电压互感器的常用接线方式
电能表互感器接法
电能表互感器接法
电能表的互感器接法有多种,以下为一些主要接法:
1. Vv 接线方式:广泛用于中性点绝缘系统或经消弧线圈接地的35KV及以下的高压三相系统,特别是10KV三相系统,接线来源于三角形接线,只是“口”没闭住,称为Vv接,此接线方式可以节省一台电压互感器,可满足三相有功、无功电能计量的要求,但不能用于测量相电压,不能接入监视系统绝缘状况的电压表。
2. Y,yn接线方式:主要采用三铁芯柱三相电压互感器,多用于小电流接地的高压三相系统,二次侧中性接线引出接地,此接线为了防止高压侧单相接地故障,高压侧中性点不允许接地,故不能测量对地电压。
3. YN,yn接线方式:多用于大电流接地系统。
4. YN,yn,do接线方式:也称为开口三角接线,在正常运行状态下,开口三角的输出端上的电压均为零,如果系统发生一相接地时,其余两个输出端的出口电压为每相剩余电压绕组二次电压的3倍,这样便于交流绝缘监视电压继电器的电压整定。
但此接线方式在10KV 及以下的系统中不采用。
此外,当电能表需用在大电流电路中时,可在电源线与电能表之间加接电流互感器。
当电能表接在大电流电路中时,应在电能表与电路之间接电流互感器,匝数少的线圈串接在电源线上,匝数多的线圈与电能表内部的电流线圈串接。
同时请注意,电流互感器的安装必须牢固,互感器外壳的金属外露部分应可靠接地。
以上内容仅供参考,如需了解更具体准确的接法建议咨询电力专业技术人员或查看电力相关操作规范。
电压互感器常见接线图 (图文) 民熔
电压互感器接线图电压互感器(Potential Transformer 简称PT,Voltage Transformer简称VT)和变压器类似,是用来变换电压的仪器。
但变压器变换电压的目的是方便输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位;而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能,或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。
词条介绍了其基本结构、工作原理、主要类型、接线方式、注意事项、异常与处理、以及铁磁谐振等。
民熔电压互感器简介:JDZ-10高压电压互感器10kv半封闭式0.5级羊角型特点:体积小精度高纯铜线圈一体成型安全可靠环氧材质优质钢片电压互感器的电力系统通常有四种接线方式。
电压互感器的接地和相位必须严格连接,严禁电压互感器二次侧短路。
1、单相电压互感器接线方式一个单相电压互感器接线方式一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器。
二、两个单相电压互感器互V/V型的接线方式两台单相电压互感器的V/V接线方式可以测量线电压,但不能测量相电压。
广泛应用于20kV以下中性点不接地或经消弧图接地的电网。
3、三台单相电压互感器Y0/Y0接线方式三个单相电压互感器Y0/Y0型的接线方式可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。
四、三个单相三绕组电压互感器或一个三相五柱式三绕组电压互感器接成Y0/Y0/Δ型三台单相三绕组电压互感器或一台三相五柱三绕组电压互感器接Y0/Y0/Δ型,接Y0型二次线圈,向仪表、继电器和绝缘监测电压表供电。
辅助次级线圈连接成一个开放的三角形,为绝缘监测电压继电器供电。
三相系统正常工作时,三相电压平衡,开三角形两端电压为零。
当一相接地时,开三角形两端出现零序电压,使绝缘监测电压继电器动作并发出信号。
电压互感器接法
电压互感器的接线形式(1)单相接线该接法仅适用于测量相间电压。
如果互感器一次绕组的一端接在线路上,另一端接地,互感器可测量某一相对地电压。
(2)V-V接线由两个单相互感器接线成不完全星形(V-V形),用来测量各相间电压,但不能测量相对地电压,它广泛应用在20kV以下中性点不接地或经消弧线圈接地的电网中。
(3)Y-Y接线由三个单相互感器一、二次侧均接成Y形,可供给要求线电压的仪表和继电器以及要求相电压的绝缘监视电压表。
(4)Y0/Y0/D接线用三台单相三绕组电压互感器构成Y0/Y0/D接线,该接线方式其二次绕组用来测量相间电压和相对地电压,辅助二次绕组接成开口三角形检测零序电压。
以上是PT的几种接线形式,你说的这种情况应该是V-V接线方式。
电压互感器的接线形式(1)单相接线该接法仅适用于测量相间电压。
如果互感器一次绕组的一端接在线路上,另一端接地,互感器可测量某一相对地电压。
(2)V-V接线由两个单相互感器接线成不完全星形(V-V形),用来测量各相间电压,但不能测量相对地电压,它广泛应用在20kV以下中性点不接地或经消弧线圈接地的电网中。
(3)Y-Y接线由三个单相互感器一、二次侧均接成Y形,可供给要求线电压的仪表和继电器以及要求相电压的绝缘监视电压表。
(4)Y0/Y0/D接线用三台单相三绕组电压互感器构成Y0/Y0/D接线,该接线方式其二次绕组用来测量相间电压和相对地电压,辅助二次绕组接成开口三角形检测零序电压。
以上是PT的几种接线形式,你说的这种情况应该是V-V接线方式。
10kv高压计量柜电压互感器为何有的用两个,有的用三个,有何区别。
其作用分别是?2010-01-30 11:17南京哈哈|分类:工程技术科学|浏览7274次请讲述不同选用的道理。
谢谢!分享到:2010-02-04 10:23提问者采纳计量柜主要功能就是计算电流的功。
2个电压互感器,使用的是两相法测量线路的功。
3个电压互感器,使用的是三相法测量线路的功。
电压互感器的接线方式
电压互感器的接线方式留意:电压互感器的接线方式和极性有很大关系,假如极性错误会造成接线错误。
1、电压互感器的极性实际接线时,必需满意“电压脚标规章”。
例如,电能表上需要电压,则电压互感器与电能表的接线方式如图1所示。
图 1 电压互感器与电能表接线示意图2、电压互感器的接线方式(1)电压互感器Vv开口三角形接线方式,如图2(a)所示。
广泛用于中性点不接地或经消弧线圈接地的35Kv及以下的高压三相系统,特殊是10kV三相系统。
(b)图2 电压互感器Vv接线图接线图(b)一次、二次电压相量图即电压互感器一次绕组上承受的电压相量和在相量图中构成V形,二次绕组输出的电压和也如此;并且一次和二次对应的电压相量在相量图中犹如钟表的长针与短针重合12点处,故称此种接线方法为Vv12接法。
这种接法的优点是既能节约一台电压互感器,又可满意三相有功、无功电能表和三相功率表所需的线电压(仪表电压线圈一般是接于二次侧的a、b间和c、b 间)。
接法的缺点是:不能测量相电压,不能接入监视系统绝缘状况的电压表。
(2)电压互感器的Yyn星形接线方式,如图3(a)所示。
图3 电压互感器Yyn接线图Yyn接法用一台三铁芯柱三相电压互感器,也用三台单相电压互感器构成一台三相电压互感器。
该接法多用于小电流接地的高压三相系统,一般是将二次侧中性线引出,接成Yyn0接法。
从过电压爱护观点动身,常要求高压端不接地。
这种接法的缺点是:①当二次负载不平衡时,可能引起较大误差;②为防止高压端单相接地故障,高压侧中性点不允许接地,故不能测量对地电压。
(3)电压互感器的Yy星形接线方式,如图4所示。
图4 电压互感器Yy接线图和相量图常采纳三台单相TV构成一台三相电压互感器组,其优点是:①高压侧中性点接地,可降低绝缘水平,使成本下降;②互感器绕组的额定电压按相电压设计,既可测量相电压也可测量线电压。
该接法适用于高压侧中性点直接接地系统,也适用于中性点不接地系统,但低压侧中性点必需接地。
PT的接线种类和VV接线分析
常用电压互感器的接线电压互感器在三相电路中常用的接线方式有四种,如下图1.一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器,如图1(a)。
2.两个单相电压互感器的V/V形接线,可测量相间线电压,但不能测相电压,它广泛应用在20kV以下中性点不接地或经消弧线图接地的电网中。
如图1(b)。
3.三个单相电压互感器接成Y0/Y0形,如图1(c)。
可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。
4.一台三相五芯柱电压互感器接成Y0/Y0/Δ(开口三角形),如图1(d)所示。
接成Y0形的二次线圈供电给仪表、继电器及绝缘监察电压表等。
辅助二次线圈接成开口三角形,供电给绝缘监察电压继电器。
当三相系统正常工作时,三相电压平衡,开口三角形两端电压为零。
当某一相接地时,开口三角形两端出现零序电压,使绝缘监察电压继电器动作,发出信号。
V/V型的接线图分析V/V连接的两个电压互感器二次侧两个开口端之间的电压与其一次侧的两个开口端电压存在对应的相量关系。
也就是说,二次侧两个开口端及公共端之间的电压也同样满足电源三相电压的关系。
因此,虽然“B相无电压”(未施加任何电压),输出端的电量仍然是三相电量。
左图是正确接线,从相量图看三相平衡;右图是错误接线,从相量图看三相不平衡。
图1 (正确)图2(错误)图3根据ab和ub的线电压可以计算出ca线电压,。
若二次侧ab相接反,从相量图看,则ca线电压变为。
电压互感器几种常见接地点的作用一次侧中性点接地由三只单相电压互感器组成星形接线时,其一次侧中性点必须接地。
如下图所示。
因为电压互感器在系统中不仅有电压测量,而且还起继电保护的作用。
当系统中发生单相接地时,系统中会出现零序电流。
如果一次侧中性点没有接地,那么一次侧就没有零序电流通路,二次侧开口三角形线圈两端也就不会感应出零序电压,继电器KV就不会动作,发不出接地信号。
对于三相五柱式电压互感器,其一次侧中性点同样要接地。
PT的接线种类和VV接线分析
常用电压互感器的接线电压互感器在三相电路中常用的接线方式有四种,如下图1.一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器,如图1(a)。
2.两个单相电压互感器的V/V形接线,可测量相间线电压,但不能测相电压,它广泛应用在20kV以下中性点不接地或经消弧线图接地的电网中。
如图1(b)。
3.三个单相电压互感器接成Y0/Y0形,如图1(c)。
可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。
4.一台三相五芯柱电压互感器接成Y0/Y0/Δ(开口三角形),如图1(d)所示。
接成Y0形的二次线圈供电给仪表、继电器及绝缘监察电压表等。
辅助二次线圈接成开口三角形,供电给绝缘监察电压继电器。
当三相系统正常工作时,三相电压平衡,开口三角形两端电压为零。
当某一相接地时,开口三角形两端出现零序电压,使绝缘监察电压继电器动作,发出信号。
V/V型的接线图分析V/V连接的两个电压互感器二次侧两个开口端之间的电压与其一次侧的两个开口端电压存在对应的相量关系。
也就是说,二次侧两个开口端及公共端之间的电压也同样满足电源三相电压的关系。
因此,虽然“B相无电压”(未施加任何电压),输出端的电量仍然是三相电量。
左图是正确接线,从相量图看三相平衡;右图是错误接线,从相量图看三相不平衡。
图1 (正确) 图2(错误)图3根据ab和ub的线电压可以计算出ca线电压,。
若二次侧ab相接反,从相量图看,则ca线电压变为。
电压互感器几种常见接地点的作用一次侧中性点接地由三只单相电压互感器组成星形接线时,其一次侧中性点必须接地。
如下图所示。
因为电压互感器在系统中不仅有电压测量,而且还起继电保护的作用。
当系统中发生单相接地时,系统中会出现零序电流。
如果一次侧中性点没有接地,那么一次侧就没有零序电流通路,二次侧开口三角形线圈两端也就不会感应出零序电压,继电器KV就不会动作,发不出接地信号。
对于三相五柱式电压互感器,其一次侧中性点同样要接地。
电压互感器4种接线方式
电压互感器4种接线方式电压互感器是一种重要的电力测量仪器,用于测量电网或者电气设备中的电压信号,实现电力系统的保护和控制。
不同的设备和场景需要使用不同的电压互感器接线方式。
本文将介绍电压互感器的4种常见接线方式及其特点。
1. 调压式接线调压式接线也称为平衡式接线,是最常用的电压互感器接线方式之一。
其原理是通过变压器对电网中的高压进行降压处理,使得输出的信号电压符合测量要求,并将降压后的电压输出给仪表进行测量。
调压式接线的优点在于输出电压稳定,误差小,适用于更高精度的测量要求。
但缺点是受限于仪表的输入电阻,导致输出电流较小。
2. 非调压式接线非调压式接线也称为不平衡式接线,主要用于电压比较低、要求不高的场景,如称重设备、电力仪表等。
其原理是在电网中直接接入电压互感器,根据比例关系将电网的电压信号转化为输出信号。
由于不需要进行降压处理,输出电流相对较大,适合较长传输距离的场景。
非调压式接线的优点在于输出电流较大、适用于传输距离较远的场景,但相对来说精度较差,存在输出误差。
3. 双绕组接线双绕组接线是一种特殊的电压互感器接线方式,其原理是在电网中接入具有两个绕组的变压器,将电压信号从高压侧通过变比关系降压到输出端,实现测量。
双绕组接线的优点在于输出电压稳定、精度高、应用范围广泛。
双绕组接线的缺点在于无法自动补偿频率变化或短暂的电压变化,当电网中存在这种不稳定因素时,需要进行人工校正或选用其他的接线方式。
4. 统一接地式接线统一接地式接线是在电网中采用构成三相平衡的三个电压互感器,通过测量三个相位电压来计算电压值,以达到提高测量精度、减小误差的目的。
统一接地式接线的优点在于精度高、能够自动补偿频率变化以及短暂的电压变化,但需要较高的技术水平和较高的成本。
结论针对不同的场景和应用需求,现有的电压互感器有多种接线方式可供选择。
在选择接线方式时,需要根据具体需要考虑测量精度、相位错误、信号抗干扰能力、安装和维护成本等多种因素,并根据实际情况选择最合适的接线方式。
电压互感器vv接线原理
电压互感器vv接线原理
电压互感器的VV接线是一种常见的接线方式,广泛用于中性点绝缘系统或经消弧线圈接地的35kV及以下的高压三相系统中,特别是在10kV三相系统中。
以下是电压互感器VV 接线的工作原理:
电压互感器VV接线是将两台全绝缘单相电压互感器的高低压绕组分别接于相与相之间,构成不完全三角形。
这种接线方式可以节省一台电压互感器,满足三相有功、无功电能计量的要求,但不能用于测量相电压,不能接入监视系统绝缘状况的电压表。
具体来说,在电压互感器的VV接线中,两个单相电压互感器的高压绕组分别接在三相高压线的A相和B相上,而低压绕组则通过仪表继电器等设备接入测量仪表、保护装置等二次回路中。
这种接线方式的好处是可以利用两个单相电压互感器来代替一个三相电压互感器,从而节省了投资。
然而,电压互感器的VV接线也有一些局限性。
由于一次侧是两个单相电压互感器,因此在二次侧需要接入开口三角形等装置来测量零序电压。
此外,当系统发生单相接地故障时,非接地相的电压会升高,这可能会导致电压互感器铁芯饱和,引起铁磁谐振等问题。
因此,在使用电压互感器的VV接线时,需要考虑消谐等问题。
总之,电压互感器的VV接线是一种经济、实用的接线方式,适用于一些特定的电力系统。
在使用时需要注意其局限性,并采取相应的措施来保证系统的安全稳定运行。
电压互感器vv接法 二次三相通的
电压互感器VV接法二次三相通的一、电压互感器(Voltage Transformer)简介电压互感器,又称电压互感器或电压互感器,是一种将高压系统的电压降到安全、便于测量的电压互感器。
它是电气系统中常用的一种电气测量设备,用于变换电压,将高压电器的电压降低到特定值,便于测量仪表或继电保护装置使用。
在电力系统中,电压互感器的作用是十分重要的,它直接关系到电力系统的安全和稳定运行。
二、电压互感器的VV接法在电力系统中,电压互感器的接线方式有很多种,其中比较常用的一种是VV接法。
VV接法是指将两台电压互感器的二次绕组分别接到两台继电保护装置的绕组上,即一台电压互感器的高压侧接到继电保护装置的A相绕组,另一台电压互感器的高压侧接到继电保护装置的C 相绕组,这样可以使得继电保护装置在三相不平衡时仍能正常工作,保证电力系统的安全和稳定运行。
VV接法可以有效地提高继电保护装置的鲁棒性,保证在系统故障发生时,继电保护装置能够及时准确地动作,保护系统设备,避免事故扩大,确保电网的安全稳定运行。
三、电压互感器的二次三相通另外,对于三相系统来说,电压互感器的二次侧一般是三相通的,即三相电压互感器的二次绕组之间是三相对称的,这样可以保证测量的准确性,同时也能够满足三相继电保护装置的要求,保证系统的安全可靠运行。
电压互感器的二次三相通也使得继电保护装置可以全面、准确地获取系统的电压信息,为继电保护装置的运行提供了可靠的数据支持。
四、电压互感器VV接法二次三相通在实际工程中的应用在实际的电力系统工程中,电压互感器VV接法和二次三相通都是非常重要的,它们可以保证继电保护装置在各种异常工作条件下仍能正常、稳定地运行,为电力系统提供了可靠的安全保护。
值得注意的是,在应用过程中,电压互感器的VV接法和二次三相通也需要根据具体的系统结构和工作要求进行合理的选择和设计,以保证系统的可靠性和安全性。
五、个人观点和理解作为电力系统中的重要组成部分,电压互感器的VV接法和二次三相通对于电力系统的安全和稳定运行有着重要的影响。
电压互感器、电流互感器、电能表的接线和原理图
电压互感器、电流互感器、电能表的接线和原理图1、电压互感器,V/V接法电压互感器,V/V接法原理图
电压互感器,V/V接法3D图
2、电压互感器,Y/Y接法
电压互感器,Y/Y接法原理图
电压互感器,Y/Y接法3D图3、电流互感器,不完全星型接法
电流互感器,不完全星型接法原理图
电流互感器,不完全星型接法3D图4、电流互感器,星型接法
电流互感器,星型接法原理图
电流互感器,星型接法3D图(S2需要接地)
5、电能表接线示意图
三相三线电能表组合接线示意图(3*100V电能表+3*100V专变采集终端)
三相四线电能表组合接线示意图(3*57.7V电能表+3*100V专变采集终端)
三相四线电能表组合接线示意图(3*220V电能表+3*220V专变采集终端)6、单变比计量箱原理图
两元件计量,输出6端钮
两元件计量,输出7端钮
三元件计量,输出10端钮7、双变比计量箱原理图
两元件计量,输出6端钮
两元件计量,输出7端钮
两元件计量,输出9端钮8、端钮与接线盒之间的接线图
6端钮接线示意图
7端钮接线示意图
9端钮接线示意图
10端钮接线示意图。
互感器的接线方法
互感器的接线方法互感器是一种用于测量电流和电压的电器设备。
它通常由两个线圈构成,其中一个线圈被称为主线圈,另一个线圈被称为次级线圈。
主线圈中传输的电流或电压会引起次级线圈中的电磁感应,从而导致次级线圈中的电流或电压发生变化。
因此,互感器可以被用于转换电流或电压信号。
在本文中,我们将介绍互感器的接线方法。
1.线圈接法互感器可以通过两种方式接线:串联和并联。
串联方式是将互感器的主线圈与电路中的负载串联,以测量电流。
主线圈所测量的电流会经过互感器传输到次级线圈,次级线圈的输出电流可以被测量或被记录。
串联方式常用于测量高电流。
但是,它需要断电安装,并且测量电路的电阻需要尽可能小,否则会影响性能。
串联方式的接线图如下图所示:并联方式是将互感器的主线圈与电路中的负载并联,以测量电压。
主线圈所测量的电压会经过互感器传输到次级线圈,次级线圈的输出电压可以被测量或被记录。
并联方式常用于测量高电压。
但是,与串联方式相比,它需要更复杂的电路,而且需要注意主线圈和负载之间的电容耦合。
并联方式的接线图如下图所示:2.互感器连接到变压器变压器是一种电气设备,用于转换电压或电流。
它通常由永磁体、铁芯和绕组构成。
变压器的基本原理是在铁芯中产生磁场,该磁场会在绕组中形成电流。
互感器可以与变压器合作以实现更复杂的测量任务。
例如,将互感器连接到变压器的次级侧,可以将变压器的输出电压传输到互感器的输出端。
这种连接方式对于测量变压器的输出电压或电流非常有用。
3.互感器接地在某些情况下,互感器的金属外壳需要被接地,以保护人员和设备不受电流侵害。
如果互感器的金属外壳没有被接地,电气设备的外壳可能会形成悬浮电位,从而可能威胁人员的安全。
因此,金属外壳需要连接到地线上,以保护所有人的安全。
总的来说,互感器在现代电力系统中起着至关重要的作用。
因此,在正确的方式下连接互感器至少应该遵循上述原则,以确保设备的使用安全和有效测量。
PT接线方式
电压互感器的接线方式(图)标签:电压互感器接地接线三相系统(1)Vv 接线方式:广泛用于中性点绝缘系统或经消弧线圈接地的35KV及以下的高压三相系统,特别是10KV三相系统,接线来源于三角形接线,只是“口”没闭住,称为Vv接,此接线方式可以节省一台电压互感器,可满足三相有功、无功电能计量的要求,但不能用于测量相电压,不能接入监视系统绝缘状况的电压表。
信息来源:(2)Y,yn接线方式:主要采用三铁芯柱三相电压互感器,多用于小电流接地的高压三相系统,二次侧中性接线引出接地,此接线为了防止高压侧单相接地故障,高压侧中性点不允许接地,故不能测量对地电压。
(3)YN,yn接线方式:多用于大电流接地系统。
(4)YN,yn,do接线方式:也称为开口三角接线,在正常运行状态下,开口三角的输出端上的电压均为零,如果系统发生一相接地时,其余两个输出端的出口电压为每相剩余电压绕组二次电压的3倍,这样便于交流绝缘监视电压继电器的电压整定,但此接线方式在10KV 及以下的系统中不采用。
电压互感器实际上是一个带铁心的变压器。
它主要由一、二次线圈、铁心和绝缘组成。
电压互感器的接线方式很多,常见的有以下几种:(1)用一台单相电压互感器来测量某一相对地电压或相间电压的接线方式(2) 用两台单相互感器接成不完全星形,也称V—V接线,用来测量各相间电压,但不能测相对地电压,广泛应用在20KV以下中性点不接地或经消弧线圈接地的电网中。
(3) 用三台单相三绕组电压互感器构成YN,yn,d0或YN,y,d0的接线形式,广泛应用于3~220KV系统中,其二次绕组用于测量相间电压和相对地电压,辅助二次绕组接成开口三角形,供接入交流电网绝缘监视仪表和继电器用。
用一台三相五柱式电压互感器代替上述三个单相三绕组电压互感器构成的接线,除铁芯外,其形式与图3基本相同,一般只用于3~15KV系统。
(4)电容式电压互感器接线形式。
在中性点不接地或经消弧线圈接地的系统中,为了测量相对地电压,PT一次绕组必须接成星形接地的方式。
常用电压互感器的接线
常用电压互感器的接线
电压互感器在三相电路中常用的接线方式有四种:如下图
1、一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器,如图1(a)。
2、两个单相电压互感器的V/V形接线,可测量相间线电压,但不能测相电压,如图1(b)。
3、三个单相电压互感器接成Y0/Y0形,如图1(c)。
可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。
4、一台三相五芯柱电压互感器接成Y0/Y0/Δ(开口三角形),如图1(d)所示。
接成Y0形的二次线圈供电给仪表、继电器及绝缘监察电压表等。
辅助二次线圈接成开口三角形,供电给绝缘监察电压继电器。
当三相系统正常工作时,三相电压平衡,开口三角形两端电压为零。
当某一相接地时,开口三角形两端出现零序电压,使绝缘监察电压继电器动作,发出信号。
具体分析如下PT接V/V型的接线图:左图是正确接线,电压平衡;右图是错误接线,电压不平衡。
电压互感器常用接线方式
电压互感器在三相电路中常用的接线方式电压互感器在三相电路中常用的接线方式有四种一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器两个单相电压互感器的V/V形接线,可测量相间线电压,但不能测相电压,它广泛应用在20kV以下中性点不接地或经消弧线图接地的电网中三个单相电压互感器接成YO/YO形,可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。
一台三相五芯柱电压互感器接成YO/YO/ △(开口三角形),接成Y0形的二次线圈供电给仪表、继电器及绝缘监察电压表等。
辅助二次线圈接成开口三角形,供电给绝缘监察电压继电器。
当三相系统正常工作时,三相电压平衡,开口三角形两端电压为零。
当某一相接地时,开口三角形两端出现零序电压,使绝缘监察电压继电器动作,发出信号。
电压互感器二次侧要有一个接地点,这主要是出于安全上的考虑。
当一次、二次侧绕组间的绝缘被高压击穿时,一次侧的高压会窜到二次侧,有了二次侧的接地,能确保人员和设备的安全。
另外,通过接地,可以给绝缘监视装置提供相电压。
二次侧的接地方式通常有中性点接地和V相接地两种采用V相接地时,中性点不能再直接接地。
为了避免一、二次绕组间绝缘击穿后,一次侧高压窜入二次侧,故在二次侧中性点通过一个保护间隙接地。
当高压窜入二次侧时,间隙击穿接地,v相绕组被短接,该相熔断器会熔断,起到保护作用你说的闭口三角没见过,你再仔细看看吧(闭口三角当三相不平衡有零序电压时,不是短路了么)请问:为什么进线电压互感器都是V/V 式,而母线电压互感器都是三相五柱式(其一次线圈及二次线圈均接成星形,附加二次线圈接成开口三角形)?如果进线和母线都采用三相五柱式可以吗?为什么?电压互感器一般有单相接线、V-V 接线、Y-Y 接线、Y0/Y0/ △这四种接线方式。
其中由两个单相互感器接线成不完全星形就是V-V 接法,它是用来测量各相间电压,但不能测量相对地电压,它广泛应用在20kV 以下中性点不接地或经消弧线图接地的电网中。
电压互感器vv接法
电压互感器(Voltage Transformer,简称VT)主要用于测量和保护系统中的电压。
电
压互感器的接线方式有不同的标记,例如"Vv"就是其中一种接线标记。
在这种接线方
式中,"V"表示互感器的高压侧(primary side),"v"表示互感器的低压侧(secondary side)。
"Vv"接法主要应用于单相电压互感器。
接线方法如下:
1. 将电压互感器的高压侧(V端)连接到需要测量的电压点,即系统中的高压侧。
2. 互感器低压侧(v端)应接到测量设备、保护装置或者二次仪表,例如电能表、继
电器、监控设备等。
为了安全起见,有时在低压侧串联一个电磁断路器或熔断器。
接线时需要注意以下几点:
1. 高压侧跟低压侧必须正确连接,不可颠倒。
2. 在连接互感器之前,应确认互感器的额定参数与系统要求相匹配,以确保运行安全。
3. 测试时,请确保电源断开,以确保测试的准确性和安全。
4. 在系统中,如果有多个电压互感器,应确保它们分别连接到正确的线路上,以便进
行准确的测量和保护功能。
5. 在运行过程中,为确保安全和准确性,请定期对电压互感器以及其二次回路进行检
查和维护。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13
SNl0—10型高压少油断路器一相油箱内部结构
1铝帽,2油气分离器,3上接线端子,4油标,5插座式静触头,6灭弧室,7动触头(导电杆),8中
车间变电所的类型
1、2内附式,3、4外附式,5车间内式,6露天或半露天 式,7独立式,8杆上,9地下式,10楼上式
第二节 电气设备中电弧及触头
电弧:一种强烈的电游离现象,光亮很强,温度很高,可烧毁触头、延长断电 时间等。(表面温度3000~4000度,弧心温度10000度。)
一、电弧的产生
触头在分断电流时,触头本身及触头周围的介质中含有大量可被游离的电 子,在外加电压足够大时,产生强烈的电游离而发生电弧。
(本节介绍一次电路中的高压熔断器、隔离开关、负荷开关、断路器及开关柜)
6
一、高压熔断器 (fuse,文字符号为FU)
在电路电流超过规定值并经过一定时间后,使熔体熔化而分断电流、 断开电路的一种保护电器。熔断器的功能主要是对电路及设备进行短路保 护,有的熔断器还具有过负荷保护的功能。 高压熔断器全型号的表示和含义如下:
绝缘灭弧栅对电弧的作用 1绝缘栅片,2电弧,3触头
4
三、对电气触头的基本要求
1、满足正常负荷的发热要求 2、具有足够的机械强度 3、具有足够的动稳定度和热稳定度 4、具有足够的断流能力
5
第三节 高压一次设备
一次电路:(主电路、主接线、主回路)
变配电所中承担输送和分配电能任务的电路。
一次设备:一次电路中所有的设备称一次设备。
9
3、高压隔离开关(QS)
隔离高压电源、保证设备和线路的安全检修。断开后有明显可见的断 开间隙,没有专门的灭弧装置,不允许带负荷操作,可以通断不超过2A的 空载变压器、电容电流不超过5A的空载线路,与高压断路器配合使用。户 内用CS6(83页)型手动操作机构、户外多用绝缘钩棒手工操作。
GN8—10/600型高压隔离开关 1上接线端子,2静触头,3闸刀,4绝缘套管,5下接线端子,6框架,7转轴, 8拐臂,9升降瓷瓶,10支柱瓷瓶
和自由电子。
2、结论
碰撞游离产生电弧, 热游离维持电弧。
二、电弧的熄灭
1、电弧熄灭的条件
去游离率>游离率
2
2、熄灭电弧的去游离方式
正负带电质点的“复合”,重新成为中性质点 正负带电质点的“扩散”,使电弧区带电质点减少
3、交流电弧的熄灭特点
交流电弧每一个周期要暂时熄灭两次,完善的灭弧装置熄灭交流电 弧一般需要几个周期,真空断路器灭弧只要半个周期,同等条件下交流 电弧比直流电弧容易熄灭。
11
高压负荷开关的压气式灭弧装置工作示意图
1弧动触头,2绝缘喷嘴,3弧静触头,4接线端子,5气缸,6活 塞,7上绝缘子,8主静触头,9电弧
12
5、高压断路器(QF)
能通断负荷电流和短路电流,并能在保护装置作用下自动跳闸, 切除短路故障。
分类:按其采用的灭弧介质分:有油、 SF6、真空以及压缩空气断路器、磁 吹断路器等。 按其油量多少又分为:多油(油作灭 弧和相对地(外壳)甚至相与相之间 的绝缘介质)、少油断路器(油只作 来灭弧)。
一次设备分类:
(1)变换设备 其功能是按电力系统运行的要求改变电压或电流、频率等,例如电 力变压器、电压互感器、电流互感器、变频机等。
(2)控制设备 其功能是按电力系统运行的要求来控制一次电路的通、断,例如各 种高低压开关设备。 (3)保护设备 其功能是用来对电力系统进行过电流和过电压等的保护,例如熔断 器和避雷器等。 (4)补偿设备 其功能是用来补偿电力系统中的无功功率,提高系统的功率因数,例 如并联电容器等。 (5)成套设备 它是按一次电路接线方案的要求,将有关一次设备及控制、指示、监 测和保护一次设备的二次设备组合为一体的电气装置,例如高压开关柜、低压配电屏、 动力和照明配电箱等。
7
1、RN1和RN2型户内高压管式熔断器(限流式)
RN1型:主要用于高压电路和设备的短路保护(额定电流可达100A) RN2型:高压电压互感器一次侧短路保护 (额定电流一般为0.5A)
RN1、RN2型高压熔断器安装图
l瓷熔管,2金属管帽3弹性触座,4 熔断指示器,5接线端子,6支柱瓷 瓶,7底座
RN1、RN2型熔断器的熔管剖面示意图
1
1、产生电弧的游离方式:
1)热电发射:触头分断电流时,阴极表面由于大电流收缩集中,出现炽热光 斑,触头表面电子吸收热能发射到触头间隙,形成自由电子。
2)高电场发射:触头开断初,电场强度大,触头表面电子被强行拉出。 3)碰撞游离:高速电子碰撞中性质点,使中性质点变成正离子和自由电子,
当离子浓度足够大时,介质击穿产生电弧。 4)热游离:电弧中心温度高达10000摄氏度,电弧中的中性质点游离为正离子
4、开关电器中常用的灭弧方法
速拉灭弧法、冷却灭弧法、吹弧灭弧法、长弧切短灭弧法、粗弧切 短灭弧法、狭沟灭弧法、真空灭弧法 、SF6灭弧法。
如图所示(下页)
3
吹弧方式(1电弧,2触头)
a)横吹
b)纵吹
电动力吹弧
磁力吹弧 1磁吹线圈,2灭弧触头,3电弧
铁磁吸弧 1电弧,2钢片
钢灭弧Байду номын сангаас对电弧的作用 1钢栅片,2电弧,3触头
1管帽,2瓷管,3工作熔体,4指示熔体,5锡球,6 石英砂填料,7熔断指示器(虚线表示熔断指示器在 熔体熔断时弹出)
8
2、RW4和RW10(F)型户外高压跌开式熔断器
既可作6—10KV线路和设备的短路保护,又可在一定条件下,用高压 绝缘钩棒操作熔管的分合,起高压隔离开关的作用。
RW4—10(G)型跌开式熔断器 1上接线端子,2上静触头,3上动触头,4管帽,5操作环,6熔管(内套纤维质消弧管),7铜 熔丝,8下动触头,9下静触头,10下接线端子,11绝缘瓷瓶,12固定安装板
10
4、高压负荷开关(QL)
具有简单的灭弧装置,能通断一定的负荷电流和过负荷电流, 不能断开短路电流,与高压熔断器配合使用。
FN3—10RT型高压负荷开关 1主轴,2上绝缘子兼气缸,3连杆,4下绝缘子,5框架,6 RN1型高压 熔断器,7下触座,8闸刀,9弧动触头,10绝缘喷嘴(内有弧静触头), 11主静触头,12上触座,13断路弹簧,14绝缘拉杆,15热脱扣器