金陵科技学院自动控制原理课程设计

合集下载

自动控制原理课程设计

自动控制原理课程设计

自动控制原理课程设计一、设计任务书题 目:同时提高机器人转动关节的稳定性和操作性能,始终是一个具有挑战性的问题。

提高增益可以满足对稳定性的要求,但随之而来的是无法接受过大的超调量。

用于转动控制的电-液压系统的框图如下,其中,手臂转动的传动函数为)150/6400/(100)(2++=s s s G s试设计一个合适的校正网络,使系统的速度误差系数20=v K ,阶跃响应的超调量小于%10。

二、设计过程(一)人工设计过程解:根据初始条件,调整开环传递函数:G(s)=)1506400(1002++s s s要求kv=20,σp≤10%未加补偿时的开环放大系数K=100/s ,校正后K =kv=20/s,因此需要一个k1=51的比例环节,增加此环节后的幅值穿越频率变为20rad/s.计算相位裕度: 由20lg100-20lg80=60lgωc =3210080⨯=86.2rad/sγ0=180-+-18090arctan 16.172.1=-34<0因此系统不稳定先计算相位裕度,判断不稳定由bode 图知系统低频段已满足要求。

待补偿系统在希望的幅值穿越频率ωc附近的中频段的开环对数幅频特性的斜率是-20Db/dec,但该频段20lgG>0Db.因此考虑用滞后补偿。

技术指标为σp=10%,利用教材上的经验公式已无法达到要求。

在另一本教材(《自动控制原理》(第2版)),吴麒主编,清华大学出版社,有另一经验公式σp=γ2000-20利用此公式,得相位裕度γ>67% 技术指标对幅值穿越没有要求。

技术指标对幅值穿越频率ωc没有要求。

20lg G中ω<20时斜率为-20dB/dec ,拟将这部分作为中频段,取ωc=16rad/s在0dB 线上取ωc=16的点B过B 作-20dB/dec 直线至ω=80rad/s 处点C 。

延长CF 至点D ,点D 的角频率就是滞后补偿网络的转折频率ω1。

自动控制原理课程设计

自动控制原理课程设计

自动控制原理课程设计一、引言自动控制原理课程设计是为了帮助学生深入理解自动控制原理的基本概念、原理和方法,通过实际项目的设计与实现,培养学生的工程实践能力和创新思维。

本文将详细介绍自动控制原理课程设计的标准格式,包括任务目标、设计要求、设计方案、实施步骤、实验结果及分析等内容。

二、任务目标本次自动控制原理课程设计的目标是设计一个基于PID控制算法的温度控制系统。

通过该设计,学生将能够掌握PID控制算法的基本原理和应用,了解温度传感器的工作原理,掌握温度控制系统的设计和实现方法。

三、设计要求1. 设计一个温度控制系统,能够自动调节温度在设定范围内波动。

2. 使用PID控制算法进行温度调节,实现温度的精确控制。

3. 使用温度传感器实时监测温度值,并将其反馈给控制系统。

4. 设计一个人机交互界面,能够实时显示温度变化和控制系统的工作状态。

5. 设计一个报警系统,当温度超出设定范围时能够及时发出警报。

四、设计方案1. 硬件设计方案:a. 使用温度传感器模块实时监测温度值,并将其转换为电信号输入到控制系统中。

b. 控制系统使用单片机作为主控制器,通过PID控制算法计算控制信号。

c. 控制信号通过电路板连接到执行器,实现温度的调节。

d. 设计一个报警电路,当温度超出设定范围时能够触发警报。

2. 软件设计方案:a. 使用C语言编写单片机的控制程序,实现PID控制算法。

b. 设计一个人机交互界面,使用图形化界面显示温度变化和控制系统的工作状态。

c. 通过串口通信将温度数据传输到电脑上进行实时监控和记录。

五、实施步骤1. 硬件实施步骤:a. 搭建温度控制系统的硬件平台,包括温度传感器、控制系统和执行器的连接。

b. 设计并制作电路板,将传感器、控制系统和执行器连接在一起。

c. 进行硬件连接调试,确保各个模块正常工作。

2. 软件实施步骤:a. 编写单片机的控制程序,实现PID控制算法。

b. 设计并编写人机交互界面的程序,实现温度变化和控制系统状态的实时显示。

自动控制原理课程设计

自动控制原理课程设计

自动控制原理课程设计1000字随着科学技术的不断发展,自动控制技术在现代工业生产中已经广泛应用。

在这其中,自动控制原理是自动控制技术中最基础、最重要的理论课程之一。

本文通过对自动控制原理课程设计的阐释,介绍一下该课程的内容、目的和方法。

一、自动控制原理的内容自动控制原理的内容涉及科学基础理论、数学工具和计算机方法,它主要包括以下几个方面:1. 控制系统的基础概念:控制系统的基本概念、控制系统的分类、控制系统的组成和控制系统的传动机构等。

2. 控制系统的数学模型:从物理规律和经验中推导出数学模型,建立控制系统的数学模型。

3. 控制系统的性能评价:针对控制系统的稳态性、动态性、准确性等性能指标进行评价。

4. 控制系统的设计方法:根据控制要求,通过合适的控制方法设计出控制方案。

5. 控制系统的稳态分析:控制系统的稳态特性分析,包括稳态误差计算、校正系数设计等方面。

二、自动控制原理课程设计的目的自动控制原理课程设计的主要目的是为了让学生在学习自动控制原理的基础理论的同时,完成具体的控制系统设计和仿真实验。

这可以帮助学生更好地掌握自动控制原理的方法和技巧。

1. 提高学生的实践能力:通过自动控制原理课程设计,学生可以更好地了解自动控制原理的实际应用及其特点,提高了学生的实践动手能力。

2. 增强学生自主学习能力:课程设计需要运用数学知识、自动控制原理、计算机技术进行综合应用,这提高了学生对多种知识的综合应用能力。

3. 培养学生的团队协作能力:课程设计过程中,需要学生们共同完成,这有助于团队协作能力的提升。

三、自动控制原理课程设计的方法自动控制原理课程设计方法主要包括以下几个方面:1. 确定课程内容和设计要求:课程设计前,应该明确整个课程设计的要求和任务,确定设计方案与设计目标。

2. 建立数学模型和仿真平台:根据课程要求,选择合适的模型,进行控制系统的建模。

确定仿真平台,配置必要的软硬件环境。

3. 设计算法:针对控制系统的稳态性、动态性、准确性等性能指标,结合数学模型,设计合适的控制算法。

自动控制原理课程设计

自动控制原理课程设计

用频率法设计串联超前校正装置一 校正函数的设计1校正步骤应用频率特性法设计串联超前校正装置的步骤如下: (1) 根据稳态误差要求,确定开环增益K 。

(2) 利用已确定的开环增益K ,计算未校正系统的相角裕量。

(3)确定已校正系统希望的剪切频率W ,计算超前网络参数a 和T 。

(4)验算以校正系统的相角裕量。

由于超前网络的参数是根据满足系统剪切频率要求选择的,因此相角裕量是否满足要求,必须验算。

(5)确定超前校正器传递函数的参数。

(6)画出校正后的系统的Bode 图,并验算已校正系统相角裕量和幅值裕量。

2设计部分2K G(S)S (0.2S 1)=+,试用频率法设计串联超前校正装置,使系统的相角裕量035γ≥,静态加速度误差系数a K 10=(1) 由静态加速度误差系数 Ka=10,所以,该系统的开环传递函数为,校正前系统的特征根程序运行的结果可以看出系统的全部特征根的实部有正值,在坐标轴的右边,可看出系统不稳定。

(2)利用已经确定的开环增益K 0,画出未校正的系统的Bode 图,确定未校正系统的剪切频率,相稳定裕度。

G输入MATLAB 程序如下: 校正前的Bode 图为:幅值稳定裕度: dB 相角稳定裕度:°- 穿越频率:0 rad/s 剪切频率:相角稳定裕度为-30.4度小于零,说明闭环系统是不稳定的。

未校正系统的单位阶跃响应未校正系统单位脉冲响应未校正单位斜坡响应校正前系统不稳定,其单位斜坡响应发散,稳态误差为无穷大。

未校正的根轨迹图与虚轴交点,分离点的增益未校正后的Nyquist图系统的nyquist 曲线看出,曲线包围(-1 ,0),开环传递函数右半平面的极点为0.即p=0,z=n+p 不为0,系统不稳定。

(3) 利用MATLAB 语言计算出超前校正器的传递函数。

由相角裕量、幅值裕量和设计条件确定串联超前校正转置的参数,从而得到串联超前网络传递函数和校正后开环传递函数。

由期望的相角裕量r ,计算校正系统应提供的超前角最大值m ϕεϕ+-=1m r r(因为未校正系统的开环对数幅频特性在剪切频率处的斜率为-40dB/dec ,一般取010~5o =ε)所以o o m 70.4)10~530.453=++=o o o (ϕ 又因为11arcsin+-=a a m ϕ 解得161.44761=α0097.01T 1==αωmTsTss G c ++=11)(1αα 所以校正装置传递函数1.0097011.56)12.0(01)()(21+++=s s s s S G S G c校正后系统的开环传递函数为1.0097011.56)12.0(01)()(21+++=s s s s S G S G c校正后的特征根程序运行的结果可以看出系统的全部特征根的实部都是负值,在坐标轴的左边,可看出系统稳定。

自动控制原理课程设计

自动控制原理课程设计

自动控制原理课程设计一、课程目标知识目标:1. 理解自动控制原理的基本概念,掌握控制系统数学模型的建立方法;2. 掌握控制系统性能指标及其计算方法,了解各类控制器的设计原理;3. 学会分析控制系统的稳定性、快速性和准确性,并能够运用所学知识对实际控制系统进行优化。

技能目标:1. 能够运用数学软件(如MATLAB)进行控制系统建模、仿真和分析;2. 培养学生运用自动控制原理解决实际问题的能力,提高学生的工程素养;3. 培养学生团队协作、沟通表达和自主学习的能力。

情感态度价值观目标:1. 培养学生对自动控制原理的兴趣,激发学生探索科学技术的热情;2. 培养学生严谨、务实的学术态度,树立正确的价值观;3. 增强学生的国家使命感和社会责任感,认识到自动控制技术在国家经济建设和国防事业中的重要作用。

本课程针对高年级本科学生,结合学科特点和教学要求,将目标分解为具体的学习成果,为后续的教学设计和评估提供依据。

课程注重理论与实践相结合,提高学生的实际操作能力和解决实际问题的能力,为培养高素质的工程技术人才奠定基础。

二、教学内容本课程教学内容主要包括以下几部分:1. 自动控制原理基本概念:控制系统定义、分类及其基本组成;控制系统的性能指标;控制系统的数学模型。

2. 控制器设计:比例、积分、微分控制器的原理和设计方法;PID控制器的参数整定方法。

3. 控制系统稳定性分析:劳斯-赫尔维茨稳定性判据;奈奎斯特稳定性判据。

4. 控制系统性能分析:快速性、准确性分析;稳态误差计算。

5. 控制系统仿真与优化:利用MATLAB软件进行控制系统建模、仿真和分析;控制系统性能优化方法。

6. 实际控制系统案例分析:分析典型自动控制系统的设计原理及其在实际工程中的应用。

教学内容按照以下进度安排:第一周:自动控制原理基本概念及控制系统性能指标。

第二周:控制系统的数学模型及控制器设计。

第三周:PID控制器参数整定及稳定性分析。

第四周:控制系统性能分析及MATLAB仿真。

自动控制原理校正课程设计-- 线性控制系统校正与分析

自动控制原理校正课程设计-- 线性控制系统校正与分析

自动控制原理校正课程设计-- 线性控制系统校正与分析课程设计报告书题目线性控制系统校正与分析院部名称机电工程学院专业10电气工程及其自动(单)班级组长姓名学号设计地点工科楼C 214设计学时1周指导教师金陵科技学院教务处制目录目录 (3)第一章课程设计的目的及题目 (4)1.1课程设计的目的 (4)1.2课程设计的题目 (4)第二章课程设计的任务及要求 (6)2.1课程设计的任务 (6)2.2课程设计的要求 (6)第三章校正函数的设计 (7)3.1设计任务 (7)3.2设计部分 (7)第四章系统动态性能的分析 (10)4.1校正前系统的动态性能分析 (10)4.2校正后系统的动态性能分析 (13)第五章系统的根轨迹分析及幅相特性 (16)5.1校正前系统的根轨迹分析 (16)5.2校正后系统的根轨迹分析 (18)第七章传递函数特征根及bode图 (20)7.1校正前系统的幅相特性和bode图 (20)7.2校正后系统的传递函数的特征根和bode图 (21)第七章总结 (23)参考文献 (24)第一章 课程设计的目的及题目1.1课程设计的目的⑴掌握自动控制原理的时域分析法,根轨迹法,频域分析法,以及各种补偿(校正)装置的作用及用法,能够利用不同的分析法对给定系统进行性能分析,能根据不同的系统性能指标要求进行合理的系统设计,并调试满足系统的指标。

⑵学会使用MATLAB 语言及Simulink 动态仿真工具进行系统仿真与调试。

1.2课程设计的题目 已知单位负反馈系统的开环传递函数)125.0)(1()(0++=s s s K s G ,试用频率法设计串联滞后校正装置,使系统的相角裕量 30>γ,静态速度误差系数110-=s K v 。

\第二章课程设计的任务及要求2.1课程设计的任务设计报告中,根据给定的性能指标选择合适的校正方式对原系统进行校正(须写清楚校正过程),使其满足工作要求。

然后利用MATLAB对未校正系统和校正后系统的性能进行比较分析,针对每一问题分析时应写出程序,输出结果图和结论。

自动控制原理课程设计

自动控制原理课程设计

自动控制原理课程设计
自动控制原理课程设计是针对自动控制原理课程的学习内容和要求进行的实践性教学任务。

其目的是通过设计和实现一个自动控制系统,加深学生对自动控制原理的理解和应用能力。

一般来说,自动控制原理课程设计包括以下几个步骤:
1. 选题:根据课程要求和学生的实际情况,选择一个合适的自动控制系统作为课程设计的对象。

可以选择一些简单的控制系统,如温度控制、水位控制等,也可以选择一些复杂的控制系统,如飞行器控制、机器人控制等。

2. 系统建模:对选定的控制系统进行建模,包括确定系统的输入、输出和状态变量,建立系统的数学模型。

可以使用传递函数、状态空间等方法进行建模。

3. 控制器设计:根据系统模型和控制要求,设计合适的控制器。

可以使用经典控制方法,如比例积分微分(PID)控制器,也可以使用现代控制方法,如状态反馈控制、最优控制等。

4. 系统仿真:使用仿真软件(如MATLAB/Simulink)对设计的控制系统进行仿真,验证控制器的性能和稳定性。

5. 硬件实现:将设计的控制器实现到实际的硬件平台上,如单片机、PLC等。

可以使用编程语言(如C语言、Ladder图等)进行编程。

6. 系统调试:对实际的控制系统进行调试和优化,使其达到设计要求。

可以通过实验和测试来验证系统的性能。

7. 实验报告:根据课程要求,撰写实验报告,包括实验目的、方法、结果和分析等内容。

通过完成自动控制原理课程设计,学生可以深入理解自动控制原理的基本概念和方法,掌握控制系统的设计和实现技术,提高自己的实践能力和创新能力。

自动控制原理课程设计

自动控制原理课程设计

自动控制原理课程设计课程编号j1630102课程名称自动控制原理课程设计学生姓名所在班级联系电话实施地点起止时间2012.12.24--2012.12.28指导教师职称副教授一、课程设计的意义:1.学习和掌握典型高阶系统动静态性能指标的测试方法。

2.分析典型高阶系统参数对系统稳定性和动静态性能的影响。

3.掌握典型系统的电路模拟和数字仿真研究方法。

二、课程设计的主要内容:典型三阶系统的结构方框图如图1所示:其开环传递函数为)1)(1()(21021++=S T S T S T K K S G ,本实验在此开环传递函数基础上做如下实验内容:1.典型三阶系统电路模拟研究;2.运用Simulink 对该典型三阶系统进行数字仿真研究。

; 3.分析比较电路模拟和数字仿真研究结果。

三、课程设计的实验步骤1、熟悉实验流程,设计并连接由一个积分环节和两个惯性环节组成的三阶闭环系统的模拟电路;2、利用Multisum 仿真模拟电路并观测的阶跃特性,并测出其超调量,调节时间和稳态误差;3、改变三阶系统模拟电路的参数,观测参数改变对系统稳定性与动态指标的影响。

4、调用上机软件Matlab 仿真程序,观测三阶系统模拟电路的阶跃特性,并测出其超调量,调节时间和稳态误差;5、改变三阶系统传递函数的参数,观测参数改变对系统稳定性与动态指标的影响。

6、完成三阶系统的动态性能研究,并与模拟电路的研究结果比较,分析实验结果。

四、课程实验数据记录图1 典型三阶系统结构方框图图1 典型三阶系统的结构方框图1、三阶系统模拟电路2、改变参数K的值观察三阶系统模拟电路的阶跃特性(1)(1)K=7.5, T0=1,T l=0.1, T2=0.5σ %=0.71, Ts=14.6s , ess=0 (2)K=10, T0=1,T l=0.1, T2=0.5σ %=0.848, Ts=28.4s , ess=0(3)K=12, T0=1,T l=0.1, T2=0.5σ %=0.98, Ts= 无法计算 , ess=不存在(4)K=15, T0=1,T l=0.1, T2=0.53、改变时间常数观察三阶系统模拟电路的阶跃特性(1)K =15,T0=0.55,T l=0.25,T2=0.25(2)K =15,T0=0.55,T l=0.25,T2=0.554、K=10,参数T0,T1,T2的值都减少(1)K =10,T 0=0.55,T l =0.25,T2=0.055σ %=0.838, Ts=16.5s , ess=05、设计的数字模型及数字仿真结果 仿真图:该系统开环传递函数为12120120121()(1)*()*()*()11(1)(1)K K K K G S T S T S T S T S T S T S =----=++++其中T 0=10u *100k=1S ;T 1=1u *100k=0.1S ;T 2=1u *500k=0.5S ;K 1=100k /100k=1;K 2=500/R x ;即)15.0)(11.0()1)(1()(21021++=++=S S S KS T S T S T K K S G 其中,K =500/R x ,R x 的单位为k。

《自动控制原理》课程设计报告

《自动控制原理》课程设计报告

《自动控制原理》课程设计报告《自动控制原理》课程设计(理工类)课程名称:自动控制原理专业班级: 08自动化(1)班学生学号: 0804110601 学生姓名:丁丽华所属院部:机电工程学院指导教师:陈丽换2021 ——2021 学年第二学期金陵科技学院教务处制金陵科技学院《自动控制原理》课程设计任务书课程序号 32 课程编号04184500实践序号 10 设计名称自动控制原理课程设计适用年级、专业 08自动化时间 1 周一、设计目的:1、了解控制系统设计的一般方法、步骤。

2、掌握对系统进行稳定性分析、稳态误差分析以及动态特性分析的方法。

3、掌握利用MATLAB对控制理论内容进行分析和研究的技能。

4、提高分析问题解决问题的能力。

二、设计内容与要求:设计内容:1、阅读有关资料。

2、对系统进行稳定性分析、稳态误差分析以及动态特性分析。

3、绘制根轨迹图、Bode图、Nyquist图。

4、设计校正系统,满足工作要求。

设计条件:1、已知单位负反馈系统被控制对象的传递函数为G(S)?K0S(S?1)(S?2)设计要求:1、能用MATLAB解复杂的自动控制理论题目。

2、能用MATLAB设计控制系统以满足具体的性能指标。

3、能灵活应用MATLAB的CONTROL SYSTEM 工具箱和SIMULINK仿真软件,分析系统的性能。

设计题目: G(S)?K0,试用频率法设计串联滞后——超前校正装置,使系统S(S?1)(S?2)0的相角裕量??45,静态速度误差系数Kv?10s?1,截止频率不低于1.5rads设计步骤:1、静态速度误差系数Kv?10s?1,即当S—>0时,G(S)?即被控对象的开环传递函数:G(S)=K0=10,解得K0=20s-1。

S(S?1)(S?2)20。

S(S?1)(S?2)2、滞后校正器的传递函数为:GC1(S)=1?bTS1?TS根据题目要求,取校正后系统的截止频率WC=1.5rad/s,先试取b=0.105,编写求滞后校正器的传递函数的MATLAB的程序如下:wc=1.5;k0=20;n1=1; d1=conv(conv([1 0],[1 1]),[1 2]);b=0.105;T=1/(0.1*wc); B=b*T;Gc1=tf([B 1],[T 1])将程序输入MATLAB mand Window后,并按回车,mand Window出现如下代数式:6.667s?163.33s?1由式可知:b=0.105,T=63.33。

自动控制原理课程设计

自动控制原理课程设计

总结词
自动控制系统是一种无需人为干 预,能够根据输入信号和系统内 部参数自动调节输出信号,以实 现特定目标的系统。
详细描述
自动控制系统通过传感器检测输 入信号,经过控制器处理后,输 出控制信号驱动执行机构,以调 节被控对象的输出参数。
自动控制系统分类
总结词
根据不同的分类标准,可以将自动控制系统分为多种类型。
生对自动控制原理的理解和应用能力。
03
教学效果
通过本次课程设计,学生能够掌握自动控制系统的基本原理和设计方法,
具备一定的系统分析和设计能力,为后续的专业学习和实践打下坚实的
基础。
课程设计展望
加强实践环节
在未来的课程设计中,可以进一步增加实践环节的比重,通过更多的实验和项目实践,提 高学生的动手能力和解决实际问题的能力。
软件测试与调试
对软件进行测试和调试,确保软件功能正确、 稳定。
控制系统应用实例
温度控制系统
以温度为被控量,实现温 度的自动控制,应用于工 业、农业等领域。
液位控制系统
以液位为被控量,实现液 位的自动控制,应用于化 工、水处理等领域。
电机控制系统
以电机转速或位置为被控 量,实现电机的自动控制, 应用于工业自动化、电动 车等领域。
详细描述
根据控制方式,自动控制系统可以分为开环控制系统和闭环 控制系统;根据任务类型,可以分为调节系统、随动系统和 程序控制系统;根据控制对象的特性,可以分为线性控制系 统和非线性控制系统。
自动控制系统基本组成
总结词
自动控制系统通常由输入环节、控制环节、执行环节和被控对象组成。
详细描述
输入环节负责接收外部信号并将其传输给控制环节;控制环节通常由控制器组 成,用于处理输入信号并产生控制信号;执行环节接收控制信号并驱动执行机 构;被控对象是受控对象,其输出参数由执行机构调节。

自动控制原理课程设计报告

自动控制原理课程设计报告

自动控制原理课程设计报告自动控制是工程学的重要组成部分,它是一种数学模型,可以控制复杂的过程和系统,从而使其稳定运行,并获得最佳的性能。

自动控制的原理在许多工程领域中都有广泛的应用,如化工、航空航天、机械、电力等。

本文将介绍如何利用自动控制原理来设计一个系统,以优化系统性能。

首先要设计一个控制系统,可以实现对系统的自动控制。

控制系统的第一步是定义系统模型。

一般来说,系统模型有两种:非线性模型和线性模型,其中线性模型更为简单,也是设计自动控制系统的常用模型。

接下来,需要确定控制系统的类型。

一般来说,自动控制系统可以分为闭环控制系统和开环控制系统,其中闭环控制系统具有更高的精度和更好的稳定性,它通过检测控制量的反馈信号与设定值进行比较,以实现对系统的控制。

此外,还需要为控制系统设计一个优化的控制器,用于控制系统的运行状态。

一般来说,有两种主要的控制器:PID控制器和经验模型控制器。

PID控制器是最常用的控制器,它可以控制系统的振荡和滞后,并且可以根据不同情况自动调整参数。

另一种控制器是经验模型控制器,它主要用于复杂的非线性系统,可以有效的抑制噪声,并对系统的响应时间进行调节。

完成了以上步骤后,就可以搭建出一个自动控制系统,以达到优化系统性能的目的。

实际的设计过程要根据实际的应用场景进行相应的调整,实现最佳的系统性能。

例如,在机器人控制系统中,需要使用传感器和控制器来实现对机器人运动的控制,以达到最佳性能。

综上所述,自动控制原理在设计控制系统时十分重要,可以有效的解决复杂的控制问题,并有助于优化系统性能。

本文只是简要介绍了自动控制系统的基本原理,实际的设计和实现过程要根据具体的应用环境而定,还需要从不同的方面进行充分的研究。

金陵科技学院课程设计

金陵科技学院课程设计

金陵科技学院课程设计一、课程目标知识目标:1. 学生能掌握《金陵科技学院》本章节所讲述的基本科学原理和概念,如物质的组成、能量转换等;2. 学生能理解并描述科技发展对社会进步的重要性,特别是在我国的历史背景下;3. 学生能了解金陵科技学院在科技创新方面的贡献和特色。

技能目标:1. 学生通过实践操作,提升观察、分析、解决问题的能力;2. 学生能运用所学知识,设计简单的科技制作或实验,提高动手操作能力;3. 学生能在团队中有效沟通、协作,培养团队合作精神。

情感态度价值观目标:1. 学生培养对科学的兴趣和好奇心,激发探索未知世界的热情;2. 学生树立科技创新的信心,认识到科技对国家和社会发展的意义;3. 学生在学习过程中,培养严谨、务实、创新的学习态度,提高自我要求;4. 学生通过了解金陵科技学院的优秀传统和科技成果,增强民族自豪感,培养爱国主义情怀。

本课程目标具体、可衡量,旨在使学生在掌握知识、技能的同时,培养积极情感态度和正确的价值观,为我国科技事业的发展贡献力量。

在教学过程中,将根据学生的特点和教学要求,分解课程目标为具体的学习成果,以便进行教学设计和评估。

二、教学内容本章节教学内容紧密结合课程目标,选择以下内容进行组织:1. 科学原理与概念:物质的组成、能量转换、科技发展历程等;- 教材章节:第一章“科技与生活”第1-3节;2. 实践操作与技能培养:简单科技制作、实验设计与操作;- 教材章节:第二章“动手动脑,学科技”第4-6节;3. 科技创新与人物事迹:金陵科技学院优秀科技成果及贡献;- 教材章节:第三章“科技创新,引领未来”第7-9节;4. 团队合作与沟通:以小组形式开展实践活动,培养团队协作能力;- 教材章节:第四章“合作共进,科技的力量”第10-12节。

教学大纲安排如下:1. 引言:介绍本章节学习目标和要求,激发学生兴趣;2. 理论学习:讲解科学原理与概念,结合教材内容进行深入剖析;3. 实践操作:指导学生进行简单科技制作和实验操作,培养动手能力;4. 科技创新分享:介绍金陵科技学院的优秀科技成果和人物事迹,激发学生创新意识;5. 团队合作:组织小组活动,培养学生团队合作精神和沟通能力;6. 总结与反思:对本章节所学内容进行总结,引导学生进行自我反思。

金陵科技学院自动控制原理课程设计

金陵科技学院自动控制原理课程设计

绪论 (1)一课程设计的目的及题目 (2)1.1课程设计的目的 (2)1.2课程设计的题目 (2)二课程设计的任务及要求 (3)2.1课程设计的任务 (3)2.2课程设计的要求 (3)三校正函数的设计 (4)3.1理论知识 (4)3.2设计部分 (5)四传递函数特征根的计算 (8)4.1校正前系统的传递函数的特征根 (8)4.2校正后系统的传递函数的特征根 (10)五系统动态性能的分析 (11)5.1校正前系统的动态性能分析 (11)5.2校正后系统的动态性能分析 (15)六系统的根轨迹分析 (19)6.1校正前系统的根轨迹分析 (19)6.2校正后系统的根轨迹分析 (21)七系统的奈奎斯特曲线图 (23)7.1校正前系统的奈奎斯特曲线图 (23)7.2校正后系统的奈奎斯特曲线图......... 错误!未定义书签。

4 八系统的对数幅频特性及对数相频特性...... 错误!未定义书签。

8.1校正前系统的对数幅频特性及对数相频特性 (25)8.2校正后系统的对数幅频特性及对数相频特性 (27)总结................................... 错误!未定义书签。

8 参考文献................................ 错误!未定义书签。

在控制工程中用得最广的是电气校正装置,它不但可应用于电的控制系统,而且通过将非电量信号转换成电量信号,还可应用于非电的控制系统。

控制系统的设计问题常常可以归结为设计适当类型和适当参数值的校正装置。

校正装置可以补偿系统不可变动部分(由控制对象、执行机构和量测部件组成的部分)在特性上的缺陷,使校正后的控制系统能满足事先要求的性能指标。

常用的性能指标形式可以是时间域的指标,如上升时间、超调量、过渡过程时间等(见过渡过程),也可以是频率域的指标,如相角裕量、增益裕量(见相对稳定性)、谐振峰值、带宽(见频率响应)等。

常用的串联校正装置有超前校正、滞后校正、滞后-超前校正三种类型。

自动控制设计(自动控制原理课程设计)

自动控制设计(自动控制原理课程设计)

自动控制原理课程设计本课程设计的目的着重于自动控制基本原理与设计方法的综合实际应用.主要内容包括:古典自动控制理论(PID )设计、现代控制理论状态观测器的设计、自动控制MATLAB 仿真.通过本课程设计的实践,掌握自动控制理论工程设计的基本方法和工具。

1 内容某生产过程设备如图1所示,由液容为C1和C2的两个液箱组成,图中Q 为稳态液体流量)/(3s m ,i Q ∆为液箱A 输入水流量对稳态值的微小变化)/(3s m ,1Q ∆为液箱A 到液箱B 流量对稳态值的微小变化)/(3s m ,2Q ∆为液箱B 输出水流量对稳态值的微小变化)/(3s m ,1h 为液箱A 的液位稳态值)(m ,1h ∆为液箱A 液面高度对其稳态值的微小变化)(m ,2h 为液箱B 的液位稳态值)(m ,2h ∆为液箱B 液面高度对其稳态值的微小变化)(m ,21,R R 分别为A ,B 两液槽的出水管液阻))//((3s m m .设u 为调节阀开度)(2m 。

已知液箱A 液位不可直接测量但可观,液箱B 液位可直接测量.要求图1 某生产过程示意图1. 建立上述系统的数学模型;2. 对模型特性进行分析,时域指标计算,绘出bode,乃示图,阶跃反应曲线3. 对B 容器的液位分别设计:P ,PI ,PD ,PID 控制器进行控制;4. 对原系统进行极点配置,将极点配置在-1+j 和-1-j ;(极点可以不一样)5. 设计一观测器,对液箱A 的液位进行观测(此处可以不带极点配置);6. 如果要实现液位h2的控制,可采用什么方法,怎么更加有效?试之。

用MATLAB 对上述设计分别进行仿真。

(提示:流量Q=液位h/液阻R,液箱的液容为液箱的横断面积,液阻R=液面差变化h ∆/流量变化Q ∆.)2 双容液位对象的数学模型的建立及MATLAB 仿真过程一、对系统数学建模如图一所示,被控参数2h ∆的动态方程可由下面几个关系式导出: 液箱A :dt h d C Q Q i 111∆=∆-∆ 液箱B:dth d C Q Q 2221∆=∆-∆ 111/Q h R ∆∆= 222/Q h R ∆∆= u K Q u i ∆=∆消去中间变量,可得:u K h dt h d T T dt h d T T ∆=∆+∆++∆222122221)( 式中,21,C C ——两液槽的容量系数21,R R —-两液槽的出水端阻力 111C R T =——第一个容积的时间常数 222C R T =—-第二个容积的时间常数 2R K K u =_双容对象的放大系数其传递函数为:1)()()()(212212+++=∆∆=S T T S T T KS U S H S G二.对模型特性进行分析,绘出bode ,奈氏图,阶跃反应曲线 当输入为阶跃响应时的Matlab 仿真: 令T1=T2=6;K=1112361)()()(22++=∆∆=S S S U S H S G 2)16(1+=S单位阶跃响应的MATLAB 程序: num1=[1];den1=[36 12 1]; G1=tf (num1,den1); figure (1); step (G1);xlabel ('时间(sec )’);ylabel('输出响应’);title (’二阶系统单位阶跃响应’); step(G1,100); 运行结果如下:阶跃反应曲线:图1c(∞)=1; c (t p )=1; t p =45.5s ; t d =10s; t s =45.5s ; 最大超调量:δ(t p )= [c (t p )— c(∞)]/ c(∞)*100%=0%稳态误差分析: 开环传递函数112361)()()(22++=∆∆=S S S U S H S G ,稳态误差1=ss e ;用MATLAB 绘制的奈氏图如下图2所示,其程序如下: nyquist([1],conv([6 1],[6 1]))图2在工程实践中,一般希望正相角裕度r为45o~60o,增益裕度Kg10≥dB,即Kg3≥。

《自动控制原理课程设计》教学大纲

《自动控制原理课程设计》教学大纲

自动控制原理课程设计教学大纲1. 引言自动控制原理课程设计是自动控制原理课程的重要组成部分,通过课程设计,能够帮助学生将理论知识与实际应用相结合,提高学生对自动控制原理的理解和运用能力。

2. 课程设计目的自动控制原理课程设计的目的是培养学生分析和解决实际工程问题的能力,以及运用自动控制原理知识进行系统设计和建模的能力。

通过课程设计,学生应能够熟练运用自动控制原理的基本理论知识,了解控制系统的设计方法,并能够独立完成控制系统的设计与调试。

3. 课程设计内容(1)理论学习:包括PID控制器的原理、校正与调节,控制系统的稳定性分析和设计,频域分析与设计,以及状态空间分析与设计等内容。

(2)实际应用:通过案例分析,让学生了解自动控制在现实生活中的应用,如温度控制系统、液位控制系统等。

(3)仿真实验:利用仿真软件进行控制系统设计与仿真实验,加深学生对理论知识的理解,以及对控制系统实际应用的认识。

4. 课程设计要求(1)掌握理论知识:学生应在课程设计中深入理解自动控制原理的基本理论知识,包括控制系统的稳定性分析、频域分析与设计等。

(2)熟练运用软件:学生应能够熟练运用MATLAB等仿真软件进行控制系统的设计与仿真实验。

(3)独立完成设计:学生应能够独立完成一个控制系统的设计与调试,并能够对系统性能进行评估和优化。

5. 总结回顾自动控制原理课程设计是一门理论与实践相结合的课程,通过课程设计,学生能够深入理解自动控制原理的基本理论知识,熟练运用相关仿真软件进行控制系统的设计与仿真实验,提高学生的工程实践能力和创新意识。

在今后的工程实践中,学生能够将所学知识与技能有效地运用于相关领域,为自动控制领域的发展做出贡献。

6. 个人观点与理解作为自动控制原理课程设计的教学大纲撰写者,我深感自动控制原理课程设计的重要性。

通过课程设计,学生能够更直观地理解自动控制原理的应用,提高自己的实践能力和创新意识。

希望学生能够在课程设计中认真学习,积极思考,不断完善自己的设计方案,提升自己的工程实践能力。

自动控制原理课程设计

自动控制原理课程设计

自动控制原理课程设计一、设计目的。

自动控制原理是现代工程技术中的重要基础课程,通过本课程设计,旨在帮助学生深入理解自动控制原理的基本概念和方法,掌握自动控制系统的设计和分析技能,提高学生的工程实践能力。

二、设计内容。

1. 选取合适的控制对象,通过调研和分析,选取一个合适的控制对象,例如温度、液位等,作为本课程设计的控制对象。

2. 建立数学模型,根据选取的控制对象,建立其数学模型,包括传递函数、状态空间方程等,为后续的控制器设计奠定基础。

3. 控制器设计,根据控制对象的数学模型,设计合适的控制器,可以选择比例积分微分(PID)控制器或者其他先进的控制算法。

4. 系统仿真与分析,利用仿真软件对设计的控制系统进行仿真,分析系统的稳定性、动态响应等性能指标。

5. 实际搭建与调试,在实际的控制对象上搭建控制系统,进行调试和实验验证,观察系统的实际性能。

6. 总结与展望,总结课程设计的过程和结果,对控制系统的性能进行评价,并展望未来的改进方向。

三、设计要求。

1. 设计过程要符合自动控制原理的基本原理和方法,确保设计的科学性和合理性。

2. 数学模型的建立和控制器设计要准确,仿真与实验结果要可靠。

3. 设计报告要清晰、完整、准确,包括设计思路、理论分析、仿真结果、实验数据等。

4. 设计报告要求能够体现出学生的独立思考和创新能力,具有一定的工程实践价值。

四、设计步骤。

1. 确定控制对象,根据实际情况,选择合适的控制对象,例如温度控制系统。

2. 建立数学模型,根据选取的控制对象,建立其数学模型,包括传递函数、状态空间方程等。

3. 控制器设计,根据控制对象的数学模型,设计合适的控制器,例如PID控制器。

4. 系统仿真与分析,利用仿真软件对设计的控制系统进行仿真,分析系统的性能指标。

5. 实际搭建与调试,在实际的控制对象上搭建控制系统,进行调试和实验验证。

6. 总结与展望,总结课程设计的过程和结果,对控制系统的性能进行评价,并展望未来的改进方向。

自动控制原理课程设计

自动控制原理课程设计

自动控制原理课程设计一、设计目的。

本课程设计旨在通过对自动控制原理的学习和实践,使学生能够掌握自动控制系统的基本原理和设计方法,培养学生的工程实践能力和创新意识。

二、设计内容。

1. 课程概述。

自动控制原理是现代工程技术中的重要基础课程,它涉及到控制系统的基本概念、数学模型、性能指标、稳定性分析、校正设计等内容。

通过本课程的学习,学生将了解到控制系统的基本工作原理,并能够运用所学知识进行实际系统的设计与分析。

2. 课程实践。

课程设计将包括以下内容:(1)控制系统的数学建模与仿真。

通过对不同控制系统的数学建模,学生将学会如何利用数学工具描述控制系统的动态特性,并通过仿真软件进行系统性能分析。

(2)控制系统的稳定性分析与校正设计。

学生将学习控制系统的稳定性分析方法,以及如何进行控制系统的校正设计,包括校正器的设计和参数整定等内容。

(3)控制系统的实际应用。

通过实际案例分析,学生将了解控制系统在工程实践中的应用,包括工业控制、航空航天、机器人等领域的应用案例。

三、设计要求。

1. 学生在课程设计中要求独立完成控制系统的建模与仿真,稳定性分析与校正设计,以及实际应用案例的分析。

2. 学生需要结合课程学习内容,运用所学知识解决实际控制系统设计与分析中的问题,培养学生的工程实践能力和创新意识。

3. 学生需要按时提交课程设计报告,报告内容需包括设计过程、结果分析、存在问题及改进措施等内容。

四、设计步骤。

1. 确定课程设计题目和内容。

学生需要根据课程要求确定课程设计题目和内容,明确设计目的和要求。

2. 学习相关知识。

学生需要认真学习自动控制原理课程相关知识,包括控制系统的基本原理、数学模型、稳定性分析方法等内容。

3. 进行系统建模与仿真。

学生需要运用仿真软件对所选控制系统进行数学建模,并进行系统性能仿真分析。

4. 进行稳定性分析与校正设计。

学生需要对系统进行稳定性分析,并进行控制系统的校正设计,包括校正器的设计和参数整定等内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绪论 (1)一课程设计的目的及题目 (2)1.1课程设计的目的 (2)1.2课程设计的题目 (2)二课程设计的任务及要求 (3)2.1课程设计的任务 (3)2.2课程设计的要求 (3)三校正函数的设计 (4)3.1理论知识 (4)3.2设计部分 (5)四传递函数特征根的计算 (8)4.1校正前系统的传递函数的特征根 (8)4.2校正后系统的传递函数的特征根 (10)五系统动态性能的分析 (11)5.1校正前系统的动态性能分析 (11)5.2校正后系统的动态性能分析 (15)六系统的根轨迹分析 (19)6.1校正前系统的根轨迹分析 (19)6.2校正后系统的根轨迹分析 (21)七系统的奈奎斯特曲线图 (23)7.1校正前系统的奈奎斯特曲线图 (23)7.2校正后系统的奈奎斯特曲线图......... 错误!未定义书签。

4 八系统的对数幅频特性及对数相频特性...... 错误!未定义书签。

8.1校正前系统的对数幅频特性及对数相频特性 (25)8.2校正后系统的对数幅频特性及对数相频特性 (27)总结................................... 错误!未定义书签。

8 参考文献................................ 错误!未定义书签。

在控制工程中用得最广的是电气校正装置,它不但可应用于电的控制系统,而且通过将非电量信号转换成电量信号,还可应用于非电的控制系统。

控制系统的设计问题常常可以归结为设计适当类型和适当参数值的校正装置。

校正装置可以补偿系统不可变动部分(由控制对象、执行机构和量测部件组成的部分)在特性上的缺陷,使校正后的控制系统能满足事先要求的性能指标。

常用的性能指标形式可以是时间域的指标,如上升时间、超调量、过渡过程时间等(见过渡过程),也可以是频率域的指标,如相角裕量、增益裕量(见相对稳定性)、谐振峰值、带宽(见频率响应)等。

常用的串联校正装置有超前校正、滞后校正、滞后-超前校正三种类型。

在许多情况下,它们都是由电阻、电容按不同方式连接成的一些四端网络。

各类校正装置的特性可用它们的传递函数来表示,此外也常采用频率响应的波德图来表示。

不同类型的校正装置对信号产生不同的校正作用,以满足不同要求的控制系统在改善特性上的需要。

在工业控制系统如温度控制系统、流量控制系统中,串联校正装置采用有源网络的形式,并且制成通用性的调节器,称为PID(比例-积分-微分)调节器,它的校正作用与滞后-超前校正装置类同。

一 课程设计的目的及题目1.1课程设计的目的1、掌握自动控制原理的时域分析法,根轨迹法,频域分析法,以及各种补偿(校正)装置的作用及用法,能够利用不同的分析法对给定系统进行性能分析,能根据不同的系统性能指标要求进行合理的系统设计,并调试满足系统的指标。

2、学会使用MATLAB 语言及Simulink 动态仿真工具进行系统仿真与调试。

1.2课程设计的题目0(0.51)()(1)(0.21)(0.11)K s G S S S S s +=+++试用频率法设计串联滞后校正装置,要求校正后系统的开环增益8K =,相角裕量035γ≥,幅值裕量20lg 6Kg dB二课程设计的任务及要求2.1课程设计的任务设计报告中,根据给定的性能指标选择合适的校正方式对原系统进行校正(须写清楚校正过程),使其满足工作要求。

然后利用MATLAB对未校正系统和校正后系统的性能进行比较分析,针对每一问题分析时应写出程序,输出结果图和结论。

最后还应写出心得体会与参考文献等。

2.2课程设计的要求1、首先,根据给定的性能指标选择合适的校正方式对原系统进行校正,使其满足工作要求。

要求程序执行的结果中有校正装置传递函数和校正后系统开环传递函数,校正装置的参数T,b等的值。

2、利用MATLAB函数求出校正前与校正后系统的特征根,并判断其系统是否稳定,为什么?3、利用MATLAB作出系统校正前与校正后的单位脉冲响应曲线,单位阶跃响应曲线,单位斜坡响应曲线,分析这三种曲线的关系?求出系统校正前与校正后的动态性能指标σ%、tr、tp、ts以及稳态误差的值,并分析其有何变化?4、绘制系统校正前与校正后的根轨迹图,并求其分离点、汇合点及与虚轴交点的坐标和相应点的增益K*值,得出系统稳定时增益K*的变化范围。

绘制系统校正前与校正后的Nyquist图,判断系统的稳定性,并说明理由?5、绘制系统校正前与校正后的Bode图,计算系统的幅值裕量,相位裕量,幅值穿越频率和相位穿越频率。

判断系统的稳定性,并说明理由?三 校正函数的设计要求:首先,根据给定的性能指标选择合适的校正方式对原系统进行校正,使其满足工作要求。

要求程序执行的结果中有校正装置传递函数和校正后系统开环传递函数,校正装置的参数T ,a 等的值。

3.1校正步骤应用频率特性法设计串联滞后校正装置的步骤如下:(1) 根据稳态误差要求,确定开环增益K 0。

(2) 利用已确定的开环增益,画出未校正系统的对数频率特性,确定未校正系统的剪切频率0C ω,相角裕度0γ和幅值裕度m G 以检验性能指标是否满足要求。

若不满足要求,则执行下一步。

(3)确定滞后校正器传递函数的参数sT s bT s G c 11111)(++= 式中,1,1,11111c c w bT w T b <<<11bT 要距1c w 较远为好。

工程上常选择111.01c w bT = (4)画出校正后的系统的Bode 图,并验算已校正系统相角裕量和幅值裕量。

3.2设计部分 已知单位负反馈系统的开环传递函数0(0.51)()(1)(0.21)(0.11)K s G S S S S s +=+++试用频率法设计串联滞后校正装置,要求校正后系统的开环增益8K =,相角裕量035γ≥,幅值裕量20lg 6Kg dB .(1) 由静态误差系数100008)11.0)(12.0)(1()15.0(lim )()(lim -→→==++++⋅=⋅=s K s s s s s K s s H s G s K s s v 可知。

所以,该系统的开环传递函数为)11.0)(12.0)(1()15.0(8)(++++=s s s s s s G 。

(2)利用已经确定的开环增益0K ,画出未校正的系统的Bode 图,确定未校正系统的剪切频率0C ω,相稳定裕度0γ。

输入MATLAB 程序如下:>> d1=[0.5 1];>> d2=[0 8];>> num=conv(d1,d2);>> d3=[1 1];>> d4=[1 0];>> den1=conv(d3,d4);>> d5=[0.2 1];>> d6=[0.1 1];>> den2=conv(d5,d6);>> den=conv(den1,den2);>> bode(num,den);>> [h,R,Wg,Wc]=margin(num,den);>> margin(num,den);校正前的Bode 图为:幅值裕度:h =8.34dB相角裕度:0γ=22.4deg穿越频率:x ω=5.98rad/sec截止频率:c ω=3.45rad/sec(3) 计算出滞后校正器的传递函数。

TsbTs s G c ++=11)(1 由于1<b ,取5.0=b ,相角裕量︒≥35γ,幅值裕量dB Kg 6lg 20>则取相角裕量︒=40γ,由MATLAB 语言计算出串联滞后校正后的传递函数。

输入MATLAB 程序如下:>> d1=[0.5 1];>> d2=[0 8];>> num=conv(d1,d2);>> d3=[1 1];>> d4=[1 0];>> den1=conv(d3,d4);>> d5=[0.2 1];>> d6=[0.1 1];>> den2=conv(d5,d6);>> den=conv(den1,den2);>> v=40;>> b=0.5;>> phi=-180+v+b;>> [mag,phase,w]=bode(num,den);>> wc=spline(phase,w,phi);>> mag1=spline(w,mag,wc);>> magdB=20*log10(mag1);>> b=10^(-magdB/20);>> T=1/(b*(wc/10));用MATLAB 语言计算出T=14.139,b=0.38427。

得到串联滞后校正装置的传递函数为1139.141433.5)(++=s s s G c 。

(4)校验系统校正后系统是否满足题目要求。

校正后的传递函数为()1139.141433.5)11.0)(12.0)(1()15.0(8)(++++++=s s s s s s s s G s G c 用MATLAB 语言校正如下:>> k=8;>> d1=[0.5 1];>> d2=[5.433 1];>> num1=conv(d1,d2);>> num=k*num1;>> d3=[1 0];>> d4=[1 1];>> d5=[0.2 1];>> d6=[0.1 1];>> d7=[14.139 1];>> den1=conv(d3,d4);>> den2=conv(d5,d6);>> den3=conv(den1,den2);>> den=conv(den3,d7);>> margin(num,den);校正后BODE 图为:幅值裕度:h =16.2dB相角裕度:0γ=36.9deg ,满足题目要求 35≥γ截止频率:85.1=c ωrad/sec穿越频率:x ω=5.84rad/sec四 传递函数特征根的计算要求:利用MATLAB 函数求出校正前与校正后系统的特征根,并判断其系统是否稳定,为什么?4.1校正前系统的传递函数的特征根校正前的开环传递函数为:0(0.51)()(1)(0.21)(0.11)K s G S S S S s +=+++MATLAB 程序如下: d1=[0 8];>> d2=[0.5 1];>> num=conv(d1,d2); >> d3=[1 1];>> d4=[1 1];>> den1=conv(d3,d4); >> d5=[0.2 1]; >> d6=[0.1 1];>> den2=conv(d5,d6); >> den=conv(den1,den2); >> g=tf(num,den);>> sys=feedback(g,1); >> pzmap(g);>> [p,z]=pzmap(g); >> den=sys.den{1}; >> r=roots(den); >> disp(r);运行后得特征根结果为: -12.2393 -1.3066 + 3.9260i -1.3066 - 3.9260i -2.1475由于校正前系统单位负反馈的特征方程没有右半平面的根,故校正前的闭环系统稳定。

相关文档
最新文档