第 章 时间序列分析课后习题解答

合集下载

时间序列分析第一章王燕习题解答

时间序列分析第一章王燕习题解答

时间序列分析习题解答第一章 P. 7 1.5 习题1.1 什么是时间序列?请收集几个生活中的观察值序列。

答:按照时间的顺序把随机事件变化发展的过程记录下来就构成一个时间序列。

例1:1820—1869年每年出现的太阳黑子数目的观察值;年份黑子数年份黑子数年份黑子数年份黑子数年份黑子数1820 16 1830 71 1840 63 1850 66 1860 96 1821 7 1831 48 1841 37 1851 64 1861 77 1822 4 1832 28 1842 24 1852 54 1862 59 1823 2 1833 8 1843 11 1853 39 1863 44 1824 8 1834 13 1844 15 1854 21 1864 47 1825 17 1835 57 1845 40 1855 7 1865 30 1826 36 1836 122 1846 62 1856 4 1866 16 1827 50 1837 138 1847 98 1857 23 1867 7 1828 62 1838 103 1848 124 1858 55 1868 37 1829 67 1839 86 1849 96 1859 94 1869 74 例2:北京市城镇居民1990—1999年每年的消费支出按照时间顺序记录下来,就构成了一个序列长度为10的消费支出时间序列(单位:亿元)。

1686,1925,2356,3027,3891,4874,5430,5796,6217,6796。

1.2 时域方法的特点是什么?答:时域方法特点:具有理论基础扎实,操作步骤规范,分析结果易于解释的优点,是时间序列分析的主流方法。

1.3 时域方法的发展轨迹是怎样的?答:时域方法的发展轨迹:一.基础阶段:1. G.U. Yule 1972年AR模型2. G.U.Walker 1931年 MA模型、ARMA模型二.核心阶段:G.E.P.Box和G.M.Jenkins1. 1970年,出版《Time Series Analysis Forecasting and Control》2. 提出ARIMA模型(Box-Jenkins模型)3. Box-Jenkins模型实际上主要运用于单变量、同方差场合的线性模型三.完善阶段:1.异方差场合:a.Robert F.Engle 1982年 ARCH模型b.Bollerslov 1985年 GARCH模型2.多变量场合:C.Granger 1987年提出了协整(co-integration)理论3.非线性场合:汤家豪等 1980年门限自回归模型1.4 在附录1中选择几个感兴趣的序列,创建数据集。

时间序列分析各章奇数号习题参考答案-完整版

时间序列分析各章奇数号习题参考答案-完整版
9
第六章
6.1 答:一、利用序列图进行判断 二、利用样本自相关函数 k 进行平稳
性判断 三、 利用单位根检验进行判断
6.3 答:略
6.5 股价
38
24.32
39
23.1
40
23.7
10
第七章
7.1 参考答案: 说明:因为时间序列 (1B)(1 B4)Xt (14B4)at ,

Wt (1 B4 )Xt ,则 (1B)Wt (14B4)at ,该 模型是
2
函数,但对同一事物的变化过程独立地重复进 行多次观测,所得的结果是不相同的,则称这
种变化过程为随机过程;从数学角度看,设 E 是随机试验,S 是它的样本空间,如果对于每一 个 e∈S,我们总可以依某种规则确定一时间 t 的函数与之对应(T 是时间 t 的变化范围),于是, 对于所有的 e∈S 来说,就得到一族时间 t 的函 数,我们称这族时间 t 的函数为随机过程,而 族中每一个函数为这个随机过程的样本函数(或 一次实现、现实)。
E
1j1i
(at
j
j0 i0
4at4 j )(atsi
4ats4i )
2(i 1
j
)
E
(at
j
at
s
i
a a 4 t j t s4i
a a 4 t 4 j t si
a a ) 2
4 t4 j ts4i
j0 i0
11
7.3 参考答案:B。 选择 A 的差分是针对长期趋势,而且趋势通 常为二次曲线的情形;
第九章
9.1 题参考答案:不正确。因为传递函数模型稳 定的要求同时包含两个部分。其一要求传递函 数部分的稳定性,其二要求干扰项部分的平稳

精选第章时间序列分析习题--精选解答

精选第章时间序列分析习题--精选解答

第七章时间序列剖析思虑与练习一、选择题1.已知 2000-2006 年某银行的年终存款余额,要计算各年均匀存款余额,该均匀数是 : ( b )a. 几何序时均匀数;b. “首末折半法”序时均匀数;c. 期间数列的均匀数; d. 时点数列的均匀数。

2.某地域粮食增加量 1990— 1995 年为 12 万吨, 1996— 2000 年也为 12 万吨。

那么, 1990— 2000 年期间,该地域粮食环比增加速度( d )a. 逐年上涨b. 逐年降落c. 保持不变d. 不可以做结论3. 某商业公司 2000—2001 年各季度销售资料以下:2000 年2001 年1 2 3 4 1 2 3 41. 零售额(百万)40 42 38 44 48 50 40 602. 季初库存额(百万)20 21 22 24 25 26 23 283. 流通花费额(百万) 3.8 3.2 2.8 3.2 3.0 3.1 3.14.04. 商品流转次数(次 / 季) 1.95 19.5 1.65 1.8 1.88 2.04 1.63 2.03上表资猜中,是总量期间数列的有(d)a. 1 、 2、 3b. 1、3、4c. 2、4d. 1、34. 利用上题资料计算零售额挪动均匀数(简单, 4 项挪动均匀), 2001 年第二季度挪动均匀数为( a )a. 47.5b. 46.5c. 49.5d. 48.4二、判断题1.连续 12 个月逐期增加量之和等于年距增加量。

2.计算固定财产投资额的年均匀发展速度应采纳几何均匀法。

3.用挪动均匀法剖析公司季度销售额时间序列的长久趋向时,一般应取4项进行挪动均匀。

4.计算均匀发展速度的水平法只合适时点指标时间序列。

5. 某公司连续四个季度销售收入增加率分别为9%、 12%、 20%和 18%,其125环比增加速度为 0.14%。

正确答案:(1)错;(2)错;( 3)对;( 4)错;( 5)错。

统计学习题答案 第9章 时间序列分析

统计学习题答案 第9章  时间序列分析

第9章 时间序列分析——练习题●1. 某汽车制造厂2003年产量为30万辆。

(1)若规定2004—2006年年递增率不低于6%,其后年递增率不低于5%,2008年该厂汽车产量将达到多少?(2)若规定2013年汽车产量在2003年的基础上翻一番,而2004年的增长速度可望达到7.8%,问以后9年应以怎样的速度增长才能达到预定目标?(3)若规定2013年汽车产量在2003年的基础上翻一番,并要求每年保持7.4%的增长速度,问能提前多少时间达到预定目标?解:设i 年的环比发展水平为x i ,则由已知得:x 2003=30, (1)又知:320042005200620032004200516%x x x x x x ≥+(),2200720082006200715%x x x x ≥+(),求x 2008由上得32200820072008200320032007(16%)(15%)x x x x x x =≥++ 即为3220081.061.0530x ≥,从而2008年该厂汽车产量将达到 得 x 2008≥30× 31.06×21.05= 30×1.3131 = 39.393(万辆) 从而按假定计算,2008年该厂汽车产量将达到39.393万辆以上。

(2)规定201320032x x =,20042003x x =1+7.8%由上得=107.11%==可知,2004年以后9年应以7.11%的速度增长,才能达到2013年汽车产量在2003年的基础上翻一番的目标。

(3)设:按每年7.4%的增长速度n 年可翻一番, 则有 201320031.0742na a == 所以 1.074log 20.30103log 29.70939log1.0740.031004n ====(年)可知,按每年保持7.4%的增长速度,约9.71年汽车产量可达到在2003年基础上翻一番的预定目标。

原规定翻一番的时间从2003年到2013年为10年,故按每年保持7.4%的增长速度,能提前0.29年即3个月另14天达到翻一番的预定目标。

时间序列分析课后习题答案1

时间序列分析课后习题答案1

时间序列分析课后习题答案(上机第二章 2、328330332334336338340342(1时序图如上:序列具有明显的趋势和周期性,该序列非平稳。

(2样本自相关系数:(3该样本自相关图上,自相关系数衰减为 0的速度缓慢,且有正弦波状,显示序列具有趋势和周期,非平稳。

3、 (1样本自相关系数:(2序列平稳。

(3因 Q 统计量对应的概率均大于 0.05,故接受该序列为白噪声的假设,即序列为村随机序列。

5、 (1时序图和样本自相关图:50100150200250300350(2序列具有明显的周期性,非平稳。

(3序列的 Q 统计量对应的概率均小于 0.05,该序列是非白噪声的。

6、 (1根据样本相关图可知:该序列是非平稳,非白噪声的。

(2对该序列进行差分运算:1--=t t t x x y {t y }的样本相关图:该序列平稳,非白噪声。

第三章:17、 (1结论:序列平稳,非白噪声。

(2 拟合 MA(2 model:VariableCoefficient Std. Error t-Statistic Prob. C 80.40568 4.630308 17.36508 0.0000 MA(1 0.336783 0.114610 2.938519 0.0047 R-squared0.171979 Mean dependent var 80.29524 Adjusted R-squared 0.144379 S.D. dependent var 23.71981 S.E. of regression 21.94078 Akaike info criterion 9.061019 Sum squared resid 28883.87 Schwarz criterion 9.163073 Log likelihood -282.4221 F-statistic 6.230976 Durbin-Watson stat 2.072640 Prob(F-statistic 0.003477Residual tests(3拟合 AR(2model:C 79.71956 5.442613 14.64729 0.0000 AR(10.2586240.1288102.0077940.0493R-squared0.154672 Mean dependent var 79.50492 Adjusted R-squared 0.125522 S.D. dependent var 23.35053 S.E. of regression 21.83590 Akaike info criterion 9.052918 Sum squared resid 27654.79 Schwarz criterion 9.156731 Log likelihood -273.1140 F-statistic 5.306195 Durbin-Watson stat 1.939572 Prob(F-statistic 0.007651Inverted AR Roots.62-.36Residual tests:(4 拟合 ARMA (2, 1 model :Variable Coefficient Std. Error t-Statistic Prob. C 79.17503 4.082908 19.39183 0.0000 AR(1 -0.586834 0.118000 -4.973170 0.0000 AR(2 0.376120 0.082091 4.581756 0.0000 MA(11.1139990.09712211.470120.0000R-squared0.338419 Mean dependent var 79.50492 Adjusted R-squared 0.303599 S.D. dependent var 23.35053 S.E. of regression 19.48617 Akaike info criterion 8.840611 Sum squared resid 21643.51 Schwarz criterion 8.979029 Log likelihood-265.6386 F-statistic9.719104Inverted AR Roots .39-.97 Inverted MA Roots-1.11Estimated MA process is noninvertible残差检验:(5拟合 ARMA (1, (2 model:Variable Coefficient Std. Error t-Statistic Prob. C 79.52100 4.621910 17.205230.0000 AR(1 0.270506 0.125606 2.153603 0.0354 R-squared0.157273 Mean dependent var 79.55161 Adjusted R-squared 0.128706 S.D. dependent var 23.16126 S.E. of regression 21.61946 Akaike info criterion 9.032242 Sum squared resid 27576.65 Schwarz criterion 9.135167 Log likelihood -276.9995 F-statistic 5.505386 Durbin-Watson stat 1.981887 Prob(F-statistic 0.006423Inverted AR Roots.27残差检验:(6优化根据 SC 准则,最优模型为 ARMA(2,1模型。

第章时间序列预测习题答案完整版

第章时间序列预测习题答案完整版

第章时间序列预测习题答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第10章时间序列预测从时间序列图可以看出,国家财政用于农业的支出额大体上呈指数上升趋势。

(2)年平均增长率为:。

(3)。

下表是1981年—2000年我国油彩油菜籽单位面积产量数据(单位:kg / hm2)年份单位面积产量年份单位面积产量1981 1451 1991 12151982 1372 1992 12811983 1168 1993 13091984 1232 1994 12961985 1245 1995 14161986 1200 1996 13671987 1260 1997 14791988 1020 1998 12721989 1095 1999 14691990 1260 2000 1519(1)绘制时间序列图描述其形态。

(2)用5期移动平均法预测2001年的单位面积产量。

(3)采用指数平滑法,分别用平滑系数a=和a=预测2001年的单位面积产量,分析预测误差,明用哪一个平滑系数预测更合适?详细答案:(1)时间序列图如下:(2)2001年的预测值为:|(3)由Excel输出的指数平滑预测值如下表:年份单位面积产量指数平滑预测a=误差平方指数平滑预测a=误差平方19811451 19821372 19831168 19841232 19851245 19861200 1987126019881020198910951990126019911215199212811993130919941296199514161996136719971479199812721999146920001519合计———2001年a=时的预测值为:a=时的预测值为:比较误差平方可知,a=更合适。

下面是一家旅馆过去18个月的营业额数据月份营业额(万元)月份营业额(万元)1 295 10 4732 283 11 4703 322 12 4814 355 13 4495 286 14 5446 379 15 6017 381 16 5878 431 17 6449 424 18 660(1)用3期移动平均法预测第19个月的营业额。

(完整word版)时间序列分析基于R__习题答案及解析

(完整word版)时间序列分析基于R__习题答案及解析

第一章习题答案略第二章习题答案2.1(1)非平稳(2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376(3)典型的具有单调趋势的时间序列样本自相关图2.2(1)非平稳,时序图如下(2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图2.3(1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118(2)平稳序列(3)白噪声序列2.4,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。

显著性水平=0.05不能视为纯随机序列。

2.5(1)时序图与样本自相关图如下(2) 非平稳 (3)非纯随机 2.6(1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机第三章习题答案3.1 ()0t E x =,21() 1.9610.7t Var x ==-,220.70.49ρ==,220φ= 3.2 1715φ=,2115φ=3.3 ()0t E x =,10.15() 1.98(10.15)(10.80.15)(10.80.15)t Var x +==--+++10.80.7010.15ρ==+,210.80.150.41ρρ=-=,3210.80.150.22ρρρ=-=1110.70φρ==,2220.15φφ==-,330φ=3.4 10c -<<, 1121,1,2k k k c c k ρρρρ--⎧=⎪-⎨⎪=+≥⎩3.5 证明:该序列的特征方程为:32--c 0c λλλ+=,解该特征方程得三个特征根:11λ=,2c λ=3c λ=-无论c 取什么值,该方程都有一个特征根在单位圆上,所以该序列一定是非平稳序列。

课后习题答案-时间序列分析及应用(R语言原书第2版)

课后习题答案-时间序列分析及应用(R语言原书第2版)
> plot(ts(rnorm(n=48)),type='o') # If you repeat this command R will use a new “random numbers” each time. If you want to reproduce the same simulation first use the command set.seed(#########) where ######### is an integer of your choice.
stationary.
(b) Find the autocovariance function for {Yt}. Cov(Yt,Yt − k) = Cov(X,X) = σ2 for all t and k, free of t (and k). (c) Sketch a “typical” time plot of Yt. The plot will be a horizontal “line” (really a discrete-time horizontal line)
relation functions are the same for θ = 3 and θ = 1/3. For simplicity, suppose that the process mean is known
to be zero and the variance of Yt is known to be 1. You observe the series {Yt} for t = 1, 2,..., n and suppose that you can produce good estimates of the autocorrelations ρk. Do you think that you could determine which value of θ is correct (3 or 1/3) based on the estimate of ρk? Why or why not?

人大版时间序列分析基于R(第2版)习题答案

人大版时间序列分析基于R(第2版)习题答案

第一章习题答案略第二章习题答案2.1答案:(1)非平稳,有典型线性趋势(2)延迟1-6阶自相关系数如下:(3)典型的具有单调趋势的时间序列样本自相关图2.2(1)非平稳,时序图如下(2)1-24阶自相关系数如下(3)自相关图呈现典型的长期趋势与周期并存的特征2.3R命令答案(1)1-24阶自相关系数(2)平稳序列(3)非白噪声序列Box-Pierce testdata: rainX-squared = 0.2709, df = 3, p-value = 0.9654X-squared = 7.7505, df = 6, p-value = 0.257X-squared = 8.4681, df = 9, p-value = 0.4877X-squared = 19.914, df = 12, p-value = 0.06873X-squared = 21.803, df = 15, p-value = 0.1131X-squared = 29.445, df = 18, p-value = 0.04322.4答案:我们自定义函数,计算该序列各阶延迟的Q统计量及相应P值。

由于延迟1-12阶Q统计量的P值均显著大于0.05,所以该序列为纯随机序列。

2.5答案(1)绘制时序图与自相关图(2)序列时序图显示出典型的周期特征,该序列非平稳(3)该序列为非白噪声序列Box-Pierce testdata: xX-squared = 36.592, df = 3, p-value = 5.612e-08X-squared = 84.84, df = 6, p-value = 3.331e-162.6答案(1)如果是进行平稳性图识别,该序列自相关图呈现一定的趋势序列特征,可以视为非平稳非白噪声序列。

如果通过adf检验进行序列平稳性识别,该序列带漂移项的0阶滞后P值小于0.05,可以视为平稳非白噪声序列Box-Pierce testdata: xX-squared = 47.99, df = 3, p-value = 2.14e-10X-squared = 60.084, df = 6, p-value = 4.327e-11(2)差分序列平稳,非白噪声序列Box-Pierce testdata: yX-squared = 22.412, df = 3, p-value = 5.355e-05X-squared = 27.755, df = 6, p-value = 0.00010452.7答案(1)时序图和自相关图显示该序列有趋势特征,所以图识别为非平稳序列。

人大版时间序列分析基于R(第2版)习题答案

人大版时间序列分析基于R(第2版)习题答案

第一章习题答案略第二章习题答案2.1答案:(1)非平稳,有典型线性趋势(2)延迟1-6阶自相关系数如下:(3)典型的具有单调趋势的时间序列样本自相关图2.2(1)非平稳,时序图如下(2)1-24阶自相关系数如下(3)自相关图呈现典型的长期趋势与周期并存的特征2.3R命令答案(1)1-24阶自相关系数(2)平稳序列(3)非白噪声序列Box-Pierce testdata: rainX-squared = 0.2709, df = 3, p-value = 0.9654X-squared = 7.7505, df = 6, p-value = 0.257X-squared = 8.4681, df = 9, p-value = 0.4877X-squared = 19.914, df = 12, p-value = 0.06873X-squared = 21.803, df = 15, p-value = 0.1131X-squared = 29.445, df = 18, p-value = 0.04322.4答案:我们自定义函数,计算该序列各阶延迟的Q统计量及相应P值。

由于延迟1-12阶Q统计量的P值均显著大于0.05,所以该序列为纯随机序列。

2.5答案(1)绘制时序图与自相关图(2)序列时序图显示出典型的周期特征,该序列非平稳(3)该序列为非白噪声序列Box-Pierce testdata: xX-squared = 36.592, df = 3, p-value = 5.612e-08X-squared = 84.84, df = 6, p-value = 3.331e-162.6答案(1)如果是进行平稳性图识别,该序列自相关图呈现一定的趋势序列特征,可以视为非平稳非白噪声序列。

如果通过adf检验进行序列平稳性识别,该序列带漂移项的0阶滞后P值小于0.05,可以视为平稳非白噪声序列Box-Pierce testdata: xX-squared = 47.99, df = 3, p-value = 2.14e-10X-squared = 60.084, df = 6, p-value = 4.327e-11(2)差分序列平稳,非白噪声序列Box-Pierce testdata: yX-squared = 22.412, df = 3, p-value = 5.355e-05X-squared = 27.755, df = 6, p-value = 0.00010452.7答案(1)时序图和自相关图显示该序列有趋势特征,所以图识别为非平稳序列。

时间序列习题答案

时间序列习题答案

时间序列习题答案时间序列习题答案时间序列分析是一种用来研究随时间变化的数据模式和趋势的方法。

它在经济学、金融学、统计学等领域中被广泛应用。

下面我将给出一些时间序列分析的习题,并附上详细的答案解析。

习题一:某公司过去一年的销售额如下:100, 120, 130, 140, 150, 160, 170, 180, 190, 200。

请计算该公司的平均销售额和年度增长率。

答案解析:首先,计算平均销售额的方法是将所有销售额相加,然后除以销售额的个数。

在这个例子中,销售额的个数为10,总销售额为100+120+130+140+150+160+170+180+190+200=1540。

因此,平均销售额为1540/10=154。

接下来,计算年度增长率的方法是将最后一年的销售额减去第一年的销售额,然后除以第一年的销售额,并乘以100%。

在这个例子中,最后一年的销售额为200,第一年的销售额为100。

因此,年度增长率为(200-100)/100*100%=100%。

习题二:某股票的每日收盘价如下:10.2, 10.5, 10.7, 10.9, 11.1, 11.3, 11.5, 11.7, 11.9, 12.1。

请计算该股票的平均收盘价和收益率。

答案解析:计算平均收盘价的方法与计算平均销售额的方法相同。

将所有收盘价相加,然后除以收盘价的个数。

在这个例子中,收盘价的个数为10,总收盘价为10.2+10.5+10.7+10.9+11.1+11.3+11.5+11.7+11.9+12.1=113.9。

因此,平均收盘价为113.9/10=11.39。

计算收益率的方法是将每日的收盘价减去前一日的收盘价,然后除以前一日的收盘价,并乘以100%。

在这个例子中,第二天的收盘价为10.5,第一天的收盘价为10.2。

因此,第二天的收益率为(10.5-10.2)/10.2*100%=2.94%。

习题三:某城市过去十年的月度平均气温如下:15, 18, 20, 22, 25, 28, 30, 29, 26, 23。

统计基础知识第五章时间序列分析习题及答案

统计基础知识第五章时间序列分析习题及答案

D.平均数数列二、多项选择题1.将不同时期的发展水平加以平均而得到的平均数称为 A. 序时平均数2.定基发展速度和环比发展速度的关系是 ( BD A 相邻两个环比发展速度之商等于相应的定基发展速度B. 环比发展速度的连乘积等于定基发展速度一、单项选择题 第五章 时间序列分析1.构成时间数列的两个基本要素是 ( A.主词和宾词 )(20XX 年 1 月) B. 变量和次数 C.现象所属的时间及其统计指标数值 D.时间和次数2.某地区历年出生人口数是一个 ( A 时期数列 B ) (20XX 年 10月)B.时点数列C.分配数列 3. 某商场销售洗衣机, 共销售 6000 台, 年 10) 年底库存 50 台,这两个指标是 ( C ) 20XXA. 时期指标B. 时点指标C. 前者是时期指标,后者是时点指标 4.累计增长量(A ) (20XX 年 10)A. 等于逐期增长量之和 D. 前者是时点指标,后者是时期指标B. 等于逐期增长量之积C. 等于逐期增长量之差D .与逐期增长量没有关系5. 某企业银行存款余额 4 月初为 80 万元, 160 万元,则该企业第二季度的平均存款余额为( 5 月初为 150 万元, 6 月初为 210 万元, 7 月初为10)A.140 万元B.150 万元6. 下列指标中属于时点指标的是 ( A ) C.160 万元 D.170 万元A. 商品库存量 (10)B .商品销售C. 平均每人销售额D .商品销售额 7. 时间数列中,各项指标数值可以相加的是A. 时期数列10)( A )B.相对数时间数列C.平均数时间数列D.时点数列8. 时期数列中各项指标数值( A A. 可以相加 1月)B. 不可以相C.绝大部分可以相加D. 绝大部分不可以相加10. 某校学生人数 比 增长了 8%,增长了( D )( 10 月)比 增长了 15%, 比 增长了 18%,则 2004- 学生人数共A.8%+15%+18%B. 8 %X 15%X 18%C. (108%+115%+118%) -1D.108 %X 115%X 118% -1( ABD B.动态平均数)(20XX 年 1 月) C.静态平均数 D.平均发展水平 E. 般平均数 )(20XX 年 10 月)B. 数列中各个指标数值不具有可加性C. 指标数值是通过一次登记取得的D. 指标数值的大小与时期长短没有直接的联系E.指标数值是通过连续不断的登记取得的 )(20XX 年 1)B. 增加一个百分点所增加的相对量E. 环比增长量除以100再除以环比发展速度7. 增长速度( ADE )( 1 月)A.等于增长量与基期水平之比6. 计算平均发展速度常用的方法有( A.几何平均法(水平法)C.方程式法(累计法)E.加权算术平均法 AC)(10)B.调和平均法 D.简单算术平均法C.累计增长量与前一期水平之比D. 等于发展速度 -1E.包括环比增长速度和定基增长速度 8. 序时平均数是( CE )( 10 月)A.反映总体各单位标志值的一般水平B. 根据同一时期标志总量和单位总量计算C. 说明某一现象的数值在不同时间上的一般水平D.由变量数列计算E. 由动态数列计算三、判断题 1 .职工人数、产量、产值、商品库存额、工资总额指标都属于时点指标。

【分享】应用时间序列分析课后答案

【分享】应用时间序列分析课后答案

【分享】应用时间序列分析课后答案在学习应用时间序列分析这门课程时,课后答案对于我们巩固知识、检验学习成果以及发现自身的不足之处都具有重要的意义。

下面,我将为大家分享一下这门课程的课后答案,并结合答案对一些重点和难点问题进行分析和讲解。

首先,让我们来看看第一章的课后答案。

第一章主要介绍了时间序列分析的基本概念和方法,包括时间序列的定义、分类以及平稳性的概念等。

在课后习题中,有这样一道题:“请解释什么是时间序列,并举例说明。

”答案是:“时间序列是按时间顺序排列的一组数据。

例如,某地区每天的气温记录、股票市场每天的收盘价、某工厂每月的产量等都是时间序列。

”通过这道题,我们可以更清晰地理解时间序列的概念,并且能够将其与实际生活中的例子相结合,加深对知识的理解。

另一道题是:“判断一个时间序列是否平稳的方法有哪些?”答案为:“常见的方法有观察序列的均值、方差是否随时间变化;自相关函数是否只与时间间隔有关,而与时间起点无关等。

”这道题帮助我们掌握了判断时间序列平稳性的关键要点。

第二章主要讲解了时间序列的模型,如 AR 模型、MA 模型和ARMA 模型等。

比如,有这样一道习题:“请简述 AR(1)模型的表达式和特点。

”答案是:“AR(1)模型的表达式为 Xt =φXt-1 +εt,其中φ 为自回归系数,εt 为白噪声。

其特点是当前值主要由前一期的值和随机扰动项决定。

”通过这个答案,我们能够明确 AR(1)模型的数学形式和基本特征。

还有一道题是:“比较 AR 模型和 MA 模型的异同。

”答案从模型的表达式、参数含义、适用情况等方面进行了详细的比较,让我们对这两种模型有了更全面的认识。

第三章涉及时间序列的预测方法。

像“简述时间序列预测的基本步骤”这道题,答案是:“首先对时间序列进行平稳性检验和预处理;然后选择合适的模型进行拟合;接着对模型进行参数估计和诊断检验;最后利用模型进行预测。

”这个答案为我们提供了一个清晰的预测流程框架。

时间序列分析——基于R答案

时间序列分析——基于R答案

时间序列分析——基于R 王燕答案第一章时间序列分析简介略第二章时间序列的预处理#========================================## 2.5习题-1##========================================library(tseries)par(mfrow=c(1,2))x=rep(1:20)temp=ts(x)plot(temp)#不是平稳序列as.vector(acf(temp)$acf[1:6])#序列的自相关系数递减到零的速度相当缓慢,#在很长的延迟时期里,自相关系数一直为正,#而后又一直为负,在自相关图上显示出明显的#三角对称性,这是具有单调趋势的非平稳序列#的一种典型的自相关图形式。

这和该序列时序#图显示的显著的单调递增性是一致的。

#======================================== ## 2.5习题-2##======================================== library(tseries)par(mfrow=c(1,2))volcano.co2=read.table('习题2.2数据.txt',sep='\t',header=F) data=ts(as.vector(t(as.matrix(volcano.co2))),start=c(1975,1)) plot(data)#不是平稳序列as.vector(acf(data,lag.max=23)$acf)#序列自相关系数长期位于零轴的一边。

这是#具有单调趋势序列的典型特征,同时自相关#图呈现出明显的正弦波动规律,这是具有周#期变化规律的非平稳序列的典型特征。

自相#关图显示出来的这两个性质和该序列时序图#显示出的带长期递增趋势的周期性质是非常#吻合的。

#========================================## 2.5习题-3##======================================== library(tseries)par(mfrow=c(1,2))rain=read.table('习题2.3数据.txt',sep='\t',header=F) data=ts(as.vector(t(as.matrix(rain))),start=c(1945,1)) plot(data)#该序列为平稳序列as.vector(acf(data,lag.max = 23)$acf)#该序列的自相关系数一直都比较小,#基本控制在2倍的标准差范闹以内,#可以认为该序列自始至终都在零轴附#近波动,这是随机性非常强的平稳时#间序列通常具有的自相关图特征。

时间序列分析习题解答(2):上课展示的典型题

时间序列分析习题解答(2):上课展示的典型题

时间序列分析习题解答(2):上课展⽰的典型题由于本答案由少部分⼈完成,难免存在错误,如有不同意见欢迎在评论区提出。

第⼀题⼀、已知零均值平稳序列{X t}的⾃协⽅差函数为γ0=1,γ±1=ρ,γk=0,|k|≥2.计算{X t}的偏相关系数a1,1,a2,2。

计算最佳线性预测L(X3|X2),L(X3|X2,X1)。

计算预测的均⽅误差E[X3−L(X3|X2)]2,E[X3−L(X3|X2,X1)]2。

证明:ρ应满⾜|ρ|≤1 2。

若ρ=0.4,计算{X t}的谱密度函数,给出{X t}所满⾜的模型。

解:(1)由Yule-Walker⽅程,a1,1=γ1/γ0=ρ,1ρρ1a2,1a2,2=ρ,解得a2,2=−ρ2 1−ρ2.(2)由预测⽅程,有L(X3|X2)=ρX2。

设L(X3|X2,X1)=a2X2+a1X1,则1ρρ1a1a2=ρ,a1=−ρ21−ρ2,a2=ρ1−ρ2.所以L(X3|X2,X1)=−ρ2X1+ρX21−ρ2.(3)预测的均⽅误差是E(X3−ρX2)2=(1+ρ2)γ0−2ργ1=1−ρ2,E X3−−ρ2X1+ρX21−ρ22=(1−ρ2)2+ρ4+ρ2(1−ρ2)2−2ρρ3+ρ(1−ρ2)(1−ρ2)2 =2ρ4−3ρ2+1(1−ρ2)2=1−2ρ21−ρ2.(4)由于{X t}的⾃协⽅差函数1后截尾,所以它是⼀个MA(1)模型,即存在b≤1,⽩噪声εt∼WN(0,σ2)使得X t=εt+bεt−1.于是γ0=(1+b2)σ2=1,γ1=bσ2=ρ,所以ρ(b)=b1+b2,在b∈[−1,1]上ρ(b)是单调的,所以−12≤ρ(−1)≤ρ≤ρ(1)=12.(5)由谱密度反演公式,容易得到[][][][][][]()[][]Processing math: 49%f(λ)=12π[1+0.8cosλ]=12π451+cosλ+14=(2/√5)22π1+12(e iλ)2.所以X t=εt+12εt−1,{εt}∼WN0,45.第⼆题⼆、设零均值平稳序列{X t}的⾃协⽅差函数满⾜γk=187×25|k|,k≠0,k∈Z.当γ0取何值时,该序列为AR(1)序列?说明理由并给出相应的模型。

【分享】应用时间序列分析课后答案

【分享】应用时间序列分析课后答案

【分享】应用时间序列分析课后答案在学习应用时间序列分析这门课程的过程中,课后答案对于我们巩固知识、检验理解程度以及发现问题和不足都有着至关重要的作用。

今天,我就来和大家分享一下我整理的应用时间序列分析课后答案,希望能对正在学习这门课程的朋友们有所帮助。

首先,让我们来了解一下什么是时间序列分析。

简单来说,时间序列分析是一种用于研究随时间变化的数据的统计方法。

它可以帮助我们揭示数据中的趋势、季节性、周期性等特征,并进行预测和建模。

在课程的第一章,通常会介绍时间序列的基本概念和表示方法。

课后答案中,对于一些关键概念的理解问题,比如时间序列的平稳性、白噪声等,会有详细的解释和说明。

以平稳性为例,答案会指出平稳时间序列的均值和方差不随时间变化,自相关函数只与时间间隔有关等重要特征,并通过具体的例子来帮助我们加深理解。

第二章可能会涉及到时间序列的模型。

常见的模型如自回归模型(AR)、移动平均模型(MA)以及自回归移动平均模型(ARMA)。

课后答案会给出这些模型的数学表达式、参数估计方法以及适用场景。

比如,在解释 AR 模型时,答案会说明如何通过 YuleWalker 方程来估计参数,以及如何判断模型的阶数。

当学习到时间序列的预测方法时,课后答案会展示具体的预测步骤和计算过程。

例如,使用简单的移动平均法进行预测,答案会清晰地列出计算每个预测值的算式,并对预测结果的准确性进行评估和分析。

在时间序列的季节性分析这部分内容中,课后答案会介绍如何识别季节性模式,以及如何通过季节性调整来消除季节性影响。

对于一些复杂的季节性模型,如乘积季节模型,答案会提供详细的建模思路和参数估计方法。

另外,关于时间序列的平稳化处理也是一个重要的知识点。

课后答案会讲解常见的平稳化方法,如差分法、对数变换等,并通过实际数据演示这些方法的效果。

除了理论知识的答案,一些课后习题还会要求我们运用所学知识进行实际数据分析。

这时候,答案不仅会给出最终的分析结果,还会展示详细的数据处理过程和使用的统计软件代码。

时间序列分析课后习题答案

时间序列分析课后习题答案

第9章 时间序列分析课后习题答案第10章(1)30× 31.06×21.05= 30×1.3131 = 39.393(万辆)(2117.11%== (3)设按7.4%的增长速度n 年可翻一番 则有 1.07460/302n==所以 n = log2 / log1.074 = 9.71(年)故能提前0.29年达到翻一番的预定目标。

第11章(1)以1987年为基期,2003年与1987年相比该地区社会商品零售额共增长:%86.2313186.213186.31%)8.61(%)2.81(%)101(555==-=-+⨯+⨯+ (2)年平均增长速度为1%)8.61(%)2.81(%)101(15555-+⨯+⨯+=0.0833=8.33%(3) 2004年的社会商品零售额应为509.52)0833.01(307=+⨯(亿元)第12章 (1)发展总速度%12.259%)81(%)101(%)121(343=+⨯+⨯+平均增长速度=%9892.91%12.25910=-(2)8.561%)61(5002=+⨯(亿元)(3)平均数∑====415.142457041j j y y (亿元),2002年一季度的计划任务:625.1495.142%105=⨯(亿元)。

第13章(1)用每股收益与年份序号回归得^0.3650.193t Y t =+。

预测下一年(第11年)的每股收益为488.211193.0365.0ˆ11=⨯+=Y 元(2)时间数列数据表明该公司股票收益逐年增加,趋势方程也表明平均每年增长0.193元。

是一个较为适合的投资方向。

第14章 (1)移动平均法消除季节变动计算表(2)t T t ⨯+=63995.09625.8上表中,其趋势拟合为直线方程t T t ⨯+=63995.09625.8。

根据上表计算的季节比率,按照公式KL t t t S T Y -⋅=计算可得: 2004年第一季度预测值:7723.21097301.1)1763995.09625.8(ˆˆˆ11717=⨯⨯+=⋅=S T Y2004年第二季度预测值: 49725.23147237.1)1863995.09625.8(ˆˆˆ21818=⨯⨯+=⋅=S T Y2004年第三季度预测值: 009.18852641.0)1963995.09625.8(ˆˆˆ31919=⨯⨯+=⋅=S T Y2004年第四季度预测值:6468.19902822.0)2063995.09625.8(ˆˆˆ42020=⨯⨯+=⋅=S T Y平均法计算季节比率表:季节比率的图形如下:(2)用移动平均法分析其长期趋势原时间序列与移动平均的趋势如下图所示:9.2(1)采用线性趋势方程法:tTi0065.70607.460ˆ+=剔除其长期趋势。

时间序列分析习题及答案

时间序列分析习题及答案

时间序列分析第一题:1、绘制时序图:data ex1_1;input x@@ ;time=intnx('month','01jul2004'd,_n_-1);format time date. ;cards;153 134 145 117 187 175 203 178 234 243 189 149 212 227 214 178 300 298 295 248 221 256 220 202 201 237 231 162 175 165 174 135 123 124 119 120 104 106 85 96 85 87 67 90 78 74 75 63;proc gplot data=ex1_1;plot x*time=1;symbol1 c=black v=star i=join;run;时序图:2、绘制自相关图:data ex1_1;input x@@ ;time=intnx('month','01jul2004'd,_n_-1);format time date. ;cards;153 134 145 117 187 175 203 178 234 243 189 149 212 227 214 178 300 298 295 248 221 256 220 202 201 237 231 162 175 165 174 135 123 124 119 120 104 106 85 96 85 87 67 90 78 74 75 63;proc arima data=ex1_1;identify var=x;run;样本自相关图:白噪声检验输出结果:因为P值小于α,所以该序列为非白噪声序列,根据时序图看出数据并不在一个常数值附近随机波动,后期有递减的趋势,所以不是平稳序列。

第二题:1、选择拟合模型方法一:首先绘制该序列的时序图,直观检验序列平稳性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 时间序列分析一、选择题1.设(甲)代表时期数列;(乙)代表时点数列;(丙)代表几何序时平均数;(丁)代表“首末折半法”序时平均数。

现已知1996~2000年某银行的年末存款余额,要求计算各年平均存款余额,需计算的是( D )。

A.甲、丙B.乙、丙C.甲、乙D.乙、丁2.某商业集团2000~2001年各季度销售资料如表8—1所示。

表8—1资料中,是总量时期数列的有( D )。

A.1、2、3B.1、3、4C.2、4D.1、33.某地区粮食增长量1990~1995年为12万吨,1996~2000年也为12万吨。

那么,1990~2000年期间,该地区粮食环比增长速度( D )。

A.逐年上升B.逐年下降C.保持不变D.不能做结论4.利用第2题数据计算零售额移动平均数(简单,4项移动平均),2001年第二季度移动平均数为( A )。

A.47.5B.46.5C.49.5D.48.45.利用第3题数据计算2000年商品季平均流转次数(=零售额/库存额)( C )。

A.1.885B.1.838C.1.832D.1.829二、判断题1.连续12个月逐期增长量之和等于年距增长量。

(×)2.计算固定资产投资额的年平均发展速度应采用几何平均法。

(×)3.用移动平均法分析企业季度销售额时间序列的长期趋势时,一般应取4项进行移动平均。

(√)4.计算平均发展速度的水平法只适合时点指标时问序列。

(×)5.某公司连续四个季度销售收入增长率分别为9%、12%、20%和18%,其环比增长速度为0.14%。

(×)三、计算题1.某地区“九五”时期国内生产总值资料如表8—2所示。

试计算该地区“九五”时期国内生产总值和各产业产值的平均发展水平。

表8—2 单位:百万元解:国内生产总值和各产业产值均为时期指标,应采用时期指标序时平均数计算公式计算。

计算公式:国内生产总值平均发展水平:第一产业平均发展水平:第二产业平均发展水平:第三产业平均发展水平:2.某企业2000年8月几次员工数变动登记如表8—3所示。

试计算该企业8月份平均员工数。

表8—3解:该题是现象发生变动时登记一次的时点序列求序时平均数,假设员工人数用Y来表示,则≈1260(人)该企业8月份平均员工数为1260人。

3.某企业2000年产品库存量数据如表8—4所示。

试计算第一季度、第二季度、上半年、下半年和全年的平均库存量。

表8—4 单位:件解:产品库存量是时点序列,本题是间隔相等的时点序列,运用“首末折半法”计算平均库存量。

计算公式:第一季度平均库存量:第二季度平均库存量:上半年平均库存量:下半年平均库存量:全年的平均库存量:4.某地区“九五”期间年末居民存款余额如表8—5所示。

试计算该地区“九五”期间居民年平均存款余额。

表8—5 单位:百万元解:居民存款余额为时点序列,本题是间隔相等的时点序列,运用“首末折半法”计算序时平均数。

=15053.60(百万元)5.某地区1995~2000年社会消费品零售总额资料如表8—6所示。

表8—6 单位:亿元1995 1996 1997 1998 1999 2000 社会消费品零售总额 8255 9383 10985 12238 16059 19710 要求:(1)计算全期平均增长量、平均发展速度和平均增长速度;(2)列表计算:①逐期增长量和累积增长量;②定基发展速度和环比发展速度;③定基增长速度和环比增长速度;④增长1%的绝对值。

解:表8—7 单位:亿元平均增长速度:119.01%-100%=19.01%6.某企业1995~2000年底工人数和管理人员数资料如表8—8所示。

试计算1996~2000年该企业管理人员数占工人数的平均比重。

表8—8 单位:人年份 工人数 管理人员数年份 工人数 管理人员数1995 1996 19971000 1202 112040 43 501998 1999 20001230 1285 141552 60 64解:本题是计算相对数序时平均数。

计算公式:式中,y :管理人员占工人数的比重;a :管理人员数;b :工人数。

=51.4(人)=1208.9(人)1996~2000年企业管理人员占工人数的平均比重为4.25%。

7.某企业1990~2000年产品产量数据如表8—9所示。

要求:(1)进行三项中心化移动平均修匀;(2)根据修匀后的资料用最小二乘法配合直线趋势方程,并据以计算各年的趋势值; (3)预测2002年该企业的产品产量。

表8—9 单位:件年份 产量 年份 产量 年份 产量 1987 1988 1989 1990 1991344 416 435 440 4501992 1993 1994 19915 1996468 486 496 522 5801997 1998 1999 2000 2001580 569 548 580 629解:(1)三项中心化移动平均修匀如表8—10所示。

表8一10(2)直线趋势方程:将修匀后的数据代人最小二乘法求参数的公式,可得表8—11 最小二乘法计算表根据方程计算各年的趋势值,得到数据如表8—12所示。

表8—12(3)根据配合的方程,对2002年企业的产品产量进行预测。

2002年时,t=15,所以预测值为y=392.93+13.88×15=601.13(件)8.某地区2001年末人口数为2000万人,假定以后每年以9‰的速度增长,又知该地区2001年GDP 为1240亿元。

要求到2005年人均GDP达到9500元,试问该地区2005年的GDP应达到多少?2002年到2005年GDP的年均增长速度应达到多少?解:2004年末该地区人口:2000×(1+0.009)3=2054.49(万人)2005年末该地区人口:2000×(1+0.009)4=2072.98(万人) 2005年该地区的平均人口为:(2054.49+2072.98)/2=2063.76(万人) 所以,该地区2005年的GDP : 9500×2063.76=19605625(万元)2002~2004年该地区GDP 的年均增长速度:所以,要使2005年的人均GDP 达到9500元,2002~2005年GDP 的年均增长速度应达到12.13%。

9.某市集市1998~2001年各月猪肉销售量如表8—13所示。

试分别用同期平均法和移动平均剔除法计算季节指数。

表8—13 单位:万公斤1月 2月3月 4月5月6月7月8月9月10月 11月 12月1998 1999 2000 200140 43 40 5550 52 64 7241 45 58 6239 41 56 6045 48 67 7053 65 74 8668 79 84 9873 86 95 10850 64 76 8748 60 68 7843 45 56 6338 41 52 58解:(1)用同期平均法中的比率平均法计算季节指数。

第一,计算各周期月平均数:得第二,计算各指标值的季节比率和季节比率的平均数: 季节比率:ij iy y季节比率平均数:4114ij j i i y S y =⎛⎞=⎜⎟⎝⎠∑计算季节比率和季节比率平均数(最后一行是季节比率平均数,其余是季节比率),结果如表8—14所示。

表8—14第三,计算季节指数:首先计算S j 之和:所以,各时期的季节比率等于其季节指数。

(2)用移动平均剔除法计算季节指数,其结果如表8—15所示。

表8—15续表由于∑S j =12,所以,季节指数等于季节平均数。

10.某地区1991~2001年人口自然增长数如表8—16所示。

表8—16 单位:万人年份 1991 1992 1993 199419951996199719981999 2000 2001增长人口869 885 899 913 926936 948960 971 983 998要求:判断表8—16数列是否属于直线型,若为直线型,则运用最小二乘法配合直线方程,并根据直线方程求各年人口增长趋势值。

解:该地区人口逐期增长量如表8—17所示。

表8—17 单位:万人年份 1991 1992 1993 1994 19951996 增长人口(Y ) 逐期增长量869 —885 16899 14913 14926 13936 10 年份 1997 1998 1999 2000 2001 增长人口(Y ) 逐期增长量9481296012971119831299310从表8—17可以看出,各年逐期增长量大致相等,可以配合直线模型。

表8—18 最小二乘法计算表将修匀后的数据代人最小二乘法求参数的公式,可得得回归直线方程:Y=861.50+12.22t i根据直线方程预测趋势值如表8—19所示。

表8—19年份1991 1992 1993 1994 1995 1996 增长人口(y )(万人)趋势值 869 873.72885 885.94899 898.16913 910.38926 922.60936 934.82年份1997 1998 1999 2000 2001 增长人口(y )(万人)趋势值948 947.04960 959.26971 971.48983 983.69998 995.9111.某地区1991~2000年的GDP 如表8—20所示。

请选择最适合的α值,并用一次指数平滑模型预测1992~2001年的GDP 。

表8—20 (单位:亿元)年份 GDP 年份 GDP 1991 1992 1993 1994 1995216 266 345 450 5771996 1997 1998 1999 2000679 748 816 895 1036解:本题取平滑初始值为1991、1992和1993年GDP 的算术平均数,。

按照均方根误差最小的原则选取α的值。

具体过程略,最后选定α=0.99,预测值如表8—21所示。

10S ()10275.67S =()表8—21 单位:亿元年份1991 1992 1993 1994 1995GDP 216 266 345 450 577 预测值275.67 344.31 448.94 575.72年份1996 1997 1998 1999 2000GDP 679 748 816 895 1036 预测值 677.97 747.3 815.31 894.2 1034.5812.某银行1996~2000年,各年年末存款余额如表8—22所示。

试用普通最小二乘法和加权最小二乘法估计参数,取W=0.6,并计算各年理论值,比较两种估算方法的误差。

表8—22年末存款余额(亿元)1996 1997 1998 1999 20001.52.0 3.0 3.3 4.解:(1)普通最小二乘法(计算过程略,计算方法参见第8,9题) y=0.87+0.63t(2)加权最小二乘法计算表如表8—23所示。

相关文档
最新文档