机械原理第九章凸轮机构及其设计PPT课件

合集下载

机械原理凸轮机构 ppt课件

机械原理凸轮机构  ppt课件


a dv / dt 2C2

★注意:
为保证凸轮机构运动平稳性,常使推杆在一个行程h 中的前半段作等加速运动,后半段作等减速运动,且加 速度和减速度的绝对值相等。
推杆的等加速等减速运动规律
ppt课件
19
2. 等加速等减速运动规律
★推程运动方程
推程等加速段边界条件:
运动方程式一般表达式:
机架
ppt课件
凸轮 推杆
4
二、特点
优点: 可以使从动件准确实现各种预期的复杂的运动规律 易于实现多个运动的相互协调配合。 结构简单、紧凑 设计方便 缺点: 点、线接触,易磨损,不适合高速、重载 凸轮机构的适用场合 广泛用于各种机械,特别是自动机械、自动控制装置
和装配生产线。
弹簧力封闭
重力封闭
ppt课件
11
形封闭型凸轮机构
凹槽凸轮机构
等宽凸轮机构
ppt课件
12
形封闭型凸轮机构
等径凸轮机构
共轭凸轮机构
ppt课件
13
9-2 推杆的运动规律
一、基本术语 凸轮概念
★基圆:以凸轮最小半径 r0所作的圆,r0称为凸轮 的基圆半径。
★推程、推程运动角:d0
★远休、远休止角:d 01 ★回程、回程运动角:d 0 ★近休、近休止角:d 02
生无穷大惯性力,引起刚性冲击。 ppt课件
推程运动线图
17
1. 一次多项式运动规律——等速运动
★回程运动方程
一次多项式一般表达式:
s v

C0 ds
C1d

/
dt

C1

边界条件
a

凸轮机械原理ppt

凸轮机械原理ppt
凸轮机构的基本结构
凸轮、从动件和机架是凸轮机构的基本结构,其中凸轮是控制从动件运动的 关键元件。
凸轮机构的分类
根据凸轮和从动件的运动关系,凸轮机构可分为平面凸轮机构和空间凸轮机 构,以及摆动从动件凸轮机构和移动从动件凸轮机构。
凸轮机构的优化目标与方法
凸轮机构的优化目标
主要包括提高凸轮机构的传力性能、减小凸轮和从动件之间的接触应力、降低凸 轮机构的振动和噪声等方面。
凸轮机构的工作过程是凸轮转动时,从动件在凸轮轮 廓控制下沿着一定轨迹进行往复运动。
平面凸轮机构又可以分为尖顶从动件、滚子从动件和 平底从动件三种类型。
从动件的运动规律取决于凸轮的轮廓形状和从动件的 Βιβλιοθήκη 构形式。凸轮机构的运动规律
凸轮机构的运动规律取决于凸轮的轮廓形状和从动件 的结构形式。
每种运动规律都有其特点和应用范围,可以根据实际 需要选择合适的运动规律。
解决方法
为了减小冲击,可以在配合部件之间加入阻尼材料,如橡胶 、聚氨酯等,以吸收冲击能量。同时,可以调整配合间隙的 大小,提高配合部件的刚度,以减小冲击。
凸轮机构的疲劳及解决方法
总结词
凸轮机构的疲劳是由于长期承受交变载荷 的作用,使得配合部件表面出现微裂纹并 逐渐扩展,最终导致配合部件破坏。
VS
解决方法
2023
凸轮机械原理
目录
• 凸轮机构概述 • 凸轮机构的工作原理 • 凸轮机构的类型及特点 • 凸轮机构的常见问题及解决策略 • 凸轮机构的设计及优化 • 凸轮机构的应用前景与发展趋势
01
凸轮机构概述
凸轮机构的定义与特点
凸轮机构的定义
凸轮机构是一种广泛应用于各种机械中的高副机构,它由凸 轮、从动件和机架三个基本构件组成,通过凸轮的轮廓控制 从动件的位移和运动规律。

机械原理凸轮机构及其设计PPT精品医学课件

机械原理凸轮机构及其设计PPT精品医学课件
起点: =0 , s=0 , v=0
终点: = 0 , s=h
升程运动规律:
同理,得回程运动规律:
作推程运动线图
h/2
1
2
3
4
5
6
7
8
1
2
3
5
6
7
8
4
推程运动线图
s
O
h
0
0/2
:0 = :
=(/ 0)
位移线图
速度线图
5
6
7
8
1
2
3
5
6
7
8
4
h /20
0
0/2
v
O
1
2
3
4
2
A
O
B
180º
120º
60º
o
1
2
3
4
5
6
7
8
9
10
(1)作出角位移线图;
(2)作初始位置;
(4)找从动件反转后的一系 列位置,得 C1、C2、 等点,即为凸轮轮廓上的点。
A1
A2
A3
A5
A6
A7
A8
A9
A10
A4
0
0
0
0
0
0
0
0
0
0
(3)按- 方向划分圆R得A0、 A1、A2等点;即得机架 反转的一系列位置;
二.图解法设计凸轮轮廓曲线
1. 对心直动尖端从动件盘形凸轮机构
已知:推杆的运动规律、升程 h;凸轮的及其方向、基圆半径r0
设计:凸轮轮廓曲线
h
s
O
/2
h/2

机械原理电子教案凸轮机构-09下1PPT课件

机械原理电子教案凸轮机构-09下1PPT课件

8
(1) 力 锁 合 (force closure)
利用推杆的重力、弹簧力或 其它外力使推杆始终与凸轮
保持接触
槽 凸 轮 机 构
等 宽 凸 轮 机 构
(2)形锁合(pro) 利用凸轮
与推杆构成的高副元素的特
殊几何结构使凸轮与推杆始
终保持接触
等 径 凸 轮 机 构 共 轭 凸 轮 机 构
§9-2 从动件常用运动规律
而引起推杆惯性力的有限值突 O
v
变,并由此对凸轮产生有限值 2h/0
冲击 ——柔性冲击(Soft impulse)
O
✓从动件在运动起始、中点
a
和终止点存在柔性冲击
➢推程运动方程:
等速运动规律
边界条件
运动始点:=0, s=0 运动终点: = 0,s=h
c0=0 c1=h/0
推程运动方程式:s (h0) v (h0)ω
a 0
0,0
➢回程运动方程
s c0 c1
15
v ds dt c1
a dv dt 0
边界条件
运动始点:=0, s=h
c0=h
运动终点: = 0 ,s=0
s
h(1
0
)
v
h
0
ω
0, 0
a 0
c1=h/0
★等速运动规律运动特性
✓从动件在运动起始和终止点存在刚性冲击
✓适用于低速轻载场合
1.2 等加速等减速运动规律亦称为抛物线运动规律
16
s
线图表示法:
h
特点:从动件在起点、中点和
h/2
终点,因加速度有有限值突变
4
盘形凸轮(Plate cam) 移动凸轮(Wedge cam) 圆柱面凸轮(Cylindrical cam) 端面凸轮(Cylindrical cam)

机械原理完美第九章凸轮机构及其设计PPT课件

机械原理完美第九章凸轮机构及其设计PPT课件

25
§9-3 按预定运动规律用作图法设计盘形凸轮廓线 一、对心式凸轮机构凸轮廓线的设计 1. 尖顶从动件 1) 凸轮机构相对运动分析
机架上的观察结果
2) 反转法设计原理
凸轮上的观察结果
26
-w
A2 A3 A4
A1
A1
A3 A4 A2
w
ω
A4
S2
A1 A2 A3
ω
S3 A2A3 A1
ω
A4 S4
rb
δ
点和终止点。 a
da dt ∞
δ
δ 22
-∞
4. 正弦加速度(摆线)运动规律
s 摆线
a = 2hw2sin(2d/d0 )/d20)
h
特点:既无柔性更无刚性 冲击。
5 4
6 78
O1
2
3
4
5
6
7
8
δ
32 1
δ
v
δ a
δ 23
三、从动件运动规律的选择
在选择从动件运动规律时,除要考虑刚性冲击与柔性冲 击外,还应该考虑各种运动规律的速度幅值 vmax 、加速度 幅值 amax及其影响加以分析和比较。
-∞
特点:存在刚性冲击。
da
位置:发生在运动的起始 dt ∞
点和终止点。
-∞
加加速度
δ 位置:发生在 运动的起始点 、中间点和终 止点。
δ
δ
C

δ
21
3. 余弦加速度(简谐)运动规律
s 56
4
a = 2hw2cos(d/d0 )/(2d20 )
特点:存在柔冲击。
h
3
2
s
1 q

机械原理课件第9章凸轮机构及其设计

机械原理课件第9章凸轮机构及其设计

优化设计的意义
提高凸轮机构性能:通过优化设计,可以改善凸轮机构的运动特性,提高其性能和效率。
降低成本:优化设计可以减少材料消耗和制造过程中的浪费,从而降低成本。
提高安全性:优化设计可以减少凸轮机构在运行过程中的振动和磨损,提高其安全性 和可靠性。
增强市场竞争力:优化设计可以提高产品的质量和性能,增强企业在市场上的竞争力。
Part Four
凸轮机构的工作原 理
凸轮机构的基本构件
单击此处输入你的项正文,文字是您思想的提炼,请尽量言简意赅 的阐述观点。
单击此处输入你的项正文,文字是您思想的提炼,请尽量言简意赅 的阐述观点。
单击此处输入你的项正文,文字是您思想的提炼,请尽量言简意赅 的阐述观点。
以上是凸轮机构的基本构件,这些构件共同构成了凸轮机构的工作 原理。
Part Three
凸轮机构的分类
按照凸轮形状分类
盘形凸轮:凸轮呈盘状,凸轮轮廓是平面或圆柱面 移动凸轮:凸轮呈圆柱状,凸轮轮廓是平面或圆柱面 圆柱凸轮:凸轮呈圆柱状,凸轮轮廓是圆柱面 圆锥凸轮:凸轮呈圆锥状,凸轮轮廓是平面或圆锥面 球面凸轮:凸轮呈球状,凸轮轮廓是球面
按照从动件形状分类
盘形凸轮:凸轮呈 盘状,与从动件之 间有径向距离,而 不像圆柱或圆锥那 样沿轴向配置
Part One
单击添加章节标题
Part Two
凸轮机构概述
凸轮机构的定义
凸轮机构是一种由凸轮、从动件和机架组成的单自由度机构 凸轮机构广泛应用于各种机械系统中,如内燃机、轻工机械、纺织机械等 凸轮机构的主要作用是将凸轮的旋转运动转化为从动件的往复直线运动 凸轮机构的运动特性取决于凸轮的形状和尺寸,以及从动件的位移和速度等参数
凸轮机构的工作过程

机械原理课件9 凸轮机构

机械原理课件9 凸轮机构

1、凸轮廓线设计的基本原理
• 解析法、作图法 • 相对运动原理法:(也称反转法) • 此时,凸轮保持不动
• 对整个系统施加 -ω
运动
• 而从动件尖顶复合运动的 轨迹即凸轮的轮廓曲线。

A A A A A A A A
1 2
3’ 2’ 1’
ω
r0
1
O
2 3
3
2.用作图法设计凸轮廓线
1)对心直动尖顶从动件盘形凸轮
e
对心平底推杆凸轮机构
平底摆杆凸轮机构
从动件与凸轮之间易形成油膜,润滑状况好,受力平稳, 传动效率高,常用于高速场合。但与之相配合的凸轮轮廓 必须全部外凸。
偏心平底推杆凸轮机构
滚子摆杆凸轮机构
e
§9-2 推杆的运动规律
一.推杆常用的运动规律
凸轮机构设计的基本任务: 1)根据工作要求选定凸轮机构的形式; 2)推杆运动规律; 3)合理确定结构尺寸; 4)设计轮廓曲线。
a
2h 2
02
2 sin 0

R= 2
h
A 0 1 v
2
3 4
5
6
7
8

回程: s=h[1-δ /δ
0
′)/2π
0

+sin(2π δ /δ
0
0
]

v=hω [cos(2π δ /δ 0’)-1]/δ a=-2π
hω 2 sin(2π δ /δ

FI ma 0
(1).对心直动尖顶从动件盘形凸轮
s
h
对心直动尖顶从动件凸轮机构 中,已知凸轮的基圆半径rmin, 角速度ω和从动件的运动规律, 设计该凸轮轮廓曲线。 设计步骤小结:

凸轮机构及其设计ppt课件

凸轮机构及其设计ppt课件
动件的压力角相等。
右图可用来推导压力角的计算公式,过程如下: 由ΔBCP得 tanα =CP/BC= CP/(s+s0) (1) 由ΔODC得 s0 = r20 +e2
由瞬心法知,P点是瞬心,有 OP=v/ω=ds/dδ CP=OP-e= ds/dδ-e 代入(1)式得
nv
B
s
D
ω r0 α v
O
s0
作者:潘存云教授
r e C P 0
n
ds/dδ
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
压力角计算公式
增大基圆半径 r0 或增大偏距 e 可减小压力角。
当从动件导路和瞬心点分别位于O点两侧时,
按同样思路可推得压力角计算公式
推程运动方程:
s =h φ/Φ v = hω/Φ
a=0 同理得回程运动方程:
s=h(1-φ/Φ’) v=-hω/Φ’
a=0 运动线图如右图所示。
特点:在运动的起始点存在刚性冲击
s
作者:潘存云教授
Φ v
a +∞
h φ
Φ’
φ
-∞
+∞ φ
2)二次多项式(等加速等减速)运动规律 为了规范事业单位聘用关系,建立和完善适应社会主义市场经济体制的事业单位工作人员聘用制度,保障用人单位和职工的合法权益
行程 ——从动件距凸轮回转中心最近点到最远点的距离h 。
凸轮转角——凸轮以从动件位于最近点作为初始位置而转过的角度φ。 从动件位移——凸轮转过φ 角时,从动件相对于基圆的距离s。 从动件运动规律——从动件的位移、速度、加速度与凸轮转角(或时间)之

凸轮机构完整ppt课件

凸轮机构完整ppt课件

精品
36
滚子从动件凸轮轮廓曲线的设计步骤:
(1)画出滚子中心的轨
迹(称为理论轮廓曲线)
(2)以理论轮廓上的点为
圆心,滚子半径rT为半径作 一系列的滚子圆,再画滚子
圆的内包络线,则为从动件
β′
凸轮的实际轮廓曲线。
理论轮廓曲线
注意:
n
rT r0
B C
n
实际轮廓曲线
β
(1)理论轮廓与实际轮廓互为等距曲线;
44
(2)压力角的校核
凸轮对从动件的作用力F的方向与从动件上力作用点的速度方
向之间所夹的锐角a称为压力角。
F1Fcoas
F2Fsina
自锁:当α增大到一定程度后,以
至于导路的摩擦阻力大于有效分力 时,无论凸轮给予从动件多大的力, 从动件都不能运动。
精品
45
4.4.2 压力角的校核
推荐压力角数值 移动从动件[a]=30°
精品
0
0 0

26
1.等速运动规律
从动件在起始和终止点速度有突变,使瞬时加 速度趋于无穷大,从而产生无限值惯性力,并 由此对凸轮产生冲击 —— 刚性冲击
因此只适用于低速、轻载的场合。
精品
27
s h
1.等加速-等减速运动规律
h/2
从动件在一个行程h中,前 半行程做等加速运动,后半 行程作等减速运动的运动规 律。
对心移动从动件
偏置移动从动件
精品
13
(一)凸轮机构的应用及分类
3)按从动件的运动形式分: 摆动从动件
精品
14
(一)凸轮机构的应用及分类
4)按凸轮高副的锁合方式分:力锁合
精品
15

《机械原理》课件_第9章_凸轮机构及其设计

《机械原理》课件_第9章_凸轮机构及其设计

Vmax
(hω /δ 0)×
amax
(hω /δ
0 2)
冲击
推荐应用范围 低速轻载
×
刚性
1.0

等加等减速
五次多项式 余弦加速度
2.0
1.88 1.57
4.0
5.77 4.93
柔性
无 柔性
中速轻载
高速中载 中速中载
正弦加速度
改进正弦加速度
2.0
1.76
6.28
5.53


高速轻载
高速重载
§9-3 凸轮轮廓曲线的设计
3
边界条件:
起始点:δ =0,s=0, v=0, a=0 终止点:δ =δ 0,s=h, v=0,a=0 求得:C0=C1=C2=0, C3=10h/δ C4=15h/δ
0 4 0 3
v
,
s
h
a δ δ
0
, C5=6h/δ
0
5
位移方程: s=10h(δ /δ 0)3-15h (δ /δ 0)4+6h (δ /δ 0)5

δ
rr
s0 (1)
B0
r0
x
n
x= (s0+s)sinδ + ecosδ y= (s0+s)cosδ - esinδ
第9章 凸轮机构及其设计
§9-1 § 9- 2 § 9- 3 凸轮机构的应用和分类 推杆的运动规律 凸轮轮廓曲线的设计 一、凸轮廓线设计方法的基本原理 二、用图解法设计凸轮廓线
1)对心直动尖顶推杆盘形凸轮 2)对心直动滚子推杆盘形凸轮 3)对心直动平底推杆盘形凸轮 4)偏置直动尖顶推杆盘形凸轮
5)摆动尖顶推杆盘形凸轮机构 6)直动推杆圆柱凸轮机构 7)摆动推杆圆柱凸轮机构
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)三角函数运动规律
1)余弦加速度运动规律(简谐运动规律) 推程时:s=h[1-cos(πδ /δ0)]/2 在始、末两瞬时有柔性冲击。
2)正弦加速度运动规律(摆线运动规律)
推程时:s=h[(δ /δ0)-sin(2π δ /δ0) /(2π)]
6
推杆的运动规律(4/4)
既无刚性冲击,又无柔性冲击。 (3)组合型运动规律
§9-4 凸轮机构基本尺寸的确定
1.凸轮机构的压力角 (1)凸轮机构中的作用力
推杆等减速推程段: s = h-2h(δ0-δ )2/δ02
在始、中、末三瞬时有柔性冲击。
5
推杆的运动规律(3/4)
3)五次多项式运动规律(3-4-5多项式运动规律)
s=10hδ 3/δ03-15hδ 4/δ04+6hδ 5/δ05
既无刚性冲击,又无柔性冲击。
说明 对于多项式运动规律,其多项式中待定系数的数目应 与边界条件的数目相等,其数目多少应根据工作要求来确定。但 当边界条件增多时,会使设计计算复杂,加工精度也难以达到, 故通常不宜采用太高次数的多项式。
凸轮廓线设计的方法: 作图法和解析法
1.凸轮廓线设计的基本原理 无论是采用作图法还是解析法设计凸轮廓线,所依据的基本 原理都是反转法原理。 例9-2 偏置直动尖顶推杆盘形凸轮机构 (1)凸轮的轮廓曲线与推杆的相对运动关系 当给整个凸轮机构加一个公共角速度-ω,使其绕凸轮轴心 转动时,凸轮将静止不动,而推杆则一方面随其导轨作反转运动, 另一方面又沿导轨作预期的往复运动。 推杆在这种复合运动中, 其尖顶的运动轨迹即为凸轮的轮廓曲线。
式中δ 为凸轮转角;s为推杆位移;C0,C1,C2,…Cn为待定系数, 可利用边界条件等来确定。
(1)多项式运动规律 1)一次多项式运动规律(等速运动规律)
推程时:s = hδ /δ0 在始末两瞬时有刚性冲击。
2)二次多项式运动规律(等加速等减速或抛物线运动规律) 推杆等加速推程段: s = 2hδ 2/δ02
(2)摆动推杆盘形凸轮廓线的设计 1)摆动尖顶推杆盘形凸轮廓线的设计 2)摆动滚子推杆盘形凸轮廓线的设计 3)摆动平底推杆盘形凸轮廓线的设计
10
凸轮轮廓曲线的设计(4/4)
结论 摆动尖顶推杆盘形凸轮廓线的设计方法与直动尖顶推 杆盘形凸轮廓线的设计方法基本类似,所不同的是推杆的预期运 动规律及作图设计中都要用到推杆的角位移φ 表示,即将直动推 杆的各位移方程中的位移s改为角位移φ , 行程h改为角行程Φ,就 可用来求摆动推杆的角位移了。
(3)直动推杆圆柱凸轮廓线的设计
3.用解析法设计凸轮的轮廓曲线
用解析法设计凸轮廓线,就是根据工作所要求的推杆运动规 律和已知的机构参数,求凸轮廓线的方程式,并精确地计算出凸 轮廓线上各点的坐标值。
(1)偏置直动滚子推杆盘形凸轮机构 (2)对心直动平底推杆盘形凸轮机构 (3)摆动滚子推杆盘形凸轮机构
11
1.名词术语及符号
基圆 推程 远休 回程 近休
基圆半径 r0 推程运动角 δ0 远休止角 δ01 回程运动角 δ0′ 近休止角 δ02
行程 h
推杆运动规律:
s= s(t) = s(δ ) v= v(t) = v(δ ) a= a(t) = a(δ )
4
推杆的运动规律(2/4)
2.推杆常用的运动规律 推杆的多项式运动规律的一般表达式为: s = C0+C1δ+C2δ 2+…+Cnδ n
第九章 凸轮机构及其设计
§9-1 凸轮机构的应用和分类 §9-2 推杆的运动规律 §9-3 凸轮轮廓曲线的设计 §9-4 凸轮机构基本尺寸的确定
返回
§9-1 凸轮机构的应用和分类
1.凸轮机构的应用 (1)实例
内燃机配气凸轮机构 自动机床进刀机构 自动机床凸轮机构 (2)特点 适当的设计凸轮廓线可实现各种运动规律,结构简单,紧凑; 但易磨损,传力不大,而且凸轮制造较困难。
组合原则 要保证在衔接点上运动参数保持连续;在运动的 始末处满足边界条件。
3.推杆的运动规律的选择 1)机器的工作过程只要求凸轮转过角度δ0时,推杆完成一 个行程 h或角行程Φ,而对其运动规律并未作严格要求。 在此情况下,可考虑采用圆弧、直线或其他简单曲线为凸轮 廓线。 例9-1 主令开关中的凸轮机构
2
2.凸轮机构的分类
凸轮机构的应用和分类(2/2)
(1)按凸轮的形状分 1)盘形凸轮(移动凸轮) 2)圆柱凸轮
(2)按推杆形状及运动形式分
1)尖顶推杆、滚子推杆和平底推杆源自2)对心直动推杆、偏置直动推杆和摆动推杆
(3)按保持高副接触方法分
1)力封闭的凸轮机构 2)几何封闭的凸轮机构
3
§9-2 推杆的运动规律
8
凸轮轮廓曲线的设计(2/4)
(2)凸轮廓线设计方法的基本原理 在设计凸轮廓线时,可假设凸轮静止不动,而其推杆相对凸 轮作反转运动,同时又在其导轨内作预期运动,作出推杆在这种 复合运动中的一系列位置,则其尖顶的轨迹就是所要求的凸轮廓 线。这就是凸轮廓线设计方法的反转法原理。
2.用作图法设计凸轮廓线 (1)直动推杆盘形凸轮廓线的设计
2)机器的工作过程对推杆的运动规律有完全确定的要求。 此时只能根据工作所需要的运动规律来设计。
3)对于速度较高的凸轮机构,还应考虑该种运动规律的速 度最大值vmax、加速度最大值amax和跃度的最大值 jmax等。(表9-1)
7
§9-3 凸轮轮廓曲线的设计
当根据凸轮机构的工作要求和结构条件选定了其机构的型式、 基本尺寸、推杆的运动规律和凸轮的转向之后,就可以进行凸轮 轮廓曲线的设计了。
1)偏置直动尖顶推杆盘形凸轮廓线的设计 2)偏置直动滚子推杆盘形凸轮廓线的设计 3)对心直动平底推杆盘形凸轮廓线的设计
结论 尖顶推杆盘形凸轮廓线的设计是滚子推杆和平底推杆 盘形凸轮廓线设计的基本问题及方法。
9
凸轮轮廓曲线的设计(3/4)
总结 对于滚子推杆(或平底推杆)的盘形凸轮廓线的设 计,只要先将其滚子中心点(或推杆平底与其导路中心线的交 点)视为尖顶推杆的尖顶,就可用尖顶推杆盘形凸轮廓线的设 计方法来确定出凸轮理论廓线上各点的位置;然后再以这些点 为圆心作出一系列滚子圆(或过这些点作一系列平底推杆的平 底线),再作出此圆族(或直线族)的包络线。即得所设计凸 轮的工作廓线。
相关文档
最新文档