第 章 时间序列分析课后习题解答

合集下载

时间序列分析第一章王燕习题解答

时间序列分析第一章王燕习题解答

时间序列分析习题解答第一章 P. 7 1.5 习题1.1 什么是时间序列?请收集几个生活中的观察值序列。

答:按照时间的顺序把随机事件变化发展的过程记录下来就构成一个时间序列。

例1:1820—1869年每年出现的太阳黑子数目的观察值;年份黑子数年份黑子数年份黑子数年份黑子数年份黑子数1820 16 1830 71 1840 63 1850 66 1860 96 1821 7 1831 48 1841 37 1851 64 1861 77 1822 4 1832 28 1842 24 1852 54 1862 59 1823 2 1833 8 1843 11 1853 39 1863 44 1824 8 1834 13 1844 15 1854 21 1864 47 1825 17 1835 57 1845 40 1855 7 1865 30 1826 36 1836 122 1846 62 1856 4 1866 16 1827 50 1837 138 1847 98 1857 23 1867 7 1828 62 1838 103 1848 124 1858 55 1868 37 1829 67 1839 86 1849 96 1859 94 1869 74 例2:北京市城镇居民1990—1999年每年的消费支出按照时间顺序记录下来,就构成了一个序列长度为10的消费支出时间序列(单位:亿元)。

1686,1925,2356,3027,3891,4874,5430,5796,6217,6796。

1.2 时域方法的特点是什么?答:时域方法特点:具有理论基础扎实,操作步骤规范,分析结果易于解释的优点,是时间序列分析的主流方法。

1.3 时域方法的发展轨迹是怎样的?答:时域方法的发展轨迹:一.基础阶段:1. G.U. Yule 1972年AR模型2. G.U.Walker 1931年 MA模型、ARMA模型二.核心阶段:G.E.P.Box和G.M.Jenkins1. 1970年,出版《Time Series Analysis Forecasting and Control》2. 提出ARIMA模型(Box-Jenkins模型)3. Box-Jenkins模型实际上主要运用于单变量、同方差场合的线性模型三.完善阶段:1.异方差场合:a.Robert F.Engle 1982年 ARCH模型b.Bollerslov 1985年 GARCH模型2.多变量场合:C.Granger 1987年提出了协整(co-integration)理论3.非线性场合:汤家豪等 1980年门限自回归模型1.4 在附录1中选择几个感兴趣的序列,创建数据集。

时间序列分析各章奇数号习题参考答案-完整版

时间序列分析各章奇数号习题参考答案-完整版
9
第六章
6.1 答:一、利用序列图进行判断 二、利用样本自相关函数 k 进行平稳
性判断 三、 利用单位根检验进行判断
6.3 答:略
6.5 股价
38
24.32
39
23.1
40
23.7
10
第七章
7.1 参考答案: 说明:因为时间序列 (1B)(1 B4)Xt (14B4)at ,

Wt (1 B4 )Xt ,则 (1B)Wt (14B4)at ,该 模型是
2
函数,但对同一事物的变化过程独立地重复进 行多次观测,所得的结果是不相同的,则称这
种变化过程为随机过程;从数学角度看,设 E 是随机试验,S 是它的样本空间,如果对于每一 个 e∈S,我们总可以依某种规则确定一时间 t 的函数与之对应(T 是时间 t 的变化范围),于是, 对于所有的 e∈S 来说,就得到一族时间 t 的函 数,我们称这族时间 t 的函数为随机过程,而 族中每一个函数为这个随机过程的样本函数(或 一次实现、现实)。
E
1j1i
(at
j
j0 i0
4at4 j )(atsi
4ats4i )
2(i 1
j
)
E
(at
j
at
s
i
a a 4 t j t s4i
a a 4 t 4 j t si
a a ) 2
4 t4 j ts4i
j0 i0
11
7.3 参考答案:B。 选择 A 的差分是针对长期趋势,而且趋势通 常为二次曲线的情形;
第九章
9.1 题参考答案:不正确。因为传递函数模型稳 定的要求同时包含两个部分。其一要求传递函 数部分的稳定性,其二要求干扰项部分的平稳

精选第章时间序列分析习题--精选解答

精选第章时间序列分析习题--精选解答

第七章时间序列剖析思虑与练习一、选择题1.已知 2000-2006 年某银行的年终存款余额,要计算各年均匀存款余额,该均匀数是 : ( b )a. 几何序时均匀数;b. “首末折半法”序时均匀数;c. 期间数列的均匀数; d. 时点数列的均匀数。

2.某地域粮食增加量 1990— 1995 年为 12 万吨, 1996— 2000 年也为 12 万吨。

那么, 1990— 2000 年期间,该地域粮食环比增加速度( d )a. 逐年上涨b. 逐年降落c. 保持不变d. 不可以做结论3. 某商业公司 2000—2001 年各季度销售资料以下:2000 年2001 年1 2 3 4 1 2 3 41. 零售额(百万)40 42 38 44 48 50 40 602. 季初库存额(百万)20 21 22 24 25 26 23 283. 流通花费额(百万) 3.8 3.2 2.8 3.2 3.0 3.1 3.14.04. 商品流转次数(次 / 季) 1.95 19.5 1.65 1.8 1.88 2.04 1.63 2.03上表资猜中,是总量期间数列的有(d)a. 1 、 2、 3b. 1、3、4c. 2、4d. 1、34. 利用上题资料计算零售额挪动均匀数(简单, 4 项挪动均匀), 2001 年第二季度挪动均匀数为( a )a. 47.5b. 46.5c. 49.5d. 48.4二、判断题1.连续 12 个月逐期增加量之和等于年距增加量。

2.计算固定财产投资额的年均匀发展速度应采纳几何均匀法。

3.用挪动均匀法剖析公司季度销售额时间序列的长久趋向时,一般应取4项进行挪动均匀。

4.计算均匀发展速度的水平法只合适时点指标时间序列。

5. 某公司连续四个季度销售收入增加率分别为9%、 12%、 20%和 18%,其125环比增加速度为 0.14%。

正确答案:(1)错;(2)错;( 3)对;( 4)错;( 5)错。

统计学习题答案 第9章 时间序列分析

统计学习题答案 第9章  时间序列分析

第9章 时间序列分析——练习题●1. 某汽车制造厂2003年产量为30万辆。

(1)若规定2004—2006年年递增率不低于6%,其后年递增率不低于5%,2008年该厂汽车产量将达到多少?(2)若规定2013年汽车产量在2003年的基础上翻一番,而2004年的增长速度可望达到7.8%,问以后9年应以怎样的速度增长才能达到预定目标?(3)若规定2013年汽车产量在2003年的基础上翻一番,并要求每年保持7.4%的增长速度,问能提前多少时间达到预定目标?解:设i 年的环比发展水平为x i ,则由已知得:x 2003=30, (1)又知:320042005200620032004200516%x x x x x x ≥+(),2200720082006200715%x x x x ≥+(),求x 2008由上得32200820072008200320032007(16%)(15%)x x x x x x =≥++ 即为3220081.061.0530x ≥,从而2008年该厂汽车产量将达到 得 x 2008≥30× 31.06×21.05= 30×1.3131 = 39.393(万辆) 从而按假定计算,2008年该厂汽车产量将达到39.393万辆以上。

(2)规定201320032x x =,20042003x x =1+7.8%由上得=107.11%==可知,2004年以后9年应以7.11%的速度增长,才能达到2013年汽车产量在2003年的基础上翻一番的目标。

(3)设:按每年7.4%的增长速度n 年可翻一番, 则有 201320031.0742na a == 所以 1.074log 20.30103log 29.70939log1.0740.031004n ====(年)可知,按每年保持7.4%的增长速度,约9.71年汽车产量可达到在2003年基础上翻一番的预定目标。

原规定翻一番的时间从2003年到2013年为10年,故按每年保持7.4%的增长速度,能提前0.29年即3个月另14天达到翻一番的预定目标。

时间序列分析课后习题答案1

时间序列分析课后习题答案1

时间序列分析课后习题答案(上机第二章 2、328330332334336338340342(1时序图如上:序列具有明显的趋势和周期性,该序列非平稳。

(2样本自相关系数:(3该样本自相关图上,自相关系数衰减为 0的速度缓慢,且有正弦波状,显示序列具有趋势和周期,非平稳。

3、 (1样本自相关系数:(2序列平稳。

(3因 Q 统计量对应的概率均大于 0.05,故接受该序列为白噪声的假设,即序列为村随机序列。

5、 (1时序图和样本自相关图:50100150200250300350(2序列具有明显的周期性,非平稳。

(3序列的 Q 统计量对应的概率均小于 0.05,该序列是非白噪声的。

6、 (1根据样本相关图可知:该序列是非平稳,非白噪声的。

(2对该序列进行差分运算:1--=t t t x x y {t y }的样本相关图:该序列平稳,非白噪声。

第三章:17、 (1结论:序列平稳,非白噪声。

(2 拟合 MA(2 model:VariableCoefficient Std. Error t-Statistic Prob. C 80.40568 4.630308 17.36508 0.0000 MA(1 0.336783 0.114610 2.938519 0.0047 R-squared0.171979 Mean dependent var 80.29524 Adjusted R-squared 0.144379 S.D. dependent var 23.71981 S.E. of regression 21.94078 Akaike info criterion 9.061019 Sum squared resid 28883.87 Schwarz criterion 9.163073 Log likelihood -282.4221 F-statistic 6.230976 Durbin-Watson stat 2.072640 Prob(F-statistic 0.003477Residual tests(3拟合 AR(2model:C 79.71956 5.442613 14.64729 0.0000 AR(10.2586240.1288102.0077940.0493R-squared0.154672 Mean dependent var 79.50492 Adjusted R-squared 0.125522 S.D. dependent var 23.35053 S.E. of regression 21.83590 Akaike info criterion 9.052918 Sum squared resid 27654.79 Schwarz criterion 9.156731 Log likelihood -273.1140 F-statistic 5.306195 Durbin-Watson stat 1.939572 Prob(F-statistic 0.007651Inverted AR Roots.62-.36Residual tests:(4 拟合 ARMA (2, 1 model :Variable Coefficient Std. Error t-Statistic Prob. C 79.17503 4.082908 19.39183 0.0000 AR(1 -0.586834 0.118000 -4.973170 0.0000 AR(2 0.376120 0.082091 4.581756 0.0000 MA(11.1139990.09712211.470120.0000R-squared0.338419 Mean dependent var 79.50492 Adjusted R-squared 0.303599 S.D. dependent var 23.35053 S.E. of regression 19.48617 Akaike info criterion 8.840611 Sum squared resid 21643.51 Schwarz criterion 8.979029 Log likelihood-265.6386 F-statistic9.719104Inverted AR Roots .39-.97 Inverted MA Roots-1.11Estimated MA process is noninvertible残差检验:(5拟合 ARMA (1, (2 model:Variable Coefficient Std. Error t-Statistic Prob. C 79.52100 4.621910 17.205230.0000 AR(1 0.270506 0.125606 2.153603 0.0354 R-squared0.157273 Mean dependent var 79.55161 Adjusted R-squared 0.128706 S.D. dependent var 23.16126 S.E. of regression 21.61946 Akaike info criterion 9.032242 Sum squared resid 27576.65 Schwarz criterion 9.135167 Log likelihood -276.9995 F-statistic 5.505386 Durbin-Watson stat 1.981887 Prob(F-statistic 0.006423Inverted AR Roots.27残差检验:(6优化根据 SC 准则,最优模型为 ARMA(2,1模型。

第章时间序列预测习题答案完整版

第章时间序列预测习题答案完整版

第章时间序列预测习题答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第10章时间序列预测从时间序列图可以看出,国家财政用于农业的支出额大体上呈指数上升趋势。

(2)年平均增长率为:。

(3)。

下表是1981年—2000年我国油彩油菜籽单位面积产量数据(单位:kg / hm2)年份单位面积产量年份单位面积产量1981 1451 1991 12151982 1372 1992 12811983 1168 1993 13091984 1232 1994 12961985 1245 1995 14161986 1200 1996 13671987 1260 1997 14791988 1020 1998 12721989 1095 1999 14691990 1260 2000 1519(1)绘制时间序列图描述其形态。

(2)用5期移动平均法预测2001年的单位面积产量。

(3)采用指数平滑法,分别用平滑系数a=和a=预测2001年的单位面积产量,分析预测误差,明用哪一个平滑系数预测更合适?详细答案:(1)时间序列图如下:(2)2001年的预测值为:|(3)由Excel输出的指数平滑预测值如下表:年份单位面积产量指数平滑预测a=误差平方指数平滑预测a=误差平方19811451 19821372 19831168 19841232 19851245 19861200 1987126019881020198910951990126019911215199212811993130919941296199514161996136719971479199812721999146920001519合计———2001年a=时的预测值为:a=时的预测值为:比较误差平方可知,a=更合适。

下面是一家旅馆过去18个月的营业额数据月份营业额(万元)月份营业额(万元)1 295 10 4732 283 11 4703 322 12 4814 355 13 4495 286 14 5446 379 15 6017 381 16 5878 431 17 6449 424 18 660(1)用3期移动平均法预测第19个月的营业额。

(完整word版)时间序列分析基于R__习题答案及解析

(完整word版)时间序列分析基于R__习题答案及解析

第一章习题答案略第二章习题答案2.1(1)非平稳(2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376(3)典型的具有单调趋势的时间序列样本自相关图2.2(1)非平稳,时序图如下(2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图2.3(1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118(2)平稳序列(3)白噪声序列2.4,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。

显著性水平=0.05不能视为纯随机序列。

2.5(1)时序图与样本自相关图如下(2) 非平稳 (3)非纯随机 2.6(1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机第三章习题答案3.1 ()0t E x =,21() 1.9610.7t Var x ==-,220.70.49ρ==,220φ= 3.2 1715φ=,2115φ=3.3 ()0t E x =,10.15() 1.98(10.15)(10.80.15)(10.80.15)t Var x +==--+++10.80.7010.15ρ==+,210.80.150.41ρρ=-=,3210.80.150.22ρρρ=-=1110.70φρ==,2220.15φφ==-,330φ=3.4 10c -<<, 1121,1,2k k k c c k ρρρρ--⎧=⎪-⎨⎪=+≥⎩3.5 证明:该序列的特征方程为:32--c 0c λλλ+=,解该特征方程得三个特征根:11λ=,2c λ=3c λ=-无论c 取什么值,该方程都有一个特征根在单位圆上,所以该序列一定是非平稳序列。

课后习题答案-时间序列分析及应用(R语言原书第2版)

课后习题答案-时间序列分析及应用(R语言原书第2版)
> plot(ts(rnorm(n=48)),type='o') # If you repeat this command R will use a new “random numbers” each time. If you want to reproduce the same simulation first use the command set.seed(#########) where ######### is an integer of your choice.
stationary.
(b) Find the autocovariance function for {Yt}. Cov(Yt,Yt − k) = Cov(X,X) = σ2 for all t and k, free of t (and k). (c) Sketch a “typical” time plot of Yt. The plot will be a horizontal “line” (really a discrete-time horizontal line)
relation functions are the same for θ = 3 and θ = 1/3. For simplicity, suppose that the process mean is known
to be zero and the variance of Yt is known to be 1. You observe the series {Yt} for t = 1, 2,..., n and suppose that you can produce good estimates of the autocorrelations ρk. Do you think that you could determine which value of θ is correct (3 or 1/3) based on the estimate of ρk? Why or why not?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 时间序列分析一、选择题1.设(甲)代表时期数列;(乙)代表时点数列;(丙)代表几何序时平均数;(丁)代表“首末折半法”序时平均数。

现已知1996~2000年某银行的年末存款余额,要求计算各年平均存款余额,需计算的是( D )。

A.甲、丙B.乙、丙C.甲、乙D.乙、丁2.某商业集团2000~2001年各季度销售资料如表8—1所示。

表8—1资料中,是总量时期数列的有( D )。

A.1、2、3B.1、3、4C.2、4D.1、33.某地区粮食增长量1990~1995年为12万吨,1996~2000年也为12万吨。

那么,1990~2000年期间,该地区粮食环比增长速度( D )。

A.逐年上升B.逐年下降C.保持不变D.不能做结论4.利用第2题数据计算零售额移动平均数(简单,4项移动平均),2001年第二季度移动平均数为( A )。

A.47.5B.46.5C.49.5D.48.45.利用第3题数据计算2000年商品季平均流转次数(=零售额/库存额)( C )。

A.1.885B.1.838C.1.832D.1.829二、判断题1.连续12个月逐期增长量之和等于年距增长量。

(×)2.计算固定资产投资额的年平均发展速度应采用几何平均法。

(×)3.用移动平均法分析企业季度销售额时间序列的长期趋势时,一般应取4项进行移动平均。

(√)4.计算平均发展速度的水平法只适合时点指标时问序列。

(×)5.某公司连续四个季度销售收入增长率分别为9%、12%、20%和18%,其环比增长速度为0.14%。

(×)三、计算题1.某地区“九五”时期国内生产总值资料如表8—2所示。

试计算该地区“九五”时期国内生产总值和各产业产值的平均发展水平。

表8—2 单位:百万元解:国内生产总值和各产业产值均为时期指标,应采用时期指标序时平均数计算公式计算。

计算公式:国内生产总值平均发展水平:第一产业平均发展水平:第二产业平均发展水平:第三产业平均发展水平:2.某企业2000年8月几次员工数变动登记如表8—3所示。

试计算该企业8月份平均员工数。

表8—3解:该题是现象发生变动时登记一次的时点序列求序时平均数,假设员工人数用Y来表示,则≈1260(人)该企业8月份平均员工数为1260人。

3.某企业2000年产品库存量数据如表8—4所示。

试计算第一季度、第二季度、上半年、下半年和全年的平均库存量。

表8—4 单位:件解:产品库存量是时点序列,本题是间隔相等的时点序列,运用“首末折半法”计算平均库存量。

计算公式:第一季度平均库存量:第二季度平均库存量:上半年平均库存量:下半年平均库存量:全年的平均库存量:4.某地区“九五”期间年末居民存款余额如表8—5所示。

试计算该地区“九五”期间居民年平均存款余额。

表8—5 单位:百万元解:居民存款余额为时点序列,本题是间隔相等的时点序列,运用“首末折半法”计算序时平均数。

=15053.60(百万元)5.某地区1995~2000年社会消费品零售总额资料如表8—6所示。

表8—6 单位:亿元1995 1996 1997 1998 1999 2000 社会消费品零售总额 8255 9383 10985 12238 16059 19710 要求:(1)计算全期平均增长量、平均发展速度和平均增长速度;(2)列表计算:①逐期增长量和累积增长量;②定基发展速度和环比发展速度;③定基增长速度和环比增长速度;④增长1%的绝对值。

解:表8—7 单位:亿元平均增长速度:119.01%-100%=19.01%6.某企业1995~2000年底工人数和管理人员数资料如表8—8所示。

试计算1996~2000年该企业管理人员数占工人数的平均比重。

表8—8 单位:人年份 工人数 管理人员数年份 工人数 管理人员数1995 1996 19971000 1202 112040 43 501998 1999 20001230 1285 141552 60 64解:本题是计算相对数序时平均数。

计算公式:式中,y :管理人员占工人数的比重;a :管理人员数;b :工人数。

=51.4(人)=1208.9(人)1996~2000年企业管理人员占工人数的平均比重为4.25%。

7.某企业1990~2000年产品产量数据如表8—9所示。

要求:(1)进行三项中心化移动平均修匀;(2)根据修匀后的资料用最小二乘法配合直线趋势方程,并据以计算各年的趋势值; (3)预测2002年该企业的产品产量。

表8—9 单位:件年份 产量 年份 产量 年份 产量 1987 1988 1989 1990 1991344 416 435 440 4501992 1993 1994 19915 1996468 486 496 522 5801997 1998 1999 2000 2001580 569 548 580 629解:(1)三项中心化移动平均修匀如表8—10所示。

表8一10(2)直线趋势方程:将修匀后的数据代人最小二乘法求参数的公式,可得表8—11 最小二乘法计算表根据方程计算各年的趋势值,得到数据如表8—12所示。

表8—12(3)根据配合的方程,对2002年企业的产品产量进行预测。

2002年时,t=15,所以预测值为y=392.93+13.88×15=601.13(件)8.某地区2001年末人口数为2000万人,假定以后每年以9‰的速度增长,又知该地区2001年GDP 为1240亿元。

要求到2005年人均GDP达到9500元,试问该地区2005年的GDP应达到多少?2002年到2005年GDP的年均增长速度应达到多少?解:2004年末该地区人口:2000×(1+0.009)3=2054.49(万人)2005年末该地区人口:2000×(1+0.009)4=2072.98(万人) 2005年该地区的平均人口为:(2054.49+2072.98)/2=2063.76(万人) 所以,该地区2005年的GDP : 9500×2063.76=19605625(万元)2002~2004年该地区GDP 的年均增长速度:所以,要使2005年的人均GDP 达到9500元,2002~2005年GDP 的年均增长速度应达到12.13%。

9.某市集市1998~2001年各月猪肉销售量如表8—13所示。

试分别用同期平均法和移动平均剔除法计算季节指数。

表8—13 单位:万公斤1月 2月3月 4月5月6月7月8月9月10月 11月 12月1998 1999 2000 200140 43 40 5550 52 64 7241 45 58 6239 41 56 6045 48 67 7053 65 74 8668 79 84 9873 86 95 10850 64 76 8748 60 68 7843 45 56 6338 41 52 58解:(1)用同期平均法中的比率平均法计算季节指数。

第一,计算各周期月平均数:得第二,计算各指标值的季节比率和季节比率的平均数: 季节比率:ij iy y季节比率平均数:4114ij j i i y S y =⎛⎞=⎜⎟⎝⎠∑计算季节比率和季节比率平均数(最后一行是季节比率平均数,其余是季节比率),结果如表8—14所示。

表8—14第三,计算季节指数:首先计算S j 之和:所以,各时期的季节比率等于其季节指数。

(2)用移动平均剔除法计算季节指数,其结果如表8—15所示。

表8—15续表由于∑S j =12,所以,季节指数等于季节平均数。

10.某地区1991~2001年人口自然增长数如表8—16所示。

表8—16 单位:万人年份 1991 1992 1993 199419951996199719981999 2000 2001增长人口869 885 899 913 926936 948960 971 983 998要求:判断表8—16数列是否属于直线型,若为直线型,则运用最小二乘法配合直线方程,并根据直线方程求各年人口增长趋势值。

解:该地区人口逐期增长量如表8—17所示。

表8—17 单位:万人年份 1991 1992 1993 1994 19951996 增长人口(Y ) 逐期增长量869 —885 16899 14913 14926 13936 10 年份 1997 1998 1999 2000 2001 增长人口(Y ) 逐期增长量9481296012971119831299310从表8—17可以看出,各年逐期增长量大致相等,可以配合直线模型。

表8—18 最小二乘法计算表将修匀后的数据代人最小二乘法求参数的公式,可得得回归直线方程:Y=861.50+12.22t i根据直线方程预测趋势值如表8—19所示。

表8—19年份1991 1992 1993 1994 1995 1996 增长人口(y )(万人)趋势值 869 873.72885 885.94899 898.16913 910.38926 922.60936 934.82年份1997 1998 1999 2000 2001 增长人口(y )(万人)趋势值948 947.04960 959.26971 971.48983 983.69998 995.9111.某地区1991~2000年的GDP 如表8—20所示。

请选择最适合的α值,并用一次指数平滑模型预测1992~2001年的GDP 。

表8—20 (单位:亿元)年份 GDP 年份 GDP 1991 1992 1993 1994 1995216 266 345 450 5771996 1997 1998 1999 2000679 748 816 895 1036解:本题取平滑初始值为1991、1992和1993年GDP 的算术平均数,。

按照均方根误差最小的原则选取α的值。

具体过程略,最后选定α=0.99,预测值如表8—21所示。

10S ()10275.67S =()表8—21 单位:亿元年份1991 1992 1993 1994 1995GDP 216 266 345 450 577 预测值275.67 344.31 448.94 575.72年份1996 1997 1998 1999 2000GDP 679 748 816 895 1036 预测值 677.97 747.3 815.31 894.2 1034.5812.某银行1996~2000年,各年年末存款余额如表8—22所示。

试用普通最小二乘法和加权最小二乘法估计参数,取W=0.6,并计算各年理论值,比较两种估算方法的误差。

表8—22年末存款余额(亿元)1996 1997 1998 1999 20001.52.0 3.0 3.3 4.解:(1)普通最小二乘法(计算过程略,计算方法参见第8,9题) y=0.87+0.63t(2)加权最小二乘法计算表如表8—23所示。

相关文档
最新文档