高等数学研究生入学考试大纲
福州大学硕士研究生入学考试考试大纲—000610高等数学
福州大学
2016年硕士研究生入学考试专业课考试大纲
(考试大纲是考研学生复习的重要参考资料,是关于考试科目、题型设置及知识点要求的指导性文件,目的是为便于报考者了解、准备和参加考试,它指出了所考科目的大致考试范围,也是考研命题的重要参考依据。
)
一、课程名称:高等数学
注意:
1、考试基本内容:一般包括基础理论、实际知识、综合分析和论证等几个方面的内容。
有些课程还应有基本运算和实验方法等方面的内容。
2、难易程度:根据大学本科的教学大纲和本学科、专业的基本要求,一般应使大学本科毕业生中优秀学生在规定的三个小时内答完全部考题,略有一些时间进行检查和思考。
排序从易到难。
3、考试题型:可分填空题、选择题、计算题、简答题、论述题等。
说明:1、考试基本内容:一般包括基础理论、实际知识、综合分析和论证等几个方面的内容。
有些课程还应有基本运算和实验方法等方面的内容。
2、难易程度:根据大学本科的教学大纲和本学科、专业的基本要求,一般应使大学本科毕业生中优秀学生在规定的三个小时内答完全部考题,略有一些时间进行检查和思考。
3、考试题型:可分填空题、选择题、计算题、简答题、论述题等。
考研 高等数学二考研大纲
[考试科目]高等数学、线性代数高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数简单应用问题的函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小和无穷大的概念及其关系无穷小的性质及无穷小的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限 :函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。
2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4. 掌握基本初等函数的性质及其图形,了解初等函数的基本概念。
5. 理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容。
导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线基本初等函数的导数导数和微分的四则运算复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数的极值函数单调性的判别函数图形的凹凸性、拐点及渐近线函数图形的描绘函数最大值和最小值考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的n阶导数.4. 会求分段函数的一阶、二阶导数.5.会求隐函数和由参数方程所确定的函数以及反函数的导数.6.理解并会用罗尔定理、拉格朗日中值定理.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用.8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直渐近线,会描绘函数的图形.9.掌握用洛必达法则求未定式极限的方法.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分广义积分定积分的应用考试要求1.理解原函数概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式及简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解广义积分的概念,会计算广义积分.6.了解定积分的近似计算法.7.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功).四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数、隐函数求导法二阶偏导数多元函数的极值、最大值和最小值二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义。
硕士研究生入学考试科目高等数学考试大纲
硕士研究生入学考试科目《高等数学》考试大纲一、考试说明1. 参考教材:《高等数学》第五版(上、下册),同济大学应用数学系主编,高等教育出版社2. 试卷结构及比例题型比例:填空题与选择题约40%解答题(包括证明)约60%内容比例:函数、极限、连续约20%一元函数的微积分学约35%多元函数的微积分学约15%常微分方程约15%幂级数约15%二、考试内容第一单元函数、极限、连续函数的概念及表示法;函数的有界性、单调性、周期性和奇偶性;反函数、复合函数、隐函数和分段函数;基本初等函数的性质及其图形;初等函数简单的应用问题和函数关系的建立;数列极限与函数极限的定义以及它们的性质;函数的左右极限;无穷小;无穷大;无穷小的比较;极限的四则运算;极限存在的两个准则;单调有界准则和夹逼准则;两个重要极限:lim(sinx/x)=1,lim(1+1/x)x=ex→0 x→∞函数连续的概念:函数间断点的类型;初等函数的连续性;闭区间上连续函数的性质(最大值最小值定理和介值定理)第二单元一元函数微分学导数和微分的概念;导数的几何意义和物理意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;基本初等函数的导数;导数和微分的四则运算;反函数、复合函数、隐函数以及参数方程所确定的函数的微分法;高阶导数的概念;某些简单函数的n阶导数;一阶微分形式的不变性;微分在近似计算中的应用;Rolle定理,Lagronge中值定理,Cauchy 中值定理,Taylor定理,L’Hospital法则.函数极值及其求法,函数增减性和函数图形的凹凸性的判定,函数图形的拐点及其求法,渐近线,描绘函数图形,函数最大值和最小值的求法及其简单应用。
第三单元一元函数积分学原函数和不定积分的概念,不定积分的基本性质,基本积分公式,定积分的概念和性质,积分中值定理,变上限定积分及其导数,NewTon-Leibniz公式,不定积分和定积分的换元积分法与分部积分法,有理函数、三角函数的有理式、简单无理函数的积分,广义积分的概念及计算,定积分的应用,定积分的近似计算法。
考研数学一、二、三大纲详解(教材分析)
高等数学考研指定教材:同济大学数学系主编《高等数学》(上下册)(第六版)第一章函数与极限(7天)(考小题)学习内容复习知识点与对应习题大纲要求第一节:映射与函数(一般章节)函数的概念,常见的函数(有界函数、奇函数与偶函数、单调函数、周期函数)、复合函数、反函数、初等函数具体概念和形式.(集合、映射不用看;双曲正弦,双曲余弦,双曲正切不用看)习题1-1:4,5,6,7,8,9,13,15,16(重点)1.理解函数的概念,掌握函数的表示法,并会建立应用问题中的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.第二节: 数列的极限 (一般章节) 数列定义,数列极限的性质(唯一性、有界性、保号性 )(本节用极限定义证明极限的题目考纲不作要求,可不看,如P26例1,例2,例3,定理1,2,3的证明都不作要求,但要理解;定理4不用看)习题1-2:1 第三节: 函数的极限 (一般章节) 函数极限的基本性质(不等式性质、极限的保号性、极限的唯一性、函数极限的函数局部有界性,函数极限与数列极限的关系等) P33(例4,例5)(例7不用做,定理2,3的证明不用看,定理4不用看)习题1-3:1,2,3,4 第四节: 无穷大与无穷小(重要) 无穷小与无穷大的定义,它们之间的关系,以及与极限的关系(无穷小重要,无穷大了解) (例2不用看,定理2不用证明)习题1-4:1,6 第五节: 极限的运算法则(掌握) 极限的运算法则(6个定理以及一些推论)(注意运算法则的前提条件是否各自极限存在)(定理1,2的证明理解,推论1,2,3,定理6的证明不用看)P46(例3,例4),P47(例6) 习题1-5:1,2,3,4,5(重点) 第六节: 极限存在准则(理解) 两个重要极限(要牢记在心,要注意极限成立的条件,不要混淆,应熟悉等价表达式,要会证明两个重要极限),函数极限的存在问题(夹逼定理、单调有界数列必有极限),利用函数极限求数列极限,利用夹逼法则求极限,求递归数列的极限 两个重要极限(重要) (准则1的证明理解,第一个重要极限的证明一定要会,另一个重要极限的证明不用看,柯西存在准则不用看)P51(例1)习题1-6:1,2,4 第七节: 无穷小的比较(重要) 无穷小阶的概念(同阶无穷小、等价无穷小、高阶无穷小、k 阶无穷小),重要的等价无穷小(尤其重要,一定要烂熟于心)以及它们的重要性质和确定方法(定理1,2的证明理解) P57(例1)P58(例5)习题1-7:全做 第八节: 函数的连续性与间断点(重要,基本函数的连续性,间断点的定义与分类(第一类间断点与第二类间断点),判断函数的连续性(连续性的四则运算法则,复合函数的连续性,反函数的连续性)和间断点的类型。
研究生入学考试高等数学考试大纲
研究生入学考试高等数学考试大纲考试科目:高等数学601考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学 100%四、试卷题型结构单项选择题 10小题,每小题4分,共40分填空题 10小题,每小题4分,共40分解答题(包括证明题) 7小题,共70分高等数学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin lim 1x x x →=, 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital )法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle )定理、拉格朗日(Lagrange )中值定理和泰勒(Taylor )定理,了解并会用柯西( Cauchy )中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(),a b 内,设函数()f x 具有二阶导数.当()0f x ''>时,()f x 的图形是凹的;当()0f x ''<时,()f x 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、多元函数微积分学考试内容多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数的偏导数和全微分 多元复合函数、隐函数的求导法 二阶偏导数 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程:()(),(,)n y f x y f x y '''== 和 (,)y f y y '''=.4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.。
2023年数三考研大纲
2023年数三考研大纲2023年考研数学(三)大纲原文如下:数学三考试大纲包括微积分、线性代数和概率论与数理统计三部分,具体内容如下:一、微积分1. 函数、极限、连续2. 一元函数微分学3. 一元函数积分学4. 多元函数微积分学5. 常微分方程与差分方程6. 无穷级数7. 微分学在经济学中的应用二、线性代数1. 行列式2. 矩阵3. 向量4. 线性方程组5. 矩阵的特征值和特征向量6. 二次型7. 应用问题(数一、数二)三、概率论与数理统计1. 随机事件和概率2. 随机变量及其分布3. 多维随机变量及其分布4. 随机变量的数字特征5. 大数定律和中心极限定理6. 数理统计的基本概念及抽样分布7. 参数估计与假设检验(数一)8. 回归分析(数一)9. 方差分析(数一)10. 统计决策理论(数一)11. 随机过程(数一)12. 时间序列分析(数一)13. 多元统计分析(数一)14. 非参数估计方法(数一)15. 分位数回归(数一)16. 应用问题(数一)17. 高维数据分析(选讲,仅对选做题45有所涉及)18. 高维数据分析综合练习(选讲,仅对选做题45有所涉及)19. 高维数据分析综合练习答案及解析(选讲,仅对选做题45有所涉及)20. 高维数据分析练习题答案及解析(选讲,仅对选做题45有所涉及)21. 高维数据分析练习题(选讲,仅对选做题45有所涉及)22. 高维数据分析综合练习题(选讲,仅对选做题45有所涉及)23. 高维数据分析综合练习答案及解析(选讲,仅对选做题45有所涉及)24. 高维数据分析练习题答案及解析(选讲,仅对选做题45有所涉及)25. 高维数据分析练习题(选讲,仅对选做题45有所涉及)。
602高等数学考试大纲2021版
湖南师范大学硕士研究生入学考试自命题科目考试大纲考试科目代码:[602] 考试科目名称:高等数学一、考试内容及要点微积分与线性代数1、函数与极限(适用于地图学与地理信息系统专业和自然地理学专业)考试内容(1)函数:函数的概念及表示法;函数的有界性、单调性、周期性和奇偶性;复合函数、反函数、分段函数和隐函数;基本初等函数的性质及其图形,初等函数;简单应用问题的函数关系的建立。
(2)极限:数列极限与函数极限的定义及其性质;函数的左极限与右极限;无穷小和无穷大的概念及其关系;无穷小的性质及无穷小的比较;极限的四则运算,极限存在的两个准则:单调有界准则和夹逼准则,两个重要极限。
(3)连续:函数连续的概念;左连续与右连续,函数间断点的类型;连续函数的四则运算法则,复合函数的连续性,反函数的连续性,初等函数的连续性;闭区间上连续函数的性质(有界性定理,最大值、最小值定理,介值定理)。
考试要点理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式;了解函数的有界性、单调性、周期性和奇偶性;理解复合函数及分段函数的概念,了解反函数及隐函数的概念;掌握基本初等函数的性质及其图形,了解初等函数的基本概念;理解极限的概念;理解函数左极限与右极限的概念,掌握函数极限存在与左、右极限之间的关系;掌握极限的性质及四则运算法则,掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法;理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限;理解函数连续性的概念,会判别函数间断点的类型;了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质,并会应用这些性质。
2、一元函数的微积分(适用于地图学与地理信息系统专业和自然地理学专业)考试内容(1)导数与微分:导数和微分的定义,左导数与右导数,导数的几何意义;函数的可导性、可微性与连续性的关系;导数和微分的四则运算法则,导数和微分的基本公式;复合函数、反函数、隐函数和由参数方程所确定的函数的求导法,高阶导数,一阶微分形式的不变性。
考研数学二大纲2024
考研数学二大纲2024
2024年考研数学二考试大纲如下:
一、考试性质
考研数学二是全国硕士研究生招生考试的重要组成部分,旨在考查考生对高等数学、线性代数等数学知识的掌握程度,以及运用这些知识解决实际问题的能力。
该考试以选拔性和公平性为原则,为招生单位选拔优秀人才提供科学依据。
二、考试内容
高等数学:函数、极限、连续;一元函数微分学;一元函数积分学;向量代数与空间解析几何;多元函数微分学;多元函数积分学;常微分方程。
线性代数:行列式;矩阵;向量;线性方程组;矩阵的特征值和特征向量;二次型。
三、考试形式与试卷结构
考试形式:闭卷、笔试。
试卷满分及考试时间:试卷满分为150分,考试时间为180分钟。
试卷内容结构:高等数学约70%,线性代数约30%。
试卷题型结构:单项选择题8小题,每小题4分,共32分;填空题6小题,每小题4分,共24分;解答题9小题,每小题8分,共72分。
四、考查目标
具有扎实的数学基础,掌握高等数学和线性代数的基本概念、基本理论和基本方法。
能够运用数学知识分析和解决实际问题,具有初步的科学研究能力。
掌握基本的数学方法和技巧,包括计算、推理、证明、归纳等。
具备良好的数学思维能力,包括逻辑思维、创新思维和批判性思维等。
以上是考研数学二考试大纲的简要介绍,具体内容可能会有所变化,建议考生查阅最新的考试大纲以获取准确信息。
考研-高等数学二考研大纲
考试要求
1.理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。
2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4. 掌握基本初等函数的性质及其图形,了解初等函数的基本概念。
9.掌握用洛必达法则求未定式极限的方法.
三、一元函数积分学
考试内容
原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 广义积分 定积分的应用
10. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
二、一元函数微分学
考试内容。
导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 基本初等函数的导数 导数和微分的四则运算 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数的极值 函数单调性的判别 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数最大值和最小值
四、线性方程组
考试内容
线性方程组的克莱姆(又译:克拉默)(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解
714《高等数学》考试大纲
《高等数学》考试大纲Ⅰ考试目标《高等数学》考试是为高等院校和科研院所招收统计学学术硕士研究生而设置的具有选拔性质的考试科目。
其目的是科学、公平和有效地测试考生是否具备攻读统计学学术硕士学位所必须的基本数学素质和培养潜能,以便选拔具有发展潜力的优秀人才入学,为国家的经济建设培养具有良好职业道德、法制观念和国际视野、具有较强分析问题与解决实际问题能力的高层次统计专业人才。
本课程考试主要测试考生掌握数学分析与高等代数基本知识、理论与方法的水平,以及运用其解决问题的基本能力。
Ⅱ考试形式与试卷结构一、试卷满分及考试时间:试卷满分为150分,考试时间180分钟。
二、答题方式:答题方式为闭卷笔试。
三、试卷内容与题型结构Ⅲ考试内容一、数学分析部分(一)函数极限连续在理解函数、极限与连续性概念的基础上,掌握极限的计算方法,理解闭区间上连续函数的性质,并会应用这些性质。
具体考核主要包括:1.函数极限存在性判别及计算;2.函数连续性讨论;3.闭区间上连续函数性质的应用。
(二)一元函数微分学在理解导数的概念及可导性与连续性之间关系的基础上,掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数、反函数与隐函数的导数及高阶导数;了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程;了解微分的概念、导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分;理解罗尔(Rolle )定理、拉格朗日( Lagrange)中值定理、泰勒(Taylor )定理及柯西(Cauchy)中值定理,并掌握其简单应用;掌握洛必达法则求极限、函数单调性的判别的方法,掌握函数极值、最大(小)值的求法及其应用,会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数.当()0f x ''>时,()f x 的图形是凹的;当()0f x ''<时,()f x 的图形是凸的),会求函数图形的拐点和渐近线,会描述简单函数的图形。
2024考研数一 大纲
2024考研数一大纲2024年考研数学一专业的大纲如下:一、高等数学1. 极限与连续- 极限的概念与性质- 无穷小量与无穷大量的比较- 函数的连续性与间断点- 闭区间上连续函数的性质- 导数的概念与性质- 微分中值定理及其应用2. 一元函数微积分- 微积分基本定理与不定积分- 函数的定积分与不定积分的关系- 一元函数的积分学- 定积分的计算与应用3. 多元函数微积分- 多元函数的极限与连续- 偏导数与全微分- 多元函数的求导法则- 多元函数的极值与条件极值- 重积分的概念与计算4. 常微分方程- 常微分方程的基本概念与初值问题- 一阶常微分方程的解法与应用- 高阶常微分方程的一般理论- 常系数线性微分方程5. 线性代数- 行列式的定义与性质- 矩阵的基本概念与运算- 线性方程组的解法与应用- 矩阵的特征值与特征向量- 正交变换与对称矩阵的对角化二、概率论与数理统计1. 随机变量及其分布- 随机变量的概念与分布函数- 常见离散型分布与连续型分布- 二维随机变量及其分布- 边缘分布与条件分布2. 随机变量的数字特征- 数学期望与方差- 矩母函数与特征函数- 大数定律与中心极限定理3. 多维随机变量及其分布- 二维随机变量的分布函数与密度函数- 边缘分布与条件分布- 相互独立与不相关4. 参数估计- 点估计与区间估计- 常见参数估计方法- 最小二乘估计与极大似然估计5. 假设检验与方差分析- 假设检验的基本原理- 单侧与双侧假设检验- 方差分析与卡方检验- 相关分析与回归分析以上就是2024年考研数学一专业的大纲,考生可以根据大纲内容有针对性地进行复习和准备。
考研数学大纲2024
考研数学大纲2024考研数学大纲2024是广大考生备战2024年考研数学科目的重要参考资料。
本文将全面介绍数学大纲2024的主要内容和要求,帮助考生了解考试重点,制定科学合理的备考计划。
一、数学分科内容1. 高等数学数学大纲2024中的高等数学部分包括数列、极限、连续性、偏导数、不定积分、定积分等重要知识点。
考生要掌握数列的收敛性、函数的连续性、微分和积分的相关概念及应用,理解数学公式的推导过程,能够熟练运用相关方法解题。
2. 线性代数线性代数是考研数学中不可忽视的一部分。
考生需要掌握向量、矩阵、行列式、特征值、特征向量等基本概念,并具备解线性方程组、矩阵的特征值问题、线性变换等能力。
在备考过程中,要注重理论的学习,同时加强对与计算、证明、应用有关的相关题型的练习。
3. 概率论与数理统计概率论与数理统计是数学大纲2024中的重要内容。
考生要熟悉概率的基本定义、事件的概率计算、离散型和连续型随机变量的概率分布及其相关问题,掌握统计量的计算、抽样分布以及参数估计与假设检验等统计方法。
在备考过程中,要注重理论知识的掌握,同时注重实践应用的能力培养。
二、考试要求数学大纲2024明确了考试要求,考生需熟悉并遵守。
1. 知识点掌握考生要全面掌握数学分科的基本知识点,并能够准确理解和应用。
熟练掌握数学公式和推导过程,能够独立解答相应的题目。
2. 解题能力培养考生需具备独立解题的能力。
在备考过程中,要注重思维方法和解题技巧的训练,不断提高解题的速度和准确性。
3. 理论与实践相结合考试中既注重理论知识的考察,也注重数学在实际问题中的应用能力。
考生要能够将数学知识灵活运用,解决实际问题。
三、备考建议1. 制定科学合理的备考计划考生需要根据个人情况和时间安排,制定科学合理的备考计划。
要合理安排复习时间,将重点知识和薄弱环节有机结合,注重知识的系统性和连贯性。
2. 注重思维能力训练考研数学注重思维的应用和能力的发挥。
在备考过程中,要注重思维方法的培养和提高解题的技巧,通过大量的练习和实践,熟悉不同类型的题目和解题思路。
602高等数学考试大纲
3、一元函数积分学:不定积分的基本性质,定积分的概念和性质,积分中值定理,变上限定积分及其导数,NewTon-Leibniz公式,不定积分和定积分的换元积分法与分部积分法,有理函数、三角函数的有理式、简单无理函数的积分,广义积分的概念及计算,定积分的应用,定积分的近似计算法。
4、常微分方程:微分方程的解;变量可分离方程,一阶线性微分方程,齐次方程,Bernoulli方程,可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程。
南华大学硕士研究生入学考试大纲
招生学院
招生专业代码
招生专业名称
考试科目代码及名称
数理学院
070201
理论物理
602高等数学
一、考试内容
1、函数、极限、连续:函数的有界性、单调性、周期性和奇偶性;反函数、复合函数、隐函数和分段函数;函数的左右极限;极限的四则运算;极限存在的两个准则;单调有界准则和夹逼准则;函数间断点的类型;初等函数的连续性;闭区间上连续函数的性质(最大值最小值定理和介值定理)。
答题方式为闭卷、笔试。
(三)试卷内容结构
填空题与选择题约40%
解答题(包括证明)约60%
(四)试卷题型结构
简答题(约40分);计算题(约90分);证明题(约20分)。
603 高等数学考试大纲
603-《高等数学》考试大纲一、考试性质《高等数学》是为招收地理学硕士研究生而设置的选拔考试。
它的主要目的是测试考生的数学素质,包括对高等数学各项内容的掌握程度和应用相关知识解决问题的能力。
考试对象为参加全国硕士研究生入学考试、并报自然地理学、人文地理学、地图学与地理信息系统和环境地质学等专业的考生。
二、考试要求要求考生系统地理解高等数学的基本概念和基本理论,掌握高等数学的基本方法。
要求考生具有抽象思维能力、逻辑推理能力、空间想象能力、数学运算能力和综合运用所学的知识分析问题和解决问题的能力。
三、考试方法和考试时间采用闭卷笔试形式,试卷满分为150分,考试时间为180分钟。
四、试题结构计算题或证明题。
五、考试内容(一)函数、极限、连续1. 函数的基本性质2. 极限的定义、性质及求法3. 无穷小、无穷大的定义及比较4. 连续、间断的定义,闭区间上连续函数的性质(二)一元函数微分学1. 导数和微分的定义与几何意义2. 复合函数、隐函数、参数方程所确定的函数的求导3. 高阶导数、分段函数的导数4. 罗尔定理、拉格朗日中值定理和泰勒公式5. 函数的极值与最值6. 凹凸性、拐点及渐近线7. 洛必达法则(三)一元函数积分学1. 原函数、不定积分和定积分的概念2. 不定积分的换元积分法与分部积分法3. 牛顿-莱布尼茨公式4. 定积分的换元积分法与分部积分法5. 变上限积分函数的导数6. 定积分的应用,包含计算平面图形的面积、质心、平面曲线的弧长、旋转体的体积(四)向量代数和空间解析几何1. 向量的运算(线性运算、数量积、向量积)2. 投影、方向余弦3. 平面方程和空间直线方程4. 平面与平面、平面与直线、直线与直线之间的夹角与位置关系5. 点到直线的距离、点到平面的距离(五)多元函数微分学1. 二元函数的极限和连续2. 偏导数存在、可微、偏导数连续的定义与关系3. 偏导数(多元复合函数、隐函数)和全微分的计算4. 方向导数与梯度5. 曲线的切线和法平面及曲面的切平面和法线6. 多元函数的极值和条件极值(六)多元函数积分学1. 二重积分的性质与计算(直角坐标、极坐标)2. 三重积分的计算(直角坐标、柱面坐标)3. 两类曲线积分的计算及关系、格林公式4. 多元函数积分学的应用,包括物体的体积、曲线的弧长、物体的质量、质心等(七)无穷级数1. 常数项级数的基本定义与性质2. 正项级数判别法3. 莱布尼茨判别法、任意项级数4. 幂级数的收敛域、收敛半径、在收敛区间内的和函数5. 函数的幂级数展开式(八)常微分方程1. 微分方程及其阶、解、通解、初始条件和特解的定义2. 一阶线性微分方程的常数变易法3. 线性微分方程解的性质及解的结构定理4. 二阶常系数齐次线性微分方程的求解5. 自由项为多项式和指数函数的二阶常系数非齐次线性微分方程的求解。
全国硕士研究生入学统一考试数学一考试大纲最新)
全国硕士研究生入学统一考试数学一考试大纲高等数学一、函数、极限、连续考试内容:函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:,函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容:导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值和最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容:原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容:向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程、直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示. 2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容:多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性. 4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容:二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯公式斯托克斯公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系. 4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数. 6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容:常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶系数与傅里叶级数狄利克雷定理函数的傅里叶级数函数的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与p级数的收敛与发散的条件. 3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5. 了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系. 6.了解函数项级数的收敛域及和函数的概念. 7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握e x,sinx, cosx,ln(1+x) 及(1+x)α的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将函数展开为傅里叶级数,会将函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容:常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解概念.2.掌握变量可分离的微分方程及一阶线性微分方程解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程4.会用降阶法解下列形式的微分方程:.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程. 7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容:矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容:向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容:线性方程组的克莱姆法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法. 4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容:矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求:1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容:二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.考研老师私人扣扣:概率论与数理统计一、随机事件和概率考试内容:随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松分布及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容:多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质. 理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫不等式切比雪夫大数定律伯努利大数定律辛钦大数定律棣莫弗-拉普拉斯定理列维-林德伯格定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律) .3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理) .六、数理统计的基本概念考试内容:总体个体简单随机样本统计量样本均值样本方差和样本矩卡方分布 T分布 F分布分位数正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为:2.了解卡方分布、T分布 F分布的概念及性质,了解上侧分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.七、参数估计考试内容:点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4.理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容:显着性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1.理解显着性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.考研老师私人扣扣:。
《高等数学》(自命题)考试大纲
广东技术师范学院硕士研究生入学考试《高等数学》(自命题)考试大纲I、考试性质《高等数学》(自命题)是广东技术师范学院为攻读系统理论专业硕士学位研究生所设置的一门基础课考试科目。
它的评价标准是高等学校本科毕业生(含同学学历)应知应会的基本知识和技能的掌握情况、高等数学基础理论分析及实际应用能力水平,以及高等数学思想及方法的理解程度。
II、考查目标要求考生比较系统地理解高等数学的基本概念、基本理论、基本方法,具备综合运用高等数学知识分析问题和解决问题的能力,并注重考核与系统理论专业相关的高等数学知识。
第三、第四方向不考证明题,并且难度依第一和第二方向、第三方向、第四方向而难度有所降低。
III、使用专业:系统理论。
IV、考试形式和试卷结构1、答卷形式:闭卷、笔试,满分为150分。
2、答题时间:180分钟。
3、考试题目分为难、中、易三个等级,每份试卷中不同难度试题的分配比例是3 :4 :3 。
基本概念和基础知识约占 35%,需要灵活地运用所学知识来解决问题的试题约占35%,需要综合几个知识点来解决问题的试题约占 30%。
题目的形式包括选择题、计算题、证明题、分析论述题、综合应用题等。
题型不是关键,最关键的是对基本概念、基本理论、基本方法的正确理解和应用,尤其是对知识点的掌握程度。
因为,针对任一个知识点都可以产生多个不同类型的试题。
V、考试内容和考试要求一、函数、极限、连续考试内容:函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则(单调有界准则和夹逼准则)两个重要极限函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求:1、理解函数的概念,掌握函数的表示法,并会建立常见应用问题中的函数关系。
2020年湖南师范大学604高等数学考研专业课考试大纲(含参考书目)
a: 简答题,约 30 分
b: 解答题(包括证明题),约 120 分
4)内容结构
微积分 约 70% 线性代数 约 30%
二、考试内容与考试要求
(一) 微积分
1、函数、极限、连续
考试内容
函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、
反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关
2、一元函数微分学 考试内容 导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性 之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的 导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导 数 一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数单 调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径 考试要求
系的建立
数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量
和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则
运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:
lim sin x = 1 x→0 x
lim
x→∞
1
+
1 x
x
= e
1/10
2020考研湖南师范大学硕士研究生入学考试大纲(含参考书目清单)
2/10
2020考研湖南师范大学硕士研究生入学考试大纲(含参考书目清单)
(1)理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意 义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述 一些物理量,理解函数的可导性与连续性之间的关系.
高等数学(计算机类)考试大纲
硕士研究生入学统一考试《高等数学(计算机类)》科目大纲(科目代码:602)学院名称(盖章):计算机科学与工程学院学院负责人(签字):编制时间: 2014年 9月22日《高等数学(计算机类)》科目考试大纲(科目代码:602 )高等数学部分(分值:100分左右)1、试卷满分:试卷满分为100分左右.2、答题方式:答题方式为闭卷笔试.3、试卷题型结构:单选题,填空题,解答题(包括证明题)。
一、函数、极限和连续【考试内容】函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数,基本初等函数的性质,初等函数,函数关系的建立,数列极限与函数极限的定义及其性质,函数的左极限与右极限无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较极限的四则运算,极限存在的两个准则,两个重要极限【考试要求】1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量替换原则求极限.9.理解函数连续的概念,会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质,并会应用这些性质.二、一元函数微分学【考试内容】导数和微分的概念,导数的几何意义和物理意义,函数的可导性与连续性之间的关系,平面曲线的切线和法线,导数和微分的四则运算,基本初等函数的导数,复合函数、反函数、隐函数以及参数方程所确定的函数的微分法,高阶导数,一阶微分形式的不变性,微分中值定理,洛必达(L’Hospital)法则,函数单调性的判别,函数的极值,函数图形的凹凸性、拐点及渐近线函数的最大值和最小值,弧微分,曲率的概念,曲率圆与曲率半径【考试要求】1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日 (Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学【考试内容】原函数和不定积分的概念、不定积分的基本性质、基本积分公式、定积分的概念和基本性质、定积分中值定理、积分上限的函数及其导数、牛顿一莱布尼茨(Newton-Leibniz)公式、不定积分和定积分的换元积分法与分部积分法、有理函数、三角函数的有理式和简单无理函数的积分、反常(广义)积分、定积分的应用【考试要求】1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积等).四、向量代数和空间解析几何【考试内容】向量的概念,向量的线性运算,向量的数量积和向量积,两向量垂直,平行的条件,两向量的夹角,向量的坐标表达式及其运算,单位向量、方向数与方向余弦,曲面方程和空间曲线方程的概念,平面方程,直线方程,平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件,点到平面和点到直线的距离,球面,柱面,旋转曲面,常用的二次曲面方程及其图形,空间曲线的参数方程和一般方程,空间曲线在坐标面上的投影曲线方程【考试要求】1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学【考试内容】多元函数的概念,二元函数的几何意义,二元函数的极限与连续的概念有界闭区域上多元连续函数的性质,多元函数的偏导数和全微分,全微分存在的必要条件和充分条件,多元复合函数、隐函数的求导法,二阶偏导数,方向导数和梯度,空间曲线的切线和法平面,曲面的切平面和法线,多元函数的极值和条件极值,多元函数的最大值、最小值及其简单应用【考试要求】1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学【考试内容】二重积分与三重积分的概念、性质、计算和应用,两类曲线积分的概念、性质及计算,两类曲线积分的关系,格林(Green)公式,平面曲线积分与路径无关的条件,二元函数全微分的原函数,两类曲面积分的概念、性质及计算,两类曲面积分的关系,高斯(Gauss)公式,斯托克斯(Stokes)公式,曲线积分和曲面积分的应用【考试要求】1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.会用重积分、曲线积分及曲面积分求一些几何量(平面图形的面积、体积、曲面面积、弧长等).七、无穷级数【考试内容】常数项级数的收敛与发散的概念,收敛级数的和的概念,级数的基本性质与收敛的必要条件,几何级数与p-级数及其收敛性,正项级数收敛性的判别法,交错级数与莱布尼茨定理,任意项级数的绝对收敛与条件收敛,函数项级数的收敛域与和函数的概念,幂级数及其收敛半径、收敛区间和收敛域幂级数的和函数,幂级数在其收敛区间内的基本性质,简单幂级数的和函数的求法,初等函数的幂级数展开式,函数的傅里叶(Fourier)系数与傅里叶级数【考试要求】1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与p-级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握常用函数的迈克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开成幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将简单函数展开为傅里叶级数.八、常微分方程【考试内容】常微分方程的基本概念、变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利(Bernoulli)方程、全微分方程、可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程、线性微分方程解的性质及解的结构定理、二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程、简单的二阶常系数非齐次线性微分方程、微分方程的简单应用【考试要求】1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会用微分方程解决一些简单的应用问题.线性代数部分(分值:25分左右)考试题型:填空题,计算题,证明题。
考研数学二大纲
考研数学二大纲全国硕士研究生入学统一考试数学二考研大纲解析。
目录1考试科目2考试形式和试卷结构3考试内容之高等数学1. 3.1 考试内容2. 3.2 考试要求3. 3.3 一元函数微分学4. 3.4 一元函数积分学4考试内容之线性代数1考试科目(一)高等数学(二)线性代数2考试形式和试卷结构(一)试卷满分及考试时间1.试卷满分为150分2.考试时间为180分钟。
(二)答题方式1.答题方式为闭卷2.笔试。
(三)试卷内容结构1.高等数学78%2.线性代数22%(四试)卷题型结构1.试卷题型结构为:单项选择题8小题,每题4分,共32分2.填空题6小题,每题4分,共24分3.解答题(包括证明题)9小题,共94分3考试内容之高等数学函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2. 了解函数的有界性、单调性、周期性和奇偶性.3. 理解复合函数及分段函数的概念了解反函数及隐函数的概念4. 掌握基本初等函数的性质及其图形,了解初等函数的概念.5. 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6. 掌握极限的性质及四则运算法则7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8. 理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10. 了解连续函数的性质和初等函数一的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.一元函数微分学考试要求1. 理解导数和微分的概念,理解导数和微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2. 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3. 了解高阶导数的概念,会求简单函数的高阶导数.4. 会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5. 理解并会用罗尔定理(Rolle)、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.6. 掌握用洛必达法则求未定式极限的方法.7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8. 会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。
考研数学三大纲(官方版)
考研数学三大纲(官方版) 2022年考研数学(三)大纲2022年考研数学(三)考试大纲考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学约56%线性代数约22%概率论与数理统计22%四、试卷题型结构试卷题型结构为:单选题8小题,每题4分,共32分填空题6小题,每题4分,共24分解答题(包括证明题)9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:sinx 1 lim 1 lim 1 e x x 0x x函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求:1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小量的概念和基本性质,掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国地质大学研究生院硕士研究生入学考试《高等数学》考试大纲(包括高等数学、线性代数初步两部分)一、试卷结构(一)内容比例高等数学 约85%线性代数初步 约15%(二)题型比例填空题与选择题 约30%解答题(包括证明题) 约70%二、其他考试时间为180分钟,总分为150分。
高 等 数 学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 反函数、复合函数和隐函数 基本初等函数的性质及其图形 初等函数 简单应用问题的函数关系的建立 数列极限与函数极限的定义以及它们的性质 函数的左、右极限 无穷小 无穷大 无穷小的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限: e )11(lim ,1sin lim 0=+=∞→→x x x xx x 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质(最大值、最小值定理和介值定理)。
考试要求1. 理解函数的概念 会作函数符号运算并会建立简单应用问题中的函数关系式。
2. 了解函数的奇偶性、单调性、周期性和有界性。
3. 理解复合函数的概念,了解反函数及隐函数的概念。
4. 掌握基本初等函数的性质及图形。
5. 理解极限的概念,理解函数的左、右极限概念及函数极限存在与左、右极限之间的关系。
6. 掌握极限的性质及四则运算法则。
7. 理解极限存在的两个准则,并会利用它们求极限,掌握用两个重要极限求极限的方法。
8. 理解无穷小、无穷大以及无穷小的阶的概念,会用等价无穷小求极限。
9. 理解函数连续性的概念,会判别函数间断点的类型。
10. 了解初等函数的连续性和闭区间上连续函数的性质(最大值、最小值定理和介值定理),并会应用这些性质。
二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线及其方程基本初等函数的导数导数和微分的四则运算反函数、复合函数、隐函数以及参数方程所确定的函数的微分法高阶导数的概念某些简单函数的n介导数一阶微分形式的不变性微分在近似计算中的应用罗尔(Rolle)定理拉格朗日(Lagrange)中值定理柯西(Cauchy)中值定理泰勒(Taylor)定理洛必达(L′Hospital)法则函数的极值及其求法函数增减性和函数图形凹凸性的判定函数图形的拐点及其求法渐近线描绘函数的图形函数最大值和最小值的求法及其简单应用弧微分曲率的概念及计算曲率半径方程近似解的二分法和切线法考试要求1. 理解导数和微分的概念。
理解导数的几何意义并会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量。
理解函数的可导性与连续性之间的关系。
2. 掌握导数的四则运算法则和复合函数的求导法,掌握基本初等函数的导数公式。
了解微分的四则运算法则和一阶微分形式的不变性,以及微分在近似计算中的应用。
3. 了解高阶导数的概念,掌握初等函数的求导方法,会求分段函数的一阶、二阶导数,并会求一些简单的函数的n阶导数。
4. 会求隐函数和由参数方程所确定的函数的一阶、二阶导数,会求反函数的导数。
5. 理解罗尔定理和拉格朗日中值定理,了解柯西中值定理和泰勒定理,并会运用它们解决一些简单问题。
6. 理解函数的极值概念,掌握用导数判断的单调性和求函数极值的方法,会求函数的最大值、最小值及其简单应用。
7. 会用导数判断函数图形的凹凸性,会求函数图形的拐点,会求水平、铅直和斜渐近线,会描绘函数的图形。
8. 掌握用洛必达法则求未定式极限的方法。
9. 了解曲率和曲率半径的概念并会计算曲率和曲率半径。
10. 了解求方程近似解的二分法和切线法。
三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和性质积分中值定理变上限定积分及其导数牛顿—莱布尼兹(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分广义积分的概念及计算定积分的近似计算法定积分的应用考试要求1. 理解原函数概念,理解不定积分和定积分的概念。
理解定积分中值定理。
2. 掌握不定积分的基本公式,掌握不定积分和定积分的性质及换元积分法与分部积分法。
3. 会求有理函数、三角函数的有理式和简单无理函数的积分。
4. 理解变上限定积分作为其上限的函数及其求导定理,掌握牛顿—莱布尼兹公式。
5. 了解广义积分的概念并会计算广义积分。
6. 了解定积分的近似计算法。
7. 掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、变力作功、引力、压力和函数平均值等)。
四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积的概念及运算向量的混合积两向量垂直和平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程、直线方程及其求法平面与平面、平面与直线、直线与直线的平行、垂直的条件和夹角占到平面和点到直线的距离球面母线平行于坐标轴的柱面旋转轴为坐标轴的旋转曲面的方程常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1. 理解空间直角坐标系,理解向量的概念及其表示。
2. 掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件。
3. 掌握单位向量、方向数与方向余弦、向量的坐标表达式以及用坐标表达式进行向量运算的方法。
4. 掌握平面方程和直线方程及其求法,会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。
5. 理解曲面方程的概念,了解常用二次曲线的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。
6. 了解空间曲线的参数方程和一般方程。
7. 了解空间曲线在坐标平面上的投影,并会求其方程。
五、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续性有界闭区域上二元连续函数的性质(最大值和最小值定理)偏导数及全微分的概念与计算多元复合函数的求导法隐函数求导法高阶偏导数方向导数与梯度空间曲线的切线与法平面空间曲面的切平面与法线多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算二重积分的应用考试要求1. 了解多元函数的概念,了解二元函数的表示法与几何意义。
2. 了解二元函数的极限与连续的直观意义。
3. 了解多元函数偏导数与全微分的概念,掌握求复合函数偏导数和全微分的方法,会用隐函数的求导法则。
4. 了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,会求解一些简单的应用题。
5. 了解二重积分的概念与基本性质,掌握二重积分(直角坐标、极坐标)的计算方法,会用二重积分计算一些几何量与物理量(面积、体积、质量、重心、转动惯量,引力)。
六、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p级数的收敛性正项级数收敛性的判别任意项级数的绝对收敛与条件收敛交错级数莱布尼兹定理幂级数的概念收敛半径、收敛区间和收敛域幂级数的和函数幂级数在收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1. 了解级数的收敛与发散、收敛级数的和等概念。
2. 掌握级数收敛的必要条件及收敛级数的基本性质,掌握几何级数及p级数的收敛与发散的条件,掌握正项级数的比较判别法和达朗贝尔(比值)判别法。
3. 了解任意项级数绝对收敛与条件收敛的概念,掌握交错级数的莱布尼兹判别法,掌握绝对收敛与条件收敛的判别方法。
4. 会求幂级数的收敛半径和收敛域。
5. 了解幂级数的收敛区间内的基本性质(和函数的连续性、逐项微分和逐项积分),会求一些简单幂级数的和函数。
6. 掌握e x,sin x,cos x,ln(1+x)与(1+x)a等幂级数展开式,并会利用这些展开式将一些简单函数间接展成幂级数。
七、常微分方程考试内容常微分方程的概念微分方程的解、通解、初始条件和特解变量可分离的方程齐次方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程微分方程的一些简单应用考试要求1. 了解微分方程及其解、通解、初始条件和特解等概念。
2. 掌握变量可分离的方程及一阶线性方程的解法,会解齐次方程。
3. 会用降阶法解下列方程:y(n) =f(x),y"=f(x,y′),y"=f(y,y′)。
4. 理解二阶线性微分方程解的性质及解的结构定理。
5. 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。
6. 会求自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程的特解。
7. 会用微分方程解决一些简单的应用问题。
线性代数初步一、行列式考试内容行列式的定义、性质及计算考试要求1. 了解行列式的定义、性质。
2. 掌握二阶、三阶行列式的计算法,会计算简单的n阶行列式。
二、矩阵考试内容矩阵的概念单位矩阵、对角矩阵、三角矩阵和对称矩阵以及它们的性质矩阵的线性运算矩阵的乘法矩阵的转置逆矩阵的概念矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换矩阵等价矩阵的秩初等变换求矩阵的秩和逆矩阵的方法考试要求1. 了解矩阵的概念。
2. 了解单位矩阵、对角矩阵、对称矩阵和三角矩阵以及它们的性质。
3. 掌握矩阵的线性运算、乘法、转置以及它们的运算规律。
4. 理解逆矩阵的概念,掌握逆矩阵的性质,了解矩阵可逆的充分必要条件,了解伴随矩阵的概念,会用伴随矩阵求逆矩阵。
5. 理解矩阵的秩的概念。
6. 掌握用初等变换求矩阵的秩和逆矩阵的方法。
三、线性方程组考试内容向量的概念向量组的线性相关与线性无关向量组的极大线性无关组向量组的秩向量组的秩与矩阵的秩之间的关系线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解非齐次线性方程组的通解行初等变换求解线性方程组的方法考试要求1. 了解n维向量的概念。
2. 了解向量组线性相关、线性无关的定义。
3. 了解有关向量组线性相关、线性无关的基本性质。
4. 了解向量组的极大线性无关组与向量的秩的概念。
5. 了解克莱姆法则。
6. 理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件。