刚体平面运动的动力学方程共19页
第7.5节刚体平面运动的动力学
第7.5节 刚体平面运动的动力学7.5.1 10m 搞得烟筒因底部损坏而倒下来,求其上端到达地面时的线速度。
设倾倒时底部未移动。
可近似认为烟筒为均质杆。
解:烟筒的长度l =10m 。
设烟筒上端到达地面的瞬间,烟筒绕其底部的转动角速度为ω。
在倾倒过程中,只受重力作用,做的功为:mg ⋅½l 。
由刚体定轴转动的动能定理:lgmlI I l mg 323122121=∴==⋅ωω烟筒上端到达地面时的线速度为:s m gl l v /2.17108.933≈⨯⨯===ω7.5.2 用四根质量各为m 长度各为l 的均质细杆制成正方形框架,可围绕其中一边的中点在竖直平面内转动,支点O 是光滑的.最初,框架处于静止且AB 边沿竖直方向,释放后向下摆动,求当AB 边达到水平时,框架质心的线速度C v。
以及框架作用于支点的压力N .解:先求正方形框架对通过其质心且与其垂直的转轴(质心轴)的转动惯量:框架的质心位于框架的中心,即两条对角线的交点上。
每根细杆对其本身的质心轴的转动惯量:21210ml I =,细杆的质心与框架的质心的距离为l 21,由平行轴定理:2342210])([4ml l m I I c =⋅+⋅=再由平行轴定理,得框架对通过0点的转轴的转动惯量:237221)(4ml l m I I c =⋅+=(1)求框架质心的线速度v c框架在下摆过程中,只有重力做功,机械能守恒。
选取杆AB 达到水平时框架质心位置位势能零点,得:gll v l h m M I Mgh c lgc c 7321712212214===∴===ωωω(2)求框架对支点的压力N以框架为研究对象,它受到重力M g 和支点的支撑力N 的作用,由质心运动定理:c a M g M N =+取自然坐标系,τ沿水平方向,n 铅直向上,得投影方程:βτττc n c c n n Mh Ma N mgmg mg N mg l gl m h v M Ma Mg N n===+=⇒=⋅===-7372472421732744:ˆ:ˆ在铅直位置时,外力矩为0,故角加速度β=0,==〉N τ = 07.5.3 由长为l ,质量各为m 的均质细杆组成正方形框架,其中一角连于光滑水平转轴O ,转轴与框架所在平面垂直.最初,对角线OP 处于水平,然后从静止开始向下自由摆动.求OP 对角线与水平成450时P 点的速度,并求此时框架对支点的作用力.解:先求正方形框架对通过其质心且与其垂直的转轴(质心轴)的转动惯量:框架的质心位于框架的中心,即两条对角线的交点上。
《刚体动力学 》课件
牛顿第二定律
物体的加速度与作用在物 体上的力成正比,与物体 的质量成反比。
牛顿第三定律
对于任何两个相互作用的 物体,作用力和反作用力 总是大小相等,方向相反 ,作用在同一条直线上。
刚体的平动
刚体的平动是指刚体在空间中 的位置随时间的变化而变化, 而刚体的形状和大小保持不变
的运动。
刚体的平动具有三个自由度 ,即三个方向的平动。
05
刚体的动力学方程
刚体的动力学方程
牛顿第二定律
刚体的加速度与作用力成正比,与刚体质量 成反比。
刚体的转动定律
刚体的角加速度与作用力矩成正比,与刚体 对转动轴的转动惯量成反比。
刚体的动量方程
刚体的动量变化率等于作用力对时间的积分 。
刚体的自由度与约束
自由度
描述刚体运动的独立变量,如平动自由度和转动 自由度。
约束
限制刚体运动的条件,如固定约束、滑动约束等 。
约束方程
描述刚体运动受约束的数学表达式。
刚体的动力学方程的求解方法
解析法
通过代数运算求解动力学方程,适用于简单问 题。
数值法
通过迭代逼近求解动力学方程,适用于复杂问 题。
近似法
通过近似模型求解动力学方程,适用于实际问题。
06
刚体动力学中的问题与实例 分析
人工智能和机器学习的发展将为刚体 动力学的研究提供新的思路和方法, 有助于解决复杂动力学问题。
感谢您的观看
THANKS
船舶工程
在船舶工程中,刚体动力学 用于研究船舶的航行稳定性 、推进效率以及船舶结构的 安全性等。
兵器科学与技术
在兵器科学与技术领域,刚 体动力学用于研究弹药的发 射动力学、火炮的射击精度 和稳定性等。
刚体的平面运动
• 当f=0°时,vA与vBA 均垂直于OB连 • 线,vA与vBA也垂直于vB,按速度平行四 • 边形合成法则,应有 • vB=0。
•当f=90°时,vA与vB方向一致, •vBA垂直于AB,其速度平行四边形应为一直线, •显然有 vB=vA=rw •而 vBA=0。 •则此时杆AB的角速度wAB为零,
•
例1 曲柄连杆机构如图所示,OA=r,AB=1.73r。 如曲柄OA以匀角速度w转动,求当f=60°、0°和 90°时点B的速度。 • 解:连杆AB作平面运动,以点A为基点,点B的 速度为 • vB=vA+vBA
• 点B的速度为 vB=vA+vBA • 其中 vA=rw, 方向与OA垂直, • vB 沿OB方向, vBA与AB垂直。 • 可以作出其速度平行四边形。 当f=60°时,由于AB=1.73OA,OA恰好与AB垂 直,其速度平行四边形如图所示, 解出 : vB=vA/cos30°=1.15rw
• • • •
单独轮子作平面运动时,可在轮心O′处固 连一个平动坐标系x′o′y′,同样可把轮 子这种较为复杂的平面运动分解为平动和 转动两种简单运动。
一、研究平面运动的方法
• 1、动坐标系 • 对于任意的平面图形,可在图形上任取一点 O′为基点作为动系原点,建立跟随基点平动的坐 标系x′o′y′。 • 于是平面图形S的绝对运动可看成是: • 跟随基点的平动和绕基点的转动的合成。
若图形上某点I vI=0 ,选此点
为基点,则其它各点的速度
vB=vI+vBI=vBI
• 2、瞬时速度中心 • ①定义:一般情况下,在每一瞬时,平面图形上 • 都唯一地 存在一个速度为零的点。此点称为瞬 时速度中心。
②证明:如果点M在vA的垂线AN上 (由vA到AN的转向与图形的转向 一致),由图中看出,vA和vMA 在同一直线,而方向相反,故vM 的大小为 vM=vA-w·AM
动力学3-刚体平面运动微分方程_2019
第7章 取x为广义坐标
mx mg sin F
0 N mg cos
x R
质
1 mR2 FR
y
点
2
系
x
动 力
x 2 g sin
3
O
学
F 1 mg sin
3
C A mg
N mg cos
N
F
x
第7章
质 点 系 动 力 学
讨论:
0 F 1 mg sin 0
ml
2
YB
l 2
sin
XA
l 2
cos
(c)
第7章
质 点 系 动 力 学
例1
解
m
l 2
(
cos
2
sin )
XA
(a)
m
l 2
(
sin
2
cos
)
YB
mg
(b)
1 ml2
12
YB
l 2
sin
XA
l 2
cos
(c)
将式(a)和(b)代入(c):
3g 2l
C
yC B
x P xC
第7章
质 点 系 动 力 学
解法三:动量矩定理
以A为矩心,动量矩定理:
J A
1 ml2
3
mg
1 2
l
以B为矩心,动量矩定理:
JB
1 ml2
3
mg
1l 2
TAl
求解
3g 2l
922136-理论力学之动力学-3平面动力学
3
2g 4l
,
FA
FB
3 8
mg
16
思考题:已知均质杆AB上的A点以匀速 u 铅垂运动,均质圆 盘在地面上纯滚动。试确定当系统运动到图示位置时,地面 作用在圆盘上的摩擦力的方向。(选择:A或B)
u
情况1 A
u
情况2 A
F
B
F
B
A:水平向右
B:水平向左
17
思考题:已知均质杆AB上的A点以匀速 u 铅垂运动,均质圆 盘在地面上纯滚动。试确定当系统运动到图示位置时,滑块 A的哪一侧与墙面接触。(选择:A或B)
杆长为l,质量为m。求:此瞬时AB杆的角加速度,
地面约束力, 绳的拉力。
解:受力分析和运动分析
y Ca
O FB
aB
B
FA CaC mg
A
450
aA 0 x
应用刚体平面运动微分方程
macx FB
1m12 amcly2
FA mg (FA FB
)
l 2
sin
450
acx
acy
l
2
sin
450
Planar Motion of a Rigid Body)
设:刚体具有 质量对
z
(xM , yM , zM )
称面 S,此平面在某一
固定平面内运动,作用
o
y
在刚体上的力系可简化
为S平面内的一个平面 x
力系。
M S
问题:用什么方法建立刚体的平面运动与力之间的关系?
12
§3-2、刚体定轴转动与平面运动微分方程
xc'
l2 f 12 xc'
g
sin
第6章刚体的平面运动
(b)
25
⑤已知某瞬时图形上A,B两点的速度方向相 同,且不与AB连线 垂直。 此时, 图形的瞬心在无穷远处,图形的角 速度 =0, 图形上各点速度相等, 这种情况称 为瞬时平动。 (此时各点的加速度不相等)
对④(a)的情况,若vA=vB,
也是瞬时平动.
26
例如: 曲柄连杆机构在图示位置时,连杆BC作瞬时平动。 此时连杆BC的图形角速度
车轮绕基点的转动(相对运动)
15
16
2.平面运动的分解与基点选择的关系
①平面图形随基点的平动与基点的选择有关。
②平面图形绕基点的转动与基点的选择无关。 证明: 在平面图形上取任意两直线O'P、O'' P' , 二者夹角为a, 则a =常量。 以O'为基点,作平动坐标系O'x'y', 设O'P与x'的夹角为,则图形绕O'点转 动的角速度和角加速度分别为:
o
取长度 OI
vO / 则: vIO OI vO 方位⊥IO,指向与vO 相反。所以
vI=0
22
即在某一瞬时必唯一存在一点速度等于零,该点称为平 面图形在该瞬时的瞬时速度中心,简称速度瞬心(I). 3.速度瞬心又称为瞬时转动中心 设某瞬时平面图形的角速度为, 速度瞬心在I点。以I点为基点,有:
vC 3 0 vB sin 60 r 0 2
()
34
§6-4 平面图形内各点的加速度
一. 基点法 (合成法) 已知:图形S 内一点A 的加速度 a A 和图形 的 , (某一瞬时)。 求: 该瞬时图形上任一点B的加速度。
取A为基点,将平动坐标系铰接于A点, 取B动点,则B点的运动分解为相对运动 为圆周运动和牵连运动为平动.
《理论力学》第八章刚体的平面运动
刚体的平面运动特点
刚体的平面运动具有 连续性,即刚体上任 意一点的运动轨迹都 是连续的。
刚体的平面运动具有 周期性,即刚体的运 动轨迹可以是周期性 的。
刚体的平面运动具有 对称性,即刚体的运 动轨迹可以是对称的。
02
刚体的平面运动分析
刚体的平动分析
平动定义
刚体在平面内沿着某一确定方向作等速直线运动。
详细描述
通过综合分析动能和势能的变化,可以深入理解刚体在平面运动中的能量转换过程。例 如,当刚体克服重力做功时,重力势能转化为动能;当刚体克服摩擦力做功时,机械能 转化为内能。这种能量转换过程遵循能量守恒定律,即系统总能量的变化等于外界对系
统所做的功与系统内能变化之和。
06
刚体的平面运动的实例分析
刚体的平面运动通常可以分为两种类型:纯滚动和滑动。在 纯滚动中,刚体只滚不滑,刚体上任意一点在任意时刻都位 于一个固定的圆周上。在滑动中,刚体既滚又滑,刚体上任 意一点在任意时刻都位于一个变化的圆周上。
刚体的平面运动分类
纯滚动
刚体只滚不滑,刚体上任意一点 在任意时刻都位于一个固定的圆 周上。
滑动
刚体既滚又滑,刚体上任意一点 在任意时刻都位于一个变化的圆 周上。
势能定理
总结词
势能定理描述了势能与其他形式的能量转换的关系。
详细描述
势能定理指出,在刚体的平面运动过程中,非保守力(如摩擦力、空气阻力等)对刚体所做的功等于系统势能的 减少量。非保守力做正功时,系统势能减少;非保守力做负功时,系统势能增加。
动能和势能的综合分析
总结词
在刚体的平面运动中,动能和势能的综合分析有助于理解运动过程中能量的转换和守恒。
做平动,这种运动也是复合运动。
第七章 刚体力学
(二)刚体的定轴转动 1.各点运动的特点
在自己的转动平面内作圆周运动 2.描述的物理量 任一质点圆周运动的线 量和角量的关系 r r
简化
加速 z
r
an r an at r at r
细棒势能 质点势能
M l
o
2
0 m
两式联 立得解
25
例2 已知:细棒如图 求:任意位置时,轴给细棒的作用力
解:设任意位置时,细棒角速度为
设轴给细棒的作用力为 Fn Ft 作细棒受力图 F n
o
Mg
o
c
M l
26
Ft
Fn
o
o
c
M l
Ft
Mg
Fn Mg cos Macn
Ft Mg sin Mact l l 2 act acn 2 2
碰撞过程中系统对o 点 的合力矩为 M 0 即,
0 m
所以,系统对o点的角动量守恒。
L1 L2
1 2 m0l Ml m l2 3
1
24
过程2 质点、细棒上摆 系统中包括地球, 只有保守内力作功,所以机械能守恒。 设细棒处于最低点为势能零点
11 2 2 2 Ml m l 23 1 Mgl1 cos m gl1 cos 2
第七章 刚体力学
1
基本方法:
质点系运动定理
加 刚体特性 刚体定轴转动的
动能定理
平动:动量定理
F mac
角动量定理
可以解决刚体的一般运动(平动加转动)
2
刚体的运动方程
(欧勒运动学方程)
若:已知 ω 1 , ω 2 , ω 3
& & & 则:计算 ϕ , ψ , θ
讨论:对于对称陀螺,两个主轴可在平面 x1 x 2 上任意 选取,则:取 ox1 沿oN方向 ⇒
& ψ =0& 于是有: ω Nhomakorabea = θ
& & & ω 2 = φ sin θ ω 3 = φ sin θ + ψ
又
rc
∑m r = ∑m
a a a
a a
=0
⇒ 则
∑m r
a
a a
=0
d & 0 + ∑ (ra × ma ra ) = ∑ ra × Fa 外 dt a a
⇒
d & ∑ (ra × mara ) = ∑ ra × Fa 外 dt a a
令
& L( o ) = ∑ ra × ma ra
a
M ( o ) = ∑ ra × Fae
ϕ :刚体绕固定轴oz转过的角度——进动角; & ϕ :进动角速度——沿oz方向
& ψ
ψ :刚体绕 ox3 转过的角度——自转角;
:自转角速度——沿 ox3 方向。
ox θ : 3 和oz间的夹角——章动角; θ& :章动角速度——沿oN方向。
1. & 在 x1 x 2平面, 在 θ 由图:
x1 , x 2 , x3 的分量 θ&1 , θ&2 , θ&3 。
dω d ' ω d 'ω = + ω×ω = [ ] dt dt dt
⇒
dv 0 & = w + a + 2ω × v + ω × r + ω × (ω × r ) dt
理论力学第4节 刚体的定轴转动和平面运动微分方程
圆盘质心 加速度
aC
2M 3mR
FN
2)如果作用于圆盘的力偶矩 M
圆盘连滚带滑,所受摩擦力为
3 2
fmgR
时,则
F mgf
aC fg
2(M mgfR) mR2
0
d
dt
maC F
FN mg
1 mR 2 M FR
2
纯滚动 应满足
M C aC
mg F
FN
F f FN
M
3 2
fmgR
解得
F
2M 3R
,M
3 2
RF
,aC
2M 3mR
讨论
M
1)为使圆盘作纯滚动,应满足
作用于圆盘 的力偶矩
M
3 2
fmgR
C aC mg F
• 刚体绕定轴转动的运动微分方程:绕定轴转动的刚 体对转轴的转动惯量与其角加速度的乘积,等于作 用在刚体上的所有外力对转轴力矩的代数和。
例11-5 如图所示一均质圆盘质量 m = 100kg,半径 r = 0.5m,转速 n 擦因数 f = 0.6。开始加制动闸,使闸块对轮
dt
J C
n
M C (Fi(e) )
i1
式中 M 为刚体的质量,aC 为质心的加速度,J C为刚 体对通过质心Cz轴的转动惯量。
MaC
F (e) R
y
d(JC)
dt
JC
n
M C (Fi(e) )
i1
d
dt
d 2
《刚体的平面运动》课件
刚体平动的实例分析
总结词
刚体平动的实例分析主要介绍了刚体在平面内沿某一方向做直线运动的情况,包 括匀速平动和加速平动。
详细描述
刚体平动的实例分析中,我们可以通过观察汽车在路面上行驶、火车在铁轨上飞 驰等实际现象,理解刚体平动的概念和特点。同时,通过分析匀速平动和加速平 动的动力学特征,可以深入了解刚体的平动运动规律。
03
刚体的平面运动的动力学
刚体的平动的动力学方程
平动的动力学方程:$F = ma$
描述刚体在平面内平动时的加速度和力之 间的关系。 适用于刚体在平面内直线运动或曲线运动 的情况。 考虑了刚体的质量对运动的影响。
刚体的定轴转动的动力学方程
定轴转动的动力学方程:$T = Ialpha$
描述刚体绕固定轴转动时的角加速度和力 矩之间的关系。 适用于分析刚体在平面内定轴转动的情况 。 考虑了刚体的转动惯量对运动的影响。
特点
刚体上任意一点的速度方 向都与该固定轴线平行, 且各点的速度大小相等。
应用
许多机械的运动可以简化 为刚体的定轴转动,如车
轮、电机转子等。
刚体的平面运动
定义
刚体在平面内既有平动又有定轴转动的运 动。
特点
刚体的运动轨迹是一个平面曲线,同时具 有平动和定轴转动的特征。
应用
许多复杂的机械运动可以简化为刚体的平 面运动,如曲柄连杆机构、凸轮机构等。
刚体的平面运动的运动学方程
平面运动定义
刚体在平面内既有平动又有定轴转动 。
运动学方程
解释
该方程描述了刚体在平面内既有平动 又有定轴转动的复杂运动,需要综合 考虑平动和定轴转动的运动学方程来 描述其运动轨迹。
需要将平动和定轴转动的运动学方程 结合起来,描述刚体在平面内的运动 轨迹。
物理-刚体平面运动动力学
【平面运动】刚体上各点均在平面ຫໍສະໝຸດ 运动, 且这些平面均与一固定平面平行。
例:圆柱体沿直线路径的滚动。
一、刚体平面运动的动力学方程
刚体的平面运动可分解为
随质心的平动 绕过质心且垂直于固定平面的轴的转动
ω C
一、刚体平面运动的动力学方程
1、质心的运动
——刚体的质量 ——合外力
2l
故有
N2
f
Wl Pl1 2l
cot
梯子不滑动的条件 f N1
Wl Pl1 cot (W P) 2l
线的垂直距离为l. 求: 质心的加速度和圆柱所受的静摩擦力.
F l
ac
Rm
f
随堂练习
圆柱在竖直面内作平面运动。 由质心运动定理:
F f maC
又由对质心轴的转动定理:
Fl fR 1 mR 2
2
纯滚动的运动学判据 aC R
以上三式联立,可解得
2F(R 3mR 2
l);
f (R 2l) F 3R
则梯子的倾角?
Mq Ogf
x
随堂练习
设梯子不滑动时与地面的夹角为q, y N2 C
水平方向的力平衡: N 2 f 竖直方向的力平衡: N1 W P
为简化计算,取C为力矩的参考点,
2 fl sin Wl cos Pl1 cos
m g
l1 N1
Mq x
Ogf
解之得
f Wl Pl1 cot
由质心的运动定理决定
C
aC
——代表刚体作整体平移运动的加速度
一、刚体平面运动的动力学方程
对刚体的平面运动 y
在固定平面投影
Fx
m
7.5刚体平面运动的动力学方程
上页
下页
返回
结束
第七章 刚体力学
力偶:大小相等方向相反彼此平行的一对力. F1 F2 M 力 偶 r1 F1 r2 F2 ( r1 r2 ) F1 r12 F1
大小
2.力偶和力偶矩
M力偶 r12 sin Fd
表7.2与表3.2相比,有
F F
上页 下页 返回 结束
第七章 刚体力学
§7.5.5 汽车轮的受力汽车的极限速度
FN
M滚驱 M滚
Ff M驱 W
FN
C
F
F
M滚
FN C
W F f
驱动轮
Ff
被动轮
M 驱 Ffr M 滚 0
平面运动 = 平动+定轴转动
1.求质心的运动 刚体作平面运动,受力必是平面力 根据质心运动定律 Fi m ac 直角坐标系中的分量式
(7.5.1)
F
ix
ma cx
F
iy
ma cy
Fi — 所有外力的矢量和,
上页
m — 刚体的质量.
下页 返回 结束
第七章 刚体力学 2. 刚体绕质心的转动 在质心系中刚体作定轴转动. 选质心坐标系 Cx’y’z’ ,设z’为过质心而垂直于固 定平面的轴. 在质心系中
的均质圆柱体顺斜面向下作无滑滚动,求圆柱体质心的 加速度ac 及斜面作用于柱体的摩擦力F . [解] 根据质心运动定理 FN W F mac y 轴上投影
x´ FN C
x
y´ y
W sin F ma c
对质心轴的转动定理 无滑滚动 ac R 2 ac g sin 3
《刚体运动教学》课件
在实际生活中,许多机械运动都可以看作是平动与转动的耦合,如机床的工作台、汽车的 转向等。因此,掌握平动与转动的耦合对于机械设计和制造等领域具有重要意义。
03
刚体的动力学
牛顿第二定律
总结词
描述物体运动状态改变与力之间的关系。
详细描述
牛顿第二定律指出,一个物体的加速度与作用在它上面的力成正比,与它的质 量成反比。公式表示为F=ma,其中F是力,m是质量,a是加速度。
空航天、车辆工程等领域。
06
刚体运动的实例分析
刚体的平面运动分析
平面运动定义
刚体在平面内运动,其上任意 一点都位于同一个平面上。
平面运动分类
根据刚体上任意一点是否做圆 周运动,分为刚体的平面滚动 和刚体的平面定轴转动。
平面运动特点
刚体上任意一点的速度方向与 该点所在平面的法线方向垂直 ,刚体上任意一点的加速度方 向沿该点的切线方向。
自由运动分类
根据刚体的运动状态,分为自由转 动和自由平动。
自由运动特点
自由转动中,刚体上任意一点绕通 过该点的某一轴线做匀角速度的转 动;自由平动中,刚体上任意一点 做匀速直线运动。
THANK YOU
感谢聆听
刚体的定轴转动
刚体在运动过程中,其上任意两点始 终保持相同的角速度和角加速度,这 种运动称为定轴转动。
02
刚体的运动形式
平动
01 02
平动定义
刚体上任意两点始终保持相同的距离,即刚体在运动过程中,其上任意 两点的连线在运动过程中始终保持长度不变,这种运动称为刚体的平动 。
平动特点
刚体在平动过程中,其上任意一点的运动轨迹都是一个点,即刚体的平 动不会改变其上任意一点的相对位置。
刚体运动的动力学方程解析
二、刚体定轴转动的动力学方程
三、刚体定轴转动动力学方程的应用
四、动静法
质点系的达朗伯原理
五、点的复合运动
• 点的速度合成
六、刚体的复杂运动
基点法
速度投影法
速度瞬心法
J
=J=1对2 对M1mRmM:2
:m
Rm2 g
T m2a a
g T1
T ma
R
m
a
amgR
a R
2
解方程得:
a
m m M
g
2
R
例2 一个飞轮的质量为69kg ,半径为0.25m,正在以每分1000转 的转速转动。现在要制动飞轮,要求在5.0秒内使它均匀减速而 最后停下来。摩擦系数为0.46。求闸瓦对轮子的压力N为多大? (J = mR2 )
J
=
A
J
+
C
m
L 2
2
1 12
mL2
1 4
mL2
1 mL2 3
推广: 若有任一轴与过质心的轴 平行且相距d ,刚体对其转动惯 量为: J J C m d 2 , 称为平行轴 定理。
dc
第三节 刚体简单运动动力学方程的应用
主要研究刚体定轴转动动力学方程的应用
一、已知刚体的转动规律,求作用于刚体上的外力 例12-4
二、已知作用于刚体上的力矩,求转动规律 例12-5 例12-6
第四节 动静法
节
一、质点的达朗伯原理
二、质点系的达朗伯原理
平面任意力系的平衡条件: (1)力系中各力在X 轴和Y轴上投影的代数和为零; (2)力系中各力对平面内任一点的力矩的代数和为零
动静法的应用:刚体的平动和绕定轴转动 1、刚体的平动
刚体的定轴转动和平面运动微分方程
(c)
(d)
(e)
二、刚体的平面运动微分方程
应用质心运动定理和相对质心的动量矩定理,可建立起刚体平面运
动微分方程,研究刚体平面运动的动力学问题。
设刚体具有质量对称平面,在该平面内受到平面力系
F1(e) ,F2(e) ,F3(e) , ,Fn(e) 的作用,刚体将在该平面内运动。
根据运动学,平面运动可分解为随基点的平动
(e)
(4)根据刚体平面运动微分方程,可得
maCx FB
(f)
maCx FA mg
(g)
J C FAl cos FB l sin
(h)
将式(d)、式(e)分别代入式(f)、式(g)得
FB m( 2l cos l sin )
(i)
FA mg m( 2l sin l cos )
由于轴承 A ,B 处的约束力的对于 z 轴的力矩
等于零,根据刚体对 z 轴的动量矩定理,有
dLz
M z ( F (e) )
dt
d
J z M z ( F (e) )
dt
图10-18
或
J z M z ( F (e) )
(10-24)
d2
J z 2 M z ( F (e) )
n
MaC F (e)
d
(e)
( J C ) M C (F )
dt
图10-21
式中,M为刚体的质量;J 为刚体对质心C的转动惯量。
将上面第一式写成投影的形式,并注意到
C
d 2 xC
d 2 yC
d
aCx 2 ,aC y 2 ,