多元统计分析试卷A答案

合集下载

多元统计分析期末试题及答案

多元统计分析期末试题及答案

22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.答案:010312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑、设则=服从。

答案:W 3(10,∑)()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵答案:211342113611146R ⎛⎫-⎪ ⎪ ⎪=-- ⎪ ⎪ ⎪- ⎪⎝⎭4、__________, __________,(),123设X=xx x 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ⎛⎫- ⎪⎛⎫⎛⎫ ⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭________________。

答案:0.872 1 1.743215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。

答案:T 2(15,p )或(15p/(16-p))F (p ,n-p )12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?答案:2312131231112213312121,2,10021021210001102231642100102x x y y x x x x x x y x x y x x x y E y y V y -⎛⎫==+ ⎪⎝⎭-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪== ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭-⎛⎫⎛⎫⎪=- ⎪ ⎪⎝⎭ ⎪⎝⎭、令则01-101-101-11234411002141021061661620162040210616(1,61620)3162040y y N ⎛⎫⎛⎫⎪⎪- ⎪⎪ ⎪⎪-⎝⎭⎝⎭--⎛⎫ ⎪=- ⎪⎪-⎝⎭--⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭1-1故,的联合分布为故不独立。

厦门大学《应用多元统计分析》试题A答案

厦门大学《应用多元统计分析》试题A答案
多元统计分析 试卷A(答案)
一、判断题 1. 正确
( ) 证明: ∀c = c1, c2 ,"cp ,
∑∑ c′∑c =
cic jσ ij
ji
= ∑∑cic j [E(Xi − E(Xi ))(Xj − E(Xj ))]
ji
= E⎢⎡∑c j (Xi − E(Xi ))∑ci (Xj − (E Xj ))⎥⎤
=
(n
−1)[
(n −1) p
n(X − μ0 )′S−1
n(X − μ0 )]
八、
( ) ( ) 在典型相关分析中 X (1) =
X
(1)
1
,
X
(1)
2
"
X
(1)
p


X
(2)
=
X 1(2 ) ,
X
(2
2
)
"
X
(2
q
)


两个相互关联的随机向量,分别在两组变量中选取若干有代表性的综合变量 Ui、Vi,使
计算共因子的方差贡献得:
g12
=
λ1
= 1.9633;
g
2 2
=
0.6795;
g 32
=
0.3572 ,分别为公共因子
F1, F2 ,
F
对X
的贡
献,是衡量每个公共因子的相对重要性的尺度。
三、解:先求三元总体 X 的协方差阵 ∑ 的特征根,
σ2 −λ ∑ −λE = ρσ 2
0
ρσ 2 σ2 −λ
ρσ 2
−00.7.6439749⎟⎟⎞⎜⎜⎜⎛ 1.9633 − 0.1772⎟⎠⎜⎜⎝ 0.4479 ⎟⎞ − 0.3812⎟ − 0.1059⎟⎠

应用多元统计分析试题及答案

应用多元统计分析试题及答案

一、填空题:1、多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法.2、回归参数显著性检验是检验解释变量对被解释变量的影响是否著.3、聚类分析就是分析如何对样品(或变量)进行量化分类的问题。

通常聚类分析分为 Q型聚类和 R型聚类。

4、相应分析的主要目的是寻求列联表行因素A 和列因素B 的基本分析特征和它们的最优联立表示。

5、因子分析把每个原始变量分解为两部分因素:一部分为公共因子,另一部分为特殊因子。

6、若()(,), Px N αμα∑=1,2,3….n且相互独立,则样本均值向量x服从的分布为_x~N(μ,Σ/n)_。

二、简答1、简述典型变量与典型相关系数的概念,并说明典型相关分析的基本思想。

在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。

选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此下去直到两组之间的相关性被提取完毕为止。

被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。

2、简述相应分析的基本思想。

相应分析,是指对两个定性变量的多种水平进行分析。

设有两组因素A和B,其中因素A包含r个水平,因素B包含c个水平。

对这两组因素作随机抽样调查,得到一个rc的二维列联表,记为。

要寻求列联表列因素A和行因素B的基本分析特征和最优列联表示。

相应分析即是通过列联表的转换,使得因素 A 和因素B具有对等性,从而用相同的因子轴同时描述两个因素各个水平的情况。

把两个因素的各个水平的状况同时反映到具有相同坐标轴的因子平面上,从而得到因素A、B的联系。

3、简述费希尔判别法的基本思想。

从k个总体中抽取具有p个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数系数:确定的原则是使得总体之间区别最大,而使每个总体内部的离差最小。

将新样品的p 个指标值代入线性判别函数式中求出 值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。

多元统计考题A卷

多元统计考题A卷
4
1.6
5.2
800
5
0.9
4.2
813
6
1.7
3.8
812
7
2.1
1.1
862
8
2.5
4.5
765
9
2.0
2.7
820
五、(15分)
设有5个产品,每个只测量了一个指标,得数据如下:1,2,4.5,6,8试用欧式距离和最短距离法将它们进行分类,并画出系统聚类图。
六、(15分)
设 与 有相关关系,其8组观测数据见下表。
4.设 来自于A1,A2,…Ag总体,按贝叶斯准则建立多总体判别模型即是要求,其 k=1,2,…,g。
5.聚类分析分Q型和R型聚类,当需要研究变量与变量之间关系时,一般使用,常用统计量作为分类依据。
二、(10分)
设 是 维随机向量, , ,其中 为非零向量,
证明:
三、(10分)
设有 组样本观测值数据
其中, 表示第 次试验或第 个样本关于变量 的观测值,证明:
四、(15分)
某钻探区钻了9口探井,下表列出了这9口井的横坐标 、纵坐标 以及某含油层顶面的海拔高程 。含油层海拔高度的单位是米。试求其一次趋势面方程。
序号
横坐标,
纵坐标,
海拔高程,
1
0.6
1.7
873
2
1.4
6.2
793
3
0.3
6.1
870
序号
1
38
47.5
23
66.0
2
41
21.3
17
43.0
3
34
36.5
21
36.0
4

多元统计分析期末试题及答案

多元统计分析期末试题及答案

⎛11、设X ~N 2(μ,∑),其中X =(x 1,x 2),μ=(μ1,μ2),∑=σ2⎝ρ则Cov(x 1+x 2,x 1-x 2)=____.ρ⎫1⎪⎭,2、设Xi~N 3(μ,∑),i =1,服从_________。

,10,则W=∑(X i-μ)(X i-μ)'i =110⎛4x 3)',且协方差矩阵∑= -43⎝-43⎫9-2⎪,⎪-216⎪⎭3、设随机向量X =(x1x2则它的相关矩阵R =___________________4、设X=(x1⎛1- 3 -11R = 3 2 0 ⎝31x2x3)的相关系数矩阵通过因子分析分解为,2⎫3⎪⎛0.9340⎫⎛0.128⎫⎪0.934-0.4170.835⎛⎫ ⎪ ⎪0⎪= -0.4170.894⎪ +0.027⎪⎪⎪00.8940.447⎭ ⎝ ⎪ 0.103⎪⎪⎝0.8350.447⎭⎝⎭⎪1⎪⎭X 1的共性方差h 12=__________ __________,X 1,的方差σ11=________________。

公因子f 1对X 的贡献g 12=5、设X i,i =1,,16是来自多元正态总体N p(μ,∑),X 和A 分别为正态总体N p(μ,∑)的样本均值和样本离差矩阵,则T 2=15[4(X -μ)]'A -1[4(X -μ)]~___________。

⎛16-42⎫1、设X =(x 1,x 2,x 3)~N 3(μ,∑),其中μ=(1,0,-2)',∑= -44-1⎪,⎪ 2-14⎪⎝⎭⎛x 2-x 3⎫试判断x 1+2x 3与 ⎪是否独立?x ⎝1⎭2、对某地区农村的6名2周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值μ0=(90,58,16)',现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。

多元统计学多元统计分析试题(A卷)(答案)

多元统计学多元统计分析试题(A卷)(答案)

《多元统计分析》试卷1、若),2,1(),,(~)(n N X p =∑αμα 且相互独立,则样本均值向量X 服从的分布为2、变量的类型按尺度划分有_间隔尺度_、_有序尺度_、名义尺度_。

3、判别分析是判别样品 所属类型 的一种统计方法,常用的判别方法有__距离判别法_、Fisher 判别法、Bayes 判别法、逐步判别法。

4、Q 型聚类是指对_样品_进行聚类,R 型聚类是指对_指标(变量)_进行聚类。

5、设样品),2,1(,),,('21n i X X X X ip i i i ==,总体),(~∑μp N X ,对样品进行分类常用的距离有:明氏距离,马氏距离2()ijd M =)()(1j i j i x x x x -∑'--,兰氏距离()ij d L =6、因子分析中因子载荷系数ij a 的统计意义是_第i 个变量与第j 个公因子的相关系数。

7、一元回归的数学模型是:εββ++=x y 10,多元回归的数学模型是:εββββ++++=p p x x x y 22110。

8、对应分析是将 R 型因子分析和Q 型因子分析结合起来进行的统计分析方法。

9、典型相关分析是研究两组变量之间相关关系的一种多元统计方法。

一、填空题(每空2分,共40分)1、设三维随机向量),(~3∑μN X ,其中⎪⎪⎪⎭⎫ ⎝⎛=∑200031014,问1X 与2X 是否独立?),(21'X X 和3X 是否独立?为什么?解: 因为1),cov(21=X X ,所以1X 与2X 不独立。

把协差矩阵写成分块矩阵⎪⎪⎭⎫⎝⎛∑∑∑∑=∑22211211,),(21'X X 的协差矩阵为11∑因为12321),),cov((∑='X X X ,而012=∑,所以),(21'X X 和3X 是不相关的,而正态分布不相关与相互独立是等价的,所以),(21'X X 和3X 是独立的。

多元统计分析试题及答案

多元统计分析试题及答案
_0.872_____
X 1的共性方差h12 =
X 1的方差σ
11
= ___1 注(0.128+0.872)___,
公因子f1对X的贡献g12 = 1.743
备注(0.934^2+(-0.417)^2+0.835^2)__。
5、 设 X i , i = 1,⋯ ,16是 来 自 多 元 正 态 总 体 N p ( µ , Σ ), X 和 A分 别 为 正 态 总 体 N p ( µ , Σ ) 的 样 本 均 值 和 样 本 离 差 矩 阵 ,则 T 2 = 15[4( X − µ )]′ A − 1[4( X − µ )] ~ ___________ 。
2、假设检验问题:H 0 : µ = µ0,H1 : µ ≠ µ0 ⎛ −8.0 ⎞ 经计算可得:X − µ0 = ⎜ 2.2 ⎟ , ⎜ ⎟ ⎜ −1.5 ⎟ ⎝ ⎠ ⎛ 4.3107 −14.6210 8.9464 ⎞ −1 −1 ⎜ S = (23.13848) −14.6210 3.172 −37.3760 ⎟ ⎜ ⎟ ⎜ 8.9464 −37.3760 35.5936 ⎟ ⎝ ⎠ 构造检验统计量:T 2 = n( X − µ0 )′S −1 ( X − µ0 ) = 6 × 70.0741 = 420.445 由题目已知F0.01 (3,3) = 29.5,由是 3× 5 F0.01 (3,3) = 147.5 3 所以在显著性水平α = 0.01下,拒绝原设 H 0
⎛ 16 −4 2 ⎞ 1、设X = ( x1 , x2 , x3 ) ~ N 3 ( µ , Σ), 其中µ = (1,0, − 2)′, Σ = ⎜ −4 4 −1⎟ , ⎜ ⎟ ⎜ 2 −1 4 ⎟ ⎝ ⎠ ⎛x −x ⎞ 试判断x1 + 2 x3与 ⎜ 2 3 ⎟ 是否独立? ⎝ x1 ⎠

多元统计分析试卷(a)答案

多元统计分析试卷(a)答案

1. 设随机向量 X = ( X , X , X )' ,且其协方差阵为 ∑ = -49 -2 ⎪ ,则它的相关 3 -2 16⎪⎭ 1 - 2 矩阵 R = - 1 - 1 ⎪ 。

1 ⎪  3(α) ~ N ( μ, ∑),( α = 1,2, n) 且相互独立,样本均值向量为 X ,样本离差阵为n - 1 B ⎢11 0⎥ 22 0⎥ D = C D ⎢13 24 19 0⎥- X )' , 则 X ~N (μ , 1 ∑) , L ~ W (n - 1,∑) 。

L =∑( X- X )( X5. 设三维随机向量 X ~ N (μ , ∑) ,其中 ∑ = 1 3 0 ⎪ ,则 X 与 X 不独立 ; 0 0 2 ⎪⎢ A 0⎥ 11 0⎥ 12 22 0 ⎥C (0) =⎢解:样品与样品之间的明氏距离为: D ⎢ E 10 23 5 6 0 ⎥ ⎭n⎣ ⎦学 号精品文档东 北 大 学 秦 皇 岛 分 校课程名称: 多元统计分析 试卷类型: A 答案 考试形式:闭卷授课专业: 信科、应数、统计 考试日期: 2013 年 7 月 9 日 试卷:共 3 页( X , X )' 和 X 独立(填独立或不独立)。

1 2 36. 变量的类型按尺度划分有间隔尺度 、有序尺度 、名义尺度 。

二、判断题(每小题 3 分,共 15 分) 1. [×] 因子载荷矩阵 A 是对称阵。

2. [×] 方差分析是检验多个正态总体的方差或协方差阵是否相等的统计分析方法。

班 级题号得分阅卷人一 二 三 四 总分3. [√] 聚类分析中快速聚类法指的就是 k -均值法。

4. [√] 判别分析中,“留一个观测在外”的原则是指在交叉验证时,某个观测不参与估计判别函数,但要根据除这个观测以外的其他观测估计的判别函数来预测该观测的所属类,从而使这个 观测得到验证。

姓 名装订线内不要答题装订线一、填空题:(每空 2 分,共 32 分)⎛ 4 -4 3 ⎫ ⎪ 1 2 3 ⎝⎛ 3 ⎫3 8 ⎪2 3 6 ⎪⎝ 8 - 61 ⎪⎪2. 系统聚类分析的方法很多,其中的五种分别为最长距离法、最短距离法、重心法、类 平均法、离差平方和法。

多元统计分析试题及答案

多元统计分析试题及答案

多元统计分析试题及答案华南农业⼤学期末试卷(A 卷)2006学年第2学期考试科⽬:多元统计分析考试类型:(闭卷)考试时间:120 分钟⼀、填空题(5×6=30)22121212121~(,),(,),(,),,1X N X x x x x x x ρµµµµσρ∑==∑=+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________iiii XN i W XXµµµ='∑=--∑ 、设则=服从。

()1234433,492,3216___________________X x x x R -?? ?'==-- ? ?-?=∑、设随机向量且协⽅差矩阵则它的相关矩阵________________。

(),123设X=xx x 的相关系数矩阵通过因⼦分析分解为211X h =的共性⽅差111X σ=的⽅差21X g =1公因⼦f 对的贡献121330.9340.1280.9340.4170.8351100.4170.8940.027 0.8940.44730.8350.4470.1032013R ?-?-=-=-+5,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N TX A X µµµµ-=∑∑'=-- 、设是来⾃多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。

⼆、计算题(5×11=50)12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x µµ-??'=∑=-∑=-- --??+、设其中试判断与是否独⽴?11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.62103.17237.14.5X S µ--'=-?? ?==-- ? 0、对某地区农村的名周岁男婴的⾝⾼、胸围、上半臂围进⾏测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。

(完整)多元统计分析期末试题及答案,推荐文档.docx

(完整)多元统计分析期末试题及答案,推荐文档.docx

1 、设 X ~ N2 ( ,), 其中 X( x1 , x 2 ),( 1 ,212 ),,1则 Cov( x1x 2 , x1x 2 )=____.102、设X i ~N 3 (,), i 1, L,10,则 W =( X i)( X i)i 1服从_________。

4433、设随机向量X x1x2x3, 且协方差矩阵 4 9 2 ,3 2 16则它的相关矩阵R___________________4、设 X= x1x2x3,的相关系数矩阵通过因子分析分解为112330.93400.1280.4171R100.4170.9340.83530.8940.8940.027 0.83500.4472010.4470.10332__________,__________,X1的共性方差 h1X1的方差11公因子 f 1对 X的贡献 g12________________。

5、设 X i , i 1,L ,16 是来自多元正态总体N p (, ), X 和 A分别为正态总体N p ( ,)的样本均值和样本离差矩阵 , 则T 215[4( X)] A 1[4( X)] ~ ___________。

1642、设( x1 , x2 , x3) ~ N3(, ),其中(1,0, 2) ,44 1 ,1X214试判断 x12 x3与x2x3是否独立?x12、对某地区农村的 6 名 2 周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下 , 根据以往资料 , 该地区城市 2周岁男婴的这三个指标的均值0(90,58,16), 现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。

82.0 4.310714.62108.9464其中 X60.2 ,(5 S ) 1( 115.6924)114.6210 3.17237. 376014.58.946437.376035.5936 (0.01,F 0.01 (3, 2)99.2, F 0.01 (3,3)29.5,F0.01 (3, 4)16.7)、设已知有两正态总体G与 G,且12,24,1211,3126219而其先验概率分别为q1q20.5,误判的代价C (2 1)4;e ,C(1 2)e试用判别法确定样本X 3属于哪一个总体?Bayes514、设X( X1 , X2 , X3 , X4 )T,协方差阵1~ N (0, ),0111(1)试从Σ出发求 X 的第一总体主成分;(2)试问当取多大时才能使第一主成分的贡献率达95%以上。

研究生多元统计分析试题(A卷)(答案)

研究生多元统计分析试题(A卷)(答案)

内蒙古农业大学2009—2010学年第一学期一、判断题(每小题2分,共10分) 1.多元正态分布的任何边缘分布为正态分布; ( 对 ) 2.正态总体),(∑μp N 的样本均值X 是μ的无偏,有效,一致估计; ( 对 ) 3.Wilks 统计量可以化成2T 统计量但是化不成F 统计量; ( 错 ) 4.Fisher 判别法对总体的分布有特定的要求; ( 错 )5.. ( 对 )二、填空题(每小题3分,共15分)1. 设X 和S 分别是正态总体),(∑μp N 的样本均值和离差阵,则X 和S 的关系为相互独立;2.若X ~),0(∑p N ,S ~),(∑n W p 且X 与S 相互独立,则X S X pp n 1'1-+-~(,1)F p n p -+;3.若1A ~),(1∑n W p ,p n ≥1,2A ~),(2∑n W p ,∑>0,且1A 和2A 相互独立, 则211A A A +~12(,,)p n n ∧;4.设资料阵X=()pn ijx ⨯,则样品()i X 与()j X 的切比雪夫距离)(∞ij d =1max ||i j px x ααα≤≤-;5.设S 是正态总体),(∑μp N 的离差阵,则∑的相合估计为11()1s s n n - . 三、选择题(每小题3分,共15分)1.设S 是正态总体),(∑μp N 的离差阵,样本容量为n ,则S 为正定矩阵的充要..条件..是(A ) A .n >p B. n <p C. n ≥p D. n ≤p2.下列不.是.系统聚类法是( ) A. 对应分析法 B.重心法 C. 可变法 D. 类平均法3. 以下关于聚类分析的说法不正确...的是(A ) A.聚类分析与群分析是不同的统计分析方法 B. 聚类分析属于多元统计分析方法 C. 系统聚类法是一种常用的聚类分析法 D. 模糊聚类法是一种常用的聚类分析法4. 判别分析是种常用的商情分析工具,下列关于判别分析的说法正确的是( D ) A. 判别分析是属于一元统计方法 B. 判别函数只有线性判别一种类型C. 无论判别标准是否相同,所得到的结论是相同的D. 判别分析是判别样本所属类型的统计方法5.“用一条直线代表散点图上的分布趋势,使各点与该纵向距离的平方和最小”是( A )方法B. 判别分析C. 聚类分析D. 相关分析四、计算题(每小题10分,共 30分)1.设抽取五个样品,每个样品只测一个指标,它们是2,3,4.5,8,10,试用最短距离法对五个样品进行分类. (请用绝对距离)解: 设样品为: x1,x2,x3,x4,x5 则他们的距离(绝对值距离)为(0)D =12345123450102.5 1.5065 3.5087 5.520x x x x x x x x x x ⎛⎫ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪⎝⎭ (1)D =1234512345,,01.505 3.507 5.52x x x x x x x x x x ⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭(2)D =1234512345,,,,03.505.520x x x x x x x x x x ⎛⎫ ⎪ ⎪ ⎪⎪⎝⎭ (3)D =1234512345,,,,,0, 3.50x x x x x x x x x x ⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭2.设三元总体X 的协方差阵为200050009⎛⎫ ⎪∑= ⎪ ⎪⎝⎭,从∑出发,求总体主成分123,,F F F ,并求前两个主成分的累积贡献率。

多元统计复习题答案

多元统计复习题答案

多元统计复习题答案一、单项选择题1. 多元统计分析中,用于描述多个变量之间关系的统计方法是()。

A. 相关分析B. 聚类分析C. 因子分析D. 主成分分析答案:C2. 以下哪个不是多元统计分析中常用的降维方法?()A. 主成分分析B. 因子分析C. 聚类分析D. 典型相关分析答案:C3. 在多元统计分析中,用于识别数据集中的异常值或离群点的统计方法是()。

A. 马氏距离B. 箱线图C. 相关系数D. 卡方检验答案:B二、多项选择题1. 多元统计分析中,以下哪些方法可以用来进行变量选择?()A. 逐步回归B. 岭回归C. 偏最小二乘回归D. 主成分分析答案:A|B|C2. 多元统计分析中,以下哪些方法可以用来进行数据的分类?()A. 判别分析B. 聚类分析C. 因子分析D. 典型相关分析答案:A|B三、判断题1. 多元统计分析中的因子分析可以用于变量的降维。

(对)2. 多元统计分析中的主成分分析和因子分析是完全相同的方法。

(错)3. 多元统计分析中的聚类分析可以用于识别数据集中的异常值。

(错)四、简答题1. 简述多元统计分析中主成分分析(PCA)的主要步骤。

答:主成分分析的主要步骤包括:数据标准化、计算协方差矩阵、求解特征值和特征向量、选择主成分、构造主成分得分。

2. 描述多元统计分析中判别分析的应用场景。

答:判别分析在多元统计分析中主要应用于根据已有的分类变量来预测新样本的分类,例如在医学诊断、市场细分、信用评分等领域。

五、计算题1. 给定一组数据,计算其主成分得分。

答:首先需要对数据进行标准化处理,然后计算协方差矩阵,接着求解特征值和特征向量,最后根据特征值的大小选择前几个主成分,并计算对应的得分。

2. 利用判别分析对一组数据进行分类,并给出分类结果。

答:首先需要确定分类的依据,然后计算各类别的判别函数,接着对新样本进行判别分析,最后根据判别得分将样本分类到相应的类别中。

多元统计分析期末试题(卷)与答案解析

多元统计分析期末试题(卷)与答案解析

22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑、设则=服从。

()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。

215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。

(),123设X=x xx 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R⎛⎫- ⎪⎛⎫⎛⎫⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎪⎝⎭12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。

青海师大 数学 多元统计分析试卷A卷解读

青海师大 数学 多元统计分析试卷A卷解读

青海师范大学 (院)系2014—2015学年度第二学期期末《多元统计分析》试题(A 卷) 姓名_________学号____________ 专业__________班级_______一、填空题(每空2分,共50分)1.随机向量),,,(21'=p x x x X ~),(∑μp N ,则p x x x ,,,21 相互独立的充要条件为∑是____________,设A 是p s ⨯阶常数阵,B 为p 维常数向量,则B AX + ~ ___________ 2.在一元统计中,若统计量)1(~-n t t 分布,则2t ~_____________分布,在多元统计分析中2T 统计量也有类似的性质。

若X ~ ),0(∑p N , W ~ ),(W ∑n p , 且X 与W 相互独立,则X W X n T 12-'=~__________,1n p np-+2T ~____________,X X d 12-∑'=~__________. 3.通常指标变量有三种尺度:_______________、______________、_____________.4.设随机向量),,(321'=x x x x 的协方差阵为⎪⎪⎪⎭⎫ ⎝⎛=∑162-32-94-34-4,则相关矩阵R=_____ 5. 常用的系统聚类方法有最短距离法、最长距离法、____________、_________、____________.快速聚类方法指的是_____________.6.常用的判别分析方法有:距离判别、______________、________________.7.主成分分析的一般目的是____________ 和主成分的解释.8.请指出下面SPSS 软件操作分别代表多元统计分析中什么分析: (1)Analysis→Classify→Discriminant ______. (2)Analysis→Data Reduction→Factor _______.9.因子分析中常用的求解因子载荷的方法有______________、____________、__________. 10.典型相关分析是研究___________________相关性的一种统计方法,它也是一种降维技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东 北 大 学 秦 皇 岛 分 校
课程名称: 多元统计分析 试卷类型: 答案 考试形式:开
授课专业: 数学与应用数学 考试日期: 2012年12月12日 试卷:共 3 页
一、填空题:(每空2分,共30分)
1、设(1)(2)(,)p N ⎡⎤=⎢⎥⎣⎦:X X μX ∑(2)p ≥,(1)(2)⎡⎤=⎢⎥⎣⎦μμμ,11122122⎡⎤=⎢⎥
⎣⎦∑∑∑∑∑,其中(1)X ,(1)
μ为1r ⨯,11∑为r r ⨯,则(1):X (1)11(,)r N μ∑,(2):X (2)22(,)p r N -μ∑
2、系统聚类分析的方法很多,其中的五种分别为最短距离法、最长距离法、重心法、类平均法、离差平方和法。

3、若p 维随机向量~(,)p X N μ∑,~(,)p W W n ∑,且X 与W 相互独立,则
1()()~n X W X μμ-'--2(,)T p n ,
2
1(,)~n p T p n pn
-+(,1)F p n p -+。

4、i X 与前个主成分的全相关系数的平方和21
(,)m
k i k Y X ρ=∑称为12,,,m Y Y Y L 对原始变量
i X 的方差贡献率,在因子分析中也称之为共同度。

5、Q 型因子分析研究样品之间的相关关系,R 型因子分析研究变量之间的相关关系。

6、Fisher 判别法的基本思想是投影,并利用方差分析的思想来导出判别函数。

二、判断题(每题2分,共10分)
1、( √ )随机向量12(,,,)p X X X 'L 的协方差阵()D X =∑是对称非负定阵。

2、( × )因子载荷矩阵A 是对称阵。

3、( × )聚类分析中快速聚类法指的就是模糊聚类法。

4、( √ )设(,)p N :X μ∑,(,)p W n :W ∑,且X 与W 相互独立,则
12()()(,)n T p n -':X μW X μ--。

5、( × )主成分分析中,从相关矩阵出发求解的主成分一定会比从协方差矩阵出发求解的主成分更可信。



线装 订 线 内 不 要 答 题
学 号
姓 名
班 级
三、计算题(共60分)
1、设12(,)X X 'X =
的协方差阵为2
9⎛∑=⎪⎭
,试分别从协方差∑和相关矩阵出发求解总体主成分1Y ,2Y 。

(10分)
解:特征方程2||0E λλ--∑=
=,得特征根:110λ=,21
λ=
110λ=
的特征方程:128
01x x ⎛⎛⎫=
⎪ ⎪⎝⎭
⎝⎭
,得特征向量1
13u ⎛⎫

=
21λ=
的特征方程:12108x x ⎛-⎛⎫
= ⎪ ⎪-⎝⎭⎝⎭
,得特征向量213u ⎪= -⎪
⎪⎝⎭
112133Y x x =+
,1121
33
Y x x =-……………5分
由29⎛∑=⎪⎭,得:12321R ⎛⎫= ⎪⎝⎭
, 特征方程2
1
3
||021
3
E R λλλ--=
=-,得特征根:153λ*=,21
3λ*=
153λ*=的特征方程:122320232x x ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭
,得特征向量1u *⎛⎫
⎪ ⎪=
⎝ 213λ*
=的特征方程:12232302323x x -⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭
,得特征向量2u *=
112Y x x ***=
-
,212Y x x ***
=…………10分 2、设5个样品两两之间的距离矩阵:04
06
90
1710063580⎛⎫


⎪ ⎪
⎪ ⎪⎝⎭
,试用最长距离法作系统聚类,并画出谱系聚类图。

(15分)
解:样品与样品之间的明氏距离为:1234
512(0)
345
040690171006
3
5
8
0x x x x x x x D
x x x ⎛
⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭
样品最短距离是1,故把1X 与4X 合并为一类……………3分
学 号
班 级
计算类与类之间距离(最长距离法),得: 1423
514(1)
23
5{,}{,}0
701090
835
0x x x x x x x D x x x ⎛

⎪ ⎪ ⎪=
⎪ ⎪ ⎪⎝

类与类的最短距离是3,故把2X 与5X 合并为一类,……………6分
计算类与类之间距离(最长距离法),得:1425314(2)
253{,}{,}{,}0{,}801090x x x x x x x D x x x ⎛
⎫ ⎪
⎪= ⎪ ⎪
⎝⎭
类与类的最短距离是8,故把14{,}X X 与{}25,X X 合并为一类……………9分
计算类与类间距离(最长距离法),得:
12453(3)
12453{,,,}{}{,,,}0{}100x x x x x D x x x x x ⎛⎫ ⎪= ⎪ ⎪⎝⎭
…12分 谱系聚类图(略)……………15分
3、设三维随机向量1233(,,)~(,)X X X X N μ=∑,其中120250002-⎛⎫

∑=- ⎪ ⎪⎝⎭。

试问
下列5对随机变量或随机向量中哪几对是相互独立的,为什么?(1)1X 与
22X ;(2)2X 与3X ;(3)12(,)X X 与3X ;(4)1X 与23(,)X X 。

(10分)
解:由120250002-⎛⎫

∑=- ⎪ ⎪⎝⎭知,1X 与22X 不独立;2X 与3X 独立 ……………4分
12(,)X X 与3X 独立;1X 与23(,)X X 不独立……………10分
4、在1984年洛杉矶奥运会上,有55个国家和地区参与了男子径赛,其中有这样8
项比赛指标:x1:100米(秒),x2:200米(秒),x3:400米(秒),x4:800米(秒),
x5:1500米(分),x6:5000米(分),x7:10000米(分)和x8:马拉松(分)。

这8个变量的样本相关系数矩阵的个特征根和前三个标准正交特征向量分别为:
12
3
(0.318,0.337,0.356,0.369,0.373,0.364,0.367,0.342)
(0.567,0.462,0.248,0.012,0.140,0.312,0.307,0.439)(0.332,0.361,0.560,0.532,0.153,0.190,0.182,0.263)U U U '='=----'=--- (1)写出前三个主成分的表达式;(5分)
(2)计算每个主成分的方差贡献率,并按照一般性原则选取主成分的个数。

(5分)
(1)********1123456780.3180.3370.3560.3690.3730.3640.3670.342Y x x x x x x x x =+++++++
********
212345678
0.5670.4620.2480.0120.1400.3120.3070.439Y x x x x x x x x =+++----********3123456780.3320.3610.5600.5320.1530.1900.1820.263Y x x x x x x x x =+---+++……5分
装订
线
装 订 线
学 号
姓 名 班 级


线
装 订 线
学 号
姓 名
班 级
(2)方差贡献率分别为
182.8%
v=,
211.0%
v=,
32.0%
v=,
1293.7%
v v
+=,
12395.7%
v v v
++=,故主成分应保留2个。

……………10分
5、已知某实际问题选用了5个指标作为原始变量,利用了因子分析模型,经Spss软件计算,部分输出如下:
试回答以下问题:(1)解释表1中的列Extr acti on中各得数;(5分)(2)结合表2和表3,写出因子分析模型,并简要阐述公因子是如何综合原始指标的信息的。

(10分)
解:(1)表1中的列Extraction中各得数分别是保留的三个公因子从五个原始指标中的各指标所提取信息的百分比;
(2)因子分析模型:
从旋转因子载荷矩阵可以看出,公因子
1
F主要反映了原始指标
1
X,
2
X,
3
X
公因子
2
F主要反映了原始指标
5
X
公因子
3
F主要反映了原始指标
4
X
表2 Rotated Component Matrixa
表3 Rotation Sums of Squared Loadings。

相关文档
最新文档