三种输出波形的函数信号发生器的实际设计

合集下载

函数信号发生器的设计

函数信号发生器的设计

6
R3
2k
Rp
10k
-12v
12v
7
U2
2
R2 20k
3
D1
1N5235B
迟滞比较 器 R1
10k
D2
1N5235B
12v
积分电路
7
4 1 5
UA741
单元电路
用差分放大器做三角波/正弦波变换电路
三角波/正弦波变换原理: 用差分对管的饱和与截止特性进行变换:差分放大器电流恒 定并要求:传输特性对称线性区尽可能窄;三角波的幅值Vm 应使输出接近晶体管的截止电压;
v O VO 3 VO 2 T / 14 v I
VIm 0.78 T /4
在T/7~3T/14区段内
VIm 0.42 T /4
在3T/14~T/4区段内
v O VOm VO 3 T / 28 v I VIm 0.13 T /4
正弦函数 转换方案1
基本结构是比例放 大器。只是使运放在不 同的时间区段(或输出 电平区段)内,具有不 同的比例系数。对不同 区段内比例系数的切换, 是通过二极管网络来实 现的。 vi vo
模拟电路的实现方案,是指全部采用模拟电 路的方式,以实现信号产生电路的所有功能。由 于教学安排及课程进度的限制,本实验的信号产 生电路,推荐采用全模拟电路的实现方案。 模拟电路实现信号产生电路的多种方式
方案一
RC文氏电桥振荡器产生正弦波,方波-三角波产生电路可正 弦波振荡器采用波形变换电路, 通过迟滞比较器变换为方波, 经积分器获得三角波输出。此电路的输出频率就是就是RC文 氏电桥振荡器的振荡频率.
有源正弦函数转换电路的转换原理如图 所示。
若设正弦 波在过零点处 的斜率与三角 波斜率相同, 即

方波-三角波-正弦波函数发生器设计

方波-三角波-正弦波函数发生器设计

课程设计任务书学生姓名:专业班级:通信指导教师:工作单位:信息工程学院题目:方波-三角波-正弦波函数发生器设计初始条件:电位器,电容,三极管9013,面包板,其他电阻,基本门电路若干。

要求完成的主要任务:(1)设计组装调试函数发生器;(2)输出波形:方波三角波正弦波;(3)频率范围:在10-10000Hz范围内可调;(4)输出电压:方波Up-p ≦24v,三角波Up-p=8v,正弦波Up-p>1v。

参考书:(1)谢自美主编《电子线路设计,实验,测试》华中科技大学出版社(2)梁宗善主编《电子技术基础课程设计》华中理工大学出版社(3)崔瑞雪张增良主编《电子技术动手实践》北京航空航天大学出版社(4)陈先荣主编《电子技术实验基础》国防工业出版社(5)汪学典主编《电子技术基础实验》华中科技大学出版社时间安排:1 老师布置课程设计题目,学生根据选题开始查找资料;2、课程设计时间为1周。

(1)确定技术方案、电路,并进行分析计算,时间1天;(2)仿真设计与分析,时间2天;(3)总结结果,写出课程设计报告,时间2天。

指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要 (4)Abstract (5)1 函数发生器的总方案及原理框图 (6)1.1 函数发生器的总方案 (6)1.2 函数发生器的原理框图 (6)2设计的目的及任务 (7)2.1 课程设计的目的 (7)2.2 课程设计的任务与要求 (7)2.3 课程设计的技术指标 (7)2.4 课程设计时间安排 (7)3各部分电路设计 (8)3.1 方波发生电路的工作原理 (8)3.2 运放741工作原理与电路图 (8)3.3 方波---三角波转换电路的工作原理 (9)3.4 三角波---正弦波转换电路的工作原理 (12)3.5 电路的参数选择及计算 (14)3.6 总电路图 (16)4电路仿真 (17)4.1 方波---三角波发生电路的仿真 (17)4.2 三角波---正弦波转换电路的仿真 (18)5电路的实验结果 (19)5.1 方波---三角波发生电路的实验结果 (19)5.2 三角波---正弦波转换电路的实验结果 (19)6 实验总结 (20)7参考文献 (21)8仪器仪表明细清单 (22)摘要本文通过介绍一种电路的连接,实现函数发生器的基本功能。

函数信号发生器(三角波,梯形波,正弦波)

函数信号发生器(三角波,梯形波,正弦波)

电子课程设计题目:函数信号发生器的设计学院:机械工程学院班级:测控技术与仪器071班作者:学号:指导教师:2010年7月7日摘要:该函数发生器采用AT89S51 单片机作为控制核心,外围采用数字/模拟转换电路(DAC0832)、运放电路(1458N)等。

电路采用AT89S51单片机和一片DAC0832数模转换器组成函数信号发生器,在单片机的输出端口接DAC0832进行DA转换,再通过运放进行波形调整,最后输出波形接在示波器上显示。

它具有价格低、性能高和在低频范围内稳定性好、操作方便、体积小、耗电少等特点。

由于采用了1458N运算放大器,使其电路更加具有较高的稳定性能,性能比高。

此电路清晰,出现故障容易查找错误,操作简单、方便。

本设计主要应用AT89S51作为控制核心。

硬件电路简单,软件功能完善,控制系统可靠,性价比较高等特点,具有一定的使用和参考价值。

关键词:AT89S51、DAC0832、波形调整【Abstract】: For special requirement the function generator usingAT89S51 microcontroller as the control, external analog / digital conversion circuit (DAC0832), op-amp circuit (1458C) and so on. AT89S51 microcontroller circuit and an integral function DAC0832 digital-signal generator, the microcontroller output port connected to DA converter DAC0832, and then wave through the op amp to adjust the final output connected to the oscilloscope waveform display. It has a low cost, high performance and low frequency range, good stability, easy operation, small size, low power consumption and so on. As a result of 1458G operational amplifier circuit to a more stable performance with high performance is high. The circuit clear, easy to find failure error, simple and convenient.The design of the main application AT89S51 as the control center. Simple hardware circuit, software, functional, and reliable control system, high cost performance characteristics, has some use and reference.Key words:AT89S51, DAC0832, waveform adjust目录1、设计概述1.1、设计任务----------------------------------4 1.2、方案选择与论证----------------------------41.3、系统设计框图------------------------------52、硬件电路设计--------------------------------53、软件系统设计3.1、阶梯波设计思想及流程图--------------------133.3、三角波和正弦波设计思想--------------------144、系统软件仿真4.1、protues仿真原理图------------------------154.2、仿真波形图--------------------------------165、课程设计心得体会---------------------------176、参考文献------------------------------------177、附录附录一:protel原理图----------------------------18 附录二:PCB图 ----------------------------------18 附录三:焊接后的电路板实物图---------------------19 附录四:实际电路板调试后发生阶梯波图-------------19附录五:实验源程序-------------------------------191.1设计任务与要求:1采用AT89S51及DAC0832设计函数信号发生器;2输出信号为正弦波或三角波或阶梯波;3输出信号频率为100Hz,幅度-5V—+5V可调;4必须具有信号输出及外接电源、公共地线接口,程序在线下载接口。

电路实验报告 函数信号发生器

电路实验报告 函数信号发生器

电子电路综合设计实验实验一函数信号发生器的设计与调测班级: 2009211108**: ***学号: ********小班序号: 26课题名称函数信号发生器的设计与实现一、摘要函数信号发生器是一种为电子测量提供符合一定要求的电信号的仪器, 可产生不同波形、频率和幅度的信号。

在测试、研究或调整电子电路及设备时, 为测定电路的一些电参量,用信号发生器来模拟在实际工作中使用的待测设备的激励信号。

信号发生器可按照产生信号产生的波形特征来划分:音频信号源、函数信号源、功率函数发生器、脉冲信号源、任意函数发生器、任意波形发生器。

信号发生器用途广泛, 有多种测试和校准功能。

本实验设计的函数信号发生器可产生方波、三角波和正弦波这三种波形, 其输出频率可在1KHz至10KHz范围内连续可调。

三种波形的幅值及方波的占空比均在一定范围内可调。

报告将详细介绍设计思路和与所选用元件的参数的设计依据和方法。

二、关键词函数信号发生器迟滞电压比较器积分器差分放大电路波形变换三、设计任务要求:1、(1)基本要求:2、设计一个可输出正弦波、三角波和方波信号的函数信号发生器。

3、输出频率能在1-10KHZ范围内连续可调, 无明显是真;4、方波输出电压Uopp≥12V, 上升, 下降沿小于10us, 占空比可调范围30%-70%;5、三角波输出电压Uopp≥8V;6、正弦波输出电压Uopp≥1V;设计该电源的电源电路(不要求实际搭建), 用PROTEL软件绘制完整的电路原理图(SCH)。

(2)提高要求:1.三种输出波形的峰峰值Uopp均在1V-10V范围内连续可调。

2.三种输出波形的输出阻抗小于100Ω。

3.用PROTEL软件绘制完整的印制电路板图(PCB)。

(3)探究环节:1.显示出当前输入信号的种类、大小和频率(实验演示或详细设计方案)。

2.提供其他函数信号发生器的设计方案(通过仿真或实验结果加以证明)。

四、设计思路和总体结构框图(1)原理电路的选择及总体思路:根据本实验的要求, 用两大模块实现发生器的设计。

信号发生器实验报告(波形发生器实验报告)

信号发生器实验报告(波形发生器实验报告)

信号发生器一、实验目的1、掌握集成运算放大器的使用方法,加深对集成运算放大器工作原理的理解。

2、掌握用运算放大器构成波形发生器的设计方法。

3、掌握波形发生器电路调试和制作方法 。

二、设计任务设计并制作一个波形发生电路,可以同时输出正弦、方波、三角波三路波形信号。

三、具体要求〔1〕可以同时输出正弦、方波、三角波三路波形信号,波形人眼观察无失真。

〔2〕利用一个按钮,可以切换输出波形信号。

〔3〕频率为1-2KHz 连续可调,波形幅度不作要求。

〔4〕可以自行设计并采用除集成运放外的其他设计方案〔5〕正弦波发生器要求频率连续可调,方波输出要有限幅环节,积分电路要保证电路不出现积分饱和失真。

四、设计思路根本功能:首先采用RC 桥式正弦波振荡器产生正弦波,然后通过整形电路(比拟器)将正弦波变换成方波,通过幅值控制和功率放大电路后由积分电路将方波变成三角波,最后通过切换开关可以同时输出三种信号。

五、具体电路设计方案Ⅰ、RC 桥式正弦波振荡器图1图2电路的振荡频率为:RCf π210=将电阻12k ,62k 及电容100n ,22n ,4.4n 分别代入得频率调节范围为:24.7Hz~127.6Hz ,116.7Hz~603.2Hz ,583.7Hz~3015Hz 。

因为低档的最高频率高于高档的最低频率,所以符合实验中频率连续可调的要求。

如左图1所示,正弦波振荡器采用RC 桥式振荡器产生频率可调的正弦信号。

J 1a 、J 1b 、J 2a 、J 2b 为频率粗调,通过J 1 J 2 切换三组电容,改变频率倍率。

R P1采用双联线性电位器50k ,便于频率细调,可获得所需要的输出频率。

R P2 采用200k 的电位器,调整R P2可改变电路A f 大小,使得电路满足自激振荡条件,另外也可改变正弦波失真度,同时使正弦波趋于稳定。

下列图2为起振波形。

RP2 R4 R13 组成负反应支路,作为稳幅环节。

R13与D1、D2并联,实现振荡幅度的自动稳定。

8038信号发生器

8038信号发生器

用8038制作多波形信号发生器信号发生器在电子产品研发过程中使用广泛,但对于电子爱好者来说,个人购买一台信号发生器来使用又显得不太合适,本文提供一个可产生多种波形的信号发生器电路,有兴趣的电子爱好者可以自制一个,作为信号发生器来使用。

电路原理图如下图所示。

图中的8038 为函数发生器专用IC,它具有3 种波形输出,分别正弦波、方波和三角波,8038的第10脚外接定时电容,该电容的容值决定了输出波形的频率,电路中的定时电容从C1至C8决定了信号频率的十个倍频程,从500μF开始,依次减小十倍,直到5500pF,频率范围相应地从0.05Hz~0.5 Hz~5Hz~50Hz~500Hz~5kHz~50kHz~500kHz,如果C8取250pF,频率可达1MHz。

图中的V1、R7、R8构成缓冲放大器,R9 为电位器,用于改变输出波形的幅值。

整个电路的频率范围为0.05Hz~1MHz,占空比可以从2%至98%调整,失真不大于1%,线性好,误差不大于0.1%,因此电路很有实用价值。

函数信号发生器的设计与制作系别:电子工程系专业:应用电子技术届:07届姓名:李贤春摘要本系统以ICL8038集成块为核心器件,制作一种函数信号发生器,制作成本较低。

适合学生学习电子技术测量使用。

ICL8038是一种具有多种波形输出的精密振荡集成电路,只需要个别的外部元件就能产生从0.001Hz~30KHz的低失真正弦波、三角波、矩形波等脉冲信号。

输出波形的频率和占空比还可以由电流或电阻控制。

另外由于该芯片具有调制信号输入端,所以可以用来对低频信号进行频率调制。

关键词ICL8038,波形,原理图,常用接法一、概述在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域,经常需要用到各种各样的信号波形发生器。

随着集成电路的迅速发展,用集成电路可很方便地构成各种信号波形发生器。

用集成电路实现的信号波形发生器与其它信号波形发生器相比,其波形质量、幅度和频率稳定性等性能指标,都有了很大的提高。

方波-三角波-正弦波函数发生器设计

方波-三角波-正弦波函数发生器设计

湖北民族学院课程设计报告课程设计题目课程:电子线路课程设计专业:班级:学号:学生姓名:指导教师:2014年 6 月20 日信息工程学院课程设计任务书2014年6月20日信息工程学院课程设计成绩评定表摘要函数信号发生器是一种能够产生多种波形,如方波、三角波、正弦波的电路。

函数发生器在电路实验和设备检测中具有十分广泛的用途。

通过对函数波形发生器的原理以及构成分析,可设计一个能变换出方波、三角波、正弦波、方波的函数波形发生器。

该系统通过介绍一种电路的连接,实现函数发生器的基本功能。

将其接入电源,并通过在示波器上观察波形及数据,得到结果。

其中电压比较器实现方波的输出,又连接积分器得到三角波,并通过三角波-正弦波转换电路看到正弦波,得到想要的信号。

该系统利用了Protues电路仿真软件进行电路图的绘制以及仿真。

Protues软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。

凭借Protues,可以立即创建具有完整组件库的电路图,并让设计者实现相应的技术指标。

本课题采用集成芯片ICL8038制作方波-三角波-正弦波函数发生器的设计方法,经过protues仿真得出了方波、三角波、正弦波、方波-正弦波转换及三角波-正弦波转换的波形图。

关键词:电源,波形,比较器,积分器,转换电路,低通滤波,Protues目录1引言-------------------------------------------------------------- 51.1课程设计任务------------------------------------------------- 51.2课程设计的目的----------------------------------------------- 51.3课程设计要求------------------------------------------------ 52 任务提出与方案论证------------------------------------------------ 62.1函数发生器的概述--------------------------------------------- 62.2方案论证 --------------------------------------------------- 63 总体设计---------------------------------------------------------- 83.1总电路图----------------------------------------------------- 83.2 电路仿真与调试技术------------------------------------------ 94 详细设计及仿真--------------------------------------------------- 10 4.1 方波发生电路的工作原理与运放741工作原理-------------------- 10 4.2方波—三角波产生电路的工作原理------------------------------ 104.3三角波—正弦波转换电路的工作原理---------------------------- 114.4整体仿真效果图---------------------------------------------- 135 总结------------------------------------------------------------- 14 参考文献----------------------------------------------------------- 151引言现在世界中电子技术和电子产品的应用越加广泛,人们对电子技术的要求也越来越高。

设计能产生方波、三角波、正弦波的函数信号发生器电路

设计能产生方波、三角波、正弦波的函数信号发生器电路

目录1 课程设计的目的与作用 (1)2 设计任务及所用multisim软件环境介绍 (1)2.1设计任务 (1)2.2所用multisim软件环境介绍 (1)2.2.1 Multistim 10简介 (1)2.2.2 Multistim 10主页面 (2)2.2.3 Multistim 10元器件库 (2)2.2.4 Multistim 10虚拟仪器 (3)2.2.5 Multistim 10分析工具 (3)3 电路模型的建立 (3)3.1原理分析 (3)3.2函数信号发生器各单元电路的设计 (5)3.2.1方波产生电路图 (5)3.2.2方波—三角波转换电路图 (5)3.2.3正弦波电路图 (6)3.2.4方波-三角波-正弦波函数发生器整体电路图 (6)4 理论分析及计算 (7)4.1方波发生电路 (7)4.2方波—三角波 (7)4.3正弦波 (7)5 仿真结果分析 (8)5.1仿真结果 (8)5.1.1方波、三角波产生电路的仿真波形如图所示 (8)5.1.2方波—三角波转换电路的仿真 (10)5.1.3三角波—正弦波转换电路仿真 (11)5.1.4方波—三角波—正弦波转换电路仿真 (12)5.2结果分析 (13)6 设计总结和体会 (133)7 参考文献 (144)I1 课程设计的目的与作用1.巩固和加深对电子电路基本知识的理解,提高综合运用本课程所学知识的能力。

2.培养根据课题需要选学参考书籍,查阅手册、图表和文献资料的自学能力。

通过独立思考,深入钻研有关问题,学会自己分析并解决问题的方法。

3.通过电路方案的分析、论证和比较,设计计算和选取元器件;初步掌握简单实用电路的分析方法和工程设计方法。

4.了解与课题有关的电子电路以及元器件的工程技术规范,能按设计任务书的要求,完成设计任务,编写设计说明书,正确地反映设计与实验的成果,正确地绘制电路图等。

5.培养严肃、认真的工作作风和科学态度2 设计任务及所用multisim软件环境介绍2.1 设计任务设计能产生方波、三角波、正弦波的函数信号发生器电路1)输出各种波形工作频率范围:10—100Hz,100—1KHz,1K—10KHz。

函数信号发生器实验报告

函数信号发生器实验报告

函数发生器设计(1)一、设计任务和指标要求1、可调频率范围为10Hz~100Hz 。

2、可输出三角波、方波、正弦波。

、可输出三角波、方波、正弦波。

3、三角波、方波、正弦波信号输出的峰-峰值0~5V 可调。

可调。

4、三角波、方波、正弦波信号输出的直流电平-3V~3V 可调。

可调。

5、输出阻抗约600Ω。

二、电路构成及元件参数的选择 1、振荡器、振荡器由于指标要求的振荡频率不高,由于指标要求的振荡频率不高,对波形非线性无特殊要求。

对波形非线性无特殊要求。

对波形非线性无特殊要求。

采用图采用图1所示的电路。

所示的电路。

同时同时产生三角波和方波。

产生三角波和方波。

图1 振荡电路振荡电路振荡电路根据输出口的信号幅度要求,可得最大的信号幅度输出为:根据输出口的信号幅度要求,可得最大的信号幅度输出为:V M =5/2+3=5.5V 采用对称双电源工作(±V CC ),电源电压选择为:,电源电压选择为: V CC ≥V M +2V=7.5V 取V CC =9V选取3.3V 的稳压二极管,工作电流取5mA ,则:,则: V Z =V DZ +V D =3.3+0.7=4V 为方波输出的峰值电压。

为方波输出的峰值电压。

OM Z CC Z 3Z Z V -V V -1.5V -V 9-1.5-4R ==700ΩI I 5»=()1AR4R2R1R3DZ DZRW2AR5R7CVozVosR6Vi+取680680ΩΩ。

取8.2K 8.2KΩΩ。

R 1=R 2/3=8.2/1.5=5.47(K Ω)取5.1K Ω。

三角波输出的电压峰值为:三角波输出的电压峰值为:V OSM =V Z R 1/R 2=4×5.1/8.2=2.489(V ) R 4=R 1∥R 2=3.14 K Ω取3K Ω。

Z Z V 4RW=8K 0.1~0.2I 0.15==W ´()()取10K Ω。

R 6=RW/9=10/9=1.11(K Ω)取1K Ω。

多波形信号发生器设计

多波形信号发生器设计

多波形信号发生器设计一、简介设计一个能够产生多个信号输出的信号发生器,要求输出波形分别为方波、三角波、正弦波。

特别适合电子爱好者或学生用示波器来做观察信号波形实验。

该信号发生器电路简单、成本低廉、调整方便。

它是基于ne555计时器接成振荡器工作形式和电容积分而产生的波形。

其工作频率为1KHz左右,调节滑动变阻器可改变振荡器的频率。

波形发生器是信号源的一种,主要给被测电路提供所需要的己知信号(各种波形),然后用其它仪表测量感兴趣的参数。

可见信号源在各种实验应用和试验测试处理中,它的应用非常广泛。

它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满足测量或各种实际需要。

目前我国己经开始研制波形发生器,并取得了可喜的成果。

但总的来说,我国波形发生器还没有形成真正的产业。

就目前国内的成熟产品来看,多为一些PC仪器插卡,独立的仪器和VXI系统的模块很少,并且我国目前在波形发生器的种类和性能都与国外同类产品存在较大的差距,因此加紧对这类产品的研制显得迫在眉睫。

二、设计目的1、掌握方波—三角波——正弦波函数发生器的原理及设计方法。

2、掌握ne555计时器工作原理和各种电子器件的简单认识。

3、能够独立的进行电路板焊接和电路检查与故障排除。

4、学会用示波器来观察发生器的波形输出并作出判断。

三、硬件介绍及其原理1、元件列表ne555是一种应用特别广泛作用很大的的集成电路,属于小规模集成电路,在很多电子产品中都有应用。

ne555的作用是用内部的定时器来构成时基电路,给其他的电路提供时序脉冲。

ne555时基电路有两种封装形式有,一是dip双列直插8脚封装,另一种是sop-8小型(smd)封装形式。

其他ha17555、lm555、ca555分属不同的公司生产的产品。

内部结构和工作原理都相同。

ne555的内部结构可等效成23个晶体三极管.17个电阻.两个二极管.组成了比较器.RS触发器.等多组单元电路.特别是由三只精度较高5k 电阻构成了一个电阻分压器.为上.下比较器提供基准电压.所以称之为555.ne555属于cmos工艺制造.NE555引脚图介绍如下1地GND2触发3输出4复位5控制电压6门限(阈值)7放电8电源电压Vcc应用十分广泛.下面是一个简单的ne555电路应用内部结构几种工作形式第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1和1.1.2为代号。

函数信号发生器实训报告

函数信号发生器实训报告

一、实训目的本实训旨在通过设计制作一个可输出方波、三角波、正弦波信号的函数信号发生器,掌握函数信号发生器的设计原理、电路组成、工作过程以及调试方法。

通过本次实训,提高学生对电子电路设计和调试能力的培养,为今后从事相关领域工作打下坚实基础。

二、实训内容1. 设计要求(1)通过集成运算放大器和晶体管查分放大电路设计一个函数信号发生器。

(2)输出波形:方波、三角波、正弦波。

(3)输出频率:1—10KHz范围内连续可调,无明显失真。

(4)方波输出电压Uopp:12V,上升、下降沿小于10us(误差<20%)。

(5)三角波Uopp:8V(误差<20%)。

(6)正弦波Uopp:1V。

2. 设计思路(1)原理框图:函数信号发生器主要由振荡器、频率调节电路、波形变换电路和输出电路组成。

(2)系统的组成框图:① 振荡器:产生稳定的振荡信号。

② 频率调节电路:实现输出频率的连续可调。

③ 波形变换电路:将振荡信号转换为所需的波形。

④ 输出电路:放大输出信号。

(3)分块电路和总体电路的设计:① 振荡器:采用正弦波振荡电路,利用晶体管构成正反馈回路,产生正弦波信号。

② 频率调节电路:采用可变电阻器或电位器,调节振荡频率。

③ 波形变换电路:采用比较器和积分器,将正弦波信号转换为方波信号;利用积分器将方波信号转换为三角波信号。

④ 输出电路:采用差分放大器,提高输出信号的幅度和抗干扰能力。

三、实训过程1. 电路搭建根据设计要求,搭建函数信号发生器的电路。

主要包括振荡器、频率调节电路、波形变换电路和输出电路。

2. 电路调试(1)检查电路连接是否正确,确保无短路、断路等故障。

(2)调整频率调节电路,使输出频率达到设计要求。

(3)观察波形变换电路输出波形,确保输出波形符合设计要求。

(4)调整输出电路,使输出信号幅度达到设计要求。

3. 测试与验证(1)使用示波器观察输出波形,确保输出波形符合设计要求。

(2)使用频率计测量输出频率,确保输出频率达到设计要求。

正弦波信号电路设计

正弦波信号电路设计

正弦波、方波、三角波 信号电路设计本系统以ICL8038集成块为核心器件,制作一种函数信号发生器,只需要个别的外部元件就能产生从0.001Hz ~30KHz 的低失真正弦波、三角波、矩形波等脉冲信号。

一、电源:根据设计所要求的性能指标,选择集成三端稳压器。

因为要求输出电压可调,所以选择三端可调式集成稳压器。

可调式集成稳压器,常见的主要有CW317、CW337、LM317、LM337。

317系列稳压器输出连续可调的正电压,337系列稳压器输出连可调的负电压,可调范围为1.2V~37V ,最大输出电流m ax O I 为1.5A 。

稳压内部含有过流、过热保护电路,具有安全可靠,性能优良、不易损坏、使用方便等优点。

其电压调整率和电流调整率均优于固定式集成稳压构成的可调电压稳压电源。

LM317系列和LM337系列的引脚功能相同,管脚图和典型电路如图4-5和图4-6。

图4-5 管脚 图4-6典型电路输出电压表达式为: ⎪⎭⎫ ⎝⎛+=11125.1R RP U o 式中,1.25是集成稳压块输出端与调整端之间的固有参考电压REF V ,此电压加于给定电阻1R 两端,将产生一个恒定电流通过输出电压调节电位器1RP ,电阻1R 常取值ΩΩ240~120,1RP 一般使用精密电位器,与其并联的电容器C 可进一步减小输出电压的纹波。

图中加入了二极管D ,用于防止输出端短路时10µF 大电容放电倒灌入三端稳压器而被损坏。

LM317其特性参数:输出电压可调范围:1.2V ~37V输出负载电流:1.5A输入与输出工作压差ΔU=U i -U o :3~40V能满足设计要求,故选用LM317组成稳压电路。

整体稳压电路原理图二、主电路〖方案一〗由文氏电桥产生正弦振荡,这一方案为一开环电路,结构简单,产生的正弦波和方波的波形失真较小文氏电桥振荡器正弦波发生器:又称文氏电桥振荡器,如图1-3-1所示,其中A 放大器由同相运放电路组成,图3-4-2,因此, )1(12R R V V A d o v +==图3-4-1图3-4-2F 网络由RC 串并联网络组成,由于运放的输入阻抗Ri 很大,输出阻抗Ro 很小,其对F 网络的影响可以忽略不计,从图3-4-3有RCj R C j R RC j RV V F o f v ωωω++++==111)1(3)1)(1(2CC R j R R R C j R RC j R ωωωω-+=+++=由自激振荡条件:T=AF=1有1)1(32=-+=CC R j R R A F A v v v ωω 所以上式分母中的虚部必须为零,即 012=-CC R ωω RC10=⇒ω振荡频率 上式的实部为1,即 13=⋅RR A v 3=⇒v A 起振条件对图3-4-2同相运放, 121R R A v += 须满足122R R = 以上分析表明:① 文氏电桥振荡器的振荡频率RC10=ω,由具有选频特性的RC 串联网络决定。

多波形信号发生器设计实验报告

多波形信号发生器设计实验报告

多波形信号发生器设计实验报告一、实验目的本实验的主要目的是设计一款多波形信号发生器,能够输出多种波形信号,并能够通过控制电路对波形进行调节和改变,以满足不同需求。

二、实验原理1. 多波形信号发生器的基本原理多波形信号发生器是一种用于产生不同类型信号的电子设备。

其基本原理是通过控制电路中的各种元器件,如晶体管、电容、电感等,来产生不同类型的信号波形。

常见的波形包括正弦波、方波、三角波等。

2. 信号源在多波形信号发生器中,信号源是最基础也是最重要的部分。

通常使用晶体管或集成电路作为信号源。

其输出频率和振幅可以通过控制元器件来调节。

3. 滤波电路为了保证输出的信号干净稳定,需要在信号源后面加入滤波电路。

滤波电路主要由电容和电感组成,可以滤除杂散噪声以及高频噪声。

4. 放大电路放大电路用于放大经过滤波后的低频部分。

常见放大电路有放大器、运算放大器等。

5. 输出电路输出电路用于将放大后的信号输出到外部设备,如示波器、扬声器等。

常见的输出电路包括隔离式输出和非隔离式输出。

三、实验步骤1. 搭建基本电路将信号源、滤波电路、放大电路和输出电路依次连接起来,形成一个基本的多波形信号发生器电路。

2. 调节元器件通过调节各个元器件的参数,如晶体管的偏置电压、滤波电容和电感的数值等,可以产生不同类型的波形信号。

3. 测试并调整将多波形信号发生器连接到示波器或扬声器上,在不同频率下测试并调整各个元器件,以获得最佳效果。

四、实验结果分析通过实验我们成功地设计出了一款多波形信号发生器,并能够产生多种类型的波形信号。

通过调节各个元器件,我们可以改变输出信号的频率、振幅和相位等参数。

同时,在测试中我们也发现了一些问题,并进行了相应的调整和优化。

五、实验总结与心得体会通过本次实验,我们深入了解了多波形信号发生器的基本原理和构成,掌握了如何设计和调节多波形信号发生器的方法。

同时,我们也意识到了电路设计中的细节问题对最终效果的影响,以及如何通过测试和调整来优化电路性能。

简易信号发生器课程设计

简易信号发生器课程设计

“电子创新设计与实践”课程期中课题设计报告姓名:张思源,学:20102121026,年级:2010,专业:电信报告内容简易信号发生器一、要求:可以输出方波,三角波,正弦波摘要:1.基本要求:电路能输出正弦波、方波和三角波等三种波形;2.技术指标频率范围:100HZ-1KHZ,1KZ-10KHZ;输出电压:方波Vp-p<24V, 三角波Vp-p=6V,正玄波Vp-p=1V;方波tr 小于1uS.报告正文1、设计方案可先产生正弦波,然后通过整形电路将正弦波变成方波,再由积分电路将方波变成三角波;也可先产生三角-方波,再将三角波变成正弦波。

如下框土所示。

方波三角波正弦波参考书:彭介华《电子技术课程设计指导》高教出版社;上课教材一、 简易信号发生器基本原理1、函数发生器的组成函数发生器一般是指能自动产生正弦波、方波、三角波的电压波形的电路或者仪器。

电路形式可以采用由运放及分离元件构成;也可以采用单片集成函数发生器。

根据用途不同,有产生三种或多种波形的函数发生器,本课题介绍方波、三角波、正弦波函数发生器的方法。

1,正弦波产生电路 正弦波振荡电路的振荡条件;1、 RC 桥式正弦波振荡器(文氏电桥振荡器)积分器 比较器 差分放大器图11-1为RC 桥式正弦波振荡器。

其中RC 串、并联电路构成正反馈支路,同时兼作选频网络,R 1、R 2、R W 及二极管等元件构成负反馈和稳幅环节。

调节电位器R W ,可以改变负反馈深度,以满足振荡的振幅条件和改善波形。

利用两个反向并联二极管D 1、D 2正向电阻的非线性特性来实现稳幅。

D 1、D 2采用硅管(温度稳定性好),且要求特性匹配,才能保证输出波形正、负半周对称。

R 3的接入是为了削弱二极管非线性的影响,以改善波形失真。

电路的振荡频率2πRC1f O起振的幅值条件1f R R ≥2式中R f =R W +R 2+(R 3 // r D ),r D — 二极管正向导通电阻。

EDA课程设计-方波、三角波

EDA课程设计-方波、三角波

成绩1 设计要求设计一个能产生方波、三角波、正弦波、斜波等多种波形的智能函数发生器。

(1)智能函数发生器能够产生递增斜波、方波、三角波、正弦波等波形。

(2)由2个拨码开关控制选择相应的波形输出。

2 设计方案本次设计主要基于VHDL硬件描述语言设计制作一个函数信号发生器,使用QuartusII开发环境进行编译仿真。

由波形选择部分,波形发生部分和输出部分组成。

其中波形选择部分是数据选择器电路;波形发生部分包括递增斜波产生电路,递减斜波产生电路,三角波产生电路,正弦波产生电路和方波产生电路。

主要设计框图如图1所示。

图1.系统原理框图根据系统整体设计要求,信号发生器由信号产生模块、信号控制模块。

其中信号产生模块用来产生所需要的5种信号,这些信号的产生可以有多种方式,如用计数器直接产生信号输出,或者用计数器产生存储器的地址,在存储器中存放信号输出的数据。

信号发生器的控制模块可以用数据选择器来实现。

用一个6选1数据选择器可以实现对5种波形的选择,在本设计中应用VHDL语言针对5种信号分别设计出5种不同的子程序,通过不同的选择信号从主程序中调用与其相对应的子程序。

3 设计内容(根据设计任务,硬件要给出电路原理图、软件要给出程序流程图)1.硬件部分(1)FPGA原理图如图2所示。

图2.FPGA原理图(2).智能函数发生器电路原理图如图3所示。

图3.发生器电路原理图2.软件部分(1).程序流程图波形产生模块的递增、递减斜波是以一定常数递增、递减来产生的。

三角波的产生是在输出波形的前半周期内从0累加到最大值255,在后半周期从最大值递减到0来实现的,正弦波的产生原理是基于奈奎斯特采样定律,得到离散化波形序列。

方波的产生是在输出波形的前半周期输出低电平,后半周期输出高电平,从而得到占空比为50%的方波信号。

软件设计流程图如图4。

图4.软件流程图(2).递增斜波信号产生模块①递增斜波信号产生模块原理图图5.递增斜波模块②递增斜波程序LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY increase ISPORT(CLK,CLR:IN STD_LOGIC;Q:OUT STD_LOGIC_VECTOR(7 DOWNTO 0) );END increase;ARCHITECTURE rtl OF increase ISBEGINPROCESS(CLK,CLR)VARIABLE TMP:STD_LOGIC_VECTOR(7 DOWNTO 0);BEGINIF CLR='1' THENTMP:="00000000";ELSIF CLK'EVENT AND CLK='1'THENIF TMP="11111111"THENTMP:="00000000";ELSETMP:=TMP+1;END IF;END IF;Q<=TMP;END PROCESS;END rtl;(3).递减斜波信号产生模块①递减斜波信号产生模块原理图图6.递减斜波模块②递减斜波程序LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY decrease ISPORT(CLK,CLR:IN STD_LOGIC;Q:OUT STD_LOGIC_VECTOR(7 DOWNTO 0) );END decrease;ARCHITECTURE rtl OF decrease ISBEGINPROCESS(CLK,CLR)VARIABLE TMP:STD_LOGIC_VECTOR(7 DOWNTO 0);BEGINIF CLR='1'THENTMP:="11111111";ELSIF CLK'EVENT AND CLK='1'THENIF TMP="00000000"THENTMP:="11111111";ELSETMP:=TMP-1;END IF;END IF;Q<=TMP;END PROCESS;END rtl;(4).三角波①三角波信号产生模块电路图图7.三角波模块②三角波程序LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY triangle ISPORT(CLK,CLR:IN STD_LOGIC;Q:OUT STD_LOGIC_VECTOR(7 DOWNTO 0) );①方波信号产生模块电路图图8.方波模块②方波信号程序LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY square ISPORT(CLK,CLR:IN STD_LOGIC;Q:OUT STD_LOGIC_VECTOR(7 DOWNTO 0));END square;ARCHITECTURE rtl OF square ISSIGNAL TAG:STD_LOGIC;BEGINPROCESS(CLK,CLR)VARIABLE CNT:INTEGER RANGE 0 TO 63;BEGINIF CLR='1'THENTAG<='0';ELSIF CLK'EVENT AND CLK='1'THEN IF CNT<63 THENCNT:=CNT+1;ELSECNT:=0;TAG<=NOT TAG;END IF;END IF;END PROCESS;PROCESS(CLK,TAG)BEGINIF CLK'EVENT AND CLK='1'THENIF TAG='1'THENQ<="11111111";ELSEQ<="00000000";END IF;END IF;END PROCESS;END rtl;(6).正弦波①正弦波信号产生模块原理图图9.正弦波模块②正弦波程序LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;USE IEEE.STD_LOGIC_ARITH.ALL;ENTITY sin ISPORT(CLK,CLR:IN STD_LOGIC;Q:OUT STD_LOGIC_VECTOR(7 DOWNTO 0) );END sin;ARCHITECTURE rtl OF sin ISBEGIN(7).拨码开关——函数选择器①函数选择器原理图图10.函数选择器模块②函数选择器程序LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY selecter ISPORT(SEL:IN STD_LOGIC_VECTOR(2 DOWNTO 0);D0,D1,D2,D3,D4:IN STD_LOGIC_VECTOR(7 DOWNTO 0);Q:OUT STD_LOGIC_VECTOR(7 DOWNTO 0));END selecter;ARCHITECTURE rtl OF selecter ISBEGINPROCESS(SEL)BEGINCASE SEL ISWHEN "000"=>Q<=D0;WHEN "001"=>Q<=D1;WHEN "010"=>Q<=D2;WHEN "011"=>Q<=D3;WHEN "100"=>Q<=D4;WHEN OTHERS=>NULL;END CASE;END PROCESS;END rtl;(8).顶层设计①顶层设计RTL电路图11. 顶层设计RTL电路②顶层设计程序LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY lcy ISPORT(CLK,CLR:IN STD_LOGIC;SEL:IN STD_LOGIC_VECTOR(2 DOWNTO 0);Q:OUT STD_LOGIC_VECTOR(7 DOWNTO 0) );图12.波形对应表2.递增斜波当CLR=0时,每检测到一个上升沿,计数器加一,加到最大时清零。

函数信号发生器设计(三角波、方波、正弦波发生器)

函数信号发生器设计(三角波、方波、正弦波发生器)

基于AT89C51的函数信号发生器设计设计团队:郭栋、陈磊、集炜、査荣杰指导老师:程立新2011-11-13目录1、概述 (3)2、技术性能指标 (3)2.1、设计内容及技术要求 (3)3、方案的选择 (3)3.1、方案一 (4)3.2、方案二 (6)3.3、方案三 (6)4、单元电路设计 (6)4.1、正弦波产生电路 (6)4.2、方波产生电路 (8)4.3、矩形波产生锯齿波电路 (99)5、总电路图 (10)6、波形仿真结果 (1010)6.1正弦波仿真结果 (10)6.2矩形波仿真结果 (11)6.3锯齿波仿真结果 (11)7、PCB版制作与调试 (12)8、元件清单 (134)结论 (14)总结与体会 (14)参考文献 (15)函数信号发生器1、概述信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。

各种波形曲线均可以用三角函数方程式来表示。

能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。

函数信号发生器在电路实验和设备检测中具有十分广泛的用途。

例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。

在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。

2、技术性能指标2.1、设计内容及技术要求:设计并制作一个信号发生器,具体要求如下:1、能够输出正弦波、方波、三角波;2、输出信号频率范围为10Hz——10KHz;3、输出信号幅值:正弦波3V,矩形波10V,锯齿波4V;4、输出矩形波占空比50%-95%可调,矩形波斜率可调。

5、信号发生器用220V/50Hz的工频交流电供电;6、电源:220V/50Hz的工频交流电供电。

按照以上技术完成要求设计出电路,绘制电路图,对设计的电路用Multisim进行必要的仿真,用PCB软件进行制板、焊接,然后对制作的电路完成调试,撰写设计报告测,通过答辩3、方案的选择根据实验任务的要求,对信号产生部分可采用多种方案:如模拟电路实现方案,数字电路实现方案,模数结合实现方案等。

函数信号发生器设计实验报告

函数信号发生器设计实验报告

函数信号发生器的设计实验报告院系:电子工程学院班级:2012211209**:***班内序号:学号:实验目的:设计一个设计制作一个可输出方波、三角波、正弦波信号的函数信号发生器。

1,输出频率能在1—10KHz范围内连续可调,无明显失真;2,方波输出电压Uopp = 12V,上升、下降沿小于10us(误差<20%);3,三角波Uopp = 8V(误差<20%);4,正弦波Uopp≥1V。

设计思路:1,原理框图:2,系统的组成框图:分块电路和总体电路的设计:函数发生器是指能自动产生方波、三角波和正弦波的电压波形的电路或者仪器。

电路形式可以采用由运放及分离元件构成;也可以采用单片集成函数发生器。

根据用途不同,有产生三种或多种波形的函数发生器,本课题采用由集成运算放大器与晶体差分管放大器共同组成的方波—三角波、三角波—正弦波函数发生器的方法。

本课题中函数信号发生器电路组成如下:第一个电路是由比较器和积分器组成方波—三角波产生电路。

单限比较器输出的方波经积分器得到三角波;第二个电路是由差分放大器组成的三角波—正弦波变换电路。

差分放大器的特点:工作点稳定,输入阻抗高,抗干扰能力较强等。

特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波波形变换的原理是利用差分放大器的传输特性曲线的非线性。

传输特性曲线越对称,线性区域越窄越好;三角波的幅度Uim应正好使晶体接近饱和区域或者截至区域。

Ⅰ、方波—三角波产生电路设计方波输出幅度由稳压管的稳压值决定,即限制在(Uz+UD)之间。

方波经积分得到三角波,幅度为Uo2m=±(Uz+UD)方波和三角波的震荡频率相同,为f=1/T=āRf/4R1R2C,式中ā为电位器RW 的滑动比(即滑动头对地电阻与电位器总电阻之比)。

即调节RW可改变振荡频率。

根据两个运放的转换速率的比较,在产生方波的时候选用转换速率快的LM318,这样保证生成的方波上下长短一致,用LM741则会不均匀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 MAX038的性能简介
什么是函数信号发生器
能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。

函数信号发生器在电路实验和设备检测中具有十分广泛的用途。

函数信号发生器可以由晶体管、运放IC等通用器件制作,更多的则是用专门的函数信号发生器IC产生。

早期的函数信号发生器IC,如L8038、BA205、
XR2207/2209等,它们的功能较少,精度不高,频率上限只有300kHz,无法产生更高频率的信号,调节方式也不够灵活,频率和占空比不能独立调节,二者互相影响。

鉴于此,美国马克西姆公司开发了新一代函数信号发生器ICMAX038,它克服了上述芯片的缺点,可以达到更高的技术指标,是上述芯片望尘莫及的。

MAX038频率高、精度好,因此它被称为高频精密函数信号发生器IC。

在锁相环、压控振荡器、频率合成器、脉宽调制器等电路的设计上,MAX038都是优选的器件。

其内部电路框图如图1所示。

MAX038的性能特点:
1)能精密地产生三角波、锯齿波、矩形波(含方波)、正弦波信号。

2)频率范围从0.1Hz~20MHz,最高可达40MHz,各种波形的输出幅度均为2V(P -P)。

3)占空比调节范围宽,占空比和频率均可单独调节,二者互不影响,占空比最大调节范围是10%~90%。

4)波形失真小,正弦波失真度小于0.75%,占空比调节时非线性度低于2%。

5)采用±5V双电源供电,允许有5%变化范围,电源电流为80mA,典型功耗400mW,工作温度范围为0~70℃。

6)内设2.5V电压基准,可利用该电压设定FADJ、DADJ的电压值,实现频率微调和占空比调节。

MAX038采用DIP-20封装形式,各管脚的功能如表1所示。

注:表中5个地内部不相连,需外部连接。

2具有三种输出波形的函数信号发生器设计实例
笔者采用MAX038设计了输出三角波、方波和正弦波的函数信号发生器,频率范围为10Hz~1MHz,能够满足大多数实验与检测的需求。

整机电路由信号产生级、电压放大级、功率输出级和电源四部分组成。

信号产生级的核心器件为MAX038,它的输出波形有三种,由波形设定端A0(3), A1(4)控制,其编码如表2所示。

其中x表示任意状态。

1为高电平,0为低电平。

表2A0和A1的编码
MAX038的输出频率f0由Iin,FADJ端电压和主振荡器 COSC的外接电容器CF
三者共同确定。

当UFADJ=0V时,输出频率f0=Iin/CF,Iin=Uin/Rin=2.5/Rin。

当UFADJ≠0V时,输出频率f0=f(1-0.2915UFADJ)。

由波段开关SA2选择不同的CF值,将整个输出信号分为4个频段。

1)10Hz~1kHz
2)100Hz~10kHz
3)1kHz~100kHz
4)10kHz~1MHz
每频段频率的调节由电位器RP1和RP2完成。

RP1为粗调电位器,改变RP1数值,使振荡电容器CF的充电电流Iin改变,从而使频率改变。

RP2为细调电位器,它通过改变UFADJ的数值,使输出频率变化,它的变化范围较小,起微调作用。

为简化电路,各种波形的占空比固定为50%,这已能满足多数场合的使用要求。

为此将MAX038的脚7DADJ端接地。

MAX038的各种输出波形的幅度均为2V(P-P),为了得到更大的输出幅度,加有一级电压放大级,由运放OPA604担任。

OPA604是FET输入高保真运放IC,性能十分优越,低噪声10nV/Hz,低失真率,1kHz时,仅为 0.0003%,高转换率25V/μs,功率带宽为20MHz,电路中OPA604的闭环电压增益GV=100k/10k=10,输出电压的幅度增至 20V(P-P),有效值为7V左右。

如将OPA604换成AD747视频运放IC,函数信号发生器能够输出更高的频率。

功率输出级由BUF634担任,这是一种高速缓冲器IC,具有2000V/μs的转换速率,输出电流达250mA,其电压增益为1,但负载能力很强,在电路中起功率扩展的作用。

输出信号的幅度由电位器RP3调节,为了更精确地
调节输出信号幅度,在电位器后加有衰耗电路,由波段开关SA3将输出分为×1,×0.1,×0.01三档。

电源电路比较简单,电源变压器的容量为8W,初级接220V交流,次级绕组为15V×2,经桥式全波整流后,再由两只三端集成稳压器LM7812和 LM7912变成稳定的±12V直流电压。

HL1是用发光二极管制成的指示灯,无论正负哪一路出现故障,HL1均将熄灭。

±12V的电压再经两只三端集成稳压器LM78L05和LM79L05进一步稳压后,变成±5V的直流电压供给MAX038。

相关文档
最新文档