双单片机串口通信原理程序
串口通信原理及操作流程
单片机串口原理图
7
波特率和定时器初值的设定
波特率:每秒传输二进制代码的位数。(1波特=1位/ 秒,单位bps(位/秒))
串行口4种工作方式对应波特率:
(见P131)
(串口常用工作方式1)
电源管理寄存器PCON
SMOD-串口通信波特率有关
SMOD=0:串口方式1,2,3时,波特率正常
SMOD=1:串口方式1,2,3时,波特率加倍
flag=0;
SBUF=a; //将数据原样发回
while(!TI); //等待数据发完
TI=0;
ES=1; //退出进再开串行中断
}
}
22
}
中断函数程序分析
void serial() interrupt 4 //串行中断函数 {
P1=SBUF; //将数据发送给 P1 口显示(测试用) a=SBUF; //收取数据 flag=1; //标志置位 RI=0; }
11
MCS—51之间的双机通信
RXD TXD GND
8xx51
TXD GND
8xx51
12
51单片机与计算机的通信
+5V
VCC
EA
TXD RXD
1
T1IN
R1IN
R1OUTT1OUTFra bibliotekRST
C 1
C1
C 1
1
6 7
2
8
3 4
9 5
89C51
C 2
C2
C 2
V+ VCC
MAX232
C3
+5V C4
PC机 COM1
平
TXD
转
GND
单片机双机串口通信
单片机双机串口通信在现代电子技术领域,单片机的应用无处不在。
而单片机之间的通信则是实现复杂系统功能的关键之一。
其中,双机串口通信是一种常见且重要的通信方式。
什么是单片机双机串口通信呢?简单来说,就是让两个单片机能够通过串口相互交换数据和信息。
想象一下,两个单片机就像是两个小伙伴,它们需要交流分享彼此的“想法”和“知识”,串口通信就是它们交流的“语言”。
串口通信,顾名思义,是通过串行的方式来传输数据。
这和我们日常生活中并行传输数据有所不同。
在并行传输中,多个数据位同时传输;而在串行传输中,数据一位一位地按顺序传送。
虽然串行传输速度相对较慢,但它所需的硬件连线简单,成本较低,对于单片机这种资源有限的设备来说,是一种非常实用的通信方式。
在进行单片机双机串口通信时,我们首先要了解串口通信的一些基本参数。
比如波特率,它决定了数据传输的速度。
就像两个人说话的快慢,如果波特率设置得不一致,那么双方就无法正常理解对方的意思,数据传输就会出错。
常见的波特率有 9600、115200 等。
还有数据位、停止位和校验位。
数据位决定了每次传输的数据长度,常见的有 8 位;停止位表示一个数据帧的结束,通常是 1 位或 2 位;校验位则用于检验数据传输的正确性,有奇校验、偶校验和无校验等方式。
为了实现双机串口通信,我们需要在两个单片机上分别进行编程。
编程的主要任务包括初始化串口、设置通信参数、发送数据和接收数据。
初始化串口时,我们要配置好相关的寄存器,使其工作在我们期望的模式下。
比如设置波特率发生器的数值,以确定合适的波特率。
发送数据相对来说比较简单。
我们将要发送的数据放入特定的寄存器中,然后启动发送操作,单片机就会自动将数据一位一位地通过串口发送出去。
接收数据则需要我们不断地检查接收标志位,以确定是否有新的数据到来。
当有新数据时,从接收寄存器中读取数据,并进行相应的处理。
在实际应用中,单片机双机串口通信有着广泛的用途。
比如在一个温度监测系统中,一个单片机负责采集温度数据,另一个单片机则负责将数据显示在屏幕上或者上传到网络。
单片机串口通信原理
单片机串口通信原理
单片机串口通信原理是指通过串口进行数据的发送和接收。
串口通信是一种异步通信方式,它使用两根信号线(TXD和RXD)进行数据的传输。
在发送数据时,单片机将待发送的数据通过串口发送数据线(TXD)发送出去。
发送的数据会经过一个串口发送缓冲区,然后按照一定的通信协议进行处理,并通过串口传输线将数据发送给外部设备。
在接收数据时,外部设备将待发送的数据通过串口传输线发送给单片机。
单片机接收数据线(RXD)会将接收到的数据传
输到一个串口接收缓冲区中。
然后,单片机会根据通信协议进行数据的解析和处理,最后将数据保存在内部的寄存器中供程序使用。
串口通信协议通常包括数据位、停止位、校验位等信息。
数据位指的是每个数据字节占据的位数,常见的有8位和9位两种。
停止位用于表示数据的结束,常用的有1位和2位两种。
校验位用于检测数据在传输过程中是否发生错误,常见的校验方式有奇偶校验和无校验。
总的来说,单片机串口通信原理是通过串口发送数据线和接收数据线进行数据的传输和接收,并通过一定的通信协议进行数据的解析和处理。
这种通信方式可以实现单片机与外部设备的数据交换,广泛应用于各种嵌入式系统和物联网设备中。
单片机多机串口的通信
摘要本文详细介绍了基于RS-485总线的单片机与多台单片机间的串行通信原理、实现方法和相应的通信硬件、软件设计。
该设计是由单片机与单片机组成的主从控制系统,其中单片机做为上位机对下位单片机是实现控制和监视功能。
它包括通信和控制两个功能模块。
单片机作为下位机在整个系统中属于从属地位,主要用来接收上位机的命令。
由于此通信的单片接口是RS232的9针接口,且下位机数目有限(32台)。
所以本设计采用了RS485总线以及RS232转RS485的协议芯片以满足长距离多机通信,本文讨论了总线接口转换、主从式通信协议设计方法,给出了采用中断式处理的通信过程流程图,并叙述了设计过程中必备的绘图软件Protel DXP的应用,以及编辑源代码软件keil uVision2的应用,实现了单片机对多个单片机组成采集终端的通信与管理。
关键词:单片机单片机RS-485 通信AbstractThe communication 、realized method and corresponding design of hardware and software between 单片and multiple MCUs based on RS-485 is described in detai in the article. This design instroduces a pincipal and subordinate control system which is composed of 单片and single chip. Divided from its function, it includes two parts: communication and control, in which 单片is used as master, and MCUs is used as slave so as to receive the single order from the master.The bus interface conversion and the design of master-slave communication protocol is introduced and The program flowchart of communication with interrupt process is also given. In the process of design, the use of unnecessary painter software and code editor software is depicted so that realize the communication and administration between 单片and multiple MCUs which composed collection terminal.Keywords: 单片MCUs RS-485 communication目录第一章绪论 (1)第二章课题实施方案 (2)2.1 系统硬件设计 (2)2.2 系统软件设计 (3)第三章硬件电路设计 (9)3.1 C51单片机结构 (9)一CPU结构 (10)二ROM存储器 (11)三I/O端口 (11)四定时器/计数器 (12)五中断系统 (13)3.1.2 51单片机引脚功能及其连接 (13)3.1.3 51 中断系统 (15)3.1.4 C-51的串行通信 (15)3.2.1串行接口RS232结构与引脚功能 (21)3.3 Protel DXP 2004原理图设计 (23)3.3.1 Protel 2004的基本操作 (23)3.3.2绘制原理图 (25)3.3.3制作芯片原理图库 (27)第四章软件电路设计 (30)4.1 系统的通信协议 (31)4.2 C51编程实现单片机与单片机之间的串行通信 (31)4.3 Windows集成开发环境uVision2 (35)4.3.1启动uVision2 (35)4.3.2创建程序 (36)总结 (41)致谢 (42)参考文献 (43)第一章绪论单片机由于其具有控制功能强、设计灵活和性能价格比高的特点。
单片机实现双机通信自己的
单片机实现双机通信自己的单片机是一种集成电路芯片,可以实现各种功能。
双机通信是指两台或多台计算机通过网络或其他方式进行数据传输和通信的过程。
在很多应用中,需要使用单片机实现双机通信,以实现数据传输和信息交换等功能。
单片机实现双机通信的基本原理是通过通信端口(例如串口或网络接口等)进行数据的发送和接收。
在这个过程中,需要使用一些通信协议来规定数据的格式和传输的方式。
下面是一种基于串口通信的单片机双机通信的实现方法。
首先,我们需要确定通信的硬件配置。
通常情况下,可以通过串口连接两台单片机,其中一台设置为发送方,另外一台设置为接收方。
发送方将待发送的数据通过串口发送出去,接收方则接收这些数据。
在单片机程序代码的编写方面,我们需要首先配置串口的通信参数,例如波特率、数据位、停止位、奇偶校验等。
这些参数需要在发送方和接收方进行一致配置,以保证数据的正确传输。
接下来,我们需要实现发送和接收的程序。
首先,发送方需要将待发送的数据存储在发送缓冲区中,然后通过串口将数据发送出去。
接收方则需要实时监听串口接收缓冲区中是否有数据到达,并将接收到的数据存储在接收缓冲区中。
另外,为了保证数据的正确传输,通常还要实现一些数据校验机制,例如奇偶校验、循环冗余校验(CRC)等。
这些校验机制可以用于检测和纠正数据传输中的错误。
在程序编写的过程中,还需要考虑到程序的稳定性和容错性。
例如,在发送方发送数据时,可能会遇到发送缓冲区已满的情况,此时需要实现相应的处理机制,例如等待一段时间后再次发送。
同样,在接收方接收数据时,也可能会遇到接收缓冲区溢出的情况,此时需要及时处理,以避免数据的丢失。
最后,在实际应用中,还需要考虑一些高级的功能,例如数据压缩、加密、数据传输速度的控制等。
这些功能可以根据具体的需求进行实现。
总之,单片机实现双机通信是一项复杂的任务,需要考虑到硬件和软件两个方面的因素。
在程序编写的过程中,需要考虑到通信参数的配置、发送和接收的程序编写、数据校验、稳定性和容错性等方面的问题。
单片机中的串口通信技术
单片机中的串口通信技术串口通信技术是指通过串行接口将数据传输和接收的技术。
在单片机领域,串口通信是一种常见的数据交互方式。
本文将介绍单片机中的串口通信技术,并探讨其在实际应用中的重要性。
一、串口通信的原理串口通信是指通过串行接口传输数据的方式,其中包括一个数据引脚和一个时钟引脚。
数据引脚用于传输二进制数据,在每个时钟周期内,数据引脚上的数据会被读取或写入。
时钟引脚则用于控制数据的传输速度。
单片机中的串口通信主要包含两个部分:发送和接收。
发送时,单片机将数据转换为二进制形式,并通过串口发送出去。
接收时,单片机会从串口接收到二进制数据,并将其转换为可识别的格式。
通过发送和接收两个过程,单片机可以与外部设备进行数据交互。
二、串口通信的类型在单片机中,串口通信主要包含两种类型:同步串口和异步串口。
同步串口是指发送和接收两个设备之间使用相同的时钟信号,以保持数据同步。
同步串口通信速度快,但需要额外的时钟信号输入。
异步串口则是通过发送数据前提供起始位和终止位来区分不同数据帧的方式进行通信。
异步串口通信的优势是不需要额外的时钟信号,但速度相对较慢。
在实际应用中,通常使用异步串口通信。
异步串口通信相对简单易用,适合多种应用场景。
三、单片机串口通信的实现单片机中实现串口通信通常需要以下几个方面的内容:1. 串口通信引脚配置:单片机需要连接到一个串口芯片或者其他外部设备,因此需要配置相应的引脚作为串口通信的数据引脚和时钟引脚。
2. 波特率设置:波特率是指单位时间内传输的数据位数。
在进行串口通信时,发送端和接收端的波特率需要相同。
单片机中通常通过寄存器设置波特率,以确保数据传输的稳定性。
3. 数据发送和接收:在单片机中,通过将数据写入发送缓冲器并启动发送操作来发送数据。
接收数据时,单片机会接收到串口中的数据,并将其保存在接收缓冲器中。
4. 中断机制:在进行串口通信时,单片机通常会使用中断机制来处理数据接收和发送。
中断机制可以减轻单片机的负担,提高系统效率。
单片机双机通信实验报告
单片机双机通信实验报告
实验目的:
1. 了解单片机之间的串口通信原理;
2. 掌握单片机之间的双机通信方法;
3. 实现单片机之间的数据互相传输。
实验器材:
1. 单片机开发板(两块);
2. USB转串口模块(两个);
3. 杜邦线若干;
4. 电脑。
实验步骤:
首先,将单片机开发板和USB转串口模块进行连接,具体的连接方法如下:
1. 将USB转串口模块的TXD引脚连接到单片机开发板的RXD引脚上;
2. 将USB转串口模块的RXD引脚连接到单片机开发板的TXD引脚上;
3. 将USB转串口模块的GND引脚连接到单片机开发板的GND引脚上;
4. 将USB转串口模块的VCC引脚连接到单片机开发板的VCC引脚上。
接下来的步骤如下:
1. 打开两台电脑上的串口调试助手软件,并分别将波特率设置为相同的数值(例如9600);
2. 在一台电脑上,发送数据给另一台电脑。
具体的操作是在串口调试助手软件上输入要发送的数据,然后点击发送按钮;
3. 在另一台电脑上,接收来自第一台电脑发送的数据。
具体的操作是在串口调试助手软件上点击接收按钮,然后可以看到接收到的数据。
实验结果:
通过实验可以看到,单片机之间成功地实现了数据的双向传输。
一台单片机发送的数据可以被另一台单片机接收到。
实验总结:
本实验通过串口通信的方式实现了单片机之间的双机通信。
通过这种方式,可以方便地实现单片机之间的数据互相传输,可以用于各种应用场景,如传感器与控制器之间的数据传输等。
同时要注意,串口通信的波特率要设置一致,否则数据将无法正确接收。
单片机的双机串口通信原理
单片机的双机串口通信原理单片机的双机串口通信原理是通过串口连接两个单片机,使它们能够进行数据的传输和通信。
串口是一种常见的通信方式,它使用两条信号线进行数据的传输:一条是串行数据线(TXD),用于发送数据;另一条是串行接收线(RXD),用于接收数据。
通过串口通信,两个单片机可以进行双向的数据传输,实现信息的互相交流和共享。
在双机串口通信中,一台单片机充当主机(Master),另一台单片机充当从机(Slave)。
主机负责发起通信请求并发送数据,从机负责接收并响应主机发送的数据。
通信过程中,主机和从机需要遵守相同的协议和通信规则,以确保数据的正确和可靠传输。
双机串口通信的主要步骤如下:1. 端口初始化:在双机串口通信开始之前,两台单片机的串口端口需要初始化。
主机和从机需要设置相同的波特率(Baud Rate),数据位数(Data Bits)、停止位数(Stop Bits)和校验方式(Parity Bit),确保两台单片机之间的通信能够正常进行。
2. 数据发送:主机将要发送的数据写入到串口发送寄存器中,然后通过串口发送线路将数据位一位一位地发送给从机。
主机发送完所有数据位后,等待从机的响应。
3. 数据接收:从机通过串口接收线路接收主机发送的数据位,然后将接收到的数据位存放在串口接收寄存器中,等待从机的处理。
4. 数据处理:从机接收到主机发送的数据后,根据通信协议和通信规则进行数据处理。
从机可能需要对数据进行校验、解析和执行相应的操作,然后将处理结果写入到串口发送寄存器中,以供主机进行相应的处理。
5. 响应发送:从机将处理结果写入到串口发送寄存器中,然后通过串口发送线路将数据位一位一位地发送给主机。
从机发送完所有数据位后,等待主机的进一步操作。
6. 数据接收:主机通过串口接收线路接收从机发送的数据位,然后将接收到的数据位存放在串口接收寄存器中,等待主机的处理。
7. 数据处理:主机接收到从机发送的数据后,根据通信协议和通信规则进行数据处理。
单片机双机串行实验报告
单片机双机串行实验报告实验目的:通过单片机实现双机串行通信功能,掌握串行通信的原理、方法和程序设计技巧。
实验原理:双机串行通信是指通过串行口将两台单片机连接起来,实现数据的传输和互动。
常用的串行通信方式有同步串行通信和异步串行通信。
异步串行通信是指通过发送和接收数据时的起始位、停止位和校验位进行数据的传输。
而同步串行通信是指通过外部时钟信号进行数据的同步传输。
实验器材:1.两台单片机开发板(MCU7516)2.两个串口线3.两台计算机实验步骤:1.将两台单片机开发板连接起来,通过串口线连接它们的串行口。
2.在两台计算机上分别打开串口调试助手软件,将波特率设置为相同的数值(例如9600)。
3.在编程软件中,编写两个程序分别用于发送数据和接收数据。
4.在发送数据的程序中,首先要设置串口的波特率、数据位、停止位和校验位,并将数据存储在缓冲区中。
然后利用串口发送数据的指令将数据发送出去。
5.在接收数据的程序中,同样要设置串口的参数。
然后使用串口接收数据的指令将接收到的数据存储在缓冲区中,并将其打印出来。
实验结果与分析:经过实验,我们成功地实现了单片机之间的双机串行通信。
发送数据的单片机将数据发送出去后,接收数据的单片机能够正确地接收到数据,并将其打印出来。
实验中需要注意的是,串口的波特率、数据位、停止位和校验位必须设置为相同的数值。
否则,发送数据的单片机和接收数据的单片机无法正常进行通信。
同时,在实验之前,需要了解单片机开发板支持的串口通信相关的指令和函数。
实验总结:通过本次实验,我们深入了解了单片机之间的双机串行通信原理和方法。
掌握了串口的设置和使用方法,以及相关的指令和函数。
在实验中,我们学会了如何通过串行口实现数据的传输和互动,为今后的单片机应用和开发打下了基础。
同时,我们还发现,双机串行通信在实际应用中有着广泛的用途。
例如,可以通过串行通信实现两台计算机之间的数据传输,或者实现单片机与计算机之间的数据收发。
串口屏和单片机的通信原理
串口屏和单片机的通信原理串口屏和单片机的通信原理可以分为三个主要步骤:硬件连接、通信协议和数据传输。
首先,硬件连接是实现串口屏和单片机通信的基础。
通常,串口屏有两个主要端口——串口调试口和通信口,而单片机也有相应的串口引脚。
通过将单片机的串口引脚连接到串口屏的通信口,建立起双方之间的物理连接。
在连接过程中,需要注意使用适当的连接线和正确的引脚。
其次,通信协议是串口屏和单片机进行数据交互的规则。
常见的通信协议有UART、SPI和I2C等。
其中,UART最为常用。
UART是一种同步通信协议,它通过串行方式以固定的数据位、校验位和停止位进行数据传输。
在通信开始之前,需要确保单片机和串口屏配置相同的波特率、数据位、校验位和停止位等参数。
协议的选择和设置要根据具体的应用进行决定。
最后,数据传输是串口屏和单片机进行信息交流的核心部分。
单片机通过发送数据帧到串口屏来实现信息传输。
数据帧通常包含一个起始位、数据位、校验位和一个或多个停止位。
单片机将数据帧通过串口引脚逐位地发送给串口屏。
在接收端,串口屏以同样的方式解析数据帧,并将数据传递给屏幕进行显示或其他操作。
同时,单片机也可以通过接收串口屏发送的数据进行交互。
在通信过程中,需要注意的是通信的稳定性和数据的完整性。
通信的稳定性可以通过合理的硬件连接和正确的通信配置来保证。
数据的完整性可以通过校验位来验证。
校验位可以是奇校验、偶校验或无校验。
接收数据时,单片机会对接收到的数据进行校验,如果数据出现错误,则会触发错误处理机制。
总而言之,串口屏和单片机的通信原理是通过硬件连接、通信协议和数据传输来实现的。
合理设置通信参数和保证数据的完整性可以保证通信的正常进行。
同时,应根据具体的应用来选择合适的通信协议和操作方式,以满足不同业务需求。
双单片机串口通信原理+程序
一、实验目的掌握单片机串口通信的设计方法,了解双单片机通信的原理。
二、实验内容(含程序)编写发送方和接受方单片机程序,让发送方单片机向接受方单片机循环发送几个两位十六进制数,并将发送的数显示在发送方和接受方的数码管上,要求串行口采用方式1进行通信,选用定时器T1作为波特率发生器,T1工作方式2,通信的波特率位9600。
硬件连接:发送发程序:#include<reg51.h>#define uint unsigned intuchar table[]={0xaa,0xB5,0xdd,0xa8,0xba,0xcc,0xf4,0xb0}; //要发送的数据void delay(uint x){uint i,j;for(i=x;i>0;i--)for(j=110;j>0;j--);}void main(){uchar i=0;TMOD=0x20;TH1=0xfd;TL1=0xfd;SM0=0;SM1=1;TR1=1;EA=1;ES=1;while(1){SBUF=table[i];P1=table[i];while(!TI);TI=0;i++;if(i==8)i=0;delay(800);}}接收方程序:#include <reg51.h>#define uchar unsigned charuchar a;void main(){TMOD=0x20;TH1=0xfd;TL1=0xfd;REN=1;TR1=1;SM0=0;SM1=1;EA=1;ES=1;while(1);}void ser() interrupt 4{RI=0;a=SBUF;P1=a;}三、实验结果及分析本实验需要完成两个程序,发送方和接受方的,但是并没有要求加入奇偶校验,因此难度不大,从实验结果可以明显看出,当发送方数码管显示要发送的数值时,接受方数码管也几乎同时显示出此数值,证明接受无误,实验结果正确。
51单片机双机通信原理(一)
51单片机双机通信原理(一)51单片机双机通信简介•什么是51单片机双机通信•双机通信的作用和应用场景基本原理•单片机串口通信原理–串口通讯协议–数据帧的构成•串口通信的硬件连接–引脚连接方式–串口信号格式设置单向通信实现•主从模式–主机发送数据–从机接收数据•编程实现–主机端程序设计–从机端程序设计双向通信实现•主从模式–主机发送数据–从机接收数据–主机接收数据–从机发送数据•编程实现–主机端程序设计–从机端程序设计通信协议的设计•自定义通信协议–协议的格式–数据的解析与封装高级功能扩展•多机通信实现•数据加密与解密•异常处理与误码纠错总结•51单片机双机通信的基本原理和实现方式•可能遇到的问题及解决方案•双机通信的进一步应用展望简介51单片机双机通信是指使用51系列单片机实现两台或多台单片机之间的数据传输和通信。
双机通信可以实现在多个单片机之间传递数据、完成控制指令的下发、数据的采集和处理等功能。
在各种电子设备和嵌入式系统中,双机通信被广泛应用,可以实现设备之间的互联和协同工作,提高系统的灵活性和智能化水平。
基本原理单片机串口通信原理串口通信是一种将数据通过串行线路进行传输的通信方式。
在51单片机的串口通信中,常用的是UART(通用异步收发传输器)通信协议。
UART通信采用的是异步传输方式,数据按照固定的数据帧格式进行传输。
串口通信的硬件连接在51单片机的串口通信中,需要将主机和从机的UART引脚连接起来。
常用的连接方式是通过一对直线的串行数据线(TXD和RXD)连接主从机,其中TXD是发送数据的引脚,RXD是接收数据的引脚。
为了确保数据的正确传输,还需要进行串口信号格式的设置,包括波特率、数据位数、停止位数和校验位等。
单向通信实现主从模式在单向通信中,主机负责发送数据,从机负责接收数据。
主机通过串口发送数据帧,从机通过串口接收数据帧,并进行相应的处理。
编程实现在主机端程序设计中,需要配置串口通信的参数,并使用串口发送数据的相关函数来发送数据。
单片机串口通信原理及实现方法
单片机串口通信原理及实现方法串口通信是指电脑或其他设备通过串行通信接口与外部设备进行数据传输的方式。
在单片机应用中,串口通信是一种常用的方式,能够实现与外部设备的数据交互和控制。
本文将介绍单片机串口通信的原理和实现方法。
一、串口通信原理串口通信采用串行传输方式,即逐位(bit)地传输数据,其中包括一个起始位、一个或多个数据位、一个或多个校验位和一个停止位。
常用的串口通信协议有RS-232、RS-485等。
在单片机串口通信中,主要包括以下几个部分:1. 时钟信号:单片机通过时钟信号来同步数据的传输,确保发送和接收的数据在同一时间段内互相对应。
2. 波特率:波特率是指每秒钟传送的比特数,也称为传输速率。
单片机与外部设备通信时,需要设置相同的波特率,以保证数据传输的准确性。
3. 数据格式:包括起始位、数据位、校验位和停止位。
起始位用于标识数据的开始,通常为逻辑低电平;数据位表示传输的数据长度,常用的有8位和9位;校验位用于检查数据的准确性,常用的有奇偶校验和检验等;停止位表示数据传输的结束,常用的为一个或两个停止位。
4. 控制信号:单片机通过控制信号来控制数据的发送和接收。
常用的控制信号有数据发送使能信号、数据接收使能信号、复位信号等。
二、单片机串口通信的实现方法单片机串口通信的实现方法主要包括以下几个步骤:1. 设置引脚功能:确定单片机的引脚功能,将其配置为串口通信功能。
不同的单片机芯片有不同的引脚功能设置方法,可以参考芯片手册进行配置。
2. 设置波特率:根据通信需求,设置单片机的波特率。
波特率的设置包括计算波特率产生所需的时钟频率和设置相应的控制寄存器。
3. 配置数据格式:根据通信协议,设置数据的格式,包括起始位、数据位、校验位和停止位。
这些设置通常是通过控制寄存器来实现的。
4. 数据发送与接收:通过单片机的串口发送寄存器和接收寄存器进行数据的发送与接收。
发送数据时,将需要发送的数据写入发送寄存器;接收数据时,通过读取接收寄存器获取接收的数据。
单片机双机之间的串行通信设计
单片机双机串行实验报告实验报告:单片机双机串行通信实验一、实验目的本实验旨在通过单片机实现双机间的串行通信,包括数据的发送和接收,并利用这种通信方式完成一定的任务。
二、实验原理1.串行通信:串行通信是将数据一个个位发送或接收的方式。
数据通过一个线路逐位发送或接收,可以减少通信所需的线路数目。
2. UART串口通信:UART是通用异步收发传输器(Universal Asynchronous Receiver/Transmitter)的简称,是一种最常用的串口通信方式,通常用于单片机与计算机、单片机与单片机之间的通信。
3.串口模块:串口模块是负责将数据转变为串行传输的硬件模块,包括发送端和接收端。
通过设置波特率、数据位、校验位和停止位等参数,可以实现数据的可靠传输。
4.单片机串口通信:单片机内部集成了UART串口通信接口,只需要通过相应的寄存器配置,可以实现串口通信功能。
5.双机串行通信:双机串行通信是通过串口将两台单片机进行连接,一台单片机作为发送端,负责将数据发送出去;另一台单片机作为接收端,负责接收并处理发送的数据。
三、实验器材与软件1.实验器材:两台单片机、USB转TTL模块、杜邦线若干。
2. 实验软件:Keil C51集成开发环境。
四、实验内容与步骤1.配置发送端单片机(1)连接单片机和USB转TTL模块,将USB转TTL模块的TXD端连接到单片机的P3口,将GND端连接到单片机的地线。
(2)在Keil C51环境下创建新工程,编写发送端程序。
(3)配置串口通信的波特率、数据位、校验位和停止位,并打开串口发送中断。
(4)循环发送指定的数据。
2.配置接收端单片机(1)连接单片机和USB转TTL模块,将USB转TTL模块的RXD端连接到单片机的P3口,将GND端连接到单片机的地线。
(2)在Keil C51环境下创建新工程,编写接收端程序。
(3)配置串口通信的波特率、数据位、校验位和停止位,并打开串口接收中断。
IIC串口通信
理解单片机的IIC通信原理。实现两个单片机之间利用II进行通信。二、任务要求。
任务主要实现一个单片机通过IIC通信方式访问24C02。
1
IIC总线是PHLIPS公司推出的一种串行总线,是具备多主机系统所需的包括总线裁决和高低速器件同步功能的高性能串行总线。IIC总线只有两根双向信号线。一根是数据线SDA,另一根是时钟线SCL。如下图:
3
1)字节传送与应答
每一个字节必须保证是8位长度。数据传送时,先传送最高位(MSB),每一个被传送的字节后面都必须跟随一位应答位(即一帧共有9位)。如下图:
图4.24字节传送与应答
由于某种原因从机不对主机寻址信号应答时(如从机正在进行实时性的处理工作而无法接收总线上的数据),它必须将数据线置于高电平,而由主机产生一个终止信号以结束总线的数据传送;
**函数名称: void SendByte(unsigned char SendDat)
**功能描述:将一个字节送上总线
**输入: unsigned char SendDat
**输出: j
**全局变量:无
**调用模块:无
**说明:无
**注意:无
**************************************************************************/
void Dely24(void)
{
unsigned char i;
for(i=0;i<20;i++);
}
/*************************************************************************
**函数名称: unsigned char ReadByte(void)
单片机多机通信的原理
单片机多机通信的原理单片机多机通信是指通过一组单片机进行信息传输和交换的过程。
单片机多机通信可以实现不同单片机之间的数据传输、控制和协调工作。
在多机通信中,每个单片机都有独立的功能和任务,并通过通信方式进行协作完成工作。
1.通信协议:通信协议是单片机多机通信的重要基础。
在多机通信中,需要定义一套协议,规定数据帧的格式,数据的传输方式和操作的流程。
常见的通信协议有SPI、I2C、UART等。
选择合适的通信协议可以根据传输距离、传输速度、设备复杂度等需求来进行选择。
2.总线结构:多机通信中常使用总线结构,将多个单片机连接在同一总线上。
总线结构包括三种类型:并行总线、串行总线和混合总线。
并行总线是指在总线的每条线上同时传输一个单元(八位),速度较快;串行总线是指数据逐位的传输,速度较慢但可以实现长距离传输;混合总线则结合了并行总线和串行总线的优点。
根据具体应用需求,选择合适的总线结构。
3.通信方式:在多机通信中,可以采用半双工通信或者全双工通信方式。
半双工通信是指通信双方交替发送和接收数据,在同一时刻只能进行发送或接收操作;全双工通信是指通信双方可以同时进行发送和接收操作。
根据通信需求和硬件条件,选择合适的通信方式。
4.帧同步:在多机通信中,数据的传输需要进行帧同步,即接收端需要识别出每个数据帧的起始和结束位置。
帧同步可以通过在传输数据中插入特定的起始标识符和结束标识符来实现。
当接收到起始标识符后,接收端开始接收数据帧,直到接收到结束标识符,表示数据帧传输完成。
5.编码和解码:多机通信中,发送数据的单片机需要将数据进行编码,接收数据的单片机需要对接收到的数据进行解码。
编码和解码方式有很多种,如二进制编码、格雷码编码等。
编码和解码的目的是确保数据的可靠传输和正确接收。
6.冲突检测和处理:在多机通信中,由于多个单片机共享同一总线,可能会出现冲突和竞争的情况。
为了避免冲突,需要设计冲突检测和处理机制。
常见的机制有仲裁器、优先级检测和时间片轮转等。
单片机双机通信
任务1
在银行业务系统中,为了提高柜员的登录安全和 授权操作中的安全性,应用动态口令系统。我们 通过单片机的双机通信可模拟动态密码的获取。 假设单片机甲机中存放的动态口令是935467, 甲机发送动态口令给单片机乙机,乙机接收到数 据以后在6个数码管上显示接收数据。
跟我学1----串行口的工作过程及与MCS-51串行口有关的特殊功能寄存器
项目小结本ຫໍສະໝຸດ 目涉及到串行口的基本原理,从固定发送一 组动态密码显示到实时的发送多组不同的动态密码。 项目进一步训练单片机定时/计数器的应用能力,一 维数组的实际应用以及串行方式1双机通信的编程与 调试能力。
医学资料
• 仅供参考,用药方面谨遵医嘱
跟我学2----波特率计算
动手做1——画出硬件电路图
乙机的六个数码管采用动态连接方式,各位共阳极数码管相应的段选控制端并联 在一起,由P1口控制,用八同相三态缓冲器/线驱动器74LS245驱动。各位数码管 的公共端,也称作“位选端”由P2口控制,用六反相驱动器74LS04驱动。甲机作 为发送端,乙机作为接收端。将甲机的TXD(P3.1,串行数据发送端)引脚接乙 机的RXD(P3.0,串行数据接收端)引脚,甲机的RXD引脚接乙机的TXD引脚, 值得注意的是,两个系统必须共地。
与MCS-51串行口有关的特殊功能寄存器有SBUF,SCON,PCON, 下面分别对它们进行详细讨论。 1.串行口数据缓冲器SBUF 在串行口工作时,有两个很特别的缓冲寄存器,一个是发送缓冲寄存器, 用于存放接收到的数据,另一个是接收缓冲寄存器,用于存放欲发送的 数据,但它们却有着一个共同的名字——SBUF,SBUF是两个在物理上 独立的接收、发送寄存器,两个缓冲器共用一个地址99H,通过对SBUF 的读、写指令来区别是操作接收缓冲器,还是操作发送缓冲器。
单片机串口通信程序
引言:单片机串口通信程序是一种用于实现单片机与外部设备进行数据传输的通信方式。
它通过串口接口将数据以串行的形式传输,实现了高效、可靠的数据交互。
本文将详细介绍单片机串口通信程序的实现原理、步骤和注意事项。
概述:单片机串口通信程序主要包括串口初始化、发送数据、接收数据和中断处理等部分。
其中,串口初始化是设置串口通信的参数,发送数据和接收数据是具体的数据传输操作,中断处理则是处理串口中断事件的相关操作。
正文:一、串口初始化1.确定串口通信的波特率:波特率是指单位时间内传输的比特数,需要根据通信双方的需求确定合适的波特率。
2.设置数据位、停止位和校验位:数据位决定了每个字节中实际有效数据的位数,通常为8位;停止位用于判断一个字节的结束,通常为1位;校验位用于检测和纠正数据传输过程中的错误。
3.打开串口:通过使能相应的寄存器位,开启串口功能。
二、发送数据1.准备要发送的数据:将要发送的数据存储在缓冲区中,可以是一个字节、多个字节或一个字符串。
2.判断发送缓冲区是否为空:检查发送缓冲区是否已被发送完毕,如果为空则可以开始发送新的数据。
3.将数据发送到串口寄存器:将准备好的数据写入串口寄存器,启动数据传输。
4.等待数据发送完毕:通过检查发送完成标志位,判断数据是否已经成功发送完毕。
三、接收数据1.等待接收缓冲区非空:通过检查接收缓冲区是否有新的数据接收到,判断是否可以开始接收数据。
2.读取接收缓冲区的数据:通过读取串口寄存器中的数据,获取已接收到的数据。
3.处理接收到的数据:对接收到的数据进行相应的处理操作,可以是存储、显示或其他操作。
四、中断处理1.使能串口中断:通过设置相应的中断使能标志位,允许串口中断事件的发生。
2.处理接收中断:当接收缓冲区有新的数据到达时,触发串口接收中断,通过中断服务程序对接收到的数据进行处理。
3.处理发送中断:当发送缓冲区为空时,触发串口发送中断,通过中断服务程序发送新的数据。
单片机串口工作原理
单片机串口工作原理
串口,即串行通信口,是一种在计算机和外设之间进行数据传输的通信接口。
单片机串口是指单片机上的串行通信接口,用于实现单片机与其他设备之间的数据传输。
单片机串口的工作原理如下:
1. 串口通信协议:串口通信需要遵循一定的通信协议,常见的串口通信协议有UART、RS-232、RS-485等。
其中UART是
一种常用的串行通信协议,用于定义数据的传输格式、波特率等。
2. 数据传输方式:串口通信采用的是串行传输方式,即将数据比特依次发送或接收。
发送端将数据按照一定的格式转换为电平信号,接收端将电平信号转换为数据。
3. 通信参数:串口通信需要设置一些通信参数,包括波特率、数据位数、校验位、停止位等。
这些参数决定了数据传输的速率和精度。
4. 数据帧:数据帧是串口通信的基本数据单位,包括起始位、数据位、校验位和停止位。
发送端将数据按照数据帧格式发送,接收端按照相同的数据帧格式接收数据。
5. 通信流程:串口通信的流程包括发送方和接收方。
发送方将数据按照一定的格式发送到串口,接收方从串口接收数据并解析。
6. 中断机制:单片机串口通信常常使用中断机制来实现异步传输。
发送和接收数据时,可以通过中断方式进行处理,提高系统的实时性。
总的来说,单片机串口工作原理就是通过一定的通信协议和参数,在一个端口上实现数据的串行传输。
发送方将数据转换为电平信号发送,接收方将电平信号转换为数据接收。
通过这种方式,单片机可以和其他设备进行数据交换和通信。
单片机双机通信实验报告
单片机双机通信实验报告《单片机双机通信实验报告》摘要:本实验通过使用两台单片机,利用串口通信实现双机之间的信息传输。
在实验过程中,先分别对两台单片机进行初始化设置,并分别确定了波特率和通信协议。
随后,通过串口线连接两台单片机,并编写发送和接收程序,实现了双机之间的信息传输。
实验结果表明,双机通信实验成功,信息传输准确可靠。
关键词:单片机、双机通信、串口通信、波特率、信息传输1.引言:单片机是一种集成电路,内包含了处理器、存储器和各种外设,广泛应用于嵌入式系统中。
双机通信是指两个单片机之间通过一定的通信方式实现信息的传递和交换。
利用双机通信,可以实现多个单片机之间的协同工作,提高系统的性能和可靠性。
本实验旨在通过串口通信方式,实现双机之间的信息传输。
2.实验原理:串口通信是一种常用的通信方式,将信息按照一定的协议格式转换成串行的数据,通过串口线传输。
串口通信需要设置波特率和通信协议。
波特率是指每秒钟传输的位数,通信协议是指发送和接收的数据格式和规则。
本实验使用两台单片机,每台单片机通过串口线连接。
其中一台单片机作为发送机,另一台单片机作为接收机。
发送机将要传输的信息按照通信协议和波特率发送出去,接收机按照相同的通信协议和波特率接收信息。
接收机接收到信息后,进行处理。
3.实验步骤:(1)初始化设置:分别对发送机和接收机进行初始化设置,包括引脚的设置和串口通信设置。
设置引脚为串口通信模式,并确定波特率和通信协议。
(2)连接单片机:将两台单片机通过串口线连接,发送机的发送引脚连接到接收机的接收引脚,接收机的接收引脚连接到发送机的发送引脚。
(3)编写发送程序:在发送机上编写发送程序,将要发送的信息按照通信协议和波特率发送出去。
(4)编写接收程序:在接收机上编写接收程序,按照相同的通信协议和波特率接收信息,并进行处理。
(5)测试实验:将发送机和接收机分别接入电源,观察实验现象。
4.实验结果:通过实验测试,发送机成功将信息发送给接收机,并在接收机上进行了处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、实验目的
掌握单片机串口通信的设计方法,了解双单片机通信的原理。
二、实验内容(含程序)
编写发送方和接受方单片机程序,让发送方单片机向接受方单片
机循环发送几个两位十六进制数,并将发送的数显示在发送方和接受方的数码管上,要求串行口采用方式1进行通信,选用定时器T1作为波特率发生器,T1工作方式2,通信的波特率位9600。
硬件连接:
发送发程序:
#include<reg51.h>
#define uint unsigned int
uchar
//要发送的数据table[]={0xaa,0xB5,0xdd,0xa8,0xba,0xcc,0xf4,0xb0};
void delay(uint x)
{
uint i,j;
for(i=x;i>0;i--)
for(j=110;j>0;j--);
}
void main()
{
uchar i=0;
TMOD=0x20;
TH1=0xfd;
TL1=0xfd;
SM0=0;
SM1=1;
TR1=1;
EA=1;
ES=1;
while(1)
{
SBUF=table[i];
P1=table[i]; while(!TI);
TI=0;
i++;
if(i==8) i=0; delay(800);
}
接收方程序:
#include <reg51.h>
#define uchar unsigned char uchar a;
void main()
{
TMOD=0x20;
TH1=0xfd;
TL1=0xfd;
REN=1;
TR1=1;
SM0=0;
SM1=1;
EA=1;
ES=1;
while(1);
}
void ser() interrupt 4
{
RI=0;
a=SBUF;
P1=a;
}
三、实验结果及分析
本实验需要完成两个程序,发送方和接受方的,但是并没有要求
加入奇偶校验,因此难度不大,从实验结果可以明显看出,当发送方 数码管显示要发送的数值时,接受方数码管也几乎同时显示出此数 鸠送方单片矶
'・・・
■ B !■
・
■ ■ ■ !■ B ■
■ r n B ■
■ ■ !• B ■■
■ ■!■■!!■
■ ■ B B ■■
■ ■ ■ E !■
■ ■ ■ I! K B ■
■ ■
!■ ・・
駆方单删- ...............................
值,证明接受无误, 实验结果正确
F5FT
LE
FT
H .WTJ
nsm •孑
环俺 P 1 n'fTT
■ in' "Hi
-12
n
RT
pm-vwi
py 刚丘 Pn J .H .I ^
PDL-t'AD# POK H .!: pn H 'H I *=
PS ,沁令
Ff JT/ill P2LMi2 卩时E PZ^I H
FlDRXIb
PlVTMXi P3
JlffTT
rz IMT ■
i*5L4TFE
PM5T1
FJisiWl pjjrTF
J*.TWOf i
............... .. '中耳- ............ ..................
:
拖战方申片林
>i > i > i a i ”・・ h a > ■ a .i a ■ a >i > i
iXTALl
-:XTAL1
WAL2
RET
P3EN ALH
P1D
P1IJ 訂_2 F13 PL*
F1>
P1£ P1J
* I 毁 L I
XTMLZ
REFT
PSI=N
ALE
p 口
FQ.WIil PCI 2iT^Z
*U_k M .JJ
P 口. W
•口 M 崎
FO.TW.^ PZUA3 任q
朋
PZ3*Aig [PUA11 ".
站H
F25TA13
PZ J HAU
F37W15
IN3+S 6TW
PtlD P1.1 FK2 F1^ Pl-4 Flf PU J S Fl J
FQXTABia
[PCI JZADZ
fOJADa
PCI
.MD*
ruwufr
F[] .ract PZJCVAS
叱
阳
P2JTA1O P2XA11 F2.^A12
P2iA13
F2.^A1<
P2.^A15
psnflxfr
[Pl.TTXB *3-2IITO
Fl^ilHTl
pz*rrai
Fasrri
P3J&CTO Firfflf
F2.1M
■口皿" PdSXLS
KT A U
口 33 r JliT^D
陀片陀
HE
"3-
两个单片机都使用串口方式1 进行通信,并且必须保证两单片机
通信波特率完全一致,否则接受不到正确的数。
在发送数据时,向
SBUF中写入一个数据后,使用“while (! TI);等待是否发送完毕,因为当发送完毕后,TI 被硬件置1,然后才退出“ while(!TI );”接下来在将TI 手动清零,同理,在接受数据时,在中断服务程序中也需要将接受中断标志位RI 置零。