镍在不锈钢中的作用(精)
国内外最新镍铁生产工艺介绍(精)
国内外最新镍铁生产工艺介绍根据红土镍矿成分的不同,镍生产厂可以选择不同的冶炼工艺。
中国目前还没有一座大型镍铁生产工厂,为了少走弯路可以引进国外成熟的先进技术,在中国国内制造全部设备,以较少的投资,在最短的时间内,选择适宜的沿海地区建设一座大型镍铁生产厂。
为此,比较详细的介绍了乌克兰帕布什镍厂的火法冶炼镍铁的工艺流程和生产指标。
文章还介绍了在镍铁精炼车间,直接冶炼300系列不锈钢工艺的开发。
1. 开发利用海外镍资源满足中国日益增长的镍需求:尽管中国镍资源的开发与利用近年来得到了快速的发展,但是,发展的速度远远跟不上冶金等行业对镍需求增长的速度。
近几年,中国精炼镍产量在8万吨左右,受到资源的限制,短时间内不大可能快速增长。
合资在国外开发镍矿、建设镍生产厂的几个项目虽然已经签约,但是项目产能有限、实施还需要时间。
目前中国镍的年消费量已经快速的增加到1 4.6万吨,中国已经成为仅次于日本的世界第二大镍消费国,是近年来全球镍消费增长最快的国家。
随着国民经济的快速发展,人民生活水平的提高,不锈钢的消费量将上升,这将导致镍的需求量增长的速度大大超过目前可以预期的镍的产出量的增长速度。
有色金属工业协会预计到2010年,中国镍消费量将达到24万吨。
近年来,为了保证国民经济发展对镍的需求,中冶、五矿、太钢、宝钢等大企业实施“走出去”的发展战略,参与海外镍矿资源的开发,这将对中国镍的稳定供应发挥重要作用。
中国的一些民营企业,也积极进行开发利用海外镍资源的探索,取得进展。
利用红土镍矿生产的低镍含量的生铁已经广泛的用于200系列不锈钢的冶炼。
目前中国镍冶炼工艺基本上处于以电解镍为主的单一产品的局面。
研究开发利用红土型镍矿,生产镍铁的技术是必要的。
红土型镍矿用来生产镍铁在经济上合理,没有必要一定要生产电解镍。
这项技术的开发有利于中国企业参与海外镍矿资源开发,占有更多优势矿产资源。
2. 建设火法冶炼镍铁的工厂的条件分析:目前中国还没有大型的镍铁生产厂。
201不锈钢成分标准
201不锈钢成分标准201不锈钢是一种广泛应用于各种工业领域的材料,其成分构成决定了其特性。
以下是201不锈钢的成分标准:1.铬(Cr)铬是201不锈钢中的主要合金元素,含量通常在11%-13%之间。
铬的加入提高了钢的耐腐蚀性和硬度,并赋予了钢材良好的加工性能。
2.镍(Ni)镍是201不锈钢中的重要合金元素,含量通常在3.5%-5%之间。
镍的加入提高了钢的韧性、耐腐蚀性和延展性,使得钢材在低温环境下也能保持良好的性能。
3.锰(Mn)锰是201不锈钢中的另一种合金元素,含量通常在1%-2%之间。
锰的加入提高了钢的强度和硬度,并有助于改善钢的耐腐蚀性能。
4.硅(Si)硅是201不锈钢中的一种合金元素,含量通常在0.75%-1.5%之间。
硅的加入提高了钢的强度和硬度,并有助于改善钢的耐磨性能。
5.碳(C)碳是201不锈钢中的基本元素之一,含量通常在0.1%-0.2%之间。
碳的加入提高了钢的强度和硬度,但过多会导致钢材变脆。
6.磷(P)磷是201不锈钢中的有害元素之一,含量应严格控制。
磷过多会导致钢材变脆,降低其耐腐蚀性能。
7.硫(S)硫也是201不锈钢中的有害元素之一,含量应严格控制。
硫过多会导致钢材出现热脆性,降低其延展性和加工性能。
8.余量(Others)除了上述元素外,201不锈钢中还可能含有其他微量杂质元素,如钛、钡等。
这些元素的含量通常很低,但对钢材的性能也有一定影响。
总之,201不锈钢的成分标准是经过精心设计的,各元素之间的配比使得钢材具有优良的性能。
了解这些成分及其作用有助于更好地理解和应用201不锈钢。
红土镍矿2013-4-22
镍元素在不锈钢中的作用是一种银白色的铁磁性金属。
密度8.9g/cm3,熔点1455℃。
古代埃及、中国和巴比伦人都曾用含镍量很高的陨铁作器物。
可以说,镍是既“古老”又“年轻”的金属。
镍具有磁性,是许多磁性材料的主要组成成分。
镍还具有良好的抗氧化性,在空气中,镍表面形成NiO薄膜,可阻止进一步氧化。
实验证明:纯度为99%的镍,20年内不会发生锈痕。
镍的抗腐蚀能力很强,尤其是对苛性碱的抗蚀能力强,在50%的沸腾苛性钠溶液中镍每年的腐蚀速度不超过25微米。
镍的强度和塑性也很好,可承受各种压力加工。
镍在不锈钢中的耗量最大,不锈钢既能抵抗大气、蒸汽和水的腐蚀,又能耐酸、碱、盐的腐蚀。
故不锈钢广泛地应用于化工、冶金、建筑和各种民用用途,如制作石油化工、纺织、轻工、核能等工业中要求焊接的容器、塔、槽、管道等;尿素生产中的合成塔、洗涤塔、冷凝塔、汽提塔等耐蚀高压设备。
市场上最常用的不锈钢在国内称为Cr18Ni9Ti(读作一铬十八镍九钛),国际编号为304。
镍铬合金机械强度大,耐海水腐蚀性强,故用于制作海洋船舰的涡轮发动机等。
氧化镍矿生产镍铁氧化镍矿生产镍铁(production of ferronickel from nickel oxide ore)硅镁镍矿中的镍和部分铁在高温下被还原剂选择性还原成金属,产出镍铁的过程,为氧化镍矿处理的一种方法。
产品供合金钢生产使用。
自20世纪50年代新喀里多尼亚多尼安博(Doniambo)冶炼厂首先采用回转窑–电炉熔炼氧化镍矿生产镍铁以来,此法已在全世界获得广泛应用。
1988年世界镍铁产品的含镍量约占氧化镍矿总产镍量的65%。
降低电炉熔炼的电耗是该法需待解决的重要课题。
典型的硅镁镍矿含镍量较低(Ni l.8%~3.5%),水分含量很高(30%~45%),在熔炼时形成熔点较高的炉渣和金属相。
在镍铁生产中必须配有完善的干燥设施和可产生高温的电炉。
生产流程包括干燥、煅烧与预还原、熔炼和精炼等环节。
不锈钢所含各元素的作用
不锈钢所含各元素的作用目前已知的化学元素有100多种,在工业中常用的钢铁材料中可以遇到的化学元素约二十多种。
对于人们在与腐蚀现象作长期斗争的实践而形成的不锈钢这一特殊钢系列来说,最常用的元素有十几种,除了组成钢的基本元素铁以外,对不锈钢的性能与组织影响最大的元素是:碳、铬、镍、锰、硅、钼、钛、铌、钛、锰、氮、铜、钴等。
这些元素中除碳、硅、氮以外,都是化学元素周期表中位于过渡族的元素。
实际上工业上应用的不锈钢都是同时存在几种以至十几种元素的,当几种元素共存于不锈钢这一个统一体中时,它们的影响要比单独存在时复杂得多,因为在这种情况下不仅要考虑各元素自身的作用,而且要注意它们互相之间的影响,因此不锈钢的组织决定于各种元素影响的总和。
1).各种元素对不锈钢的性能和组织的影响和作用1-1.铬在不锈钢中的决定作用:决定不锈钢性属的元素只有一种,这就是铬,每种不锈钢都含有一定数量的铬。
迄今为止,还没有不含铬的不锈钢。
铬之所以成为决定不锈钢性能的主要元素,根本的原因是向钢中添加铬作为合金元素以后,促使其内部的矛盾运动向有利于抵抗腐蚀破坏的方面发展。
这种变化可以从以下方面得到说明:①铬使铁基固溶体的电极电位提高②铬吸收铁的电子使铁钝化钝化是由于阳极反应被阻止而引起金属与合金耐腐蚀性能被提高的现象。
构成金属与合金钝化的理论很多,主要有薄膜论、吸附论及电子排列论。
1-2. 碳在不锈钢中的两重性碳是工业用钢的主要元素之一,钢的性能与组织在很大程度上决定于碳在钢中的含量及其分布的形式,在不锈钢中碳的影响尤为显著。
碳在不锈钢中对组织的影响主要表现在两方面,一方面碳是稳定奥氏体的元素,并且作用的程度很大(约为镍的30倍),另一方面由于碳和铬的亲和力很大,与铬形成—系列复杂的碳化物。
所以,从强度与耐腐烛性能两方面来看,碳在不锈钢中的作用是互相矛盾的。
认识了这一影响的规律,我们就可以从不同的使用要求出发,选择不同含碳量的不锈钢。
合金元素对铬镍双相不锈钢组织和性能的影响
合金元素对铬镍双相不锈钢组织和性能的影响1.1 镍的影响镍是强烈的形成奥氏体和扩大γ区的元素,在αγ+双相不锈钢中也不例外。
图5-8系在αγ+双相不锈钢中,随镍量、温度的不同,钢中γ相量增长的示意图。
研究表明,镍在双相不锈钢中还能促进其σ(χ)相的形成,增加钢的脆化敏感性,并有使脆化敏感温度向高温方向移动的倾向。
镍还能降低双相不锈钢马氏体的转变温度,从而改善钢的冷加工变形性能。
镍对约25%铬钢力学件能影响的研究结果表明,随镍量增加,钢的组织结构从纯奥氏体向αγ+?双相过渡。
在αγ+双相范围内。
随镍量增加,钢中γ相量增加,所引起钢的室温强度和韧性的变化见图5-9。
从图中可以看出,当钢中含镍量约5%时.钢的屈服强度达到最高值;含镍量约10%时,钢的抗拉强度达到最大值;而冲击韧性,随镍量增加而提高,在αγ+双相区内可稳定在200~250J/cm2左右。
研究镍对含铬约25%钢的相组成和耐沸腾45%MgCl2应力腐蚀性能的结果指出,当镍~2%时〔钢中为含镍的单—铁素体组织),钢的耐应力腐蚀性能最差,钢中镍量增加到6%~8%时(钢中 相约40%一50%),其耐应力腐蚀性能最佳(如图5-10)。
图5-11和5-12分别指出了Ni对双相不锈钢耐点蚀,耐缝隙腐蚀的影响。
从图5-11中可以看出,钢中含铬约22%时,含镍4%~6%时的双相不锈钢和含铬约25%时,钢中合镍4%~8%时的双相不锈钢,具有最好的耐点蚀性。
从图5-22个可以看出,钢中含镍5%~7%的双相不锈钢、镍的变化对钢在固溶态的耐缝隙腐蚀性能影响不大,而对钢在敏化态的耐缝隙腐蚀性能则有显著影响。
其它的研究工作同样指出,为了获得良好耐孔蚀,附缝隙腐蚀性能,当双相钢中铬量一定时,必定有一适宜的镍量范围与其相适应。
显然,除Ni的作用外,主要是钢中适宜相比例所起的良好影响。
根据研究,对25Cr-2.5Mo-3cu-0.15N钢而言,,最佳镍量约为5%;对28Cr-25Mo-15Cu-0.15N钢而言,约为8%。
316不锈钢含量成分表
《316不锈钢含量成分表》一、铬(Cr):约16%-18%铬就像是316不锈钢的“守护天使”,它能让钢材表面形成一层致密的氧化膜,就像给钢材穿上了一层坚固的“防护服”,防止钢材生锈和被腐蚀。
比如说,我们家里的不锈钢水槽,如果是316不锈钢材质的,那它的铬含量就保证了水槽在长期接触水和各种清洁剂的情况下,依然能保持光亮如新,不会轻易生锈。
你想想,要是水槽生锈了,那多难看啊,还会影响使用,对吧?所以铬的作用可大了呢!二、镍(Ni):约10%-14%镍可是316不锈钢的“调和大师”哦!它能提高钢材的韧性和延展性,让钢材变得更加“柔软”和易于加工,同时还能增强钢材的耐腐蚀性。
打个比方,就像我们做面包时需要加入酵母让面团更有弹性一样,镍就是316不锈钢中的“酵母”。
我有个朋友是做不锈钢饰品加工的,他就特别喜欢用316不锈钢,因为镍的存在让他在制作复杂形状的饰品时更容易操作,而且制作出来的饰品质量好,不容易断裂,客户都特别满意。
你看,镍的作用是不是很神奇呀?三、钼(Mo):约2%-3%钼就像是316不锈钢的“秘密武器”,它能大大提高钢材的抗腐蚀能力,特别是在一些恶劣的环境下,比如海边或者有腐蚀性化学物质的地方,316不锈钢能表现出超强的耐腐蚀性,这可多亏了钼的功劳。
我听说有个化工厂在设备改造时,选用了316不锈钢,就是因为它里面的钼含量合适。
以前用普通不锈钢的时候,设备很容易被腐蚀损坏,维修成本特别高。
自从换了316不锈钢,设备的使用寿命大大延长了,节省了不少成本呢!这钼的作用可真是不容小觑啊!四、碳(C):≤0.08%碳在316不锈钢中就像是一个需要被“小心控制”的小家伙。
适量的碳能保证钢材有一定的强度,但如果碳含量过高,就会影响钢材的耐腐蚀性和焊接性能。
比如说,在一些对焊接要求很高的工程中,如果316不锈钢的碳含量超标,那么在焊接时就可能会出现裂纹等问题,影响工程质量。
所以啊,控制好碳含量是非常重要的。
镍在不锈钢中作用
镍在不锈钢中作用镍在不锈钢中的主要作用在于它改变了钢的晶体结构。
在不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。
普通碳钢的晶体结构称为铁氧体,呈体心立方(BCC)结构,加入镍,促使晶体结构从体心立方(BCC)结构转变为面心立方(FCC)结构,这种结构被称为奥氏体。
然而,镍并不是唯一具有此种性质的元素。
常见的奥氏体形成元素有:镍、碳、氮、锰、铜。
这些元素在形成奥氏体方面的相对重要性对于预测不锈钢的晶体结构具有重要意义。
目前,人们已经研究出很多公式来表述奥氏体形成元素的相对重要性,最著名的是下面的公式:奥氏体形成能力=Ni%+30C%+30N%+0.5Mn%+0.25Cu%从这个等式可以看出:碳是一种较强的奥氏体形成元素,其形成奥氏体的能力是镍的30倍,但是它不能被添加到耐腐蚀的不锈钢中,因为在焊接后它会造成敏化腐蚀和随后的晶间腐蚀问题。
氮元素形成奥氏体的能力也是镍的30倍,但是它是气体,想要不造成多孔性的问题,只能在不锈钢中添加数量有限的氮。
添加锰和铜会造成炼钢过程中耐火生命减少和焊接的问题。
从镍等式中可以看出,添加锰对于形成奥氏体并不非常有效,但是添加锰可以使更多的氮溶解到不锈钢中,而氮正是一种非常强的奥氏体形成元素。
在200系列的不锈钢中,正是用足够的锰和氮来代替镍形成100%的奥氏体结构,镍的含量越低,所需要加入的锰和氮数量就越高。
例如在201型不锈钢中,只含有4.5%的镍,同时含有0.25%的氮。
由镍等式可知这些氮在形成奥氏体的能力上相当于7.5%的镍,所以同样可以形成100%奥氏体结构。
这也是200系列不锈钢的形成原理。
在有些不符合标准的200系列不锈钢中,由于不能加入足够数量的锰和氮,为了形成100%的奥氏体结构,人为的减少了铬的加入量,这必然导致了不锈钢抗腐蚀能力的下降。
在不锈钢中,有两种相反的力量同时作用:铁素体形成元素不断形成铁素体,奥氏体形成元素不断形成奥氏体。
合金元素对铬镍双相不锈钢组织和性能的影响
合金元素对铬镍双相不锈钢组织和性能的影响1.1 镍的影响镍是强烈的形成奥氏体和扩大区的元素,在双相不锈钢中也不例外。
图5-8系在双相不锈钢中,随镍量、温度的不同,钢中相量增长的示意图。
研究表明,镍在双相不锈钢中还能促进其()相的形成,增加钢的脆化敏感性,并有使脆化敏感温度向高温方向移动的倾向。
镍还能降低双相不锈钢马氏体的转变温度,从而改善钢的冷加工变形性能。
镍对约25%铬钢力学件能影响的研究结果表明,随镍量增加,钢的组织结构从纯奥氏体向?双相过渡。
在双相范围内。
随镍量增加,钢中相量增加,所引起钢的室温强度和韧性的变化见图5-9。
从图中可以看出,当钢中含镍量约5%时.钢的屈服强度达到最高值;含镍量约10%时,钢的抗拉强度达到最大值;而冲击韧性,随镍量增加而提高,在双相区内可稳定在200~250J/cm2左右。
研究镍对含铬约25%钢的相组成和耐沸腾45%MgCl2应力腐蚀性能的结果指出,当镍~2%时〔钢中为含镍的单—铁素体组织),钢的耐应力腐蚀性能最差,钢中镍量增加到6%~8%时(钢中相约40%一50%),其耐应力腐蚀性能最佳(如图5-10)。
图5-11和5-12分别指出了Ni对双相不锈钢耐点蚀,耐缝隙腐蚀的影响。
从图5-11中可以看出,钢中含铬约22%时,含镍4%~6%时的双相不锈钢和含铬约25%时,钢中合镍4%~8%时的双相不锈钢,具有最好的耐点蚀性。
从图5-22个可以看出,钢中含镍5%~7%的双相不锈钢、镍的变化对钢在固溶态的耐缝隙腐蚀性能影响不大,而对钢在敏化态的耐缝隙腐蚀性能则有显著影响。
其它的研究工作同样指出,为了获得良好耐孔蚀,附缝隙腐蚀性能,当双相钢中铬量一定时,必定有一适宜的镍量范围与其相适应。
显然,除Ni的作用外,主要是钢中适宜相比例所起的良好影响。
根据研究,对25Cr-2.5Mo-3cu-0.15N钢而言,,最佳镍量约为5%;对28Cr-25Mo-15Cu-0.15N钢而言,约为8%。
元素镍的作用
元素镍的作用
镍是一种重要的过渡金属元素,它在自然界中广泛存在于矿物中,也是人类生产和生活中不可或缺的元素之一。
镍的作用非常广泛,下面我们来详细了解一下。
1. 镍在钢铁生产中的作用
镍是钢铁中的重要合金元素之一,它可以提高钢铁的强度、韧性和耐腐蚀性。
在不锈钢中,镍的含量可以达到8%以上,使得钢铁具有优异的耐腐蚀性和高温强度,广泛应用于化工、航空、航天等领域。
2. 镍在电池生产中的作用
镍在电池生产中也有着重要的作用。
镍氢电池和镍镉电池都是以镍为主要材料制成的。
镍氢电池具有高能量密度、长寿命、环保等优点,被广泛应用于电动汽车、无人机等领域。
而镍镉电池则具有高功率、高温性能好等特点,被广泛应用于航空、军事等领域。
3. 镍在化学反应中的作用
镍在化学反应中也有着重要的作用。
例如,镍催化剂可以促进化学反应的进行,提高反应速率和选择性。
镍催化剂被广泛应用于有机合成、石油化工等领域。
此外,镍还可以作为催化剂用于水解、氧化、加氢等反应中。
4. 镍在生物体内的作用
镍在生物体内也有着重要的作用。
它是一些酶的重要组成部分,参与了生物体内的许多代谢过程。
例如,镍可以促进植物中的氮代谢和铁代谢,对植物的生长和发育有着重要的影响。
镍在人类生产和生活中的作用非常广泛,它不仅是钢铁、电池、化学反应等领域的重要材料,还在生物体内发挥着重要的作用。
随着科技的不断发展,镍的应用领域还将不断扩大,为人类的生产和生活带来更多的便利和发展。
镍的性能和用途
镍有什么用途?镍大量用来制造各种类型的不锈钢、软磁合金和合金结构钢。
镍和铬、铜、铝、钴等元素可组成耐热合金、电工合金和耐蚀合金等。
镍铬合金(如Ni -Cr20)有高的耐热性和大的电阻,用它做的热电体(电阻丝),是电炉、电烙铁、电熨斗等的电热元件,可在1100℃下长期工作;Ni-Cr9和Ni-Cr10虽然耐热性略差,但电阻大,电阻温度系数小,热电势大,是热电偶的好材料。
镍基耐热合金主要作涡轮发动机涡轮盘、燃烧室和涡轮叶片等。
著名的“蒙乃尔合金”是含铜、铁和锰的耐蚀镍合金,强度高,塑性好,耐腐蚀,成为电器、海轮和医疗器械制造业的重要材料。
镍硅合金常制成线、带、棒用于电子电子管合电真空仪器中。
镍铁、镍钴合金是良好的磁性材料。
镍的主要用途是制造不锈钢、高镍合金钢和合金结构钢,被广泛用于飞机、雷达、导弹、坦克、舰艇、宇宙飞船、原子反应堆等各种军工制造业;在民用工业中,镍常制成结构钢、耐酸钢、耐热钢等大量用于各种机械制造业、石油;镍与铬、铜、铝、钴等元素可组成非铁基合金。
镍基合金、镍铬基合金是耐高温、抗氧化材料,用于制造喷气涡轮、电阻、电热元件、高温设备结构件等;镍还可作陶瓷颜料和防腐镀层;镍钴合金是一种永磁材料,广泛用于电子遥控、原子能工业和超声工艺等领域,在化学工业中,镍常用作氢化催化剂。
近年来,在彩色电视机、磁带录音机和其他通讯器材等方面镍的用量也正在迅速增长。
纳米镍粉用途磁流体用铁、钴、镍及其合金粉末生产的磁流体性能优异,广泛应用于密封减震、医疗器械、声音调节、光显示等。
高效催化剂由于比表面巨大和高活性,纳米镍粉具有极强的催化效果,可用于有机物氢化反应、汽车尾气处理等。
高效助燃剂将纳米镍粉添加到火箭的固体燃料推进剂中可大幅度提高燃料的燃烧热、燃烧效率,改善燃烧的稳定性。
导电浆料电子浆料广泛应用于微电子工业中的布线、封装、连接等,对微电子器件的小型化起着重要作用,用镍、铜、铝纳米粉体制成的电子浆料性能优越,有利于线路进一步微细化。
不锈钢的腐蚀和耐腐蚀原理
镍与不锈钢基础知识—镍在不锈钢中的作用镍在不锈钢中的主要作用在于它改变了钢的晶体结构。
在不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。
普通碳钢的晶体结构称为铁素体,呈体心立方(BCC)结构,加入镍,促使晶体结构从体心立方(BCC) 结构转变为面心立方(FCC)结构,这种结构被称为奥氏体。
然而,镍并不是唯一具有此种性质的元素。
常见的奥氏体形成元素有:镍、碳、氮、锰、铜。
这些元素在形成奥氏体方面的相对重要性对于预测不锈钢的晶体结构具有重要意义。
目前,人们已经研究出很多公式来表述奥氏体形成元素的相对重要性,最著名的是下面的公式:奥氏体形成能力=Ni%+30C%+30N%+0.5Mn%+0.25Cu%从这个等式可以看出:碳是一种较强的奥氏体形成元素,其形成奥氏体的能力是镍的30倍,但是它不能被添加到耐腐蚀的不锈钢中,因为在焊接后它会造成敏化腐蚀和随后的晶间腐蚀问题。
氮元素形成奥氏体的能力也是镍的30倍,但是它是气体,想要不造成多孔性的问题,只能在不锈钢中添加数量有限的氮。
添加锰和铜会造成炼钢过程中耐火生命减少和焊接的问题。
从镍等式中可以看出,添加锰对于形成奥氏体并不非常有效,但是添加锰可以使更多的氮溶解到不锈钢中,而氮正是一种非常强的奥氏体形成元素。
在200系列的不锈钢中,正是用足够的锰和氮来代替镍形成100%的奥氏体结构,镍的含量越低,所需要加入的锰和氮数量就越高。
例如在201型不锈钢中,只含有4.5%的镍,同时含有0.25%的氮。
由镍等式可知这些氮在形成奥氏体的能力上相当于7.5%的镍,所以同样可以形成100%奥氏体结构。
这也是200系列不锈钢的形成原理。
在有些不符合标准的200系列不锈钢中,由于不能加入足够数量的锰和氮,为了形成100%的奥氏体结构,人为的减少了铬的加入量,这必然导致了不锈钢抗腐蚀能力的下降。
在不锈钢中,有两种相反的力量同时作用:铁素体形成元素不断形成铁素体,奥氏体形成元素不断形成奥氏体。
镍和铬在不锈钢中的主要作用
镍在不锈钢中的主要作用镍在不锈钢中的主要作用在于它改变了钢的晶体结构。
在不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。
普通碳钢的晶体结构称为铁氧体,呈体心立方(BCC)结构,加入镍,促使晶体结构从体心立方(BCC) 结构转变为面心立方(FCC)结构,这种结构被称为奥氏体。
然而,镍并不是唯一具有此种性质的元素。
常见的奥氏体形成元素有:镍、碳、氮、锰、铜。
这些元素在形成奥氏体方面的相对重要性对于预测不锈钢的晶体结构具有重要意义。
在不锈钢中,有两种相反的力量同时作用:铁素体形成元素不断形成铁素体,奥氏体形成元素不断形成奥氏体。
最终的晶体结构取决于两类添加元素的相对数量。
铬是一种铁素体形成元素,所以铬在不锈钢晶体结构的形成上和奥氏体形成元素之间是一种竞争关系。
因为铁和铬都是铁素体形成元素,所以400系列不锈钢是完全铁素体不锈钢,具有磁性。
在把奥氏体形成元素-镍加入到铁-铬不锈钢的过程中,随着镍成分增加,形成的奥氏体也会逐渐增加,直至所有的铁素体结构都被转变为奥氏体结构,这样就形成了300系列不锈钢。
如果仅添加一半数量的镍,就会形成50%的铁素体和50%的奥氏体,这种结构被称为双相不锈钢。
400系列不锈钢是一种铁、碳合铬的合金。
这种不锈钢具有马氏体结构和铁元素,因此具有正常的磁特性。
400系列不锈钢具有很强的抗高温氧化能力,而且与碳钢相比,其物理特性和机械特性都有进一步的改善。
大多数400系列不锈钢都可以进行热处理。
300系列不锈钢是一种含有铁、碳、镍和铬的合金材料,一种无磁性不锈钢材料,比400系列不锈钢具有更好的可锻特性。
由于300系列不锈钢的奥氏体结构,因此它在许多环境中具有很强的抗腐蚀性能,具有很好的抗金属超应力引起的腐蚀所造成的断裂的性能,而且其材料特性不受热处理的影响。
不锈钢是20世纪重要发明之一,经过近百年的研制和开发已形成一个有300多个牌号的系列化的钢种。
301不锈钢镍含量标准(一)
301不锈钢镍含量标准(一)301不锈钢镍含量标准什么是301不锈钢301不锈钢是一种高强度、耐腐蚀的钢材,属于铬镍系不锈钢。
它是以17%到19%的铬和7%到10%的镍为主要合金元素,加上少量的碳、锰、硅、钛等元素精炼制成的。
镍含量的重要性镍是不锈钢中的重要合金元素之一,对不锈钢的抗腐蚀性、机械强度和可加工性都有很大的影响。
通常来说,不锈钢中镍的含量越高,其抗腐蚀和耐热能力就越强。
301不锈钢镍含量标准国家标准GB/T 20878-2007《不锈钢试验方法》规定了301不锈钢镍的含量标准:镍的质量分数应不低于7.0%。
在实际的生产中,301不锈钢也存在不同的规格和标准,在使用时应根据具体需要选择合适的产品。
301不锈钢的应用领域301不锈钢通常被广泛应用于制造高强度零部件和构件,如弹簧、导线、电气连接器、紧固件等。
同时,它也适用于航空、化工等领域,用于制造耐腐蚀、耐高温的零部件和部件组件。
结论301不锈钢镍的含量标准不低于7.0%,其镍含量对不锈钢的机械强度、抗腐蚀能力和可加工性等性能均有很大影响。
301不锈钢广泛适用于高强度零部件、导线、电气连接器、紧固件等领域。
注意事项在选择301不锈钢的产品和应用领域时,需要根据具体的要求和实际情况进行考虑。
此外,镍作为一种有害元素,其过高的含量也可能会对人体健康造成不利影响,因此在使用过程中也要注意安全。
参考文献1.GB/T 20878-2007 不锈钢试验方法2.王兆平,焦煦,杨有海. 301不锈钢在工业上的应用[J]. 氟化工,2003, 06: 038-040.结语301不锈钢作为一种重要的不锈钢材料,其镍含量标准对其性能具有至关重要的作用。
我们应该在了解其标准和特性的基础上,合理选择使用,并在使用过程中注意安全,以保证生产的可靠性和安全性。
镍元素对不锈钢的影响
镍元素对不锈钢的影响镍是的主要合金元素,其主要作用是稳定奥氏体,使钢获得完全奥氏体组织,从而使钢具有良好的强度和塑性,韧性的配合,并具有优良的冷,热加工性和冷形成性以及焊接,低温与无磁等性能,同时提高奥氏体不锈钢的热力学稳定性,使之不仅比相同铬,钼含量的铁素体,马氏体等类不锈钢肯有更好的不锈性和耐氧化性介质的性能,而且于表面膜稳定性的提高,从而使钢还具有更加优异的耐一些还原性介质的性能。
1.镍对组织的影响镍是强烈稳定奥氏体且扩大奥氏体相区的元素,为了获得单一的奥氏体组织,当钢中含有0.1%碳和18%铬时所需的最低镍含量约为8%,这便是最著名18-8铬镍奥氏体不锈钢的基本成分,奥氏体不锈钢中,随着镍含量的增加,残余的铁素体可完全消除,并显著降低σ相形成的倾向;同时马氏体转变温度降低,甚至可不出现λ→M相变,但是镍含量的增加会降低碳在奥氏体不锈钢中的溶解度,从而使碳化物析出倾向增强。
2.镍对性能的影响镍对奥氏体不锈钢特别是对铬镍奥氏体不锈钢力学性能的影响主要是由镍对奥氏体稳定性的影响来决定,在钢中可能发生马氏体转变的镍含量范围内,随着镍含量的增加,钢的强度降低,塑性提高,具有稳定奥氏体组织的铬镍奥氏体不锈钢韧性(包括极低温韧性)非常优良,因而可作为低温钢使用,这是众所周知的,对于具有稳定奥氏体组织的铬锰奥氏体不锈钢,镍的加入可进一步改善其韧性.镍还可显著降低奥氏体不锈钢的冷加工硬化倾向,这主要是由于奥氏体稳定性增大,减少以至消除了冷加工过程中的马氏体转变,同时对奥氏体本身的冷加工硬化作用不太明显,不锈钢冷加工硬化倾向的影响,镍降低奥氏体不锈钢冷加工硬化速率,与降低钢的室温及低温强度,提高塑性的作用,决定了镍含量的提高有利于奥氏体不锈的冷加工成形性能,提高镍含量还可减少以至消除18-8和17-14-2型铬镍奥氏体不锈钢中的δ铁素体,从而提高其热加工性能,但是,δ铁素体的减少对这些钢种的可焊接性不利会增大焊接热裂纹丝倾向,此外,镍还可显著提高铬锰氮(铬锰镍氮)奥氏体不锈钢的热加工性能,从而显著提高钢的成材率。
不锈钢中各元素作用
CR--钝化是因为阳极反响被防止氧化而激发金属与合金耐腐化性能的现象。
构成金属与合金钝化的理论好多,首要有薄膜论、吸附论及电子列举论。
碳是家产用钢的主要元素之一,钢的性能与组织在很大程度上决定于碳在钢中的含量及其散布的形势,在不锈钢中碳的影响特别较着。
碳在不锈钢中对组织的影响主要示意在双方面,一方面碳是不变奥氏体的元素,而且传染感人的程度很大(约为镍的 30 倍),其余一方面因为碳和铬的亲和力很大,与铬构成—系列复杂的碳化物。
所以,从强度与耐腐烛性能双方面来看,碳在不锈钢中的感人是相互矛盾的。
比如工业中最遍布的,也是最最少的不锈钢—— 0CR13~4CR13这五个钢号的标准含铬量规定为 12~14%,就是把碳要与铬形成碳化铬的成分考虑进往此后才决意的,即在于使碳与铬连系成碳化铬此后,固溶体中的含铬量不致低于 11.7 %这一最低限度的含铬量。
就这五个钢号来说因为含碳量不一样,强度与耐腐化性能也是有辩解的,0CR13~2CR13钢的耐腐化性较好但强度低于 3CR13和 4CR13钢,多用于制造布局部件,后两个钢号因为含碳较高而可获取高的强度多用于制造弹簧、刀具等要求高强度及耐磨的部件。
又如为了投降18-8铬镍不锈钢的晶间腐蚀,能够将钢的含碳量降至0.03 %以下,或参与比铬和碳亲和力更大的元素(钛或铌),使之不形成碳化铬,再如当高硬度与耐磨性成为主要要求时,我们能够在增添钢的含碳量的同时适当地进步含铬量,做到既知足硬度与耐磨性的要求,又兼备—定的耐腐化功能,工业上用作轴承、量具与刃拥有不锈钢 9CR18和 9CR17MOVCO钢,含碳量虽高达0.85 ~0.95 %,因为它们的含铬量也响应地提升了,所以仍担保了耐腐化的要求。
总的来说,今朝工业中获取利用的不锈钢的含碳量都是比较低的,多数不锈钢的含碳量在0.1 ~0.4 %之间,耐酸钢则含碳0.1 ~0.2 %的。
含碳量大于0.4 %的不锈钢仅占钢号总数的一小部分,这是因为在大多数使用条件下,不锈钢老是以耐腐化为主要目标。
不锈钢各元素的作用
铬;能提高钢的淬透性和耐磨*,能改善钢的抗腐蚀能力和抗氧化作用.钛;能细化钢的晶粒组织,从而提高钢的强度和韧*.在不锈钢中,钛能消除或减轻钢的晶间腐蚀现象.镍;能提高钢的强度和韧*,提高淬透*.含量高时,可显著改变钢和合金的一些物理性能,提高钢的抗腐蚀能力.铬: 产生钝化膜,阻碍阳极反应,提高钢的电极电位,提高钢的抗化学腐蚀性能.镍:扩大γ区,降低钢的Ms点(室温下)使钢在室温下有单奥氏体组织钛:阻止(Cr,Fe)23C3 在晶界上析出,消除钢的”晶间腐蚀)倾向铬使钢具有良好的高温抗氧化性和耐氧化介质腐蚀的作用;镍使钢不仅能耐酸,而且能抗碱的腐蚀,对大气及盐都有抗蚀能力;钛使钢具有抗晶间腐蚀能力。
C r 是强化元素,少量加入Cr就能提高钢的抗H2S,NH3,CO2,H2O,HNO3, 高温高压H2及抗大气,海水腐蚀的能力.Cr能防止钢脱碳,在钢表面形成致密的氧化膜,故能提高钢的高温氧化性介质中的耐蚀*,但是Cr不能提高钢的抗碱,氯化物和硝酸盐腐蚀的能力.Ni可强化铁素体,改善钢的抗低温冲击性能.能提高对酸,碱和海水的耐腐蚀能力,也能增强耐大气腐蚀及抗腐蚀疲劳的能力,但是在耐H2S腐蚀方面,Ni是有害元素. 无助于抗高温高压H2的腐蚀.反而易使钢产生腐蚀破裂.了解一下各种元素对不锈钢的性能和组织的影响。
1.铬——是构成不锈钢的基本元素。
铬是决定不锈钢耐腐蚀性能的最基本元素。
在氧化性介质中,铬能使钢的表面很快形成一层实际为腐蚀介质不能透过和不溶解的富铬的氧化膜,这层氧化膜很致密,并与金属基本结合得很牢固,保护钢免受外界介质进一步氧化浸蚀;铬还能有效地提高钢的电极电位。
当含铬量不低于12.5%原子时,可使钢的电极电位发生突变,由负电位升到正的电极电位。
因而可显著提高钢的耐蚀性。
铬的含量越高,钢的耐蚀性能越好。
当含铬量达到25%、37.5%原子时,会发生第二次第三次的突变,使钢具有更高的耐腐蚀性能。
2.镍——单独不能构成不锈钢镍对不锈钢耐腐蚀的影响,只有它与铬配合时才能充分显示出来。
镍在不锈钢中的作用
镍在不锈钢中的作用
镍是一种重要的合金元素,其在不锈钢中的作用主要有以下几个方面:
1. 提高强度和硬度:添加镍可以提高不锈钢的强度和硬度,使其具有更好的耐腐蚀性、耐磨性和耐高温性能。
2. 改善可焊性:镍能与铬形成更稳定的铬镍化合物,这些化合物有助于防止氧化和腐蚀,同时提高了不锈钢的可焊性。
3. 改善耐蚀性:镍能够在不锈钢表面形成一层致密的氧化膜,防止水和氧气的侵蚀,从而提高不锈钢的耐腐蚀性。
4. 改善机械性能:镍可以让不锈钢更易于加工成形,同时提高其机械性能,例如抗拉强度,硬度和耐磨性。
综上所述,镍在不锈钢中的作用非常重要,它能够使不锈钢具有更好的性能和更广泛的应用前景。
不锈钢中各元素作用
• 3、对于工作温度在300℃以上、有较强腐 蚀性的介质,须采用含有Ti或Nb稳定化元素 或超低碳不锈钢焊条。 如A137或A002等。
• 4、对于含有稀硫酸或盐酸的介质,常选用含 Mo或含Mo和Cu的不锈钢焊条。 如:A032、A052等。
• 钼(Mo):可以抑制合金钢由于火而引起 的脆性。
• 钛(Ti):使钢的内部组织致密,细化晶粒 力;降低时效敏感性和冷脆性。改善焊接 性能。在铬18镍9奥氏体不锈钢中加入适当 的钛,可避免晶间腐蚀。
• 钒(V)能细化钢的晶粒组织,提高钢的强 度,韧性和耐磨性.当它在高温熔入奥氏 体时,可增加钢的淬透性。
• 钨(W)能提高钢的耐磨性
• 铜(Cu)改善普通低合金钢的抗大气腐蚀 性能,特别是和磷配合使用时更为明显。
• 氮(N)能提高钢的强度,低温韧性和焊接 性,增加时效敏感性。
• 从以上图片可以看出:
1、Cr:防锈,不锈钢的主要组成; 2、Ni:奥氏体的形成元素;镍对酸碱有较高 的耐腐蚀能力,在高温下有防锈和耐热能力;
5、对于在低温条件下工作的奥氏体不锈钢,应 保证焊接接头在使用温度的低温冲击韧性,故 采用纯奥氏体焊条。
如A402、A407。
6、双相奥氏体钢焊缝碱性药皮与钛钙型药皮 焊条的差别不像碳钢焊条那样显著。因此在 实际应用中,从焊接工艺性能方面着眼较多,大 都采用药皮类型代号为17或16的焊条
如A102A、A102、A132等。
• M 马氏体不锈钢 • F 铁素体不锈钢 • A 奥氏体不锈钢 • A一F 双相不锈钢。
三、不锈钢的焊条选用要点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
镍在不锈钢中的作用
镍在不锈钢中的主要作用在于它改变了钢的晶体结构。
在不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。
普通碳钢的晶体结构称为铁氧体,呈体心立方(BCC结构,加入镍,促使晶体结构从体心立方(BCC 结构转变为面心立方(FCC 结构,这种结构被称为奥氏体。
然而,镍并不是唯一具有此种性质的元素。
常见的奥氏体形成元素有:镍、碳、氮、锰、铜。
这些元素在形成奥氏体方面的相对重要性对于预测不锈钢的晶体结构具有重要意义。
目前,人们已经研究出很多公式来表述奥氏体形成元素的相对重要性,最著名的是下面的公式:
奥氏体形成能力=Ni%+30C%+30N%+0.5Mn%+0.25Cu%
从这个等式可以看出:碳是一种较强的奥氏体形成元素,其形成奥氏体的能力是镍的30倍,但是它不能被添加到耐腐蚀的不锈钢中,因为在焊接后它会造成敏化腐蚀和随后的晶间腐蚀问题。
氮元素形成奥氏体的能力也是镍的30倍,但是它是气体,想要不造成多孔性的问题,只能在不锈钢中添加数量有限的氮。
添加锰和铜会造成炼钢过程中耐火生命减少和焊接的问题。
从镍等式中可以看出,添加锰对于形成奥氏体并不非常有效,但是添加锰可以使更多的氮溶解到不锈钢中,而氮正是一种非常强的奥氏体形成元素。
在200系列的不锈钢中,正是用足够的锰和氮来代替镍形成100%的奥氏体结构,镍的含量越低,所需要加入的锰和氮数量就越高。
例如在201型不锈钢中,只含有4.5%的镍,同时含有0.25%的氮。
由镍等式可知这些氮在形成奥氏体的能力上相当于7.5%的镍,所以同样可以形成100%奥氏体结构。
这也是200系列不锈钢的形成原理。
在有些不符合标准的200系列不锈钢中,由于不能加入足够数量的锰和氮,为了形成100%的奥氏体结构,人为的减少了铬的加入量,这必然导致了不锈钢抗腐蚀能力的下降。
在不锈钢中,有两种相反的力量同时作用:铁素体形成元素不断形成铁素体,奥氏体形成元素不断形成奥氏体。
最终的晶体结构取决于两类添加元素的相对数量。
铬是一种铁素体形成元素,所以铬在不锈钢晶体结构的形成上和奥氏体形成元素之间
是一种竞争关系。
因为铁和铬都是铁素体形成元素,所以400系列不锈钢是完全铁素体不锈钢,具有磁性。
在把奥氏体形成元素-镍加入到铁-铬不锈钢的过程中,随着镍成分增加,形成的奥氏体也会逐渐增加,直至所有的铁素体结构都被转变为奥氏体结构,这样就形成了300系列不锈钢。
如果仅添加一半数量的镍,就会形成50%的铁素体和50%的奥氏体,这种结构被称为双相不锈钢。
400系列不锈钢是一种铁、碳合铬的合金。
这种不锈钢具有马氏体结构和铁元素,因此具有正常的磁特性。
400系列不锈钢具有很强的抗高温氧化能力,而且与碳钢相比,其物
理特性和机械特性都有进一步的改善。
大多数400系列不锈钢都可以进行热处理。
300系列不锈钢是一种含有铁、碳、镍和铬的合金材料,一种无磁性不锈钢材料,比400系列不锈钢具有更好的可锻特性。
由于300系列不锈钢的奥氏体结构,因此它在许多环境中具有很强的抗腐蚀性能,具有很好的抗金属超应力引起的腐蚀所造成的断裂的性能,而且其材料特性不受热处理的影响。