双单片机串口通信原理+程序
单片机双机串口通信
单片机双机串口通信在现代电子技术领域,单片机的应用无处不在。
而单片机之间的通信则是实现复杂系统功能的关键之一。
其中,双机串口通信是一种常见且重要的通信方式。
什么是单片机双机串口通信呢?简单来说,就是让两个单片机能够通过串口相互交换数据和信息。
想象一下,两个单片机就像是两个小伙伴,它们需要交流分享彼此的“想法”和“知识”,串口通信就是它们交流的“语言”。
串口通信,顾名思义,是通过串行的方式来传输数据。
这和我们日常生活中并行传输数据有所不同。
在并行传输中,多个数据位同时传输;而在串行传输中,数据一位一位地按顺序传送。
虽然串行传输速度相对较慢,但它所需的硬件连线简单,成本较低,对于单片机这种资源有限的设备来说,是一种非常实用的通信方式。
在进行单片机双机串口通信时,我们首先要了解串口通信的一些基本参数。
比如波特率,它决定了数据传输的速度。
就像两个人说话的快慢,如果波特率设置得不一致,那么双方就无法正常理解对方的意思,数据传输就会出错。
常见的波特率有 9600、115200 等。
还有数据位、停止位和校验位。
数据位决定了每次传输的数据长度,常见的有 8 位;停止位表示一个数据帧的结束,通常是 1 位或 2 位;校验位则用于检验数据传输的正确性,有奇校验、偶校验和无校验等方式。
为了实现双机串口通信,我们需要在两个单片机上分别进行编程。
编程的主要任务包括初始化串口、设置通信参数、发送数据和接收数据。
初始化串口时,我们要配置好相关的寄存器,使其工作在我们期望的模式下。
比如设置波特率发生器的数值,以确定合适的波特率。
发送数据相对来说比较简单。
我们将要发送的数据放入特定的寄存器中,然后启动发送操作,单片机就会自动将数据一位一位地通过串口发送出去。
接收数据则需要我们不断地检查接收标志位,以确定是否有新的数据到来。
当有新数据时,从接收寄存器中读取数据,并进行相应的处理。
在实际应用中,单片机双机串口通信有着广泛的用途。
比如在一个温度监测系统中,一个单片机负责采集温度数据,另一个单片机则负责将数据显示在屏幕上或者上传到网络。
两片单片机之间的串行通信(proteus仿真图+程序)
两片单片机之间的串行通信(proteus仿真图+程序)两片单片机之间的串行通信(仿真图+程序)AT89C51+MAX232功能:(1)甲机P1口的开关控制乙机P1口的发光二级管,开关闭合发光二级管亮,开关断开发光二级管灭。
(2)乙机P2口的开关控制甲机P2口的数码管,按下4*4矩阵键盘,显示对应的键值0~F (3)乙机P0^0口的开关控制甲机P2口的数码管,按下按键,数码管从0~9循环显示;乙机P0^2口的开关控制甲机P2口的数码管,按下按键,数码管清零。
/****************************甲机控制与接收*********************************/ #include#include#define uchar unsigned char#define uint unsigned intsbit K0=P1^0;sbit K1=P1^1;sbit K2=P1^2;sbit K3=P1^3;sbit K4=P1^4;sbit K5=P1^5;sbit K6=P1^6;sbit K7=P1^7;uchar i;uchar code tab[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07, 0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71}; void delay(uint z){ uint x,y;for(x=z;x>0;x--)for(y=110;y<0;y--);}void send(uchar c) //向串口发送字符{ SBUF=c;while(TI==0);TI=0;}void main(){ uchar i;P2=0x00;SCON=0x50; //串口模式1TMOD=0x20; //T1工作模式2PCON=0x00; //波特率不倍增TH1=0xfd; //波特率设定6900TL1=0xfd;TI=RI=0;TR1=1; //启动定时器T1IE=0x90; //允许串口中断while(1){ if(K0==0) send('0'); else send('A');if(K1==0) send('1'); else send('B');if(K2==0) send('2'); else send('C');if(K3==0) send('3'); else send('D');if(K4==0) send('4'); else send('E');if(K5==0) send('5'); else send('F');if(K6==0) send('6'); else send('G');if(K7==0) send('7'); else send('H');}}void serial_int() interrupt 4 //甲机串口接收中断函数{ if(RI){ RI=0;if(SBUF>=0 &&SBUF<=15)P2=tab[SBUF];elseP2=0x00;if(SBUF=='x')if(i>=0&&i<9){i=i+1;P2=tab[i];}if(i==9) i=0;if(SBUF=='y'){P2=0x00;i=0;}}}/*****************************乙机控制与接收程序*****************************/ #include#include#define uchar unsigned char#define uint unsigned intsbit L0=P1^0;sbit L1=P1^1;sbit L2=P1^2;sbit L3=P1^3;sbit L4=P1^4;sbit L5=P1^5;sbit L6=P1^6;sbit L7=P1^7;sbit KEY1=P0^0;sbit KEY2=P0^2;void delay(uint z){ uint x,y;for(x=z;x>0;x--)for(y=110;y<0;y--);}void send(uchar c) //向串口发送字符{ SBUF=c;while(TI==0);TI=0;}uchar key() //按键扫描{ uchar keyon,temp;P2=0x0f;delay(1);temp=P2^0x0f;switch(temp){ case 1:keyon=3;break;case 2:keyon=2;break;case 4:keyon=1;break;case 8:keyon=0;break;default:keyon=16;}P2=0xf0;delay(1);temp=P2>>4^0x0f;switch(temp){ case 1:keyon+=0;break;case 2:keyon+=4;break;case 4:keyon+=8;break;case 8:keyon+=12;break;}return keyon;}void main(){ SCON=0x50; //串口模式1,允许接收TMOD=0x20; //T1 工作模式2PCON=0x00; //波特率不倍增TH1=0xfd; //波特率设定: 9600TL1=0xfd;TI=RI=0;TR1=1; //启动定时器T1IE=0x90; //允许串口中断delay(100);while(1){ P2=0xf0; //矩阵键盘if(P2!=0xf0)send(key());if(KEY1==1) //独立按键{ delay(20);if(KEY1==0)send('x');}if(KEY2==0) //清零send('y');}}void serial_int() interrupt 4 //乙机串口接收中断函数{ if(RI) { RI=0;switch(SBUF){ case '0':L0=0;break;case '1':L1=0;break;case '2':L2=0;break;case '3':L3=0;break;case '4':L4=0;break;case '5':L5=0;break;case '6':L6=0;break;case '7':L7=0;break;case 'A':L0=1;break;case 'B':L1=1;break;case 'C':L2=1;break;case 'D':L3=1;break;case 'E':L4=1;break;case 'F':L5=1;break;case 'G':L6=1;break;case 'H':L7=1;break;}}}。
实验四两个单片机之间双向通信实验
实验四两个单片机之间双向通信实验一、实验目的1.了解MCS-51单片机串行口(UART)的结构、工作方式。
2.了解串行口通信的原理和数据交换过程。
3.掌握单片机之间进行串行口通信的编程方法。
二、实验内容将甲乙两台单片机串行口连接,即甲机的TXD与乙机的RXD相连;甲机的RXD与乙机的TXD相连;并实现双机共地。
整个系统实现双向通信。
具体是:1.甲机的K1按键可通过串行口分别控制乙机的LED1点亮;LED2点亮;LED1和LED2全亮或者全灭。
2.乙机的K2按键可通过串行口向甲机发送数字,甲机将接收到的数字显示在其P0端口的LED数码管显示器上。
三、实验程序甲机程序:ORG 0000HAJMP MAINORG 0003HAJMP SENDORG 0023HAJMP READYMAIN: MOV SCON,#90HMOV PCON,#80HSETB EASETB ESSETB IT0SETB EX0MOV SP,#40HMOV R0,#0MOV DPTR,#TAB HERE: SJMP HERESEND: CJNE R0,#04H,LP1 SHOW: MOV A,R0MOV C A,A+DPTRMOV C,PMOV TB8,CMOV SBUF,ACLR TIINC R0RETIREADY: JBC TI,RETURN RECEIVE:CLR RIMOV A,SBUFMOV P0,ARETURN: RETILP1:JC SHOWCLR CMOV A,R0SUBB A,#04HMOV R0,AAJMP SHOWTAB: DB 00H,01H,02H,03H END乙机程序:ORG 0000HAJMP MAINORG 0003HAJMP SENDORG 0023HAJMP READYMAIN: MOV SCON,#90H MOV PCON,#80HSETB EASETB ESSETB IT0SETB EX0MOV SP,#40HMOV R0,#0MOV DPTR,#TABHERE: SJMP HERESEND: CJNE R0,#09H,LP1 SHOW: MOV A,R0MOV C A,A+DPTRMOV C,PMOV TB8,CMOV SBUF,ACLR TIINC R0RETIREADY: JBC TI,RETURN RECEIVE:CLR RIMOV A,SBUFMOV P1,ARETURN: RETILP1: JC SHOWCLR CMOV A,R0SUBB A,#0AHMOV R0,AAJMP SHOWTAB: DB0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8H,80H,90H,0FFH END四、实验原理图五、实验仿真及结果六、实验总结通过本次实验,掌握了单片机之间进行串行口通信的编程方法,对MCS-51单片机串行口(UART)的结构、工作方式都有了进一步的了解。
单片机单片机课程设计-双机串行通信
单片机单片机课程设计-双机串行通信单片机课程设计双机串行通信在当今的电子信息领域,单片机的应用无处不在。
而双机串行通信作为单片机系统中的一个重要环节,为实现设备之间的数据交换和协同工作提供了关键的技术支持。
一、双机串行通信的基本原理双机串行通信是指两个单片机之间通过串行接口进行数据传输的过程。
串行通信相较于并行通信,具有线路简单、成本低、抗干扰能力强等优点。
在串行通信中,数据是一位一位地按顺序传输的。
常见的串行通信协议有 UART(通用异步收发器)、SPI(串行外设接口)和 I2C(内部集成电路)等。
在本次课程设计中,我们主要采用 UART 协议来实现双机串行通信。
UART 协议包括起始位、数据位、奇偶校验位和停止位。
起始位用于标识数据传输的开始,通常为逻辑 0;数据位可以是 5 位、6 位、7 位或 8 位,具体取决于通信双方的约定;奇偶校验位用于检验数据传输的正确性,可选择奇校验、偶校验或无校验;停止位用于标识数据传输的结束,通常为逻辑 1。
二、硬件设计为了实现双机串行通信,我们需要搭建相应的硬件电路。
首先,每个单片机都需要有一个串行通信接口,通常可以使用单片机自带的UART 模块。
在硬件连接方面,我们将两个单片机的发送端(TXD)和接收端(RXD)交叉连接。
即单片机 A 的 TXD 连接到单片机 B 的 RXD,单片机 B 的 TXD 连接到单片机 A 的 RXD。
同时,还需要共地以保证信号的参考电平一致。
此外,为了提高通信的稳定性和可靠性,我们可以在通信线路上添加一些滤波电容和上拉电阻。
三、软件设计软件设计是实现双机串行通信的核心部分。
在本次课程设计中,我们使用 C 语言来编写单片机的程序。
对于发送方单片机,首先需要对 UART 模块进行初始化,设置波特率、数据位、奇偶校验位和停止位等参数。
然后,将要发送的数据放入发送缓冲区,并通过 UART 发送函数将数据一位一位地发送出去。
对于接收方单片机,同样需要对 UART 模块进行初始化。
单片机课程设计-双机串行通信
51单片机的串行接口是一个全双工的接口,它可以作为UART(通用异步接受和发送器)用,也可以作为同步移位寄存器用。51单片机串行接口的结构如下:
(1)数据缓冲器(SBUF)
接受或发送的数据都要先送到SBUF缓存。有两个,一个缓存,另一个接受,用同一直接地址99H,发送时用指令将数据送到SBUF即可启动发送;接收时用指令将SBUF中接收到的数据取出。
SBUF=key_in;//发送数据
while(!TI);//等待数据发送,由TI判断发送是否结束
TI=0;
}
}
}
void chuankou() interrupt 4//串口中断函数
{
dis=SBUF;//接收数据
RI=0;//RI由软件清零;
}
六、仿真结果
八、实验器材
2个AT89C51
MAX232芯片
2个LCD
串口连接线
七、总结
本次设计采用两片AT89C51单片机实现信息的串行通信,设计过程中,从双机通信背景的了解,到89C51单片机具体功能的了解,到串行通信的原理的熟悉,到掌握具体串行通信在双机之间的实现;从硬件电路设计到程序编写;从硬件调试到软件模拟实现等。发送方的数据由串行口TXD断输出,经过传输线将信号传送到接收端。接收方接收电平信号,对于接口电路,短距离传送,减少抗干扰作用,如果短离远双机串口中可以连接电平转换器常用芯片RS232,在此不再叙述。设计中,收获不少东西,也遇到了不少的问题。
两个单片机间串口通讯
}
while(temp!=0xf0)
{
temp=P2;
temp=temp&0xf0;
}
send(num);
}
}
}
void main()
{
TMOD=0x20;//设置定时器1为工作方式2
TH1=0xfd;//装初值设置波特率
TL1=0xfd;
TR1=1;//打开定时器1
SM0=0;//8位异步收发
单片机间通讯
作者:冉纯雷
1.程序设计
发送程序:
#include<reg52.h>
#define uint unsigned int
#define uchar unsigned char
uchar num,temp;
void delay(uint z)//延时函数
{
uint x,y;
for(x=z;x>0;x--)
temp=P2;
temp=temp&0xf0;
if(temp!=0xf0)
{
temp=P2;
switch(temp)
{
case 0xee:num=16;
break;
case 0xde:num=12;
break;
case 0xbe:num=8;
break;
case 0x7e:num=4;
break;
}
{
delay(5);
temp=P2;
temp=temp&0xf0;
if(temp!=0xf0)
{
temp=P2;
switch(temp)
{
case 0xe7:num=13;
两个单片机之间的串行通信
两个单片机之间的串行通信一、设计要求在某个控制系统中有U1、U2这两个单片机,U1单片机首先将P1端口指拨开关数据载入SBUF,然后经由TXD将数据传送给U2单片机,U2单片机将接收数据存入SBUF,再由SBUF载入累加器,并输出至P1端口,点亮相应端口的LED。
二、实验所需元器件三、电路原理图:四、程序设计这两个单片机均工作在半工状态,U1将P1端口的状态通过TXD发半空给U2,而U2接收U1的数据,然后控制P1端口的LED显示。
因此,需编写两个不同的程序,其程序流程图如下所示:五、C语言程序:U1的C语言程序:#include "reg51.h"#define uint unsigned int #define uchar unsigned charvoid send(uchar state){SBUF=state;while(TI==0);TI=0;}void SCON_init(void){SCON=0x50;TMOD=0x20;PCON=0x00;TH1=0xfd;TL1=0xfd;TI=0;TR1=1;ES=1;}void main(){P1=0xff;SCON_init();while(1){send(P1);}}U2的C语言程序:#include "reg51.h"#define uint unsigned int #define uchar unsigned char uchar state;void receive(){while(RI==0)state=SBUF;RI=0;}void SCON_init(void) {SCON=0x50;TMOD=0x20;PCON=0x00;TH1=0xfd;TL1=0xfd;RI=0;TR1=1; }void main(){SCON_init();while(1){receive();P1=state;}}六、调试与仿真:。
单片机实现双机通信自己的
单片机实现双机通信自己的单片机是一种集成电路芯片,可以实现各种功能。
双机通信是指两台或多台计算机通过网络或其他方式进行数据传输和通信的过程。
在很多应用中,需要使用单片机实现双机通信,以实现数据传输和信息交换等功能。
单片机实现双机通信的基本原理是通过通信端口(例如串口或网络接口等)进行数据的发送和接收。
在这个过程中,需要使用一些通信协议来规定数据的格式和传输的方式。
下面是一种基于串口通信的单片机双机通信的实现方法。
首先,我们需要确定通信的硬件配置。
通常情况下,可以通过串口连接两台单片机,其中一台设置为发送方,另外一台设置为接收方。
发送方将待发送的数据通过串口发送出去,接收方则接收这些数据。
在单片机程序代码的编写方面,我们需要首先配置串口的通信参数,例如波特率、数据位、停止位、奇偶校验等。
这些参数需要在发送方和接收方进行一致配置,以保证数据的正确传输。
接下来,我们需要实现发送和接收的程序。
首先,发送方需要将待发送的数据存储在发送缓冲区中,然后通过串口将数据发送出去。
接收方则需要实时监听串口接收缓冲区中是否有数据到达,并将接收到的数据存储在接收缓冲区中。
另外,为了保证数据的正确传输,通常还要实现一些数据校验机制,例如奇偶校验、循环冗余校验(CRC)等。
这些校验机制可以用于检测和纠正数据传输中的错误。
在程序编写的过程中,还需要考虑到程序的稳定性和容错性。
例如,在发送方发送数据时,可能会遇到发送缓冲区已满的情况,此时需要实现相应的处理机制,例如等待一段时间后再次发送。
同样,在接收方接收数据时,也可能会遇到接收缓冲区溢出的情况,此时需要及时处理,以避免数据的丢失。
最后,在实际应用中,还需要考虑一些高级的功能,例如数据压缩、加密、数据传输速度的控制等。
这些功能可以根据具体的需求进行实现。
总之,单片机实现双机通信是一项复杂的任务,需要考虑到硬件和软件两个方面的因素。
在程序编写的过程中,需要考虑到通信参数的配置、发送和接收的程序编写、数据校验、稳定性和容错性等方面的问题。
单片机间双工串行通讯
单片机间双工串行通讯一、内容提要设有如图1所示的甲、乙两台单片机,以工作方式2,全双工串行通讯,每桢为11位,可程控的第9位数据为奇偶效验用的补偶位,本次课程设计要研究的是如何编写出能实现如下功能的单片机应用程序:甲机:每发送一桢信息,乙机对接收的数据进行奇偶效验。
若补偶正确,则乙机向甲机发出“数据发送正确”的信息(现取00H)作为回答信号),甲机接收到乙机的此信息后再发送下一个字节。
若奇偶效验错,则乙机发出“数据发送不正确”的信息(现取FFH作为回答信号)给甲机,要求甲机再次发送原数据,直至数据发送正确。
甲机发送128个字节后才停止发送。
乙机:接收甲机发送的数据,并进行奇偶效验,并发出相应的回答信息(即00H或FFH)给甲机,直到接收完128个字节为止。
解:为实现上述功能,甲机及乙机串行通讯的流程如图2所示。
二、目录1、串行传送的特点随着多微机系统的应用和微机网络的发展,通信功能显得越来越重要。
这里所说的通信是指计算机与外界的信息交换。
因此,通信既包括计算机与外部设备之间,也包括计算机和计算机之间的信息交换。
由于串行通信所用的传输线少,并且可以借助现存的电话网进行信息传送,因此,特别适合于远距离传送。
对于那些与计算机相距不远的人机交换设备和串行存储的外部设备(磁盘等),采用串行方式交换数据也很普遍。
在实时控制和管理方面,采用多台微处理机组成分级分布式控制系统,其中各CPU之间的通信一般都是串行方式。
所以,串行接口是微机应用系统常用的接口。
串行传送是在一根传输线上一位一位的传送,这根线既做数据线又做联络线,也就是说要在一根传输线上既传送数据信息,又传送联络控制信息,这就是串行方式传送的第一个特点。
那么,如何来识别在一根线串行传送的信息流中,哪一部分是联络信号,哪一部分是数据信号。
为解决这个问题,就引出了串行通信的数据格式的约定。
因此,串行传送的第二个特点是它的数据格式有固定的要求(即固定的数据格式),分异步和同步数据格式,与此相应,就有异步通信和同步通信两种方式。
单片机的双机串口通信原理
单片机的双机串口通信原理单片机的双机串口通信原理是通过串口连接两个单片机,使它们能够进行数据的传输和通信。
串口是一种常见的通信方式,它使用两条信号线进行数据的传输:一条是串行数据线(TXD),用于发送数据;另一条是串行接收线(RXD),用于接收数据。
通过串口通信,两个单片机可以进行双向的数据传输,实现信息的互相交流和共享。
在双机串口通信中,一台单片机充当主机(Master),另一台单片机充当从机(Slave)。
主机负责发起通信请求并发送数据,从机负责接收并响应主机发送的数据。
通信过程中,主机和从机需要遵守相同的协议和通信规则,以确保数据的正确和可靠传输。
双机串口通信的主要步骤如下:1. 端口初始化:在双机串口通信开始之前,两台单片机的串口端口需要初始化。
主机和从机需要设置相同的波特率(Baud Rate),数据位数(Data Bits)、停止位数(Stop Bits)和校验方式(Parity Bit),确保两台单片机之间的通信能够正常进行。
2. 数据发送:主机将要发送的数据写入到串口发送寄存器中,然后通过串口发送线路将数据位一位一位地发送给从机。
主机发送完所有数据位后,等待从机的响应。
3. 数据接收:从机通过串口接收线路接收主机发送的数据位,然后将接收到的数据位存放在串口接收寄存器中,等待从机的处理。
4. 数据处理:从机接收到主机发送的数据后,根据通信协议和通信规则进行数据处理。
从机可能需要对数据进行校验、解析和执行相应的操作,然后将处理结果写入到串口发送寄存器中,以供主机进行相应的处理。
5. 响应发送:从机将处理结果写入到串口发送寄存器中,然后通过串口发送线路将数据位一位一位地发送给主机。
从机发送完所有数据位后,等待主机的进一步操作。
6. 数据接收:主机通过串口接收线路接收从机发送的数据位,然后将接收到的数据位存放在串口接收寄存器中,等待主机的处理。
7. 数据处理:主机接收到从机发送的数据后,根据通信协议和通信规则进行数据处理。
单片机双机串行实验报告
单片机双机串行实验报告实验目的:通过单片机实现双机串行通信功能,掌握串行通信的原理、方法和程序设计技巧。
实验原理:双机串行通信是指通过串行口将两台单片机连接起来,实现数据的传输和互动。
常用的串行通信方式有同步串行通信和异步串行通信。
异步串行通信是指通过发送和接收数据时的起始位、停止位和校验位进行数据的传输。
而同步串行通信是指通过外部时钟信号进行数据的同步传输。
实验器材:1.两台单片机开发板(MCU7516)2.两个串口线3.两台计算机实验步骤:1.将两台单片机开发板连接起来,通过串口线连接它们的串行口。
2.在两台计算机上分别打开串口调试助手软件,将波特率设置为相同的数值(例如9600)。
3.在编程软件中,编写两个程序分别用于发送数据和接收数据。
4.在发送数据的程序中,首先要设置串口的波特率、数据位、停止位和校验位,并将数据存储在缓冲区中。
然后利用串口发送数据的指令将数据发送出去。
5.在接收数据的程序中,同样要设置串口的参数。
然后使用串口接收数据的指令将接收到的数据存储在缓冲区中,并将其打印出来。
实验结果与分析:经过实验,我们成功地实现了单片机之间的双机串行通信。
发送数据的单片机将数据发送出去后,接收数据的单片机能够正确地接收到数据,并将其打印出来。
实验中需要注意的是,串口的波特率、数据位、停止位和校验位必须设置为相同的数值。
否则,发送数据的单片机和接收数据的单片机无法正常进行通信。
同时,在实验之前,需要了解单片机开发板支持的串口通信相关的指令和函数。
实验总结:通过本次实验,我们深入了解了单片机之间的双机串行通信原理和方法。
掌握了串口的设置和使用方法,以及相关的指令和函数。
在实验中,我们学会了如何通过串行口实现数据的传输和互动,为今后的单片机应用和开发打下了基础。
同时,我们还发现,双机串行通信在实际应用中有着广泛的用途。
例如,可以通过串行通信实现两台计算机之间的数据传输,或者实现单片机与计算机之间的数据收发。
双单片机串口通信原理+程序
一、实验目的掌握单片机串口通信的设计方法,了解双单片机通信的原理。
二、实验内容(含程序)编写发送方和接受方单片机程序,让发送方单片机向接受方单片机循环发送几个两位十六进制数,并将发送的数显示在发送方和接受方的数码管上,要求串行口采用方式1进行通信,选用定时器T1作为波特率发生器,T1工作方式2,通信的波特率位9600。
硬件连接:发送发程序:#include<reg51.h>#define uint unsigned intuchar table[]={0xaa,0xB5,0xdd,0xa8,0xba,0xcc,0xf4,0xb0}; //要发送的数据void delay(uint x){uint i,j;for(i=x;i>0;i--)for(j=110;j>0;j--);}void main(){uchar i=0;TMOD=0x20;TH1=0xfd;TL1=0xfd;SM0=0;SM1=1;TR1=1;EA=1;ES=1;while(1){SBUF=table[i];P1=table[i];while(!TI);TI=0;i++;if(i==8)i=0;delay(800);}}接收方程序:#include <reg51.h>#define uchar unsigned charuchar a;void main(){TMOD=0x20;TH1=0xfd;TL1=0xfd;REN=1;TR1=1;SM0=0;SM1=1;EA=1;ES=1;while(1);}void ser() interrupt 4{RI=0;a=SBUF;P1=a;}三、实验结果及分析本实验需要完成两个程序,发送方和接受方的,但是并没有要求加入奇偶校验,因此难度不大,从实验结果可以明显看出,当发送方数码管显示要发送的数值时,接受方数码管也几乎同时显示出此数值,证明接受无误,实验结果正确。
单片机全双工串行通信实验原理
单片机全双工串行通信实验原理单片机全双工串行通信实验原理是基于单片机内部的串行口(Serial Port)进行数据传输。
在全双工通信模式下,数据可以在两个方向上进行传输,同时进行接收和发送。
以下是单片机全双工串行通信实验的基本原理:1. 硬件连接:将单片机与另一台设备(如计算机、另一块单片机等)通过串行通信接口连接起来。
通常需要设置通信参数,如波特率(baud rate)、数据位(data bits)、停止位(stop bits)等。
2. 内部结构:单片机的串行口内部通常包括两个物理上独立的缓冲器,一个用于发送数据(发送缓冲器),另一个用于接收数据(接收缓冲器)。
3. 传输原理:串行通信时,数据一位一位地进行传输,每一位数据都占据一个固定的时间长度。
在全双工通信模式下,发送和接收可以在同一时刻进行。
4. 数据格式:一帧数据通常包括起始位、数据位、奇偶校验位和停止位。
起始位指示数据的开始,数据位表示要传输的实际数据,奇偶校验位用于检查传输过程中是否出现错误,停止位指示数据的结束。
5. 通信协议:为了确保数据的正确传输,需要制定一定的通信协议。
例如,如何处理数据的校验错误、如何处理接收方未准备好等情况。
6. 中断处理:在全双工通信中,当接收到一帧数据时,接收缓冲器会被填满,此时会触发接收中断。
在中断处理程序中,可以从接收缓冲器中读取数据并处理。
同样地,当发送一帧数据时,发送缓冲器会被清空,此时也会触发发送中断。
在中断处理程序中,可以将要发送的数据写入发送缓冲器。
7. 调试与测试:完成硬件连接和参数设置后,需要进行调试和测试以确认通信是否正常。
可以通过编写简单的程序进行测试,如发送一串数据并接收回来检查是否正确。
需要注意的是,具体的实验原理和实现方法可能因不同的单片机型号和开发环境而有所不同。
在进行实验前,建议仔细阅读相关文档和教程,并参考具体的单片机开发指南。
单片机双机通信原理
单片机双机通信原理双机通信是指通过单片机(Microcontroller,MCU)系统中的串行通信接口,在两个单片机之间进行数据传输和交换的过程。
其中一个单片机被定义为主机(Master),另一个被定义为从机(Slave)。
双机通信可以实现不同单片机之间的数据共享和协作,使得系统具备更高的可靠性、灵活性和性能。
在双机通信的原理中,主机负责发起通信和控制通信过程,从机负责接收主机发送的指令并执行相应的操作。
通信的过程一般包括以下几个步骤:1. 主机初始化:主机在通信开始前需要进行初始化设置,包括选择合适的通信波特率(Baud Rate),设置通信参数和接收/发送缓冲区等。
2. 建立连接:主机通过发送一个特定的请求信号来与从机建立通信连接。
请求信号可以是一个特定的命令码或者特定的数据帧。
3. 从机响应:从机接收到主机发送的请求信号后,通过发送一个响应信号来回复主机。
响应信号可以是一个应答码或者相应的数据帧。
4. 数据传输:一旦建立了连接并完成了响应过程,主机和从机可以开始进行数据传输。
主机通过发送数据帧给从机,从机则接收并处理这些数据。
5. 错误处理:在数据传输过程中,可能会发生数据错误或者通信错误。
主机和从机通过相应的机制(如校验和)来检测和处理这些错误,以保证通信的可靠性和准确性。
6. 断开连接:当数据传输完成后,主机和从机可以通过发送断开连接的信号来结束通信过程。
断开连接的信号可以是特定的命令码或者特定的数据帧。
总的来说,双机通信的原理是通过主机和从机之间的串行通信接口进行数据传输和交换。
通过建立连接、数据传输和断开连接等步骤,实现两个单片机之间的数据共享和协作。
这种通信方式广泛应用于各种嵌入式系统中,如智能家居系统、工业自动化系统等。
单片机间的串口通信
实验十一单片机之间的串口通信
一、实验目的
1.学习单片机串口工作方式的程序设计。
2.学习串行通信的协议。
3.利用单片机串口,实现两个单片机之间的串行通信,通过拨码开关控制相应的发光二极管亮和灭。
二、电路设计
1.从PROTEUS库中选取元件
①AT89C51.BUS:总线式的单片机;
②RES:电阻;
③LED-YELLOW:黄色发光二极管;
④CAP、CAP-ELEC:电容、电解电容;
⑤CRYSTAL:晶振;
⑥DIPSW_8:8位拨码开关。
2.放置元器件
3.放置电源和地
4.连线
5.元器件属性设置
6.电气检测
三、源程序设计、生成目标代码文件
1.流程图
2.源程序设计
通过菜单“sourc e→Add/Remove Source Files…”新建源程序文件:DZC11.ASM。
通过菜单“sourc e→DZC11.ASM”,打开PROTEUS提供的文本编辑器SRCEDIT,在其中编辑源程序。
程序编辑好后,单击按钮存入文件DZC11.ASM。
3.源程序编译汇编、生成目标代码文件
通过菜单“sourc e→Build All”编译汇编源程序,生成目标代码文件。
若编译失败,可对程序进行修改调试直至汇编成功。
四、PROTEUS仿真
1.加载目标代码文件
2.仿真
五、思考题:
1.简述串行口接收、发送缓冲区SBUF的工作机制以及串行口进行数据收发的过程。
2.简述串行口通信波特率的计算方法。
单片机双机通信(C51程序
单片机双机通信(C51程序)/*发送程序连线:两个单片机用3根线连起来,要共地,rxd,txd要交叉连接程序效果:通过主机发送,从机接收在主机中通过记下按键按下的次数,主机中显示最后按下的六个数值,并发送给从机,从机也显示这六个数值*/#include; //头文件#include; //循环移位文件#define uchar unsigned char//宏定义#define uint unsigned intsbit key1=P3^5;//位声明uchar code table[]={0X00,0x3f,0x06,0x5b,//数码管显示的数值0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};uchar table_tr[6];//暂存最后按下的六个数值uchar count,cnt;//延时子函数,用于数码管显示void delay(uchar i){uchar x,y;for(x=i;x>;0;x--)for(y=110;y>;0;y--);}//初始化子函数void init(){TMOD=0x20;//T1工作在方式2TH1=0XF4;//波特率为4.8kbit/s TL1=0XF4;TR1=1;//启动定时器1SCON=0X50;//串口工作在方式1,允许接收}//显示子函数void display(){uchar i,j;//定义局部变量j=0x7f; //赋初值for(i=0;i; //头文件#include; //循环文件#define uchar unsigned char//宏定义#define uint unsigned intuchar code table[]={0X00,0x3f,0x06,0x5b,//数码管显示的数值0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};uchar table_tr[6];//暂存最后按下的六个数值uchar count,cnt;//定义全局变量//延时子函数,用于数码管显示void delay(uchar i){uchar x,y;for(x=i;x>;0;x--)for(y=110;y>;0;y--);}//初始化子函数void init(){TMOD=0x20;//T1工作在方式2TH1=0XF4; //波特率为:4.8kbit/s,发送与接收的波特率要相等TL1=0XF4;TR1=1; //启动定时器1SCON=0X50;//串口中断工作在方式1,允许接收}//显示子函数void display(){uchar i,j;//定义局部变量j=0x7f; //赋值for(i=0;i<6;i++) //显示六个数值 {P2=j;P0=table[table_tr[i]];delay(10);j=_cror_(j,1);//循环右移一位}}//主函数void main(){uchar i;//定义局部变量init(); //调用初始化子函数while(1){while(RI) //判断是否接受完{RI=0;//接受完了,标志位清零for(i=0;i<5;i++) //把数组的数值都往前移一位,腾出table_tr【5】table_tr[i]=table_tr[i+1];table_tr[5]=SBUF;//装入接收的数值 }display();//调用显示子函数}}。
单片机串口通信原理及实现方法
单片机串口通信原理及实现方法串口通信是指电脑或其他设备通过串行通信接口与外部设备进行数据传输的方式。
在单片机应用中,串口通信是一种常用的方式,能够实现与外部设备的数据交互和控制。
本文将介绍单片机串口通信的原理和实现方法。
一、串口通信原理串口通信采用串行传输方式,即逐位(bit)地传输数据,其中包括一个起始位、一个或多个数据位、一个或多个校验位和一个停止位。
常用的串口通信协议有RS-232、RS-485等。
在单片机串口通信中,主要包括以下几个部分:1. 时钟信号:单片机通过时钟信号来同步数据的传输,确保发送和接收的数据在同一时间段内互相对应。
2. 波特率:波特率是指每秒钟传送的比特数,也称为传输速率。
单片机与外部设备通信时,需要设置相同的波特率,以保证数据传输的准确性。
3. 数据格式:包括起始位、数据位、校验位和停止位。
起始位用于标识数据的开始,通常为逻辑低电平;数据位表示传输的数据长度,常用的有8位和9位;校验位用于检查数据的准确性,常用的有奇偶校验和检验等;停止位表示数据传输的结束,常用的为一个或两个停止位。
4. 控制信号:单片机通过控制信号来控制数据的发送和接收。
常用的控制信号有数据发送使能信号、数据接收使能信号、复位信号等。
二、单片机串口通信的实现方法单片机串口通信的实现方法主要包括以下几个步骤:1. 设置引脚功能:确定单片机的引脚功能,将其配置为串口通信功能。
不同的单片机芯片有不同的引脚功能设置方法,可以参考芯片手册进行配置。
2. 设置波特率:根据通信需求,设置单片机的波特率。
波特率的设置包括计算波特率产生所需的时钟频率和设置相应的控制寄存器。
3. 配置数据格式:根据通信协议,设置数据的格式,包括起始位、数据位、校验位和停止位。
这些设置通常是通过控制寄存器来实现的。
4. 数据发送与接收:通过单片机的串口发送寄存器和接收寄存器进行数据的发送与接收。
发送数据时,将需要发送的数据写入发送寄存器;接收数据时,通过读取接收寄存器获取接收的数据。
单片机双机之间的串行通信设计
单片机双机之间的串行通信设计1.引言单片机双机之间的串行通信是指两个或多个单片机之间通过串口进行数据传输和通信的过程。
串行通信是一种逐位传输数据的方式,与并行通信相比,它占用的硬件资源更少,且传输距离较远。
本文将介绍单片机双机之间串行通信的设计过程,包括硬件设计和软件编程。
2.硬件设计串行通信需要使用到两个主要的硬件部件:串口芯片和通信线路。
串口芯片负责将要发送或接收的数据转换成串行数据流,并通过通信线路进行传输。
通信线路通常包括两根传输数据的线路(TX和RX)、地线和时钟线。
2.1串口芯片的选择常用的串口芯片有MAX232、MAX485、CH340等。
选择合适的芯片需要考虑通信距离、通信速率、系统的功耗等因素。
对于较短的通信距离和较低的通信速率,可以选择MAX232芯片;而对于长距离通信和较高的通信速率,可以选择MAX485芯片。
2.2通信线路设计通信线路的设计需要考虑信号的传输质量和抗干扰能力。
通常使用双绞线或者屏蔽线路来减小信号的串扰和干扰。
对于短距离通信,双绞线即可满足需求;而对于长距离通信,需要采用屏蔽线路来减小串扰和干扰。
3.软件设计串行通信的软件设计主要包括通信协议的制定和数据包的格式规定。
3.1通信协议的选择通信协议是指数据传输的一套规则和约定,它规定了数据的格式、传输顺序、误码校验等内容。
常用的通信协议有UART、RS232、SPI、I2C等。
UART是最常用的通信协议,它一般使用异步通信方式,并具有较高的通信速率和稳定性。
3.2数据包的格式规定数据包是一组有意义的数据的集合,它包括起始位、数据位、停止位和校验位等。
起始位用于标识一个数据包的开始,通常为逻辑低电平;数据位用于存储要传输的数据;停止位用于标识数据包的结束,通常为逻辑高电平;校验位用于检测数据传输过程中是否发生错误。
校验位可以是奇校验、偶校验、无校验等。
4.实验步骤4.1连接硬件根据硬件设计部分的要求,将串口芯片和通信线路连接到单片机上。
单片机双机之间的串行通信设计
单片机双机串行实验报告实验报告:单片机双机串行通信实验一、实验目的本实验旨在通过单片机实现双机间的串行通信,包括数据的发送和接收,并利用这种通信方式完成一定的任务。
二、实验原理1.串行通信:串行通信是将数据一个个位发送或接收的方式。
数据通过一个线路逐位发送或接收,可以减少通信所需的线路数目。
2. UART串口通信:UART是通用异步收发传输器(Universal Asynchronous Receiver/Transmitter)的简称,是一种最常用的串口通信方式,通常用于单片机与计算机、单片机与单片机之间的通信。
3.串口模块:串口模块是负责将数据转变为串行传输的硬件模块,包括发送端和接收端。
通过设置波特率、数据位、校验位和停止位等参数,可以实现数据的可靠传输。
4.单片机串口通信:单片机内部集成了UART串口通信接口,只需要通过相应的寄存器配置,可以实现串口通信功能。
5.双机串行通信:双机串行通信是通过串口将两台单片机进行连接,一台单片机作为发送端,负责将数据发送出去;另一台单片机作为接收端,负责接收并处理发送的数据。
三、实验器材与软件1.实验器材:两台单片机、USB转TTL模块、杜邦线若干。
2. 实验软件:Keil C51集成开发环境。
四、实验内容与步骤1.配置发送端单片机(1)连接单片机和USB转TTL模块,将USB转TTL模块的TXD端连接到单片机的P3口,将GND端连接到单片机的地线。
(2)在Keil C51环境下创建新工程,编写发送端程序。
(3)配置串口通信的波特率、数据位、校验位和停止位,并打开串口发送中断。
(4)循环发送指定的数据。
2.配置接收端单片机(1)连接单片机和USB转TTL模块,将USB转TTL模块的RXD端连接到单片机的P3口,将GND端连接到单片机的地线。
(2)在Keil C51环境下创建新工程,编写接收端程序。
(3)配置串口通信的波特率、数据位、校验位和停止位,并打开串口接收中断。
单片机双机串口通信程序设计
单片机双机串口通信程序设计发布: 2009-4-03 23:56 | 作者: cepark | 查看: 92次利用方式1实现单片机双机通信,主频为6M,波特率为2400bps,电路见图5 -10。
当两个单片机距离较近时,甲、乙两机的发送端与接收端分别直接相联,两机共地。
执行程序,甲机将亮灯信号发送给乙机,若通信正常,乙机接收到信号后点亮20个发光二极管。
乙机采用查询与中断两种工作方式。
当然20个LE D乙机可单独控制,也可接受甲机的控制,并执行甲机指令,还需要进一步完善程序.甲机发送程序:org 0000hsta: mov tmod,#20h ;设置波特率mov tl1,#0FAhmov th1,#0FAhsetb tr1mov scon,#40h ;置工作方式1clr timov a,#00hmov sbuf,a ;发送亮灯信号wait: jbc ti,cont ;发送成功清标志ajmp wait ;等待发送完毕cont: sjmp sta ;重复发送end乙机查询工作方式接收:org 0000hmov tmod,#20h ;设置通信波特率mov tl1,#0FAhmov th1,#0FAhsetb tr1mov scon,#40hclr risetb ren ;允许接收wait: jbc ri,read ;接收成功清标志ajmp wait ;接收未完等待read: mov a ,sbufmov p1,a ;接收亮灯信号送P1口sjmp $end乙机中断工作方式接收org 0000hajmp mainorg 0023hajmp zd ;转串口中断程序START: MOV TMOD,#20hmov tl1,#0FAhmov th1,#0FAhsetb tr1mov scon,#50hclr rimov ie,#90h ;开中断MAIN:sjmp $ 主程序zd: clr ri ;清接收标志;==============中断程序还要再完善============== mov a ,sbuf ;读接收信号mov p1,aMOV R1,A ;将收到的信号送缓存reti ;中断返回end<单片机双机串口通讯原理图>采用方式2 通信,数据帧格式是11位的,TB8为奇偶校验位,接收过程要求判断RB8,若出错置F0标志为1,正确则置F0标志为0,然后返回。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、实验目的
掌握单片机串口通信的设计方法,了解双单片机通信的原理。
二、实验内容(含程序)
编写发送方和接受方单片机程序,让发送方单片机向接受方单片机循环发送几个两位十六进制数,并将发送的数显示在发送方和接受方的数码管上,要求串行口采用方式1进行通信,选用定时器T1作为波特率发生器,T1工作方式2,通信的波特率位9600。
硬件连接:
发送发程序:
#include<reg51.h>
#define uint unsigned int
uchar table[]={0xaa,0xB5,0xdd,0xa8,0xba,0xcc,0xf4,0xb0}; //要发送的数据void delay(uint x)
{
uint i,j;
for(i=x;i>0;i--)
for(j=110;j>0;j--);
}
void main()
{
uchar i=0;
TMOD=0x20;
TH1=0xfd;
TL1=0xfd;
SM0=0;
SM1=1;
TR1=1;
EA=1;
ES=1;
while(1)
{
SBUF=table[i];
P1=table[i];
while(!TI);
TI=0;
i++;
if(i==8)
i=0;
delay(800);
}
}
接收方程序:
#include <reg51.h>
#define uchar unsigned char
uchar a;
void main()
{
TMOD=0x20;
TH1=0xfd;
TL1=0xfd;
REN=1;
TR1=1;
SM0=0;
SM1=1;
EA=1;
ES=1;
while(1);
}
void ser() interrupt 4
{
RI=0;
a=SBUF;
P1=a;
}
三、实验结果及分析
本实验需要完成两个程序,发送方和接受方的,但是并没有要求
加入奇偶校验,因此难度不大,从实验结果可以明显看出,当发送方数码管显示要发送的数值时,接受方数码管也几乎同时显示出此数值,证明接受无误,实验结果正确。
两个单片机都使用串口方式1进行通信,并且必须保证两单片机通信波特率完全一致,否则接受不到正确的数。
在发送数据时,向SBUF中写入一个数据后,使用“while(!TI);”等待是否发送完毕,因为当发送完毕后,TI被硬件置1,然后才退出“while(!TI);”接下来在将TI手动清零,同理,在接受数据时,在中断服务程序中也需要将接受中断标志位RI置零。