计算机图形学的应用
计算机图形学在影视制作中的应用
计算机图形学在影视制作中的应用在当今的影视行业中,计算机图形学(Computer Graphics)已经成为了不可或缺的一部分。
它为影视作品带来了令人惊叹的视觉效果,极大地丰富了观众的观影体验。
从奇幻的魔法世界到浩瀚的宇宙星空,从逼真的人物形象到惊心动魄的灾难场景,计算机图形学在影视制作的各个方面都发挥着至关重要的作用。
计算机图形学在影视角色创建中的应用可谓是一大亮点。
过去,影视中的角色大多依赖于化妆和道具来塑造形象,而现在,通过计算机图形学技术,我们能够创造出几乎任何想象中的角色。
比如在《阿凡达》这部影片中,纳美人的形象就是通过计算机图形学精心打造的。
从他们独特的蓝色皮肤、修长的身体结构,到细致入微的面部表情和动作,每一个细节都展现得淋漓尽致。
这不仅需要高超的建模技术,还需要对角色的动作和表情进行精确的捕捉和模拟。
动作捕捉技术可以将演员的真实动作转化为数字模型的动作,使得虚拟角色的动作更加自然流畅。
同时,表情捕捉技术能够捕捉演员面部的细微表情变化,并将其应用到虚拟角色上,让观众感受到更加真实的情感表达。
在场景构建方面,计算机图形学同样功不可没。
它能够为影视作品创造出各种各样的虚拟场景,无论是古老的城堡、繁华的都市,还是神秘的外星世界,都能栩栩如生地呈现在观众眼前。
在电影《魔戒》系列中,中土世界的壮丽景色令人印象深刻。
那些雄伟的山脉、广袤的森林和神秘的洞穴,都是通过计算机图形学构建出来的。
为了打造出逼真的场景,制作团队需要考虑光线、材质、纹理等诸多因素。
通过使用光线追踪技术,可以模拟光线在场景中的传播和反射,从而营造出真实的光影效果。
而材质和纹理的处理则能够让物体表面看起来更加真实,比如石头的粗糙质感、水面的波光粼粼等。
特效制作是计算机图形学在影视制作中的另一个重要应用领域。
它可以创造出各种令人震撼的视觉效果,如爆炸、火灾、洪水等灾难场景,以及魔法、超能力等奇幻元素。
在电影《2012》中,地球毁灭的场景让观众感受到了末日的恐怖。
计算机图形学在影视特效中的应用
计算机图形学在影视特效中的应用在当今的影视行业中,计算机图形学(Computer Graphics)已经成为了创造令人惊叹的视觉效果的关键技术。
从奇幻的魔法世界到惊心动魄的灾难场景,从栩栩如生的外星生物到未来感十足的科幻城市,计算机图形学为影视作品带来了无限的可能性,极大地丰富了观众的视觉体验。
计算机图形学在影视特效中的应用范围广泛,涵盖了角色创建、场景构建、特效模拟等多个方面。
首先,在角色创建方面,计算机图形学发挥着至关重要的作用。
通过 3D 建模技术,艺术家们能够精心塑造出各种独特的角色形象。
无论是具有超能力的超级英雄,还是神秘的神话生物,都可以在虚拟的数字空间中被赋予生命。
以《阿凡达》为例,影片中的纳美人角色就是通过高度精细的 3D 建模和纹理绘制技术创造出来的。
建模师们仔细地设计了角色的身体结构、面部特征和皮肤纹理,使其看起来逼真而富有个性。
不仅如此,角色的动作和表情也通过动作捕捉技术得以生动展现。
演员们穿上特制的服装,在拍摄现场进行表演,其动作和表情数据被捕捉并应用到虚拟角色上,使得角色的动作更加自然流畅,仿佛拥有真实的情感和意识。
其次,场景构建是计算机图形学在影视特效中的另一个重要应用领域。
在许多影视作品中,往往需要创造出虚构的世界或历史时期的场景。
这些场景可能在现实中难以找到,或者需要耗费巨大的成本进行搭建。
而借助计算机图形学,艺术家们可以在虚拟环境中构建出各种各样的场景,从古老的城堡到繁华的未来都市,从广袤的星际空间到神秘的海底世界。
在电影《指环王》中,中土世界的壮丽景色就是通过计算机图形学构建而成的。
连绵的山脉、茂密的森林、宏伟的城堡和古老的城镇,这些场景不仅让观众沉浸在奇幻的故事中,也展现了计算机图形学在场景构建方面的强大能力。
特效模拟是计算机图形学在影视特效中的又一关键应用。
它可以模拟出各种自然现象和物理效果,如火焰、水流、爆炸、烟雾等。
在灾难片《2012》中,惊心动魄的地震、海啸和火山爆发场景都是通过特效模拟技术呈现出来的。
计算机图形学基础知识重点整理
计算机图形学基础知识重点整理一、图形学基础知识1、图形学的定义:图形学是一门研究图形的计算机科学,它研究如何使用计算机来生成、处理和显示图形。
2、图形学的应用:图形学的应用非常广泛,它可以用于计算机游戏、虚拟现实、图形用户界面、图形设计、图形处理、图形建模、图形分析等。
3、图形学的基本概念:图形学的基本概念包括图形、坐标系、变换、光照、纹理、投影、深度缓冲、抗锯齿等。
4、图形学的基本算法:图形学的基本算法包括几何变换、光照计算、纹理映射、投影变换、深度缓冲、抗锯齿等。
5、图形学的基本技术:图形学的基本技术包括OpenGL、DirectX、OpenCL、CUDA、OpenGL ES等。
二、图形学的基本原理1、坐标系:坐标系是图形学中最基本的概念,它是一种用来表示空间位置的系统,它由一系列的坐标轴组成,每个坐标轴都有一个坐标值,这些坐标值可以用来表示一个点在空间中的位置。
2、变换:变换是图形学中最重要的概念,它指的是将一个图形从一个坐标系变换到另一个坐标系的过程。
变换可以分为几何变换和光照变换,几何变换包括平移、旋转、缩放等,光照变换包括颜色变换、照明变换等。
3、光照:光照是图形学中最重要的概念,它指的是将光照投射到物体表面,从而产生颜色和纹理的过程。
光照可以分为环境光照、漫反射光照和镜面反射光照。
4、纹理:纹理是图形学中最重要的概念,它指的是将一张图片映射到物体表面,从而产生纹理的过程。
纹理可以分为纹理映射、纹理坐标变换、纹理过滤等。
5、投影:投影是图形学中最重要的概念,它指的是将一个三维图形投射到二维屏幕上的过程。
投影可以分为正交投影和透视投影,正交投影是将三维图形投射到二维屏幕上的过程,而透视投影是将三维图形投射到二维屏幕上,从而产生透视效果的过程。
计算机图形学技术在影视制作中的应用研究
计算机图形学技术在影视制作中的应用研究一、引言计算机图形学技术是现代影视制作的重要组成部分。
在电影、电视剧等影视作品中,往往需要大量的特效制作和后期处理。
计算机图形学技术通过数字化的手段,可以模拟真实场景,制作出更加逼真的视觉效果,提高影视作品质量。
本文将从计算机图形学技术在影视制作中的应用、未来的发展趋势等方面进行探讨。
二、计算机图形学技术在影视制作中的应用1. 特效制作计算机图形学技术可以制作出各种各样的特效,如爆炸、飞翔、龙卷风等。
这些特效制作可以大大增加影视作品的观赏性和吸引力,提高影片的档次。
例如在好莱坞科幻影片《星球大战》中,计算机图形学技术的应用可以说是完美的,每一帧都是精心制作、优秀呈现,给观众留下深刻的印象。
2. 后期处理除了特效制作,影视作品的后期处理也是计算机图形学技术应用的重要领域。
比如,电影中需要制作出现代都市的霓虹灯,可以通过计算机图形学技术制作,并将其添加到电影的片段中,达到更加逼真的效果。
另外,在动画电影中,各种场景的细节和表现形式需要通过计算机图形学技术的渲染处理,才能更好地呈现出来。
三、计算机图形学技术在影视制作中的难点尽管计算机图形学技术在影视制作中应用广泛,但其制作过程也面临着很多难点。
首先,制作特效和后期处理需要大量的时间和人力资源。
而这些资源的缺乏可能会影响影视作品的最终效果和质量。
其次,计算机图形学技术需要对真实场景进行建模和渲染,并模拟各种细节,这需要高超的技术水平和丰富的经验。
四、计算机图形学技术的未来发展趋势计算机图形学技术的应用在未来仍将持续发展。
随着技术的进步和计算机性能的提升,特效制作和后期处理的效率将逐渐改善,同时对于画面细节的模拟和呈现将越来越精细。
此外,未来计算机图形学技术还可以应用在现实场景的呈现上,为VR虚拟现实、AR增强现实等领域提供支持。
五、结论计算机图形学技术在影视制作中的应用无可比拟的优势。
通过数字化的手段,可以呈现更加逼真的场景和细节,为影视作品赋予更高的艺术价值。
计算机图形学与游戏开发
计算机图形学与游戏开发计算机图形学与游戏开发是目前计算机领域非常热门且发展迅速的领域。
随着科技的不断进步和人们对娱乐需求的提升,图形学和游戏开发在各个领域都起到了重要的作用。
本文将介绍计算机图形学与游戏开发的基本概念、应用领域以及一些相关的技术和工具。
一、计算机图形学的基本概念计算机图形学是研究如何利用计算机生成、处理和显示图像的学科。
它涉及到图像的存储、传输、处理和显示等方面的技术。
计算机图形学的应用非常广泛,包括计算机辅助设计(CAD)、虚拟现实(VR)、动画制作、游戏开发等。
二、计算机图形学的应用领域1. 计算机辅助设计(CAD):计算机图形学在CAD领域的应用非常广泛。
通过计算机图形学的技术,可以实现三维模型的建模、渲染和动画等功能,大大提高了设计效率和工作质量。
2. 虚拟现实(VR):虚拟现实是一种模拟现实环境的技术。
它通过计算机图形学的技术,将用户带入一个虚拟的世界,使其感受到与真实世界相似的视觉和听觉体验。
虚拟现实在游戏、培训、医疗等领域有着广泛的应用。
3. 动画制作:计算机图形学在动画制作领域的应用也非常重要。
通过计算机图形学的技术,可以实现动画角色的建模、渲染和动作设计等功能,减少了传统手绘动画的制作成本和时间。
4. 游戏开发:计算机图形学在游戏开发领域起到了至关重要的作用。
游戏开发需要实时渲染、碰撞检测、物理模拟等技术,而这些技术正是计算机图形学的研究内容。
通过计算机图形学的技术,可以实现逼真的游戏画面和流畅的游戏体验。
三、计算机图形学和游戏开发的相关技术和工具1. 图形处理器(GPU):GPU是计算机图形学的核心组件之一。
它是一种专门用于处理图形和图像的处理器,具有强大的并行计算能力和图形渲染能力。
GPU的发展极大地推动了计算机图形学和游戏开发的进步。
2. 渲染技术:渲染是计算机图形学中非常重要的一个环节。
它根据物体的表面属性和光照条件,计算出最终的图像,并将其显示在屏幕上。
计算机图形学的发展和应用
计算机图形学的发展和应用计算机图形学是计算机科学中一门重要的学科,它是利用计算机来创造、处理、存储和呈现图像的技术。
随着计算机技术的发展,计算机图形学逐渐成为计算机科学中一个重要而独立的领域,其应用范围也日益广泛。
一、计算机图形学的发展历程计算机图形学起源于20世纪60年代,当时主要应用于计算机仿真和视觉效果方面。
1963年,伊万·苏泽兰(Ivan Sutherland)发明了第一台基于交互式图形的计算机-画图程序Sketchpad,它是第一款实现计算机交互的图形软件,可以通过电路板和光笔来实现图形图像的绘制和编辑。
1969年,伊万·苏泽兰又发明了第一款基于矢量绘图的计算机图形系统,称为Sketchpad-2,它可以实现对图像的放大和缩小,旋转和平移等操作。
1970年代,计算机图形学开始应用于计算机辅助设计(CAD)和计算机辅助制造(CAM)方面,此外还应用于天文学、医学、地理信息系统(GIS)等领域。
1980年代,计算机图形学的发展速度加快,图形工具的性能大幅度提高,计算机游戏、3D动画和特效效果得以迅速发展。
1990年代,计算机图形学的发展又迈出了一个新的阶段,它开始承担起了虚拟现实(VR)和增强现实(AR)等领域的任务。
如今,随着计算机硬件和软件的不断更新和发展,计算机图形学也在不断优化和拓展,为人类社会的发展做出着重要的贡献。
二、计算机图形学的应用领域1. 游戏开发计算机图形学在游戏开发中扮演着重要的角色。
它帮助游戏开发者创造出更加真实、惟妙惟肖的游戏场景和角色形象,让游戏玩家更加沉浸于游戏世界中。
随着3D图形技术的进步,现代游戏中所展现的场景和人物已经达到了以往难以想象的高度。
2. 医学计算机图形学在医学中的应用十分广泛,例如是利用计算机图形学技术来建立人体模型,并对人体模型进行操作和分析,这样医生在为病人制定治疗方案时,可以更加准确地进行定位和操作,避免手术操作的风险。
计算机图形学的应用实例
计算机图形学的应用实例计算机图形学是一门关于计算机图像处理和图像生成的学科,近年来随着计算机和图形处理器的迅速发展,应用范围也越来越广泛。
本文将介绍一些计算机图形学的实际应用实例。
一、游戏开发游戏是计算机图形学技术最为广泛的应用之一。
游戏中的画面需要高度逼真的渲染效果,而这就需要精良的计算机图形学处理技术来实现。
计算机图形学可用于创建游戏的角色模型、环境场景、特效处理和虚拟摄像等。
例如,知名游戏《星球大战:绝地陨落》(Star Wars Jedi: Fallen Order)使用了极其先进的光线追踪渲染引擎来制作出拟真的游戏场景,有效提升了游戏体验的沉浸感和真实感。
二、影视特效影视特效的制作依赖于计算机图形学技术来实现。
计算机图形学能够产生很多模拟的特效,包括自然现象、物理模型,在电影和电视的景物紧要之处给予特效加持。
比如许多好莱坞大片都采用了计算机图形学技术,如《变形金刚》系列电影,许多场景都是由计算机图形学生成的,包括机器人的变形和其他特效。
三、建筑设计与规划计算机图形学技术在建筑设计和规划过程中有广泛的应用。
由于关于建筑设计的细节数量繁多,因此计算机图形学机制可以从设计和建立建筑的唯一性方面协助。
目前与计算机图形学相关的软件如Revit、SketchUp、AutoCAD、3ds Max等,它们的涉及范围涵盖了主要的建筑设计和融合操作。
这些软件可以用于Raster图像编辑、平面、尺寸、施工材料、图纸、动画、效果图等方面的细节处理。
四、医学成像医学成像包括CT扫描、核磁共振成像和超声波成像等技术,通常需要依靠计算机图形学技术来进行分析和渲染。
例如在医学影像方面,图形学技术能够更为精确地辨别出医疗影像中的异常情况,从而为医生的诊断提供更有效的辅助。
五、虚拟现实虚拟现实技术是近年来计算机图形学技术在不同行业中的重要应用之一。
通过虚拟现实技术实现了从场景导入、虚拟游戏环境到整个虚拟世界的无缝过渡,用户可以感受到更多沉浸感和更加真实的渲染效果。
计算机图形学技术的应用与前景展望
计算机图形学技术的应用与前景展望计算机图形学技术是一种应用数学、物理学、计算机科学等多学科知识的领域,通过计算机生成图像,将数字信息转化为可视化的形式,实现对虚拟世界的模拟和创造。
近年来,随着计算机处理能力的不断提高,图形学技术得到了广泛的应用和发展。
一、计算机图形学技术在游戏开发中的应用在游戏开发领域,计算机图形学技术的应用十分广泛,例如可以模拟真实光照、材质、纹理和物理运动等,使游戏画面更加逼真,增强了游戏体验。
游戏开发企业还可以利用图形学技术,创造出更加庞大的游戏世界和更加复杂的游戏场景。
同时,在虚拟现实、增强现实等领域中,图形学技术也有广泛的应用,例如在立体显示、头盔显示、手势控制等方面提供技术支持。
二、计算机图形学技术在工业设计中的应用工业设计领域也成为了计算机图形学技术的重要应用领域之一。
在这一领域中,图形学技术可以帮助设计师更加方便地进行设计、绘制、渲染和模拟等工作,使得设计效率和准确度得到了显著提高。
车辆、机器设备和家具等工业设计中的产品通过计算机图形学技术,可以实现三维建模、光线追踪、动画制作、交互设计等功能,从而使得产品的外观更加美观,功能更加精确和完善,提高了企业的竞争力。
三、计算机图形学技术在数字娱乐领域中的应用随着网络文化的兴起,数字娱乐也成为了一个重要的领域。
计算机图形学技术作为数字娱乐领域的重要技术,可以应用于数字影视、数字音乐、数字艺术等各种创意作品的制作与处理中。
在数字影视制作中,计算机图形学技术可以应用于特效制作和后期处理,使得电影、电视等作品的视觉效果更加逼真和生动;在数字艺术中,计算机图形学技术可以创作出更加复杂、立体、细腻和生动的艺术作品,比如建筑设计、抽象艺术、雕塑等。
四、计算机图形学技术的发展趋势展望随着现代计算机计算能力、存储能力和传输速度等性能的提高,计算机图形学技术将继续发展和完善,预计未来的趋势主要包括以下几方面:(1)更加真实的虚拟现实技术的应用。
计算机图形学的基础和应用
计算机图形学的基础和应用计算机图形学是指利用计算机来处理和生成图像的学科。
它是计算机科学的一个重要分支领域,也是多个行业的重要应用之一。
计算机图形学的基础点主要包括: 算法、数据结构、线性代数和几何基础、图形学渲染、计算机视觉等。
而计算机图形学的应用范围却非常广泛,主要包括电影、游戏、建筑、逆向工程、医学等领域。
一、计算机图形学的基础1. 算法计算机图形学的算法主要分为两个方面:在计算机内部绘制图像的算法以及从外部数据得到模型的算法。
前者有数据结构、扫描线算法、射线追踪、阴影、光照、纹理映射等,后者包括骨骼动画、目标追踪和形状重建等算法。
这些算法的基本原理来源于大量的数学和物理学知识,同时需要基于计算机技术进行优化实现。
2. 数据结构计算机图形学中的数据结构主要包括树、网格结构和点云三种。
其中网格结构和点云通常是三维多边形模型的数据承载方式,树则主要用于建立场景图等数据结构。
每种数据结构都具有自己的优势和局限性,这需要根据具体应用场景进行选择。
3. 线性代数和几何基础计算机图形学中,线性代数和几何基础是非常重要的理论基础。
在图形学的应用中,通常需要进行向量和矩阵的计算,并利用几何理论去解决许多问题。
例如,在渲染过程中需要对于光线和交点进行计算,采用线性代数方法可以快速实现。
4. 图形学渲染图形学渲染是计算机图形学的重要子领域,常被用在电影和游戏制作中。
计算机图形学的渲染方式分为四类:光线追踪、栅格化绘制、体绘制和可编程渲染管线。
光线追踪渲染可以模拟光线的传播过程,且能够计算真实的光照效果。
实际上,这种渲染方式是一种“暴力”的方式,需要在计算机上运行庞大的计算量。
栅格化绘制则是采用直接面绘制,常被用于二维和三维场景的渲染。
可编程管线渲染则是当前最流行的渲染方式,其开发程度非常高。
而体绘制则尚处于发展初期,其主要应用于医学成像领域。
5. 计算机视觉计算机视觉是计算机图形学的重要子领域之一,主要研究计算机能够通过图像或视频获取和识别包括物体、人物、场景在内的视觉信息。
计算机图形学技术的应用与前景
计算机图形学技术的应用与前景计算机图形学技术是现代计算机科学中的一个分支,它主要研究如何利用计算机生成、存储、处理、显示等多方面技术来处理图像信息,从而达到各种应用目的。
随着计算机技术的快速发展,计算机图形学技术也取得了长足的进展,被广泛应用于许多领域,例如电影、游戏、虚拟现实、医学、工业等等。
一、电影产业电影是计算机图形学技术应用最为广泛,也是最为成熟的一个领域。
随着硬件和软件技术的不断进步,计算机图形学技术已经完全可以实现想象力所及的各种特效效果,例如特殊的光影效果、逼真的物体碰撞效果、超现实的场景和虚拟人物等等。
各种类型的大片都开始采用计算机图形学技术,例如《阿凡达》、《星球大战》、《美国队长》等等,这些电影都获得了广泛的好评和盈利。
可以说,计算机图形学技术已经成为电影制作中的必备技术之一,它也在推动电影技术和视觉表达方式的不断创新和发展。
二、游戏产业计算机游戏也是计算机图形学技术应用的主要领域之一。
游戏开发者普遍采用计算机图形学技术来创建虚拟世界中的场景和角色,以便为玩家提供更为逼真的游戏画面和动作。
游戏开发商可以使用计算机图形学技术来模拟各种物理效应、光影效果、粒子效果等等,这些效果可以营造出新奇、逼真的游戏场景和角色,为游戏带来更加真实的感官体验。
当前的游戏产业不仅涵盖了家用电视游戏机和电脑游戏,还包括了手机游戏和网络游戏,它已经成为全球文化娱乐产业中的主要组成部分,不断发展壮大。
三、虚拟现实随着计算机图形学技术的不断进步,虚拟现实(VR)技术也越来越成熟,成为一个独立的产业领域。
虚拟现实技术使用户能够进入虚拟的三维场景中,通过各种手段来与虚拟世界进行互动,从而获得更加真实的感觉和体验。
虚拟现实的应用非常广泛,例如军事、教育、娱乐、医学、建筑等等。
例如,建筑设计师可以使用虚拟现实技术来设计各种建筑模型,实现精度更高、更为逼真的可视化效果。
医学学生可以使用虚拟现实技术来模拟各种手术操作,在不危及真实病人安全的情况下,进行相关医学训练。
计算机图形学的发展与应用
计算机图形学的发展与应用计算机图形学是一门研究计算机生成、显示和处理图像的学科。
它涵盖了从数学原理到图像处理算法的广泛领域,并在许多实际应用中得到了广泛的应用。
本文将探讨计算机图形学的发展历程以及它在各个领域的应用。
一、计算机图形学的历史计算机图形学的起源可以追溯到20世纪60年代,当时计算机科学家开始研究如何使用计算机生成和显示图像。
首次出现的计算机图形学算法主要集中在简单的绘图和图像编辑上,如线段绘制和填充算法。
随着计算机硬件和软件的发展,计算机图形学逐渐得到了更广泛的应用。
二、计算机图形学的技术基础计算机图形学的技术基础包括几何学、光学、物理学和计算机科学等多个学科。
其中,几何学为图形对象的表示和变换提供了数学模型,光学和物理学则用于模拟光的传播和反射,计算机科学则负责开发图形学算法和实现。
三、计算机图形学的应用领域1. 游戏开发计算机图形学在游戏开发中起着至关重要的作用。
它负责生成游戏中的虚拟场景、角色和特效。
通过计算机图形学技术,游戏开发者能够创造出逼真的图像效果,提升游戏的可玩性和观赏性。
2. 建筑设计在建筑设计领域,计算机图形学的应用越来越广泛。
使用计算机图形学技术,建筑师可以通过三维建模软件建立建筑物的虚拟模型,进行设计和可视化预览。
这样不仅能够加快设计效率,还能减少建筑过程中的错误和成本。
3. 医学影像计算机图形学技术在医学影像中有着广泛的应用。
通过将医学影像数据转化为图像,并应用图形学算法分析和处理,医生可以更好地理解疾病并作出正确的诊断。
此外,计算机图形学还可以辅助手术规划和模拟,提高手术的精确性和安全性。
4. 动画与影视特效计算机图形学技术在电影、电视和动画制作中扮演着重要角色。
通过使用计算机生成的图像和特效,制片人可以创造出逼真的动画场景和视觉效果,提升作品的观赏性。
5. 虚拟现实虚拟现实技术正日益成为计算机图形学的一个重要应用领域。
利用计算机图形学技术和头戴显示器等设备,人们可以沉浸式地体验虚拟世界,如游戏、培训和模拟等。
计算机图形学在电影制作中的应用
计算机图形学在电影制作中的应用计算机图形学是一门研究计算机生成、处理和显示图像的学科。
近年来,随着计算机技术的发展和进步,计算机图形学在电影制作中的应用显得越来越重要。
本文将介绍计算机图形学在电影制作中的主要应用,并探讨其对电影制作的影响和意义。
一、虚拟场景的创建计算机图形学在电影制作中最常见的应用之一是创建虚拟场景。
传统的电影制作过程中,为了营造各种各样的场景,通常需要进行大量的实地拍摄和布景搭建工作。
然而,这样的过程不仅费时费力,而且成本高昂。
通过计算机图形学的技术手段,电影制作人员可以利用计算机软件来模拟和创建各种虚拟场景,包括城市、森林、战争场面等等。
这样一来,电影制作的灵活性和创造性得到了大大提高。
二、特效的制作计算机图形学在电影特效制作中也发挥了重要的作用。
通过计算机的处理能力和图像处理软件的应用,电影制作人员可以制作出各种想象力丰富的特效,如爆炸、飞行、变形等。
这些特效不仅可以增强电影的视觉冲击力,还能够提升观众的观影体验。
计算机图形学为特效的制作提供了更加便捷和高效的方法,使得电影制作过程更具创造力和技术性。
三、角色动画的设计计算机图形学在电影角色动画的设计中也扮演着重要的角色。
传统的角色动画制作通常需要专业的动画师逐帧绘制角色的动作,耗时耗力。
而借助计算机图形学的技术手段,可以使用计算机软件进行角色的建模和动画设计,通过编写代码和设定参数,实现角色的各种动作,并且可以根据需要进行修改和调整。
这种方式不仅提高了动画制作的效率和质量,还能够为电影制作人员提供更多的创作自由度。
四、光影效果的渲染计算机图形学在电影制作中的另一个重要应用是光影效果的渲染。
光影是制造电影氛围和场景感的重要因素之一,通过计算机图形学的技术,可以准确、逼真地模拟光线在场景中的传播和反射,以及阴影的生成和变化。
这样一来,电影画面的逼真度和观赏性得到了大大提高,影片更加具有视觉冲击力和感染力。
综上所述,计算机图形学在电影制作中的应用广泛而重要。
计算机图形学的进展与应用
计算机图形学的进展与应用一、引言计算机图形学是指应用计算机及相关技术进行图形设计、图形处理和图形演示的学科领域。
随着计算机技术的不断发展和进步,计算机图形学在许多领域中得到广泛应用,如游戏、动画、建筑、医学、工程等。
本文旨在介绍计算机图形学在近年来的进展及其应用。
二、计算机图形学的发展计算机图形学自从20世纪60年代开始建立以来,经历了三个发展阶段:1.光栅图形学光栅图形学是从计算机图形学的概念开始,向含有基本方法、算法、技术的学问学科系统化发展的过程。
该阶段中研究重点在于对图形的处理方法,大量使用了光栅扫描线等技术。
2.矢量图形学矢量图形学旨在让计算机直接生成有意义的图形图像,该阶段的研究重点在于发展符号式语言,用来描述几何形状和解决诸如三角形剖分等工作,主要采用的技术有贝塞尔曲线、贝塞尔曲面等。
3.三维图形学三维图形学支持三维立体效果制作和视角变换,主要采用的技术有三维变换、透视图、光线追踪等。
该阶段是计算机图形学发展的最高阶段,它为计算机图形技术在工业、军事、建筑、制造、电影、游戏等方面的应用奠定了基础。
三、计算机图形学的应用1.影视制作计算机图形学在影视制作中的应用已经非常广泛。
例如,电影《阿凡达》中的大量场景和角色都是通过计算机图形学生成的,这一技术使得电影的制作更加自然、更加真实。
此外,在动画制作和电视广告制作过程中,计算机图形学也被广泛应用。
2.游戏开发计算机图形学在游戏开发中的应用更加深入。
通过将三维模型和动画效果应用于游戏中,游戏画面更加精美、更加生动。
游戏中的人物模型、角色动作、背景等大部分都是通过计算机图形技术生成的。
3.医学领域在医学领域中,计算机图形学被广泛应用于医学影像的处理和诊断。
例如,在CT和MRI扫描中,计算机图形技术可以通过对医学影像进行3D重建和可视化,协助医师进行更加准确的诊断。
4.建筑和工程领域在建筑和工程领域中,计算机图形学被用于建筑设计、仿真和可视化。
简述计算机图形学的应用领域
1.计算机辅助设计与制造CAD/CAU是计算机图形学在工业界最广泛、最活跃的应用领域。
计算机图形学被用来进行土建工程、机械结构和产品的设计,包括设计飞机、汽车、船舶的外形和发电厂、化工厂等的布局以及电子线路、电子器件等。
有时,着眼于产生工程和产品相应结构的精确图形,然而更常用的是对所设计的系统、产品和工程的相关图形进行人——机交互设计和修改,经过反复的迭代设计,便可利用结果数据输出零件表、材料单、加工流程和工艺卡,或者数据加工代码的指令。
在电子工业中,计算机图形学应用到集成电路、印刷电路板、电子线路和网络分析等方面的优势是十分明显的。
一个复杂的大规模或超大规模集成电路板图根本不可能用手工设计和绘制,用计算机图形系统不仅能进行设计和画图,而且可以在较短的时间内完成,把其结果直接送至后续工艺进行加工处理。
在飞机工业中,美国波音飞机公司已用有关的CAD系统实现波音777飞机的整体设计和模拟,其中包括飞机外型、内部零部件的安装和检验。
随着计算机网络的发展,在网络环境下进行异地异构系统的协同设计,已经成为CAD领域最热门的课题之一。
现代产品设计已不再是一个设计领域内孤立的技术问题,而是综合了产品各个相关领域、相关过程‘、相关技术资源和相关组织形式的系统化工程。
它要求设计团队在合理的组织结构下,采用群体工作方式来协调和综合设计者的专长,并且从设计一开始就考虑产品生命周期的全部因素,从而达到快速响应市场需求的目的,协同设计的出现使企业生产的时空观发生了根本的变化。
使异地设计、异地制造、异地装配成为可能,从而为企业在市场竞争中赢得了宝贵的时间。
CAD领域另一个非常重要的研究领域是基于工程图纸的三维形体重建。
三维形体重建就是从二维信息中提取三维信息,通过对这些信息进行分类、综合等一系列处理,在三维空间中重新构造出二维信息所对应的三维形体,恢复形体的点、线、面及其拓扑关系,从而实现形体的重建。
二维图纸设计在工程界中仍占有主导地位,工程上有大量的旧的透视图和投影 3 加工代码的指令。
计算机图形学中的新技术与应用
计算机图形学中的新技术与应用计算机图形学是研究计算机如何生成、处理、显示图像的领域。
随着科技的飞速发展,计算机图形学也不断推陈出新。
本文将介绍一些计算机图形学中的新技术和应用。
一、深度学习深度学习是一种机器学习的方法,它通过模仿人类的神经网络进行计算机分析问题,并得出结论。
在计算机图形学中,深度学习可以用于图像分类、分割、合成等方面。
例如,在图像分类中,通过深度学习方法,可以将图像分为多个不同的类别,实现自动识别。
在图像分割中,可以自动将图像分割成多个不同的部分,方便后续处理。
在图像合成中,可以利用深度学习生成更加真实的图像。
二、虚拟现实虚拟现实是一种模拟仿真技术,可以将人们置身于虚拟场景中,感受身临其境的感觉。
在计算机图形学中,虚拟现实可以用于游戏、教育、医疗等方面。
例如,在游戏中,可以利用虚拟现实技术,增加游戏的真实感,并提升游戏体验。
在教育中,可以利用虚拟现实技术,让学生在虚拟环境中进行实验、练习,提高学习效果。
在医疗中,可以利用虚拟现实技术,进行手术模拟,提高手术成功率。
三、增强现实增强现实是一种计算机图形学技术,可以将虚拟图像与真实场景进行结合,让人们体验更加丰富的感觉。
例如,在旅游中,可以利用增强现实技术,将历史文化场景与现实景观结合,让游客更加全面地了解景点。
在商业中,可以利用增强现实技术,让用户在购物中体验更加真实的感觉,提高用户满意度。
四、物理仿真物理仿真是一种计算机图形学技术,可以通过计算机模拟真实物理场景,让人们感受到真实的物理感觉。
例如,在游戏中,可以利用物理仿真技术,模拟真实物理场景,让游戏更加真实。
在工程中,可以利用物理仿真技术,对产品进行设计、测试,提高产品质量。
五、光线追踪光线追踪是一种计算机图形学技术,可以模拟光线在场景中的传播过程,计算出场景中每个像素点的颜色和亮度。
光线追踪可以用于图像渲染、视频游戏、电影制作等方面。
例如,在电影制作中,可以利用光线追踪技术,实现更加真实的影像效果。
计算机图形学的应用
计算机图形学的应用计算机图形学是一门研究人工图像生成方法和图像处理的学科。
它涉及了许多数学、物理和计算机科学的知识,其应用范围非常广泛。
本文将介绍计算机图形学在各个领域的应用。
一、游戏开发计算机图形学在游戏开发中发挥了重要作用。
游戏设计师可以使用计算机图形学的技术来创建游戏中的人物、场景和物体模型,并通过渲染技术呈现给玩家。
此外,计算机图形学也可以实现游戏中的特效效果,如火花、光影和雾气等。
随着计算机图形学技术的不断发展,游戏画面效果越来越逼真,引发了玩家们的强烈共鸣。
二、虚拟现实虚拟现实是一种可以模拟现实世界的计算机技术。
它通过计算机图形学、计算机视觉和人机交互等技术,创造了一个虚拟的三维世界。
人们可以通过头戴式显示器和手柄等设备进入这个世界,并与其中的人物和物体进行交互。
虚拟现实技术的应用范围很广,可以应用于游戏、教育、医疗等领域。
在游戏中,虚拟现实技术可以让玩家身临其境地感受游戏世界,提高游戏的可玩性。
在教育领域,虚拟现实也可以用来模拟实验环境,让学生更生动地学习科学知识。
三、影视制作计算机图形学在影视制作中发挥着越来越重要的作用。
对于大片的拍摄,有时候无法通过真实场景的拍摄实现所需效果,这时候计算机图形学技术的应用可以使得特效更加逼真和自然。
例如,《阿凡达》这部电影的拍摄,全片大部分场景都通过计算机图形学技术生成,导致它具有复杂的三维图形效果与细腻的自然环境。
四、医学研究计算机图形学在医学研究中也起着重要作用。
例如,在三维医学影像方面,计算机图形学技术可以帮助医生更好地理解病人的身体结构和病情,以便更好地制定治疗方案。
此外,计算机图形学还可以用于器官模拟和手术模拟等方面。
从以上的应用领域可以看出,计算机图形学的应用非常广泛,涉及各个领域。
在计算机图形学领域,我们还需要不断提升自己的技术水平,同时也要结合应用场景和需求,不断创新改进计算机图形学技术,以满足人们的需求。
计算机图形学的基本概念与应用
计算机图形学的基本概念与应用计算机图形学是指利用计算机技术来生成和处理图像的学科。
它涉及到许多基本概念和技术,以及广泛的应用领域。
本文将详细介绍计算机图形学的基本概念和应用,并给出相应的步骤和例子。
一、基本概念:1. 图像表示:计算机图形学中的图像可以通过各种方式来表示,最常见的是使用像素矩阵来表示,其中每个像素包含一个或多个颜色值。
2. 图形处理:图形处理是指对图像进行各种操作和改变,如缩放、旋转、平移和变形等。
这些操作可以通过矩阵变换和数学运算等方式来实现。
3. 渲染技术:渲染是指将图像模型转换为最终可视化结果的过程。
渲染技术包括光照模型、材质模型和纹理映射等。
二、基本步骤:1. 图像生成:图像生成是指利用计算机生成图像的过程。
这可以通过手绘、绘图软件或计算机辅助设计(CAD)等方式来实现。
例如,设计师可以使用CAD软件来绘制建筑设计图。
2. 图像处理:图像处理是指对已生成的图像进行各种操作和改变的过程。
这可以通过图像处理软件来实现。
例如,摄影师可以使用Photoshop软件对照片进行调色、修饰和滤镜等处理。
3. 图像编辑:图像编辑是指对图像进行各种修改和调整的过程。
这可以通过图像编辑软件来实现。
例如,图形设计师可以使用Illustrator软件对图形进行创作和编辑。
4. 图像合成:图像合成是指将多个图像或图像元素合并成一个新的图像的过程。
这可以通过图像编辑软件和合成技术来实现。
例如,电影制作人可以使用特效软件将虚拟人物合成到真实场景中。
5. 图像渲染:图像渲染是指将图像模型转换为最终可视化结果的过程。
这可以通过渲染软件和渲染技术来实现。
例如,动画制作人可以使用渲染引擎将3D模型渲染成逼真的动画。
三、应用领域:1. 建筑设计:计算机图形学在建筑设计中的应用广泛,可以用于绘制平面图、立体模型和渲染效果图等。
2. 游戏开发:计算机图形学在游戏开发中起到关键作用,可以用于生成虚拟场景、设计角色动画和实现物理效果等。
计算机图形学与GIS的应用
计算机图形学与GIS的应用一.计算机图形学的应用计算机图形学是近30年来发展迅速、应用广泛的新兴学科,是计算机科学最活跃的分支之一。
如何在计算机中表示图形、以及利用计算机进行图形的计算、处理和显示的相关原理与算法,构成了其主要研究内容。
图形通常由点、线、面、体等几何元素和灰度、色彩、线型、线宽等非几何属性组成。
从处理技术上来看,图形主要分为两类,一类是由线条组成的图形,如工程图、等高线地图、曲面的线框图等,另一类是类似于照片的明暗图(Shading),也就是通常所说的真实感图形。
计算机辅助设计与制造,CAD/CAU是计算机图形学在工业界最广泛、最活跃的应用领域。
计算机图形学被用来进行土建工程、机械结构和产品的设计,包括设计飞机、汽车、船舶的外形和发电厂、化工厂等的布局以及电子线路、电子器件等。
有时,着眼于产生工程和产品相应结构的精确图形,然而更常用。
计算机还可用于动画设计以及虚拟现实等多个方面。
二.地理信息系统(GIS)的发展和应用地理信息系统是一门仅有40多年发展历程的新型学科,它的出现虽然很晚,但经过这40年的探索和研究,有了突破性的发展应。
GIS技术的研究、探索和广泛应用,离不开适应时代发展需要的GIS专业人才,而GIS领域的人力资源发展状况在一定程度上左右了GIS行业的发展。
GIS作为一门新型的交叉学科,涉及面广,渗透性强、内容较丰富,因此,课程体系结构和教学方法、教学手段的创新是培养GIS专业人才的关键,也是学科专业建设和发展的关键。
目前GIS已经广泛应用于市政工程、企业决策、资源管理、国土规划、公安急救、市场销售、石油化工、水利电力、交通运输、医疗保健、环境保护及监测、旅游管理等方面。
目前,GIS的培养目标有:(1)以测绘工程为依托的GIS专业。
突出信息获取、数据处理和数据质量等方面的优势,从坐标系统、“4D”产品数据获取方法、空间数据集成、空间数据库建立、空间数据质量、“3S”集成应用、多维和时空GIS等方面培养学生GIS系统应用能力;(2)以计算机科学为依托的GIS专业。
计算机图形学在虚拟仿真中的应用
计算机图形学在虚拟仿真中的应用一、前言计算机图形学是一门研究如何利用计算机来生成和处理图像的学科,近年来随着虚拟现实、增强现实等技术的兴起,它在虚拟仿真领域的应用越来越广泛,成为了虚拟仿真技术中不可或缺的一部分。
本文将从基础原理、应用场景、发展趋势等方面来探讨计算机图形学在虚拟仿真中的应用。
二、计算机图形学基础原理计算机图形学是一门非常复杂的学科,涉及到计算机图像处理、图像分析、图像生成等多个方面,其核心技术包括三维建模、渲染、动画等。
三维建模是指用计算机绘制三维物体的过程,通常包括点、线、面等元素的建立,并通过各种算法、工具进行修改、编辑。
渲染是指将三维模型转换成二维图像的过程,包括光照、阴影等技术。
动画是指通过计算机动态生成的图像序列,这些序列可以用来模拟现实世界的运动形态,实现虚拟仿真。
这三大核心技术是计算机图形学应用的基础,本文将从这三个方面来探讨计算机图形学在虚拟仿真中的应用。
三、虚拟仿真中的应用场景虚拟仿真技术可以在实际场景中进行一些难以实现的操作,可以模拟现实环境中特定条件下的物理过程和现象,从而提高效率、节约成本,减少安全风险等。
在虚拟仿真中,计算机图形学则为其提供了支持的技术基础。
以下是虚拟仿真中常见的应用场景:1. 仿真环境的建立:虚拟仿真可提供活动和操作方案测试环境,通过这种仿真建立一个高度真实的环境,来造仿真现实工艺流程。
其中系统内的三维交互界面,由计算机图形学完成,包括环境美化、灯光设定的等。
此外,虚拟仿真还提供了模拟装配、维护、修理等现实操作的仿真环境,对工业制造、军事模拟等领域有很大的应用价值。
2. 环境的拓扑结构分析:虚拟仿真技术可对一个系统环境进行详细模拟,并在这个过程中提供一些必要的信息。
在此基础上,计算机图形学可以根据预设好的几何条件、场景动画要素等对环境的拓扑结构进行分析。
3. 资源管理与优化:再计算机图形学基础构建虚拟仿真环境时,它还能够对资源要求进行实时优化,适应实际用途。
浅析计算机图形学的应用状况
浅析计算机图形学的应用状况摘要:计算机图形学作为一种重要的学科和技术,在现代社会得到了广泛的应用和发展。
本文从三个方面对计算机图形学的应用状况进行了浅析:游戏和娱乐、虚拟现实和工业设计等领域的应用。
随着信息技术的不断发展和人们对生活质量的不断提高,计算机图形学在未来的发展空间也将越来越广阔。
关键词:计算机图形学;应用状况;游戏和娱乐;虚拟现实;工业设计正文:一、游戏和娱乐计算机图形学在游戏和娱乐领域的应用最为广泛。
通过计算机图形学技术,游戏开发人员可以创造出逼真的游戏场景、人物角色和各种特效,为玩家带来更加真实的沉浸式体验。
例如,著名的游戏《使命召唤》和《战争机器》等游戏,在游戏场景、人物模型和特效等方面,均采用了先进的计算机图形学技术,为玩家带来了更加逼真的游戏体验。
另外,在娱乐领域,计算机图形学也得到了广泛应用。
例如,电影制作中常常需要使用计算机图形学技术制作出特殊效果,如《阿凡达》、《变形金刚》等电影,都采用了计算机图形学技术。
此外,现代艺术中也出现了许多使用计算机图形学技术制作的艺术作品,这些作品为我们呈现出了异于常规的艺术表现形式。
因此,可以说,计算机图形学已经成为了游戏和娱乐领域中不可或缺的一部分。
二、虚拟现实虚拟现实技术是一种基于计算机图形学的技术,它可以模拟出逼真的虚拟场景,使用户可以在虚拟世界中进行交互式体验。
虚拟现实技术应用广泛,包括游戏、教育、医疗、军事等领域。
例如,在医疗领域,虚拟现实技术可以用来模拟手术过程、进行医学培训等;在军事领域,虚拟现实技术可以用来进行战术演习、实战模拟等。
三、工业设计计算机图形学在工业设计领域的应用也十分重要。
工业设计师可以利用计算机图形学技术,快速地建立出3D模型,进行产品设计和改进。
同时,计算机图形学还可以帮助工业设计师进行产品展示和宣传。
例如,在汽车工业中,计算机图形学被广泛应用于汽车设计和展示。
通过计算机图形学技术,工业设计师可以创建出逼真的汽车模型,展示产品外观和内部结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机图形学的应用摘要计算机图形学(Computer Graphics,简称CG)是一种使用数学算法将二维或三维图形转化为计算机显示器的栅格形式的科学。
简单地说,计算机图形学的主要研究内容就是研究如何在计算机中表示图形、以及利用计算机进行图形的计算、处理和显示的相关原理与算法。
图形是客观物质世界在人大脑中的反映、图形蕴含信息密度大、易于理解接受,是当今信息社会中人们用于传递信息的重要手段。
计算机技术和图形的结合使得图形在深度、广度和形式上都发生了深刻的变化,其应用也波及社会的各个领域,例如在商业广告、工业控制、科学计算可视化、仿真模拟、家庭娱乐以及影视业都得到了成功的应用,显示了计算机图形学的强大生命力。
计算机图形学是计算机与应用专业的专业主干课,它的重要性体现在人们越来越强烈地需要和谐的人机交互环境:图形用户界面已经成为一个软件的重要组成部分,以图形的方式来表示抽象的概念或数据(可视化)已经成为信息领域的一个重要发展趋势。
关键词:智能CAD,计算机动画艺术,科学计算可视化,虚拟现实一引言图形通常由点、线、面、体等几何元素和灰度、色彩、线型、线宽等非几何属性组成。
从处理技术上来看,图形主要分为两类,一类是基于线条信息表示的,如工程图、等高线地图、曲面的线框图等,另一类是明暗图,也就是通常所说的真实感图形。
计算机图形学一个主要的目的就是要利用计算机产生令人赏心悦目的真实感图形。
为此,必须建立图形所描述的场景的几何表示,再用某种光照模型,计算在假想的光源、纹理、材质属性下的光照明效果。
所以计算机图形学与另一门学科计算机辅助几何设计有着密切的关系。
事实上,图形学也把可以表示几何场景的曲线曲面造型技术和实体造型技术作为其主要的研究内容。
同时,真实感图形计算的结果是以数字图像的方式提供的,计算机图形学也就和图像处理有着密切的关系。
图形与图像两个概念间的区别越来越模糊,但还是有区别的:图像纯指计算机内以位图形式存在的灰度信息,而图形含有几何属性,或者说更强调场景的几何表示,是由场景的几何模型和景物的物理属性共同组成的。
计算机图形学的研究内容非常广泛,如图形硬件、图形标准、图形交互技术、光栅图形生成算法、曲线曲面造型、实体造型、真实感图形计算与显示算法、非真实感绘制,以及科学计算可视化、计算机动画、自然景物仿真、虚拟现实等。
二计算机图形学简介极其发展史计算机图形学属于可视化计算机领域,是研究如何用计算机生成可视图形和如何用计算机模拟现实世界的科学。
计算机图形学源于学术兴趣,起初依靠政府的资助发展,但随着图形学软件在广播电视和电影领域的广泛应用,越来越多的商业团体投资该领域,最后商业投资成为图形学发展的主要因素。
2.1计算机图形学发展简史1950 年,第一台图形显示器作为美国麻省理工学院 (MIT)旋风号—(Whirlwind)计算机的附件诞生了。
该显示器用一个类似示波的阴极射线管(CRT)来显示一些简单的图形。
在整个50年代,只有子管计算机,用机器语言编程,主要应用于科学计算为这些计算机置的图形设备仅具有输出功能。
计算机图形学处于准备和酝酿时期并称之为:“被动式”图形学。
1963 年,伊凡·苏泽兰在麻省理工学院发表了名为《画板》的博士论文,它标志着计算机图形学的正式诞生。
此前的计算机主要是符号处理系统,自从有了计算机图形学,计算机可以部分地表现人的右脑功能了,计算机图形学的建立意义重大。
从1973年开始,相继出现了英国剑桥大学CAD小组的Build系统、美国罗彻斯特大学的PADLI系统等实体造型系统。
1980年Whitted提出了一个光透视模型——— Whitted 模型,并第一次给出光线跟踪算法的范例,实现Whitted模型;1984年,美国Cornell大学和日本广岛大学的学者分别将热辐射工程中的辐射度的方法引入到计算机图形学中,用辐射度方法成功地模拟了理想漫反射表面间的多重漫反射效果;光线跟踪算法和辐射度算法的提出,标志着真实感图形的显示算法已逐渐成熟。
从20世纪80年代中期以来,超大规模集成电路的发展,为图形学的飞速发展奠定了物质基础。
计算机的运算能力的提高,图形处理速度的加快,使得图形学的各个研究方向得到充分发展,图形学已广泛应用于动画、科学计算可视化、CAD/CAM、影视娱乐等各个领域。
ACM SIGGRAPH会议是计算机图形学最权威的国际会议,每年在美国召开,参加会议的人在50000人左右。
SIGGRAPH会议很大程度上促进了图形学的发展,世界上不会有第二个领域会每年召开如此规模巨大的专业会议。
SIGGRAPH是大约60年代中期,由Brown大学的教授AndriesvanDam和IBM公司的Sam Matsa发起的。
1974年,在Corlorado大学召开了第一届SIGGRAPH年会,并取得了巨大的成功,当时有大约600位来自世界各地的专家参加了会议。
到了1997年,参加会议的人数已经增加到48700。
因为每年只录取大约50篇论文,在Computer Graphics杂志上发表,因此论文的学术水平较高,基本上代表了图形学已经的主流方向。
三计算机图形学的应用3.1智能CADCAD 的发展也显现出智能化的趋势,就目前流行的大多数CAD 软件来看,主要功能是支持产品的后续阶段一一工程图的绘制和输出,产品设计功能相对薄弱,利用AutoCAD 最常用的功能还是交互式绘图,如果要想进行产品设计,最基本的是要其中的AutoLisp语言编写程序,有时还要用其他高级语言协助编写,很不方便。
而新一代的智能CAD 系统可以实现从概念设计到结构设计的全过程。
例如,德国西门子公司开发的Sigraph Design软件可以实现如下功能:智能CAD的另一个领域是工程图纸的自动输入与智能识别,随着CAD技术的迅速推广应用,各个工厂、设计院都需将成千上万张长期积累下来的设计图纸快速而准确输入计算机,作为新产品开发的技术资料。
多年来,CAD 中普遍采用的图形输入方法是图形数字化仪交互输入和鼠标加键盘的交互输入方法.很难适应工程界大量图纸输入的迫切需要。
因此,基于光电扫描仪的图纸自动输入方法已成为国内外CAD工作者的努力探索的新课题。
但由于工程图的智能识别涉及到计算机的硬件、计算机图形学、模式识别及人工智能等高新技术内容,使得研究工作的难点较大。
工程图的自动输入与智能识别是两个密不可分的过程,用扫描仪将手绘图纸输入到计算机后,形成的是点阵图象.CAD 中只能对矢量图形进行编辑,这就要求将点阵图象转化成矢量图形.而这些工作都让计算机自动完成.这就带来了许多的问题.国家自然科学基金会和863计划基金都在支持这方面的研究,国内外已有一些这方面的软件付诸实用,如美国的RVmaster,德国的VPmax,以及清华大学,东北大学的产品等。
但效果都不很理想.还未能达到人们企盼的效果。
3.1.1制造业中的应用CAD技术已在制造业中广泛应用,其中以机床、汽车、飞机、船舶、航天器等制造业应用最为广泛、深入。
众所周知,一个产品的设计过程要经过概念设计、详细设计、结构分析和优化、仿真模拟等几个主要阶段。
同时,现代设计技术将并行工程的概念引入到整个设计过程中,在设计阶段就对产品整个生命周期进行综合考虑。
当前先进的CAD应用系统已经将设计、绘图、分析、仿真、加工等一系列功能集成于一个系统内。
现在较常用的软件有UG II、I-DEAS、CATIA、PRO/E、Euclid等CAD应用系统,这些系统主要运行在图形工作站平台上。
在PC平台上运行的CAD应用软件主要有Cimatron、Solidwork、MDT、SolidEdge等。
由于各种因素,目前在二维CAD系统中Autodesk公司的AutoCAD占据了相当的市场。
3.1.2工程设计中的应用CAD技术在工程领域中的应用有以下几个方面:(1)建筑设计,包括方案设计、三维造型、建筑渲染图设计、平面布景、建筑构造设计、小区规划、日照分析、室内装潢等各类CAD应用软件。
(2)结构设计,包括有限元分析、结构平面设计、框/排架结构计算和分析、高层结构分析、地基及基础设计、钢结构设计与加工等。
(3)设备设计,包括水、电、暖各种设备及管道设计。
(4)城市规划、城市交通设计,如城市道路、高架、轻轨、地铁等市政工程设计。
(5)市政管线设计,如自来水、污水排放、煤气、电力、暖气、通信(包括电话、有线电视、数据通信等)各类市政管道线路设计。
(6)交通工程设计,如公路、桥梁、铁路、航空、机场、港口、码头等。
(7)水利工程设计,如大坝、水渠、河海工程等。
(8)其他工程设计和管理,如房地产开发及物业管理、工程概预算、施工过程控制与管理、旅游景点设计与布置、智能大厦设计等。
3.1.3电气和电子电路方面的应用CAD技术最早曾用于电路原理图和布线图的设计工作。
目前,CAD技术已扩展到印刷电路板的设计(布线及元器件布局),并在集成电路、大规模集成电路和超大规模集成电路的设计制造中大显身手,并由此大大推动了微电子技术和计算及技术的发展。
3.1.4其他应用CAD技术除了在上述领域中的应用外,在轻工、纺织、家电、服装、制鞋、医疗和医药乃至体育方面都会用到CAD技术。
3.2计算机动画艺术计算机动画技术的发展是和许多其它学科的发展密切相关的。
计算机图形学、计算机绘画、计算机音乐、计算机辅助设计、电影技术、电视技术、计算机软件和硬件技术等众多学科的最新成果都对计算机动画技术的研究和发展起着十分重要的推动作用50年代到60年代之间,大部分的计算机绘画艺术作品都是在打印机和绘图仪上产生的。
一直到60年代后期,才出现利用计算机显示点阵的特性,通过精心地设计图案来进行计算机艺术创造的活动。
70年代开始.计算机艺术走向繁荣和成熟1973 年,在东京索尼公司举办了“首届国际计算机艺术展览会”80年代至今,计算机艺术的发展速度远远超出了人们的想象在代表计算机图形研究最高水平的历届SIGGRAPH年会上,精彩的计算机艺术作品层出不穷。
另外,在此期间的奥斯卡奖的获奖名单中,采用计算机特技制作电影频频上榜,大有舍我其谁的感觉。
在中国,首届计算机艺术研讨会和作品展示活动于1995年在北京举行它总结了近年来计算机艺术在中国的发展,对未来的工作起到了重要的推动作用3.2.1计算机动画的分类计算机动画是计算机图形学和艺术相结合的产物,它是伴随着计算机硬件和图形算法高速发展起来的一门高新技术。
动画是运动中的艺术,运动是动画的要素。
计算机动画以其制作方法和表现特征通常可以分为二维动画和三维动画两种形式。
(1)二维动画传统的卡通动画的实现是连续播放多帧画面,每幅画面表述的是运动物体的若干个瞬间,利用观看者的瞬间视觉残留而得到运动的视觉感受。