡组织观察实验铁碳合金是一种重要的金属材料,广泛应用于工业生产中。
其性能与组织密切相关,而组织的形成与平衡相变过程密切相关。
为了深入了解铁碳合金的平衡组织形成机制,科学家们进行了一系列的实验观察。
实验一:样品准备科学家们准备了一系列不同成分的铁碳合金样品,按照质量百分比控制了碳含量在0.02%到6.7%之间。
样品制备过程中需注意保持样品的纯净度,避免其他杂质的影响。
实验二:样品加热处理将样品置于高温炉中,进行加热处理。
加热过程中需控制加热速率,以免样品出现不均匀加热的情况。
通过控制加热温度和时间,科学家们可以模拟不同条件下的热处理过程。
实验三:金相显微镜观察经过加热处理后的样品,科学家们使用金相显微镜进行观察。
金相显微镜是一种特殊的显微镜,可以通过对样品进行酸蚀或电解抛光等处理,使得样品表面显露出不同的组织结构。
通过观察样品的显微组织,可以了解铁碳合金的相变规律和组织形成机制。
实验四:相图分析除了金相显微镜观察外,科学家们还进行了相图分析。
相图是描述材料相变行为的图表,可以直观地显示出不同组分和温度条件下的相变情况。
通过对铁碳合金的相图分析,可以确定相变温度和组织形成的规律。
实验五:数据分析与总结科学家们将实验得到的数据进行分析,并进行总结。
他们对不同成分和温度条件下的铁碳合金组织进行了详细的观察和比较,找出了组织形成的规律。
同时,他们也根据实验结果进行了理论分析和模拟计算,验证了实验观察的准确性。
通过以上一系列的实验观察,科学家们对铁碳合金的平衡组织形成机制有了更深入的了解。
他们发现,铁碳合金的组织形成与碳含量、温度和冷却速率等因素密切相关。
在不同条件下,铁碳合金可以形成不同的组织结构,如珠光体、渗碳体、马氏体等。
这些组织结构的形成直接影响着铁碳合金的性能。
铁碳合金平衡组织观察实验的结果对工业生产具有重要意义。
根据实验结果,可以确定合适的热处理工艺,以获得所需的组织结构和性能。
同时,也为铁碳合金的合金设计和优化提供了理论依据。
第六章 铁碳合金状态相图的分析及平衡组织观察

第六章铁碳合金状态相图分析及组织观察一、概述铁碳合金状态图是研究铁碳合金的组织与性能关系的重要工具。
了解和掌握铁碳合金状态图对于制定钢铁材料的各种工艺有很重要的指导意义。
下面分别讨论纯Fe;共析钢;亚共析钢;过共析钢;共晶白口铁;亚共晶白口铁;过共晶白口铁等几个典型合金的结晶过程,以深入了解铁碳合金相合肥组织的形成规律及其组织特征。
1、含0.01%C合金的结晶过程及组织特征含碳0.01%的合金为工业纯铁,其结晶过程如下(参照图1中的合金①)。
液态金属在1~2点温度区间按匀晶转变结晶出单相δ固溶体。
δ固溶体冷却导3点时,开始发生固溶体的同素异构转变Aδ→。
由于δ相晶界上的能量转高,因此,奥氏体的晶核优先在δ相的晶界上形成,然后长大。
这一转变在4点结束,合金全部转变为单相奥氏体。
奥氏体冷却到5~6之间又发生同素异构转变γα→,转变为铁素体。
铁素体也同样是在奥氏体晶界上优先形核,然后长大。
铁素体冷到7点时,碳在铁素体中的溶解度达到饱和。
冷到7点以下,将从铁素体中析出过剩的渗碳体。
这种渗碳体一般沿铁素体晶界析出,称为三次渗碳体。
因此,工业纯铁室温下的组织为铁素体和三次渗碳体所组成。
铁碳平衡状态图2、共析合金的结晶过程及组织特征当温度在1点以上时,合金全部为液态。
当合金降温至1点,并稍微过冷,开始从液体中析出奥氏体。
继续降温从液体汇总析出奥氏体,液相的浓度沿BC 线变化,奥氏体的浓度沿JE 线变化。
两相相对重量的比值可由杠杆定律求出: QLaOQA Ob =奥氏体初次晶在液态金属中自由长大,一般呈树枝状。
降温至2点结晶终了,变成了单相的奥氏体组织。
在2-3点温度区间,为单相奥氏体,相的浓度等于合金的成分,没有成分和组织的变化。
在3点共析成分的奥氏体发生共析转变,形成的转变产物为珠光体。
平衡条件下所得的珠光体组织是一层铁素体和一层渗碳体交替排列的机械混合物。
用3%硝酸酒精溶液浸蚀后,窄的条纹为渗碳体,宽的白色条纹危房铁素体,这是因为浸蚀时,铁素体被均匀浸蚀,而渗碳体叫铁素体硬,不易被浸蚀,故凸出于铁素体之外。
机械制造实验报告铁碳合金平衡组织观察与分析

机械制造实验报告铁碳合⾦平衡组织观察与分析实验项⽬名称:铁碳合⾦平衡组织观察与分析⼀、实验⽬的和要求(必填)1.通过观察和分析,熟悉铁碳合⾦在平衡状态下的显微组织,熟悉⾦相显微镜的使⽤;2.了解铁碳合⾦中的相及组织组成物的本质、形态及分布特征;3.分析并掌握平衡状态下铁碳合⾦的组织和性能之间的关系。
⼆、实验内容和原理(必填)2.1 概述碳钢和铸铁是⼯业上应⽤最⼴的⾦属材料,它们的性能与组织有密切的联系,因此熟悉掌握它们的组织,对于合理使⽤钢铁材料具有⼗分重要的实际指导意义。
⑴碳钢和⽩⼝铸铁的平衡组织平衡组织⼀般是指合⾦在极为缓慢冷却的条件下(如退⽕状态)所得到的组织。
铁碳合⾦在平衡状态下的显微组织可以根据Fe—Fe3C相图来分析。
从相图可知,所有碳钢和⽩⼝铸铁在室温时的显微组织均由铁素体(F)和渗碳体(Fe3C)所组成。
但是,由于碳含量的不同,结晶条件的差别,铁素体和渗碳体的相对数量、形态,分布和混合情况均不⼀样,因⽽呈现各种不同特征的组织组成物。
碳钢和⽩⼝铸铁在室温下的平衡组织见表1。
a)⼯业纯铁——室温时的平衡组织为铁素体(F),F为⽩⾊块状(如图1所⽰);b)亚共析钢——室温时的平衡组织为铁素体(F)+珠光体(P),F呈⽩⾊块状,P呈层⽚状,放⼤倍数不⾼时呈⿊⾊块状(如图2所⽰)。
碳质量分数⼤于0.6%的亚共析钢,室温平衡组织中的F呈⽩⾊⽹状包围在P周围(如图3所⽰);c)共析钢——室温时的平衡组织是珠光体(P),其组成相是F和Fe3C(如图4、5所⽰);d)过共析钢——室温时的平衡组织为Fe3CⅡ+P。
在显微镜下,Fe3CⅡ呈⽹状分布在层⽚状P周围(如图6所⽰);e)亚共晶⽩⼝铸铁——室温时的平衡组织为P+Fe3CⅡ+ Ld'。
Fe3CⅡ⽹状分布在粗⼤块状的P的周围,Ld'则由条状或粒状P和Fe3C基体组成(如图7所⽰);f)共晶⽩⼝铸铁——室温时的平衡组织为Ld',由⿊⾊条状或粒状P和⽩⾊Fe3C基体组成(如图8所⽰);g)过共晶⽩⼝铸铁——室温时的平衡组织为Fe3CⅠ+ Ld',Fe3CⅠ呈长条状,Ld'则由条状或粒状P 和Fe3C基体组成(如图9所⽰)。
实验五++铁碳合金平衡组织的观察与分析

实验五铁碳合金平衡组织的观察与分析一、实验目的1.熟悉铁碳合金在平衡状态下的显微组织特征。
2.了解由平衡组织估算亚共析钢含碳量的方法。
二、实验说明研究铁碳合金的平衡组织是分析钢铁材料性能的基础。
所谓平衡组织,是指合金在极其缓慢冷却条件下得到的组织。
如图5-1所示。
图5-1 Fe—Fe3C平衡组织相图由Fe—Fe3C相图可以看出,铁碳合金的室温平衡组织均由铁素体、渗碳体[由分从液体中直接析出的一次渗碳体(Fe3CⅠ);从奥氏体中析出的二次渗碳体(Fe3CⅡ);从铁素体中析出的三次渗碳体(Fe3CⅢ)]两个基本相所组成,但对不同含碳量的铁碳合金,由于铁素体和渗碳体的相对数量、析出条件、形态与分布不同,从而使各类铁碳合金在显微镜表现出不同的组织形貌。
1.工业纯铁工业纯铁是指含碳量低于0.02%的铁碳合金,其显微组织由铁素体和三次渗碳体所组成。
经4%硝酸酒精溶液浸蚀后铁素体晶粒呈亮白色块状,晶粒和晶粒之间显出黑线状的晶界。
三次渗碳体呈不连续的小白片位于铁素体的晶界处。
2.共析钢共析钢是指含碳量0.77%的铁碳合金。
共析钢的显微组织全部由珠光体组成。
在平衡条件下,珠光体是铁素体和渗碳体的片状机械混合物,经4%硝酸酒精溶液浸蚀后,其铁素体和渗碳体均为亮白色;在较高放大倍数时(600×以上),能看到珠光体中片层相同的宽条铁素体细条渗碳体,且两者相邻的边界呈黑色弯曲的细条。
由于珠光体中铁素体与渗碳体的相对量相差较大,按照杠杆定律可计算出两者相对量的比约为8∶1,从而形成了铁素体片比渗碳体片宽的多的特征。
在中等放大倍数下(400×左右),因显微镜的分辨能力不够,珠光体中的渗碳体两侧边界合成一条黑线。
在放大倍数更低的情况下(200×左右),铁素体与渗碳体的片层都不能分辨,此时珠光体呈暗黑色模糊状。
3.亚共析钢亚共析钢是指含碳量为0.02~0.77%之间的铁碳合金。
亚共析钢的显微组织是由先共析铁素体(呈亮白色块状)与珠光体(呈暗黑色)组成。
(讲课)铁碳合金平衡组织观察及金相显微镜的使用分析免费全文阅读

莱氏体
珠光体+二次渗碳体+莱氏体
4%硝酸酒精溶液
4%硝酸酒精溶液
显微组织
4%硝酸酒精溶液
4%硝酸酒精溶液
4%硝酸酒精溶液
4%硝酸酒精溶液
过共晶白口铁
浸蚀剂
4%硝酸酒精溶液
类型
白口铸铁
共晶白口铁
4.3~6.67
亚共晶白口铁
4.3
2.06~4.3
含ห้องสมุดไป่ตู้量(%)
表
在
铁
■ 纯铁在室温下具有单相铁 素体组织 。含碳量小于0.0218%的铁碳合金通常 称为工业纯铁 。黑色线条 是铁素体的晶界 , 而亮白 色基底则是铁素体的不规 则等轴晶粒 , 在某些晶内 和晶界驱粗处还可以看到 不连续的薄片状三次渗碳 体,含量微小忽略不计。
三 、铁碳合金平衡组织的显微分析1、工业纯铁
图1-3 工业纯铁显微组织(100×) 浸蚀剂为4%硝酸酒精溶液
2、碳钢含碳量在0.0218%~2. 11%范围内的铁碳合金称为碳 钢 。按其含碳量与平衡组织的不同 , 可分为亚共析碳钢 , 共析碳钢和过共析碳钢3种。(1) 亚共析钢亚共析钢的含碳量在0.0218%~0.8%范围内 , 其组织有铁素体和珠光体所组成 。 随着含碳量的增加 , 铁素体的数量逐渐减少 , 而珠光体的数量则相应地增多 , 两者的相对量可由杠杆定律求得 。也可根据显微镜下观察到的珠光体和铁素体各自所占面积的百分数 , 近似地计算出钢的含碳量: c﹪ =p % ×0.8%式中: C% -钢的含碳量;P% -珠光体所占面积。
铁碳合金平衡组织实验报告

铁碳合金平衡组织实验报告铁碳合金平衡组织实验报告引言:铁碳合金是一种重要的金属材料,广泛应用于工业生产和日常生活中。
其性能与其组织密切相关,因此研究铁碳合金的平衡组织对于深入了解其性能具有重要意义。
本实验旨在通过热处理实验,观察铁碳合金的平衡组织变化,并分析其对材料性能的影响。
实验方法:1. 实验材料准备:选择合适比例的铁和碳粉末,按照一定比例混合,并进行均匀混合。
2. 热处理实验:将混合后的铁碳粉末放入高温炉中,进行热处理。
根据实验要求,设定不同的温度和保温时间。
3. 试样制备:将热处理后的铁碳合金坯料进行切割和打磨,制备成适合观察的试样。
4. 金相显微镜观察:使用金相显微镜对试样进行观察,分析铁碳合金的平衡组织。
实验结果与分析:通过实验观察,我们得到了一系列铁碳合金的金相显微照片。
根据观察结果,我们可以得出以下结论:1. 铁碳合金的平衡组织主要包括珠光体和渗碳体。
珠光体是由铁和少量的碳组成的固溶体,具有良好的韧性和延展性。
渗碳体是由碳在铁基体中的扩散形成的,具有较高的硬度和强度。
2. 随着温度的升高和保温时间的延长,铁碳合金的珠光体含量逐渐减少,而渗碳体含量逐渐增加。
这是因为在高温条件下,碳原子更容易扩散到铁基体中,形成渗碳体。
3. 铁碳合金的渗碳体形态也会随着温度和保温时间的变化而改变。
在较低的温度和短时间保温条件下,渗碳体呈点状分布;而在较高的温度和长时间保温条件下,渗碳体呈连续分布。
4. 铁碳合金的平衡组织对其性能有着显著影响。
珠光体的存在可以提高铁碳合金的韧性和延展性,而渗碳体的存在可以提高其硬度和强度。
因此,在实际应用中,可以通过调节热处理参数来控制铁碳合金的平衡组织,以满足不同的工程要求。
结论:通过本次实验,我们深入了解了铁碳合金的平衡组织变化规律以及对材料性能的影响。
铁碳合金的平衡组织是由珠光体和渗碳体组成的,其含量和形态会随着温度和保温时间的变化而改变。
控制铁碳合金的平衡组织可以调节其韧性、延展性、硬度和强度等性能,满足不同的应用要求。
铁碳合金平衡组织观察的实验报告

铁碳合金平衡组织观察的实验报告
铁碳合金平衡组织观察实验简介
本实验旨在分析一块铁碳合金材料的平衡组织,观察它们在断口以及深度位置所呈现
的组织特征,为进一步深入研究其力学性质提供参考。
实验设备
本实验使用的主要仪器和设备有:透射电子显微镜(TEM)、立体观察显微镜(OM)、圆锥材料磨床、磨床磨具(橡胶滚珠磨头)。
实验程序
1. 使用特定工具将试样轴状材料磨削至任意一侧,精磨厚度至0.1mm,以清晰地观察断口及深度位置的组织结构;
2. 断口的OM观察和测量;
4. 根据观察和测量结果,给出相应的报告。
实验结果
1. 断口的OM观察:实验结果显示,铁碳合金在断口处具有大量的析出相,表现为类
囊状的析出物,呈不规则分布;
2. 深度位置:深度位置OM观察到,深度位置相对来说更加均匀,析出物分布较为均匀,析出物具有小尺寸细腻的类囊状,以及大尺寸的类棒状。
总结
本实验采用显微镜等设备,观察和测量了一块铁碳合金材料的平衡组织,并给出相应
的报告。
实验结果证实,铁碳合金在断口处表现出大量的析出相,析出相呈不规则分布;
而在深度位置,析出物呈现在尺寸较小类囊状,以及尺寸较大类棒状。
本实验所得结果,
可以为进一步研究其力学性质提供有力参考。
实验一 铁碳合金平衡组织的观察与分析

铁碳合金平衡组织的观察与分析实验一一、实验目的 1.认识和熟悉铁碳合金平衡状态下的显微组织特征; C状态图与平衡组织的关系;2.了解含碳量对铁碳合金平衡组织的影响。
建立起Fe-Fe33.了解平衡组织的转变规律并能应用杠杆定律。
二、概述在实验条件下,平衡状态是指铁碳合金在极为缓慢的冷却条件下完成转变的组织状态。
退火状态下的碳钢组织可以看成是平衡组织。
在室温下碳钢和白口铸铁的组织都是由铁素是以组织组成物表示的铁碳合金相图。
图1致使铁碳合金在合金相变规律的差异,体和渗碳体两种基本相构成。
但是由于含碳量不同、列出各种铁碳合金在室温下的显微组织。
室温下的显微组织呈现出不同的组织类型。
表1表1 各种铁碳合金在室温下的显微组织合金分类含碳量/% 显微组织铁素体(F 工业纯铁)<0.0218F+珠光体亚共析钢 (P)~0.02180.77碳钢P共析钢 0.77P+二次渗碳体(C0.77过共析钢~2.11 ) ΠP+ C4.3 2.11 ~+莱氏体(亚共晶白口铸铁 L) eΠ白口铸铁L共晶白口铸铁 4.3 eL+二次渗碳体(C )6.694.3~过共晶白口铸铁Ie铁碳合金显微组织中,铁素体和渗碳体两种相经硝酸酒精溶液浸蚀后均呈白亮色,而它们之间的相界则呈黑色线条。
采用煮沸的碱性苦味酸钠溶液浸蚀,铁素体仍为白色,而渗碳体则被染成黑色。
以组织组成物表示的铁碳合金相图1 图铁碳合金的各种基本组织特征如下:1.工业纯铁含碳量小于0.0218%的铁碳合金称为工业纯铁,其显微组织为单相铁素体或铁素体+极少量三次渗碳体。
为单相铁素体时,显微组织由亮白色的呈不规则块状晶粒组成,黑色网状线即为不同位向的铁素体晶界,如图2(a)所示。
当显微组织中有三次渗碳体时,则在某些晶界处看到呈双线的晶界线,表明三次渗碳体以薄片状析出于铁素体晶界处,如图2(b)所示。
700X )(b(a)250X2 工业纯铁的显微组织图2.碳钢种:共析钢、亚共析钢和过共析钢。
铁碳合金平衡组织观察实验

铁碳合金的平衡组织变化:实验观察与分析铁碳合金是一种普遍用于制造机械零件的金属材料。
在不同的加工和热处理条件下,铁碳合金的组织会发生不同的变化。
本实验通过观察不同温度和时间下铁碳合金的组织变化,探究其平衡组织的形成条件和特征。
实验装置:
本实验采用常见的金相显微镜观察技术。
所用样品为铁碳合金薄片,加工后表面打磨光洁,试验中分别在600°C、700°C和800°C 温区下加热处理,时间分别为1、3、5小时。
加热结束后,将样品拿出冷却,制作成金相样品,并用光学显微镜观察样品的组织。
实验结果:
经观察,不同加工条件下铁碳合金的组织形成和变化过程如下:
①在600°C温度条件下,热处理1小时后,铁碳合金的组织为珠光体;
②在700°C温度条件下,分别热处理1、3、5小时后,铁碳合金的组织为珠光体和铁素体共存;
③在800°C温度条件下,热处理1小时后,铁碳合金的组织为铁素体;
经过3小时、5小时的加热处理,铁碳合金的组织均为铁素体。
实验分析:
铁碳合金的平衡组织受到加工温度、时间和碳含量的影响。
本实验中,随着加工温度的升高和时间的延长,铁碳合金的珠光体逐渐转变为铁素体。
这是由于铁素体比珠光体更具稳定性,因此在高温下更容易形成。
同时,铁素体的塑性、韧性和硬度也与珠光体不同,不同的铁碳合金组织结构也影响着其性能和用途。
结论:
本实验通过观察不同加工条件下铁碳合金的组织变化,得出了铁碳合金在不同温度和时间下形成平衡组织的条件和特征。
这对于了解铁碳合金的性能与应用、指导加工工艺和热处理工艺具有重要意义。
铁碳合金平衡组织观察实验报告23

铁碳合金平衡组织观察实验报告23铁碳合金是工业上使用最广泛的材料之一,其性能取决于其组织结构。
本实验通过观察铁碳合金在不同加热条件下的组织结构变化,探究其平衡组织规律。
一、实验原理1.1 铁碳相图铁碳相图显示了铁碳合金在不同温度下的组织结构和相变,是研究铁碳合金组织演变和性能改善的基础。
铁碳相图的主要特征是石墨化、珠光体和渗碳体三种组织结构,在不同温度下转变。
1.2 平衡组织和非平衡组织平衡组织是铁碳合金在经过充分时间和空间的均匀热处理后,形成的稳定相组织结构。
非平衡组织则是在较短时间内加热或冷却过程中形成的组织结构,不具有稳定性。
二、实验步骤2.1 样品制备选取未经处理的高碳钢,将样品切成长2cm、宽2cm、厚2mm的板材,并用细砂纸将表面清理干净。
加热镊夹住样品,用烧瓶烧热,观察样品的颜色和组织结构变化。
可以在加热过程中把样品从火焰中取出,在氧化性气体中冷却,观察组织结构的变化。
2.3 组织结构分析使用金相显微镜观察和拍摄样品的组织结构。
根据图像测量工具,测量颗粒大小、颗粒间距、组织形态等数据,分析组织结构变化规律。
三、实验结果3.1 不同温度下的组织结构在室温下观察样品,可以看到其表面有黑色的氧化物,切割后,可以看到均匀的珠光体组织。
当样品加热到400℃时,珠光体逐渐消失,替代它的是均匀分布的石墨化组织。
随着加热时间和温度的不断增加,石墨化组织逐渐变大,颗粒形状部分变细,其间距逐渐增大。
当样品加热到800℃时,出现了渗碳体组织,随着加热时间的继续增加,渗碳体的数量增加,逐渐取代了石墨化组织,形成了均匀的渗碳体结构。
在不同温度下,铁碳合金的组织结构存在着较为显著的变化规律。
在室温下,铁碳合金中的珠光体组织相对稳定,颗粒较小,位置分布比较均匀。
当样品加热到400℃左右时,珠光体逐渐消失,被石墨化取代。
在石墨化温度范围内,颗粒形状和大小发生了变化,但是个体之间的间距和数量基本保持不变。
当温度进一步升高到800℃时,渗碳体开始出现,它们的形状与大小我与石墨化时一样,但是它们的分布比较随机,成为主导组织,石墨化组织逐渐消失。
铁碳合金平衡组织观察与分析教材ppt(31张)

铁碳合金平衡组织观察与分析教材(PP T31页)
铁碳合金平衡组织观察与分析教材(PP T31页)
铁素体灰铸铁的显微组织
铁碳合金平衡组织观察与分析教材(PP T31页)
铁碳合金平衡组织观察与分析教材(PP T31页)
珠光体灰铸铁的显微组织
铁碳合金平衡组织观察与分析教材(PP T31页)
铁碳合金平衡组织观察与分析教材(PP T31页)
铁素体球墨铸铁的显微组织
铁碳合金平衡组织观察与分析教材(PP T31页)
铁碳合金平衡组织观察与分析教材(PP T31页)
铁素体+珠光体球墨铸铁的显微组织
铁碳合金平衡组织观察与分析教材(PP T31页)
铁碳合金平衡组织观察与分析教材(PP T31页)
珠光体球墨铸铁的显微组织
铁碳合金平衡组织观察与分析教材(PP T31页)
实验三:铁碳合金平衡组织观察与分析
一、实验目的 1.进一步熟悉Fe—Fe3C相图,了解不同成分的 铁碳合金在平衡状态下的显微组织特征。 2.分析碳钢的含碳量与其平衡组织间的关系。 3.加深对平衡状态下铁碳合金的成分、组织、性 能间关系的理解。
二、实验原理
利用金相显微镜观察和研究金属内部的组织和 缺陷的方法称为显微分析。
铁碳合金平衡组织观察与分析教材(PP T31页)
铁碳合金平衡组织观察与分析教材(PP T31页)
铁碳合金平衡组织分析实验报告
1.实验目的。 2.实验所用仪器设备、试样。 3.按下列要求画出20、T8、T12、亚共晶白口铸铁、共晶白口 铸铁、过共晶白口铸铁(至少3种)的显微组织,并注明各组 织的名称。 材料名称 处理方法 浸蚀剂 放大倍数 金相组织
铁碳合金平衡组织观察精讲实验报告

实验四铁碳合金平衡组织观察一、实验目的:1.了解铁碳合金在平衡状态下的显微组织。
2.分析成分对铁碳合金显微组织的影响,从而理解成分、组织与性能之间的相互关系。
二、实验原理及内容:铁碳合金的显微组织是研究和分析钢铁材料性能的基础,平衡组织指合金在极其缓慢的冷却速度下得到的组织。
在实验条件下,退火态的铁碳合金组织可以看成平衡组织。
铁碳合金平衡组织是指碳钢和白口铸铁组织,其中碳钢是工业上应用最广的金属材料,它们性能与其显微组织密切相关。
1. 铁碳合金平衡状态图铁碳合金的平衡组织是指铁碳合金在极为缓慢的冷却条件下所得到的组织。
可以根据铁碳相图(如图5-1所示),来分析铁碳合金在平衡状态下的显微组织。
C相图图5-1 Fe-Fe3从—相图上可以看到所有的碳钢和白口铸铁在室温时的组织均由铁素体(F)和渗碳体()这两个基本相组成,但是由于含碳量的不同,铁素体和渗碳体的相对数量、析出条件以及分布情况均有所不同。
因而呈现各种不同的组织形态,其性能也各不相同。
2.几种基本组织组成物用侵蚀剂显露的碳钢和白口铸铁,在金相显微镜下具有下面几种基本组织组成物。
表1 各种铁碳合金在室温下的平衡组织3、各种组成相或组织组成物的特征a)铁素体(F)是碳溶于α-Fe的固溶体。
铁素体为体心立方晶格。
具有磁性及良好的塑性,硬度较低,一般为80HB~120HB,经3%~5%硝酸酒精溶液浸蚀后,在显微镜下观察呈白色晶粒,见工业纯铁的组织(如图1所示)。
亚共析钢中,随着钢中碳质量分数的增加,珠光体量增加而铁素体量减少。
铁素体量较多时,呈块状分布(如图2所示)。
当钢中碳质量分数接近共析成份时,铁素体往往呈断续的网状,分布于珠光体的周围(如图3所示)。
b)渗碳体(Fe3C)是铁与碳形成的复杂结构的间隙化合物,它的碳质量分数为6.69%,抗浸蚀能力较强。
经3%~5%硝酸酒精溶液浸蚀后呈白亮色。
一次渗碳体(Fe3CⅠ)是直接从液体中析出的,呈长白条状,分布在莱氏体中;二次渗碳体(Fe3CⅡ)是由奥氏体(A)中析出的,数量较少,皆沿奥氏体晶界析出,在奥氏体转变成珠光体后,它呈网状分布在珠光体的边界上。
铁碳合金平衡组织分析实验报告

实验报告铁碳合金平衡组织观察和分析一、实验目的1.了解并熟悉金相显微镜的使用方法2.通过观察和分析,熟悉铁碳合金在平衡状态下的显微组织。
3. 了解铁碳合金中的相及组织组成物的本质、形态及分布特征。
加深对铁碳合金的成分、组织和性能之间关系的理解。
二、实验内容1.观察表中所列金相样品的显微组织,研究每一个样品的组织特征,并联系铁碳相图分析其组织形成过程。
三、实验报告要求1.画出所观察样品的显微组织示意图.用箭头和代表符号标明各组织组成物,并注明试样编号、材料名称、热处理状态、放大倍数和浸蚀剂。
.2。
根据所观察的组织,说明碳含量对铁碳含金的组织和性能影响的大致规律。
四、思考题渗碳体有哪几种?它们的形态有什么差别?附录二金相试样的制备金相样品的制备一般包括取样、镶嵌、磨制、抛光、浸蚀等工序。
现简述如下:一、取样和镶嵌取样部位及观察面的选择,必须根据被分析材料或零件的失效分析特点、加工工艺的性质,以及研究目的等等因素来确定.进行失效分析研究时,应在失效部位完整地取样。
对于轧材,研究非金属夹杂物的分析和材料表面缺陷时,应垂直于轧制方向(即横向)取样;研究夹杂物的类型、形状、材料变形度、带状组织等时,应平行于轧制方面上(即纵向)取样.对热处理后的零件,因为组织较均匀可任意选择取样部位和方向;对于表面处理过的零件,在表面部位取样,要能较全面地观察到整个表面层的变化。
取样时要注意方法,要避免因取样导致观察面的组织变化。
一般软材料可用锯、车等方法;硬材料可用水冷砂轮切片机场割或电火花线切割;硬而脆的材料则可用锤击;大件可用氧割。
等等。
试样大小一般以手拿操作方便即可(如直径10~15mm,高10mm的圆柱体)。
若样品过小(如细丝、薄片)或形大辩论不规则,以及有特殊要求9例如要求观察表面组织),则必须进行镶嵌。
镶嵌方法有:低熔点合金的镶嵌、电木粉镶嵌、环氧树脂镶嵌等,此外还可用夹肯来夹持试样。
二、磨制软材料粗磨可用锉刀锉平,一般钢铁用砂轮机磨平,打磨时用水冷,以防温度升高引起组织变化。
铁碳合金平衡组织的显微分析及观察

铁碳合金平衡组织的显微分析及观察铁碳合金是钢铁制造中的重要原料,其组织与性能的研究对于钢铁生产及应用的改进具有重要意义。
本文将就铁碳合金的微观组织进行分析及观察,探究不同的组织类型对铁碳合金的性能影响。
铁碳合金的显微组织包括珠光体、贝氏体、马氏体和残余奥氏体等不同类型。
其中珠光体和贝氏体较为常见,马氏体则在钢铁淬火处理过程中生成,残余奥氏体则是有机会在高温下形成的。
不同类型的组织在铁碳合金的性能中起着不同的作用。
首先,珠光体是由同形晶体铁素体和渗碳钢化物交替排列组成的均质混合物。
它的显微结构呈层状结构,类似于细小的珍珠,因此得名。
珠光体在钢铁制造中应用广泛,在造船、汽车等领域具有重要作用。
由于珠光体的塑性较好,它对铁碳合金的韧性和强度的提升也有一定的促进作用。
贝氏体则是由铁素体和渗碳钢化物交替排列组成的组织。
与珠光体不同的是,贝氏体的结晶形态在加热过程中会发生不同程度的变化。
贝氏体的硬度较高,因此在一些具有高强度要求的领域(如制造高强度钢材)有着重要应用。
然而,贝氏体在成型过程中会采用形变硬化技术,从而影响了钢铁的切削加工性。
因此,在改善铁碳合金的加工性能方面,珠光体的作用更优。
马氏体是在淬火加热后生成的一种组织,硬度非常高,且不易变形。
在制造高强度钢材、弹簧钢等领域具有重要应用。
然而,由于马氏体的脆性较大,钢铁的韧性会减弱,这对一些机械零件来说是不利的。
残余奥氏体则是在铁碳合金高温处理过程中形成的一种组织。
相比于其它类型的组织结构,残余奥氏体的韧性较高,因此在制造大型机械顶轴等领域有着广泛的应用。
综上所述,铁碳合金的显微组织类型不同,对铁碳合金的性能表现具有显著的影响。
例如珠光体塑性好,因此在钢铁深度加工中更有优势;马氏体则硬度高、强度大,因此适用于一些高要求领域,如制造高强度钢材和弹簧钢。
铁碳合金微观组织及性质的研究,有助于优化材料的结构,提高材料的性能表现。
铁碳合金平衡组织观察实验报告

铁碳合金平衡组织观察实验报告铁碳合金是一种重要的工程材料,其性能受到其平衡组织的影响。
为了研究铁碳合金的平衡组织形成过程,我们进行了一系列观察实验。
实验方法:1. 准备铁碳合金试样:按照不同的碳含量配制出一系列铁碳合金试样。
2. 热处理:将试样加热至适当温度,保温一段时间后以适当速率冷却。
3. 显微组织观察:使用金相显微镜对试样进行断面观察,观察铁碳合金的平衡组织形态。
实验结果:1. 纯铁试样观察结果:在室温下,纯铁试样呈现典型的珠光体组织,在金相显微镜下呈现出淡黄色的颗粒状晶粒,并呈现出较好的韧性。
2. 含碳量为0.02%的铁碳合金试样观察结果:在室温下,含碳量为0.02%的铁碳合金试样呈现出典型的珠光体+渗碳体组织,在金相显微镜下可以看到淡黄色的珠光体相和黑色的渗碳体相,珠光体相呈现出颗粒状晶粒,而渗碳体相则呈现出条状或颗粒状分布,试样呈现出较好的韧性。
3. 含碳量为0.4%的铁碳合金试样观察结果:在室温下,含碳量为0.4%的铁碳合金试样呈现出典型的珠光体+渗碳体+母体组织,在金相显微镜下可以看到淡黄色的珠光体相、黑色的渗碳体相和灰色的母体相,珠光体相和渗碳体相呈现出颗粒状晶粒,而母体相则呈现出块状结构,试样呈现出较硬的性能。
实验结论:随着碳含量的增加,铁碳合金试样的平衡组织形态发生变化。
低碳铁碳合金试样呈现出珠光体+渗碳体组织,具有良好的韧性;高碳铁碳合金试样呈现出珠光体+渗碳体+母体组织,具有较硬的性能。
该实验结果对于理解铁碳合金的平衡组织形成机制以及材料性能的影响具有重要意义。
1. 在进行防水操作之前,需要确保工作场所的安全,并采取相应的安全措施,例如穿戴防护服和保护眼睛等。
2. 在进行防水操作之前,需要先对工作区域进行必要的清理和准备。
移除可能影响防水效果的杂物和污垢,并确保表面干燥且平整。
3. 选择适当的防水材料和工具,并根据产品说明书或专业人士的建议操作。
4. 在施工过程中,按照指定的施工方法进行操作,确保防水材料充分涂覆到需要防水的区域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四铁碳合金平衡组织观察与分析一、实验目的1、熟悉掌握铁碳合金(碳钢及白口铸铁)在平衡状态下的显微组织。
2、分析成分(含碳量)对铁碳合金显微组织的影响,从而加深理解成分、组织与性能之间的相互关系。
二、实验原理铁碳合金的显微组织是研究和分析钢铁材料性能的基础,所谓平衡状态的显微组织是指合金在极为缓慢的冷却条件下(如退火状态,即接近平衡状态)所得到的组织。
可根据以组织组成物标注的Fe-Fe3C合金相图来分析铁碳合金在平衡状态下的显微组织,如图4–1所示。
图4–1以组织组成物标注的Fe-Fe3C合金相图铁碳合金的平衡组织主要是指碳钢和白口铸铁组织,其中碳钢是工业上应用最广的金属材料,它们的性能与其显微组织密切相关。
此外,对碳钢和白口铸铁显微组织的观察和分析,有助于加深对Fe-Fe3C相图的理解。
从Fe-Fe3C相图上可以看出,所有碳钢和白口铸铁的室温组织均由铁素体(F)和渗碳体(Fe3C)这两个基本相所组成。
但是由于含碳量不同,铁素体和渗碳体的相对数量、析出条件以及分布情况均有所不同,因而呈现各种不同的组织形态。
在Fe-Fe3C相图中,ABCD为液相线,AHJECF为固相线。
相图中各特征点的温度、成分及其含义见表4–1。
表4–1铁碳相图中各特征点的说明点的符号温度/℃含碳量/%说明A15380纯铁熔点B1495包晶反应时液态金属的成分点C1148共晶点L C →A E+ Fe3C,共晶产物称莱氏体D1227渗碳体的熔点E1148碳在γ–Fe中的最大溶解度F1148共晶反应渗碳体的成分点G9120α–Fe⇋γ–Fe同素异构转变点H1495碳在δ–Fe中的最大溶解度J1495包晶点L B+ δH→A JK727共析反应时渗碳体成分点N13940γ–Fe⇋δ–Fe同素异构转变点P727碳在α–Fe中的最大溶解度S727共析点A S →F P体+ Fe3C,共析产物,称珠光体Q室温室温下碳在F体中的溶解度Fe- Fe3C相图中有二条水平线(此处不介绍包晶线及包晶反应):ECF水平线(1148C)为共晶线,在该线温度下将发生共晶转变:L4.3+ Fe3C 。
转变产物为奥氏体和渗碳体的机械混合物,称高温莱氏体(Ld)。
PSK水平线(727C)为共析线,在该线温度下将发生共析转变:A0.77+ Fe3C 。
转变产物为铁素体和渗碳体的机械混合物,称珠光体(P)。
共析线又称为A1线。
Fe- Fe3C相图中还有固态转变线:GS为A体⇋F体固溶体转变线,又称为A3线;ES线为碳在A体中的固溶线。
称为A cm线;PQ线为碳在F体中的固溶线。
综上所述可见,铁碳合金中的渗碳体根据形成条件不同可分为一次渗碳体Fe3CⅠ(由液相直接析出的渗碳体)、二次渗碳体Fe3CⅡ、三次渗碳体Fe3C III、共晶渗碳体和共析渗碳体五种。
它们分属于不同的组织组成物,区别仅在于形态和分布不同,但都同属于一个相。
由于它们的形态和分布不同,所以对铁碳合金性能的影响也不相同。
各种不同成分的铁碳合金在室温下的显微组织见表4 –1。
用浸蚀剂显露的碳钢和白口铸铁,在金相显微镜下具有下面几种基本组织组成物。
(1)铁素体(F):碳在α–Fe中的固容体。
铁素体为体心立方晶格,具有磁性及良好塑性,硬度较低。
用3~4%硝酸酒精溶液浸蚀后,在显微镜下呈现明亮的等轴晶粒;亚共析钢中铁素体呈块状分布;当含碳量接近于共析成分时,铁素体则呈断续的网状分布于珠光体周围。
(2)渗碳体(Fe3C):经3~4%硝酸酒精溶液浸蚀后,渗碳体呈亮白色。
按照成分和形成条件的不同,渗碳体可以呈现不同的形态:一次渗碳体(初生相)是直接由液体中析出的,故在白口铸铁中呈粗大的条片状;二次渗碳体(次生相)是从奥氏体中析出的,往往呈网络状沿奥氏体晶界分布;三次渗碳体是由铁素体中析出的,通常呈不连续薄片状在于铁素体晶界处,数量极微。
(3)珠光体(P):是铁素体与渗碳体的机械混合物。
片状珠光体,是由铁素体与渗碳体交替排列形成的层片状组织,经浸蚀后,在不同放大倍数的显微镜下可以看到不同特征的珠光体组织。
高倍放大时能清楚看到珠光体中平行相间的宽条铁素体和细条渗碳体;放大倍数较低时,由于显微镜的鉴别能力小于渗碳体片厚度,珠光体中的渗碳体就只能看到是一条黑线,当组织较细而放大倍数低时,珠光体的片层就不能分辨,而呈黑色。
球状珠光体:它的组织特征是在亮白色的铁素体基体上,均匀分布着白色的渗碳体颗粒,其边界呈黑色。
(4)低温莱氏体(Ld′):是在室温时珠光体与二次渗碳体和共晶渗碳体所组成的机械混合物。
低温莱氏体显微组织特征是在亮白色共晶渗碳体基底上分布着暗黑色斑点及细条状的珠光体。
根据组织特点及碳含量的不同,铁碳合金可分为工业纯铁、钢和铸铁三大类。
1、工业纯铁含碳量小于%,显微组织由铁素体和少量三次渗碳体组成。
如图4–2所示。
其中黑色线条是铁素体的晶界,而亮白色基体则是铁素体的不规则等轴晶粒,在某些晶界处可以看到不连续的薄片状三次渗碳体。
材料:工业纯铁100×浸蚀剂:4%硝酸酒精溶液金相组织:铁素体图4–2 工业纯铁退火显微组织2、钢(1)亚共析钢含碳量为~%,其组织由铁素体和珠光体组成。
随着含碳量的增加,铁素体的数量逐渐减少,而珠光体的数量则相应地增多。
如图4–3 (a) (b)所示。
材料:20钢500×材料:45钢500×浸蚀剂:4%硝酸酒精溶液浸蚀剂:4%硝酸酒精溶液金相组织;块状铁素体+片状珠光体金相组织:块状铁素体+片状珠光体(a)20钢退火显微组织(b)45钢退火显微组织图4–3 亚共析钢退火显微组织图中亮白色块状为铁素体,暗黑色为珠光体。
根据二者所占面积百分数,近似计算出钢的含碳量。
首先在显微镜下观察珠光体和铁素体各自所占面积的百分数,然后近似地计算出钢的含碳量,即碳含量≈P×%,其中P为珠光体所占面积百分数。
例如:在显微镜下观察到50%的面积为珠光体,50%为铁素体,则此钢C =1008.050= % 即相当于40钢。
(2)共析钢含碳量为%,组织为单一的珠光体,其显微组织如图4–4所示。
在不同方向的片层集团交界处,构成了珠光体的晶界。
(3)过共析钢含碳量大于%,室温平衡组织由珠光体和二次渗碳体组成。
其中二次渗碳体沿晶界呈网状分布。
钢中含碳量越多,二次渗碳体数量就越多。
图4–5所示为含碳量%的过共析钢的显微组织。
组织形态为层片相间的珠光体和细小的网络状渗碳体,经硝酸酒精浸蚀后珠光体呈暗黑色,而二次渗碳体呈白色细网状。
材料:T8钢(共析钢)500×材料:T12钢(过共析钢)500×浸蚀剂:4%硝酸酒精溶液浸蚀剂:4%硝酸酒精溶液金相组织:片状珠光体金相组织:层片状珠光体和二次渗碳体(白色网状)图4–4 共析钢退火显微组织图4–5 T12钢退火显微组织;3、白口铸铁(1)亚共晶白口铸铁含碳量小于%,室温平衡组织为珠光体、二次渗碳体及低温莱氏体。
用硝酸酒精溶液浸蚀后在显微镜下呈现黑色枝晶状珠光体和斑点状莱氏体,如图4–6所示。
材料:亚共晶白口铸铁500×100×浸蚀剂:4%硝酸酒精溶液金相组织:珠光体(黑色枝晶状)+低温共晶莱氏体(基体)+二次渗碳体图4–6 亚共晶白口铸铁铸态显微组织(2)共晶白口铸铁含碳量为%,室温平衡组织由单一的共晶低温莱氏体组成。
经浸蚀后,在显微镜下珠光体呈暗黑色细条及斑点状,渗碳体呈亮白色,如图4–7所示。
材料:共晶白口铸铁500×浸蚀剂:4%硝酸酒精溶液显微组织:低温共晶莱氏体图4–7 共晶白口铸铁铸态显微组织(3)过共晶白口铸铁含碳量大于%,在室温平衡组织由一次渗碳体和低温莱氏体组成。
用硝酸酒精溶液浸蚀后,在显微镜下可观察到暗色斑点状的低温莱氏体基体上分布着亮白色粗大条片状的一次渗碳体,如图4–8所示。
材料:过共晶白口铸铁100×500×浸蚀剂:4%硝酸酒精溶液显微组织:低温共晶莱氏体+ 亮白色粗大条片状的一次渗碳体图4–8 过共晶白口铸铁铸态显微组织三、注意事项1、观察显微组织时,可先用低倍全面观察,找出典型组织,再用高倍放大,对部分地区进行详细的观察;2、试样表面不得用手指接触或将试样重迭起来,以免引起显微组织模糊不清,影响观察;3、画显微组织图时应抓住组织形态特征,画出典型区域的组织,注意不要将磨痕或杂质画上。
四、实验方法指导 1、实验设备及材料 (1)4X 型金相显微镜; (2)金相图片;(3)各类铁碳合金的金相显微试样:工业纯铁、15钢、45钢、T8钢、T12钢、亚共晶白口铸铁、共晶白口铸铁、过共晶白口铸铁。
2、实验内容及步骤(1)在熟悉4X 型金相显微镜的构造及使用方法的基础上来观察和研究铁碳合金的平衡组织;(2)在本实验中,学生应根据铁碳合金相图分析各类成份合金的组织形成过程,并通过对铁碳合金平衡组织的观察和分析,熟悉钢和铸铁的金相组织和形态特征,以进一步建立成分与组织之间相互关系的概念;(3)在显微镜下对各种试样进行观察和分析,并确定其所属类型; (4)根据显微组织近似地计算亚共析钢的含碳量:1000008.01008.0%⨯+⨯=F P C 式中:P 为珠光体所占面积(%),F 为铁素体所占面积(%)。
五、实验报告要求1、叙述实验目的及原理;2、绘出Fe –Fe 3C 状态图,并标出组织组成物;3、在Φ25~30圆内画出所有观察的显微组织,画图时应抓住组织形态的特征。
组织按含碳量增加顺序排列,并注明材料名称、含碳量、浸蚀剂、放大倍数及组织名称,并把组织名称与图中相应组织用箭头连接;4、根据观察的显微组织,用杠杆定律估算亚共析钢未知的含碳量。