《一线三等角——相似三角形知识拓展》
2024年中考数学二轮复习课件:--“一线三等角”相似模型(1)(30张PPT)
AE
AF 的值;
5
7
课堂小结
课堂小结
同侧异侧都可以
一线三等角模型:∠1,∠2,∠3的顶点在同一条直线
上,且∠1=∠2=∠3.那么可证 △ABC∽△CED
无边相等证相似
A
A
有边相等证全等
D
D
90°
90°
90°
60°
60°
B
C
120°
60°
E
B
120°
C
120°
E
布置作业
课后巩固
1.如图,在 △ ABC 中, AB = AC , AB > BC .点 D 在边
5、如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上
运动,点E在AC上运动,∠ADE=45°.
求证:△ABD∽△DCE;
解:(1) ∵ ∠BAC=90°,AB=AC,∴ ∠B=∠C=45°.
∴ ∠BAD+∠ADB=180°-∠B=135°.
∵ ∠ADE=45°,
∴ ∠ADB+∠CDE=180°-∠ADE=135°.∴ ∠BAD=∠CDE.
E 分别在边 BC,AB 上,∠ADE=60°.
图中的相似三角形为 △BED∽△CDA
若 BD=4DC,DE=2.4,则 AD 的长为 3
例题2
2.如图,AB⊥BC,CD⊥BC,AE⊥DE,AE=DE
(1)△ABE 与△ECD 有什么关系?(2)求证:AB+CD=BC
满足“一线三等角”和
对应边相等的两个条件,
BE BD
CD CF
,即
4
∴BE= 3 .
BE 1
4
3
中考数学相似三角形重要模型一线三等角模型
相似三角形重要模型-一线三等角模型相似三角形在中考数学几何模块中占据着重要地位。
相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。
如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了.本专题就一线三等角模型进行梳理及对应试题分析,方便掌握。
模型1.一线三等角模型(相似模型)【模型解读与图示】“一线三等角”型的图形,因为一条直线上有三个相等的角,一般就会有两个三角形的“一对角相等”,再利用平角为180°,三角形的内角和为180°,就可以得到两个三角形的另外一对角也相等,从而得到两个三角形相似.1)一线三等角模型(同侧型)(锐角型)(直角型)(钝角型)条件:如图,∠1=∠2=∠3,结论:△ACE∽△BED.2)一线三等角模型(异侧型)条件:如图,∠1=∠2=∠3,结论:△ADE∽△BEC.3)一线三等角模型(变异型)图1 图2 图3①特殊中点型:条件:如图1,若C为AB的中点,结论:△ACE∽△BED∽△ECD.②一线三直角变异型1:条件:如图2,∠ABD=∠AFE=∠BDE=90°.结论:△ABC∽△BDE∽△BFC∽△AFB.③一线三直角变异型2:条件:如图3,∠ABD=∠ACE=∠BDE=90°.结论:△ABM∽△NDE∽△NCM.例1.(2023·山东东营·统考中考真题)如图,A B C为等边三角形,点D,E分别在边B C,A B上,60A D E∠=︒,若4B D D C=, 2.4D E=,则A D的长为()A.1.8B.2.4C.3D.3.2例2.(2023·湖南·统考中考真题)如图,,C A ADE D A D⊥⊥,点B是线段A D上的一点,且C B B E⊥.已知8,6,4A B A C D E===.(1)证明:A B C D E B∽△△.(2)求线段B D的长.例3.(2022·河南新乡·九年级期中)某学习小组在探究三角形相似时,发现了下面这种典型的基本图形.(1)如图1,在ABC中,∠BAC=90°,A BA C=k,直线l经过点A,BD⊥直线I,CE上直线l,垂足分别为D、E.求证:B DA E=k.(2)组员小刘想,如果三个角都不是直角,那么结论是否仍然成立呢?如图2,将(1)中的条件做以下修改:在ABC中,A BA C=k,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问(1)中的结论还成立吗?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,在ABC中,沿ABC的边AB、AC向外作矩形ABDE和矩形ACFG,A BA E =A CA G=12,AH是BC边上的高,延长HA交EG于点I.①求证:I是EG的中点.②直接写出线段BC与AI之间的数量关系:.例4.(2022·四川·一模)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:(1)如图1,已知:在△ABC 中,A B A C=,D 、A 、E 三点都在直线m 上,并且有B D AA E CB AC α∠=∠=∠=.试猜想DE 、BD 、CE 有怎样的数量关系,请证明你的结论;(2)老师鼓励学习小组继续探索相似的情形.于是,学习小组又研究以下问题:如图2,△ABC 中,(060)B C αα∠=∠=<<︒.将一把三角尺中30°角顶点P 放在BC 边上,当P 在BC 边上移动时,三角尺中30°角的一条边始终过点A ,另一条边交AC 边于点Q ,P 、Q 不与三角形顶点重合.设C P Qβ∠=.当β在许可范围内变化时,α取何值总有△ABP ∽△PCQ ?当α在许可范围内变化时,β取何值总有△ABP ∽△QCP ?(3)试探索有无可能使△ABP 、△QPC 、△ABC 两两相似?若可能,写出所有α、β的值(不写过程);若不可能,请说明理由.例5.(2022·山西晋中·一模)阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①,在A B C中,90A C B ∠=︒,A C B C=,分别过A 、B 向经过点C 直线作垂线,垂足分别为D 、E ,我们很容易发现结论:A D C C E B△≌△.(1)探究问题:如果A CB C≠,其他条件不变,如图②,可得到结论;A D CC E B△∽△.请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线12y x=与直线C D 交于点()2,1M ,且两直线夹角为α,且3ta n 2α=,请你求出直线C D 的解析式.(3)拓展应用:如图④,在矩形A B C D 中,3A B=,5B C=,点E为B C 边上—个动点,连接A E ,将线段A E 绕点E 顺时针旋转90︒,点A 落在点P 处,当点P 在矩形A B C D外部时,连接P C ,P D .若D P C △为直角三角形时,请你探究并直接写出B E 的长.Rt ABD中,上一动点,连接折叠得H E F,延长②B E M H E M≅;③当M2B,则正确的有(九年级校考阶段练习)已知A B C是等边三角形,E F和B D F∠,将B C E沿B则A F=P C D△;九年级校考阶段练习)如图,在A B C中,12.(2022·山东济宁·二模)情境观察:将含45°角的三角板的直角顶点R放在直线l上,分别过两锐角的顶点M,N作l的垂线,垂足分别为P,Q,(1)如图1.观察图1可知:与NQ相等的线段是______________,与N R Q∠相等的角是_____(2)问题探究直角A B C中,90B∠=︒,在AB边上任取一点D,连接CD,分别以AC,DC为边作正方形ACEF 和正方形CDGH,如图2,过E,H分别作BC所在直线的垂线,垂足分别为K,L.试探究EK与HL之间的数量关系,并证明你的结论.(3)拓展延伸:直角A B C中,90B∠=︒,在AB边上任取一点D,连接CD,分别以AC,DC为边作矩形ACEF和矩形CDGH,连接EH交BC所在的直线于点T,如图3.如果A C kC E=,试探究TE与TH=,C D kC H之间的数量关系,并证明你的结论.将.A B P沿着这样的点P,使得点问题解决(3)15.(2023春·四川广安·九年级校考阶段练习)如图1和图2,在平面直角坐标系中,点C的坐标为(0,4),A是x轴上的一个动点,M是线段AC的中点.把线段AM以A为旋转中心、按顺时针方向旋转90°得到AB.过B作x轴的垂线、过点C作y轴的垂线,两直线交于点D,直线DB交x轴于点E.设A点的横坐标为m.(1)求证:△AOC∽△BEA;(2)若m=3,则点B的坐标为;若m=﹣3,则点B的坐标为;(3)若m>0,△BCD的面积为S,则m为何值时,S=6?(4)是否存在m,使得以B、C、D为顶点的三角形与△AOC相似?若存在,求此时m的值;若不存在,请说明理由.16.(2020·四川雅安·中考真题)如图,已知边长为10的正方形A B C D E、不重,是B C边上一动点(与B C 合),连结A E G,是B C延长线上的点,过点E作A E的垂线交D C G∠的角平分线于点F,若F G B G⊥.(1)求证:A B E E G FE C=,求C E F△△;(2)若2∽△的△的面积;(3)请直接写出E C为何值时,C E F面积最大.的何位置时有B E H B A E∽?B C。
“一线三等角”问题的探究和拓展——以2022年中考数学安徽卷第14题为例
一线三等角 问题的探究和拓展以2022年中考数学安徽卷第14题为例安徽省安庆市宿松县东洪初级中学 曹喜荣 (邮编:246524)摘 要 一线三等角是几何证明中重要的数学模型,本文以2022年中考题为例进一步探讨一线三等角问题,有利于增强学生的几何直观能力,提升学生的数学核心素养.关键词 一线三等角;初中数学;几何模型 ‘义务教育数学课程标准(2022年版)“指出,学业水平考试要 坚持素养立意,凸显育人导向.2022年安徽省中考数学卷第14题是基于 一线三等角 模型的问题,体现 立足基础,源于教材,联系实际,突出能力,强调应用,着意素养 的命题思路.试题以教材习题素材为蓝本进行综合㊁创新㊁改造,引领教师在教学中要注重对教材内容的理解以及在理解的基础上的适度拓展,既提升教材的价值,又拓展学生的思维,培养学生的能力,发展学生数学素养.以该题为例,分析试题立意,进行解法探究,感悟用好教材的方法.1试题及其解答图1如图1,四边形A B C D是正方形,点E 在边A D 上,әB E F 是以E 为直角顶点的等腰直角三角形,E F ,B F 分别交C D 于点M ,N ,过点F 作A D 的垂线交A D 的延长线于点G .连接D F ,请完成下列问题:(1)øF D G =.(2)若D E =1,D F =22,则MN =.受篇幅所限,本文仅讨论题(1).分析观察发现,在直线A D 上出现了三个相等的直角:øA =øB E F =øG ,结合题设易证全等三角形,这是 一线三等角 数学模型应用的典型范例.解析 由题意可得,因为øA B E +øB E A=øB E A +øF E G =90ʎ,同角的余角相等,得øA B E =øF E G .又因为øA =øG =90ʎ,E B =E F ,所以әB E A ɸәE F G A A S .从而B A =E G ,A E =G F .又四边形A B C D 是正方形,B A =A D .得到G D =E G -E D =B A -E D =A D -E D =A E =GF ,所以әDG F 是等腰直角三角形.所以øF D G =45ʎ.说明 一线三等角 是指在一条直线上出现了三个相等的角,在这种情况下,综合性几何题往往就会利用全等以及等腰三角形的性质作为出题和解题的一种形式.2 教材原题溯源本题以沪科版义务教育教科书八年级‘数学“上册第15章轴对称图形与等腰三角形 第140页练习第7题素材为母题,兼顾知识㊁能力㊁思想方法等方面的考查,呈现形式贴近学生,符合学生认知规律.(沪科版教材八年级上册第140页第7题)已知:如图2,在әA B C 中,A B =A C ,点D ㊁E 分别在边B C ㊁A C 上,A D =A E ,若øB A D =30ʎ,求øE D C 的度数.解析 设øE D C =x ,øB =øC =y ,图2则øA E D =øE D C +øC =x +y ,又因为A D =A E ,所以øA D E =øA E D=x +y .则øA D C =øA D E+øE D C =2x +y .又øA D C =øB +øB A D ,所以2x +y =y +30ʎ,解得x =15ʎ,所以øE D C 的度数是15ʎ.注 该题主要考查等腰三角形的性质,当øA D E =øB 时就构造了 一线三等角 模型,熟练掌握该模型的相关特点,可以在解题过程中判定全等三角形㊁相似三角形等几何关系,从而提升学生的数学思维能力.3 模型拓展应用552023年第3期中学数学教学图3拓展1 如图3,D ,E 是直线l 上的两个动点(D ,A ,E 三点互不重合)F 为øB A C 内一点,且әA B F 和әA C F 均为等边三角形,连接F D ,F E ,B D ,C E .若øB D A =øA E C =øB A C ,求证:D F =E F .解析 因为øB D A =øA E C =øB A C ,øB D A +øA B D +øB A D =øB A D +øB A C+øC A E =180ʎ,所以øA B D =øC A E .因为әA B F 和әA C F 均为等边三角形,所以øA B F =øC A F =60ʎ,F B =A B =A F =A C ,所以øD B A +øA B F =øC A E +øC A F ,即øD B F =øE A F .在әA D B 和әC E A中,øA B D =øC A E ,øB D A =øA E C ,A B =C A ,所以әA D B ɸәC E A (A A S ),即B D =A E .在әD B F 和әE A F 中,F B =F A ,øD B F =øE A F ,B D =A E ,所以әD B F ɸәE A F (S A S ),所以D F =E F .注 此题直接给出了 一线三等角 模型的条件,熟悉该模型可在复杂的几何图形中迅速搭建证明思路,实现在等边三角形中的应用.图4在全等三角形之外, 一线三等角 在三角形相似证明中也有充分的应用.拓展2 如图4,在等腰三角形或等边三角形中,ø1=ø2=ø3,可根据三角形内角和及补角得到另一组等角,可得同一三角形中两阴影部分三角形相似.拓展3 如图5,әD E F 的三个顶点分别在等边әA B C 的三条边上,B C =4,øE D F =90ʎ,D ED F=3,则D F 长度的最小值是.解析 由t a nøE F D =D ED F=3,可得图5øE F D =60ʎ,因为әA B C 是等边三角形,所以øA =øC=60ʎ,A B =B C =A C =4,由三角形内角和得øA F E +øA E F =180ʎ-øA =120ʎ,又øA F E +øD F C =180ʎ-øE F D =120ʎ,所以øA E F =øD F C ,可得әA E F ʐәC F D ,所以C D A F =D FE F=c o s øE F D =12,设C D =a ,则A F =2a ,C F =A C -A F =4-2a ,过点F 作F H ʅC D 于点H ,在R t әD F H 中,C H =C F c o s øC =2-a ,F H =C F s i n øC =23-3a ,所以DH =C D -C H=a -(2-a )=2a -2,在R t әD F H 中,D F 2=DH 2+F H 2=(2a -2)2+(23-3a )2=7a 2-20a +16=7(a -107)2+127,所以D F 2的最小值为127,D F 最小值为2217.注 在该题中,单纯运用几何知识难以求出最值,需要串联知识,借助函数的工具.运用一线三等角模型易证三角形相似,在此基础上建立函数关系式便很快突破了难点,解决了问题;提升学生的几何直观能力,根据题设条件特点及图形特征,运用基本结论解决问题的技能是几何教学的重难点之一,也是学生解题需要掌握的基本能力.4 总结2022年版义务教育数学课程标准希望学生在初中阶段形成模型观念㊁数据观念;数学学科核心素养也包括数学抽象和直观想象,逻辑推理和运算能力,数学模型和数据分析.在初中数学教学中,及时归纳如 一线三等角 等数学模型,注重培养学生的模型观念,有利于增强学生的数学能力,提升学生的数学核心素养.参考文献[1] 史宁中.‘义务教育数学课程标准(2022年版)“的修订与核心素养[J ].教师教育学报,2022,9(3):92-96.[2] 孔凡哲,史宁中.中国学生发展的数学核心素养概念界定及养成途径[J ].教育科学研究,2017(6):5-11.(收稿日期:2023-04-11)65中学数学教学2023年第3期。
相似三角形基本模型一线三等角精品PPT课件
A
D
A
D
F
B
E
C
F
B
E
C
A
△ABE∽ △ECF
F
((2)1)点点E为E为BBCC上上任任意意一一点点若,∠若B= ∠∠CB==α,∠∠CA=E6F0°= ∠, ∠CA,则EF△=A∠BCE,则与△ EC△FA的B关E与系△还成EC立F吗的?关系还成立吗?
说明理由
B
α
α
B
E
α
C
点拨:要善于运用类比、迁移的数学方法 解决问题。
A
A
①
B
F
②
E
C
①
B
③
F
②
E
C
E为中点
D
A
F
①
α
B
α ②α
E
C
A
F
①
α
B
③
α②
α
E
C
1.矩形ABCD中,把DA沿AF对折,使D与CB边上的点E 重合,若AD=10, AB= 8,
则EF=___5___
D
F
C
EE
A
点拨:要善于在复杂图形中寻找基本型。 B
A
E F
B
D
C
变式:已知:△ABC中,AB=AC, ∠BAC= 120°,D为BC的 中点, 且∠EDF =∠C, (1) 若BE·CF=48,则AB=__8___
(2)在(1)的条件下,若EF=m,
则S△DEF =___3__m__
A EH
F
P
B
D
点拨:联想基本模型,寻找 相关结论。
C
相似三角形模型讲一线三等角问题讲义解答
、相似三角形判定的基本模型认识(一) A 字型、反A 字型(斜A 字型)(二) 8字型、反8字型(平行) (三)母子型(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(平行) (不平行)(蝴蝶型)(不平行)A BB(五)一线三直角型:(六)双垂型:相似三角形判定的变化模型实用文案DA, ' ' /B c C■一线三直角的1 .如图,梯形ABCD中,AD //BC,对角线AC、BD交于点0 , BE//CD交CA延长线于E.求证:OC2=OA2 .如图,在△ ABC 中,AB=AC=10 ,BC=16,点D 是边BC 上(不与B,C 重合)一动点,/ ADE= ZB= a, DE交AC于点E.下列结论:① AD 2=AE ?AB :② 3.6 W AE V 10 ;③当AD=2 Ji」.时,△ABD ^/DCE ;④ADCE为直角三角形时,BD为8或12.5 .其中正确的结论是________________ .(把你认为正确结论的序号都填上)3 .已知:如图,△ ABC中,点E在中线AD上,/DEB= /ABC . 求证:(1 ) DB2=DE ?DA ;(2)/ DCE= ZDAC .4 .已知:如图,等腰△ ABC中,AB=AC , AD丄BC于D , CG//AB , BG分别交AD、AC于E、F.求证:5 .如图,已知AD为△ABC的角平分线,EF为AD的垂直平分线.求证:FD2=FB 7FC.6 .已知:如图,在 Rt △ABC 中,/ C=90 °,BC=2 , AC=4 , P 是斜边AB 上的一个动点, PD 丄AB ,交边 AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且/ EPD= Z A .设A 、P 两点的距离为 x , △BEP 的面积为y .(1 )求证:AE=2PE ;(2 )求y 关于x 的函数解析式, ,BD 、CE 分别是 AC 与AB 边上的高,求证: BC=2DE .8 .如图,已知△ ABC 是等边三角形,点 D 、B 、C 、E 在同一条直线上,且/ DAE=120并写出它的定义域;求厶BEP 的面积.7 .如图,在△ ABC 中,/ A=60(1 )图中有哪几对三角形相似?请证明其中的一对三角形相似;9 .(已知:如图,在Rt△ABC 中,AB=AC,/DAE=45 ° .求证:10 .如图,在等边厶ABC中,边长为6, D是BC边上的动点,/ EDF=60(1 )求证:△ BDEs/CFD ;求BE的长.11 . (1 )在A ABC中,AB=AC=5 , BC=8,点P、Q分别在射线CB、AC上(点P不与点C、点B重合),且保持/ APQ= Z ABC .①若点P在线段CB上(如图),且BP=6,求线段CQ的长;②若BP=x , CQ=y ,求y与x之间的函数关系式,并写出函数的定义域;(2)正方形ABCD的边长为5 (如图),点P、Q分别在直线CB、DC上(点P不与点C、点B重合),且保持/APQ=90度.当CQ=1时,写出线段BP的长(不需要计算过程,请直接写出结果)13 .已知梯形ABCD 中,AD //BC,且AD V BC, AD=5 , AB=DC=2 .(1 )如图,P为AD上的一点,满足/ BPC= Z A,求AP的长;(2)如果点P在AD边上移动(点P与点A、D不重合),且满足/ BPE= ZA , PE交直线BC于点E,同时交直线DC于点Q .①当点Q在线段DC的延长线上时,设AP=x , CQ=y,求y关于x的函数关系式,并写出自变量x的取值范围;②当CE=1时,写出AP的长.(不必写解答过程)14 .如图,在梯形ABCD中,AD //BC, AB=CD=BC=6 , AD=3 .点M 为边BC的中点,以M 为顶点作Z EMF= ZB,射线ME交腰AB于点E,射线MF交腰CD于点F,连接EF.(1 )求证:△ MEF s/BEM ;(2 )若厶BEM是以BM为腰的等腰三角形,求EF的长;(3 )若EF丄CD , 求BE的长.15 .已知在梯形 ABCD 中,AD //BC , AD V BC ,且 BC=6 , AB=DC=4 ,点 E 是 AB 的中点.(1 )如图,P 为BC 上的一点,且 BP=2 .求证:△ BEPs/CPD ;(2)如果点P 在BC 边上移动(点P 与点B 、C 不重合),且满足/ EPF= ZC , PF 交直线CD 于点F ,同时 交直线AD 于点M ,那么①当点F 在线段CD 的延长线上时,设 BP=x , DF=y ,求y 关于x 的函数解析式,并写出函数的定义域;16 .如图所示,已知边长为 3的等边△ ABC ,点F 在边BC 上,CF=1,点E 是射线BA 上一动点,以线段 EF 为边向右侧作等边△ EFG ,直线EG , FG 交直线AC 于点M , N ,(1 )写出图中与△ BEF 相似的三角形; (2) 证明其中一对三角形相似;(3) 设BE=x , MN=y ,求y 与x 之间的函数关系式,并写出自变量17 .如图所示,已知矩形 ABCD 中,CD=2 , AD=3,点P 是AD 上的一个动点(与 A 、D 不重合),过点P作PE 丄CP 交直线AB 于点E ,设PD=x , AE=y ,(1) 写出y 与x 的函数解析式,并指出自变量的取值范围; (2) 如果△ PCD 的面积是厶AEP 面积的4倍,求CE 的长;(3) 是否存在点 卩,使厶APE 沿PE 翻折后,点A 落在BC 上?证明你的结论.x 的取值范围;的面积.18 .如图,在 Rt △KBC 中,/ C=90 °,AB=5,-丁讦二上,点D 是BC 的中点,点 E 是AB 边上的动点,4丄DE 交射线AC 于点F . (1 )求AC 和BC 的长; (2)当EF//BC 时,求BE 的长;19 .如图,在 Rt △KBC 中,/ C=90 °,AC=BC , D 是AB 边上一点,E 是在AC 边上的一个动点(与点 C 不重合),DF 丄DE , DF 与射线BC 相交于点F .(1 )如图2,如果点D 是边AB 的中点,求证:DE=DF ; (2) 如果 AD : DB=m ,求 DE : DF 的值;(3) 如果 AC=BC=6 , AD : DB=1 : 2,设 AE=x , BF=y , ① 求y 关于x 的函数关系式,并写出定义域;② 以CE 为直径的圆与直线 AB 是否可相切?若可能,求出此时x 的值;若不可能,请说明理由.DF(3)连接EF ,当厶DEF 和△ABC 相似时,求 BE 的长.20 .如图,在△ ABC中,/ C=90 °,AC=6 , X^b-~,D是BC边的中点,E为AB边上的一个动点,作/4DEF=90 °,EF交射线BC于点F.设BE=x , ABED的面积为y(1 )求y关于x的函数关系式,并写出自变量x的取值范围;(2)如果以线段BC为直径的圆与以线段AE为直径的圆相切,求线段BE的长;(3)如果以B、E、F为顶点的三角形与△ BED相似,求△ BED的面积.421 .如图,在梯形ABCD 中,AB //CD, AB=2 , AD=4 , tanC=「,/ADC= ZDAB=90 °,P 是腰BC 上一个动点(不含点B、C),作PQ丄AP交CD于点Q.(图1)(1 )求BC的长与梯形ABCD的面积;(2 )当PQ=DQ 时,求BP的长;(图2)•••ZCDE=90 °■//B= a且,•• Z AD=90a=AB=10 ,/-cosB=AB 4LJ." '■,25—.故④正确.••AE=AC - CE=10 - x ,「36 <AE v 10 .故②正确.③作AG丄BC于G,4••AB=AC=10 , Z ADE= Z B= a, COS a=—,5••BC=16 ,「.AG=6 ,••AD=2 | J... H,ADG=2 ,「.CD=8 ,:AB=CD , •△ABD 与△DCE 全等;故③正确;④当Z AED=90。
初三相似三角形之一线三等角专题
相似三角形——“一线三等角型”一、知识梳理:一线三等角:两个等角的一边在同一直线上,另一边在该直线的同侧。
若有第三个与之相等的角、其顶点在该直线上,角的两边(或两边所在直线)分别与两等角的非共线边(或该边所在直线)相交,此时通过证明,一般都可以得到一组相似三角形,该组相似三角形习惯上被称为“一线三等角型”相似三角形.(图1)(图2)(1)如图1,已知三角形ABC中,AB=AC,∠ADE=∠B,那么一定存在的相似三角形有;(2)如图2,已知三角形ABC中,AB=AC,∠DEF=∠B,那么一定存在的相似三角形有.二、【例题解析】【例1】如图,等边△ABC中,边长为4,D是BC上动点,∠EDF=60°,(1)求证:△BDE∽△CFD;(2)当BD=1,FC=52时,求BE.【变式1】在边长为4的等边ABC∆中,D是BC的中点,点E、F分别在AB、AC上,且保持ABCEDF∠=∠,连接EF.(1) 已知BE=1,DF=2,求DE的值;(2) 求证:∠BED=∠DEF.【变式2】在边长为4的等边ABC ∆中,若BD =1时,当△DEF 与△AEF 相似,求BE 的值.【变式3】如图,已知边长为3的等边ABC ∆,点F 在边BC 上,CF =1,点E 是射线BA 上一动点,以线段EF 为边向右侧作等边EFG ∆,直线EG ,FG 交直线AC 于点M ,N ,(1)写出图中与BEF ∆相似的三角形;(2)证明其中一对三角形相似;(3)设BE =x ,MN =y ,,求y 与x 之间的函数关系式,并写出自变量x 的取值范围.【例2】在ABC ∆中,O BC AC C ,3,4,90===∠o 是AB 上的一点,且52=AB AO ,点P 是AC 上的一个动点,OP PQ ⊥交线段BC 于点Q (不与点B ,C 重合),已知AP =2,求CQ .【变式1】 如图,在△ABC 中,8==AC AB ,10=BC ,D 是BC 边上的一个动点,点E 在AC 边上,且C ADE ∠=∠.(1) 求证:△ABD ∽△DCE ;(2) 如果x BD =,y AE =,求y 与x 的函数解析式,并写出自变量x 的定义域;(3) 当点D 是BC 的中点时,试说明△ADE 是什么三角形,并说明理由.QC P【变式2】在直角三角形ABC 中,D BC AB C ,,90==∠o是AB 边上的一点,E 是在AC 边上的一个动点(与A ,C 不重合),DF DE DF ,⊥与射线BC 相交于点F .(1) 如图1,当点D 是边AB 的中点时,求证:DF DE =;(2) 如图2,当m DB AD =,求DF DE 的值.图(2)图(1)F CF C A BB A D E D E【例3】已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且AD =5,AB =DC =2,P 为AD 上的一点,满足∠BPC =∠A . ① 求证;△ABP ∽△DPC ; ② 求AP 的长.【变式1】如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满足∠BPE =∠A ,PE 交直线BC 于点E ,同时交直线DC 于点Q ,那么①当点Q 在线段DC 的延长线上时,设AP =x ,CQ =y ,求y 关于x 的函数解析式,并写出函数的定义域;②当CE =1时,写出AP 的长.C B AD C B A D【变式2】在梯形ABCD 中,AD ∥BC ,6AB CD BC ===,3AD =.点M 为边BC 的中点,以M 为顶点作EMF B ∠=∠,射线ME 交腰AB 于点E ,射线MF 交腰CD 于点F ,联结EF .(1)求证:△MEF ∽△BEM ;(2)若△BEM 是以BM 为腰的等腰三角形,求EF 的长;(3)若EF CD ⊥,求BE 的长.【作业】1、如图,在ABC ∆中,90C ∠=︒,6AC =,43=BC AC ,D 是BC 边的中点,E 为AB 边上的一个动点,作90DEF ∠=︒,EF 交射线BC 于点F .设BE x =,BED ∆的面积为y .(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)如果以B 、E 、F 为顶点的三角形与BED ∆相似,求BED ∆的面积.2、如图,已知在△ABC 中, AB =AC =6,BC =5,D 是AB 上一点,BD =2,E 是BC 上一动点,连结DE ,并作DEF B ∠=∠,射线EF 交线段AC 于F .(1)求证:△DBE ∽△ECF ;(2)当F 是线段AC 中点时,求线段BE 的长;(3)联结DF ,如果△DEF 与△DBE 相似,求FC 的长.3、已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且BC =6,AB =DC =4,点E 是AB 的中点.(1)如图,P 为BC 上的一点,且BP =2.求证:△BEP ∽△CPD ;(2)如果点P 在BC 边上移动(点P 与点B 、C 不重合),且满足∠EPF =∠C ,PF 交直线CD 于点F ,同时交直线AD 于点M ,那么:①当点F 在线段CD 的延长线上时,设BP =x ,DF =y ,求y 关于x 的函数解析式,并写出函数的定义域;②当BEP DMF S S ∆∆=49时,求BP 的长.。
拓展补充:巧构“一线三等角”
拓展补充:巧构“⼀线三等⾓”前⾯⼏贴我们分析了“⼀线三⾓”到“⼀线两⾓”,今天我们看看“⼀线⼀⾓”的情况,如何通过构造“⼀线三⾓”来解决这⼀问题。
⼀:⾓的两边在⼀直线同侧如图,∠ACB的顶点在直线l上,⾓的两边在直线l的同侧,此时分别过点A、B作直线l的垂线,垂⾜为M、N,在线段CM延长线上截取MD=AMxcot∠ACB,在线段CN的延长线上,截取NE=BNxcot∠ACB,⽽在Rt△ADM中,DM=AMxcot∠ADM,在Rt△BNE中,NE=BNxcot∠BEN∴cot∠ACB=cot∠ADM=cot∠BEN∴∠ADM=∠ACB=∠BEN此时就构造出“⼀线三⾓”模型了,易证△ADC∽△CEB⼆:⾓的两边在⼀直线的两侧如图,∠ACB的顶点在直线l上,⾓的两边在直线l的两侧,此时分别过点A、B作直线l的垂线,垂⾜为M、N,在线段CM上截取MD=AMxcot∠ACB,在线段CN上,截取NE=BNxcot∠ACB,⽽在Rt△ADM中,DM=AMxcot∠ADM,在Rt△BNE中,NE=BNxcot∠BEN∴cot∠ACB=cot∠ADM=cot∠BEN∴∠ADM=∠ACB=∠BEN此时就构造出“⼀线三⾓”模型了,易证△ADC∽△CEB浦东⼋年级上期末压轴分析:↑以上两种解法主要是利⽤第⼀问为第⼆问做铺垫,通过图形的变化运动,使之化归到第⼀问的基本图形,充分体会第⼀问的解题思想以及⽅法来解决第⼆问,其实这两种构造⽅式均是利⽤典型的“半⾓模型”及其相关结论。
下⾯我们换个⾓度分析,换个构造途径,从“⼀线三⾓”这⼀⽅向来⼊⼿。
构造⽅式⼀:构造⽅式⼆:↑以上两种解法充分利⽤构造“⼀线三⾓”解决,显然本题还有别的构造途径,就不⼀⼀进⾏分析了。
第⼀种构造⽅式就是按照⼀⾓的顶点在⼀直线上,⾓的两边在⼀直线的同侧;第⼆种构造⽅式利⽤⾓的两边在⼀直线的两侧。
这种构造⽅式难度较⼤,上海中考基本不会涉猎,可作为补充了解。
把握本质,主要还是回归“⼀线三⾓”,回归“两⾓对应相等,两个三⾓形相似”这⼀判定定理。
《相似三角形之一线三等角》教学课件
《相似三角形之一线三等角》教学ppt课件2023-10-26CATALOGUE目录•引言•相似三角形基本概念•一线三等角定理及其应用•课堂活动与练习•总结与回顾01引言•相似三角形是初中数学的重要内容,而一线三等角是相似三角形的一种重要类型。
通过学习本课,学生能够深入理解相似三角形的性质和判定方法,提高数学思维和解决问题的能力。
课程背景课程目标学会如何利用一线三等角判定两个三角形相似;掌握一线三等角的定义和性质;培养学生的自主学习和合作学习能力。
通过案例分析,培养学生的数学思维和解决问题的能力;教学策略利用PPT课件引导学生逐步深入学习;采用讲解、示范、小组讨论等多种教学方法,帮助学生掌握知识;通过案例分析,让学生了解一线三等角的应用;组织课堂练习和小组讨论,加深学生对知识的理解和应用。
02相似三角形基本概念如果两个三角形三边对应成比例,那么这两个三角形相似。
定义如果$\frac{a}{b} = \frac{c}{d}$,那么$\bigtriangleup ABC\backsim \bigtriangleup DEF$。
数学符号表示相似三角形的定义相似三角形的性质对应角相等相似三角形对应角相等,可以用$\bigtriangleup ABC \backsim \bigtriangleup DEF$推出$\angle A =\angle E$,$\angle B = \angle F$,$\angle C = \angle D$。
对应边成比例相似三角形对应边成比例,可以用$\bigtriangleup ABC \backsim \bigtriangleup DEF$推出$\frac{a}{d} = \frac{b}{e} = \frac{c}{f}$。
定义法根据相似三角形的定义进行判断,即判断两个三角形三边对应成比例。
平行线法通过平行线构造相似三角形,即利用平行线的性质,将两个三角形放在平行线上,通过移动使得对应边成比例,从而证明两个三角形相似。
相似三角形汇总3 一线三角相似问题
相似三角形汇总第三部分一线三角相似问题重点:“一线三等角”图形中判定三角形相似及两类三个三角形两两相似的分类讨论,难点:在根据“一线三等角”图形中相似三角形的特点,确定动点位置,构造相似三角形. 【知识点整理】(一线三等角型)(一线三直角型)【经典例题】1.如图,等边△ABC中,边长为6,D是BC上动点,∠EDF=60°(1)求证:△BDE∽△CFD(2)当BD=1,FC=3时,求BE2. 如图,在正方形格子(正方形小格子的边长为1)中有一个矩形ABCD ,在AB 上,找出点E ,联结DE 、CE ,使得△DEC 与△DAE 及△EBC 都相似.3. 如图,在矩形ABCD 中,点M 在AD 上,将△DMC 沿MC 翻折,点D 恰好落在AB 边的E 点位置,若△MEC 与△AME 相似,求:矩形相邻两边AD 与AB 的比.E AC B DM4. 如图,已知正方形ABCD ,将一块等腰直角三角尺的锐角顶点与A 重合,并将三角尺绕点旋转,当M 点旋转到BC 的垂直平分线PQ 上时,连接ON ,若ON=8,求MQ 的长.5. 在△ABC 中,∠C=90°,AC=3,BC=4,O 是AB 上的一点,且52=AB AO ,点P 是AC 上的一个动点,PQ ⊥OP 交线段BC 于点Q ,(不与点B,C 重合),已知AP=2,求CQ.6. 正方形ABCD 的边长为5(如下图),点P 、Q 分别在直线CB 、DC 上(点P 不与点C 、点B 重合),且保持∠APQ=90°.当CQ=1时,求出线段BP 的长.7. 如图,△ABC 中,以BC 为直径的⊙O 交AB 于点D ,CA 是⊙O 的切线, AE 平分∠BAC 交BC 于点E ,交CD 于点F .(1)求证:CE=CF ;(2)若CD ∶BC=3:5 ,求DF ∶CF 的值.8. 如图,在Rt △ABC 中,∠C=90°,点D 在AC 上,联结BD ,过D 作DE ⊥BD 交AB 边于点E ,若 BC=4,AC=8,△BDE ∽△BCD ,求CD.84E CA BD 9. (难度)如图,在Rt △ABCD 中,∠C=90°,AD=5,AB=8,BC=9,点E 是BC 边上一点,且∠DEF=60°,若△DEF 与△BEF 相似,求BE 长.589FC DABE10. (难度)如图,在梯形ABCD 中,AD ∥BC ,AB=CD=BC=6,AD=3.点M 为边BC 的中点,以M 为顶点作∠EMF=∠B ,射线ME 交腰AB 于点E ,射线MF 交腰CD 于点F ,联结EF .(1)求证:△MEF ∽△BEM ; (2)若△BEM 是以BM 为腰的等腰三角形,求EF 的长;(3)若EF CD ,求BE 的长.11.矩形 ABCD 一条边 AD=8,将矩形 ABCD 折叠,使得点 B 落在 CD 边上的点 P 处.(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边 AB的长.(2)如图2,在(1)的条件下,擦去AO和OP,连接 BP.动点M在线段AP上(不与点P、A重合),动点N在线段 AB 的延长线上,且BN=PM,连接 MN 交PB于点F,作ME⊥BP于点 E.试问动点M、N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.12.如图1,将一个直角三角板的直角顶点 P 放在正方形ABCD 的对角线BD上滑动,并使其一条直角边始终经过点 A,另一条直角边与 BC 相交于点E.(1)求证:PA=PE;(2)若将(1)中的正方形变为矩形,其余条件不变(如图 2),且AD=10,DC=8,求AP:PE;(3)在(2)的条件下,当 P 滑动到 BD 的延长线上时(如图 3),请你直接写出 AP:PE 的比值.13.已知:正方形 ABCD 的边长为 4,点E为BC的中点,点P为AB上一动点,沿PE翻折△BPE得到△FPE,直线PF交CD边于点Q,交直线AD于点G,联接EQ.(1)如图,当 BP=1.5 时,求CQ 的长;(2)如图,当点 G 在射线AD上时,BP=x,DG=y,求y关于x的函数关系式,并写出x的取值范围;(3)延长EF交直线AD于点H,若△CQE 与△FHG相似,求BP的长.14.如图,Rt△ABC 中,∠ACB=90°,AC=6cm,BC=8cm,动点 P从点 B 出发,在 BA 边上以每秒 5cm的速度向点 A 匀速运动,同时动点 Q 从点 C 出发,在 CB 边上以每秒 4cm 的速度向点 B 匀速运动,运动时间为 t 秒(0≤t≤2),连接 PQ.(1)若△BPQ 与△ABC 相似,求 t 的值;(2)连接 AQ、CP,若 AQ⊥CP,求 t 的值;(3)M 是 PQ 的中点,请直接写出点 M 运动路线的长.15.如图,在矩形 ABCD 中,AB=9,AD=12.动点 E 从点 B 出发,沿线段 BC(不包括端点 B、C)以每秒 2 个单位长度的速度,匀速向点 C 运动;动点 F 从点 C 出发,沿线段 CD(不包括端点 C、D)以每秒 1 个单位长度的速度,匀速向点 D 运动;点 E、F 同时出发,同时停止.连接 AF 并延长交 BC 的延长线于点 M,再把 AM 沿 AD 翻折交 CD 延长线于点 N,连接 MN.设运动时间为 t 秒.(1)当 t 为何值时,△ABE 与△ECF 相似?(2)在点 E 运动的过程中是否存在某个时刻使 AE⊥AN?若存在请求出 t 的值,若不存在请说明理由;(3)在运动的过程中,△AMN 的面积是否变化?如果改变,求出变化的范围;如果不变,求出它的值.16.如图,点 O 为矩形 ABCD 的对称中心,AB=10cm,BC=12cm,点 E、F、G 分别从A、B、C三点同时出发,沿矩形的边按逆时针方向匀速运动,点 E 的运动速度为 1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点 F 到达点 C(即点 F与点 C 重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线 EF 的对称图形是△EB′F.设点E、F、G运动的时间为t(单位:s).(1)当t=________s 时,四边形EBFB′为正方形;(2)若以点 E、B、F为顶点的三角形与以点 F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B′在射线 BO 上?若存在,求出t 的值;若不存在,请说明理由.17.如图,已知 AB⊥BD,CD⊥BD.(1)若 AB=9,CD=4,BD=10,请问在 BD 上是否存在 P 点,使以P、A、B 三点为顶点的三角形与以 P、C、D 三点为顶点的三角形相似?若存在,求 BP 的长;若不存在,请说明理由;(2)若 AB=9,CD=4,BD=12,请问在 BD 上存在多少个 P 点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?并求 BP 的长;(3)若 AB=9,CD=4,BD=15,请问在 BD 上存在多少个 P 点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?并求 BP 的长.(4)若AB=m,CD=n,BD=l,请问m,n,l满足什么关系时,存在以 P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的一个P点?两个 P 点?三个P点?18.已知:直角梯形 OABC中,CB∥OA,对角线OB和AC交于点D,OC=2,CB=2,OA=4,点P为对角线CA上的一点,过点P作 QH⊥OA于H,交CB的延长线于点Q,连接 BP,如果△BPQ和△PHA 相似,则点P的坐标为___________.。
初三相似三角形之一线三等角专题
相似三角形——“一线三等角型”一、知识梳理:一线三等角:两个等角的一边在同一直线上,另一边在该直线的同侧。
若有第三个与之相等的角、其顶点在该直线上,角的两边(或两边所在直线)分别与两等角的非共线边(或该边所在直线)相交,此时通过证明,一般都可以得到一组相似三角形,该组相似三角形习惯上被称为“一线三等角型”相似三角形.(图1)(图2)(1)如图1,已知三角形ABC中,AB=AC,∠ADE=∠B,那么一定存在的相似三角形有;(2)如图2,已知三角形ABC中,AB=AC,∠DEF=∠B,那么一定存在的相似三角形有 .二、【例题解析】【例1】如图,等边△ABC中,边长为4,D是BC上动点,∠EDF=60°,(1)求证:△BDE∽△CFD;(2)当BD=1,FC=52时,求BE.【变式1】在边长为4的等边ABC∆中,D是BC的中点,点E、F分别在AB、AC上,且保持ABCEDF∠=∠,连接EF.(1) 已知BE=1,DF=2,求DE的值;(2) 求证:∠BED=∠DEF.【变式2】在边长为4的等边ABC ∆中,若BD =1时,当△DEF 与△AEF 相似,求BE 的值.【变式3】如图,已知边长为3的等边ABC ∆,点F 在边BC 上,CF =1,点E 是射线BA 上一动点,以线段EF 为边向右侧作等边EFG ∆,直线EG ,FG 交直线AC 于点M ,N ,(1)写出图中与BEF ∆相似的三角形;(2)证明其中一对三角形相似;(3)设BE =x ,MN =y ,,求y 与x 之间的函数关系式,并写出自变量x 的取值范围.【例2】在ABC ∆中,O BC AC C ,3,4,90===∠o 是AB 上的一点,且52=AB AO ,点P 是AC 上的一个动点,OP PQ ⊥交线段BC 于点Q (不与点B ,C 重合),已知AP =2,求CQ .【变式1】 如图,在△ABC 中,8==AC AB ,10=BC ,D 是BC 边上的一个动点,点E 在AC 边上,且C ADE ∠=∠.(1) 求证:△ABD ∽△DCE ;(2) 如果x BD =,y AE =,求y 与x 的函数解析式,并写出自变量x 的定义域;(3) 当点D 是BC 的中点时,试说明△ADE 是什么三角形,并说明理由.QC P【变式2】在直角三角形ABC 中,D BC AB C ,,90==∠o是AB 边上的一点,E 是在AC 边上的一个动点(与A ,C 不重合),DF DE DF ,⊥与射线BC 相交于点F .(1) 如图1,当点D 是边AB 的中点时,求证:DF DE =;(2) 如图2,当m DB AD =,求DF DE 的值.图(2)图(1)F CF C A BB A D E D E【例3】已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且AD =5,AB =DC =2,P 为AD 上的一点,满足∠BPC =∠A . ① 求证;△ABP ∽△DPC ; ② 求AP 的长.【变式1】如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满足∠BPE =∠A ,PE 交直线BC 于点E ,同时交直线DC 于点Q ,那么①当点Q 在线段DC 的延长线上时,设AP =x ,CQ =y ,求y 关于x 的函数解析式,并写出函数的定义域;②当CE =1时,写出AP 的长.C B AD C B A D【变式2】在梯形ABCD 中,AD ∥BC ,6AB CD BC ===,3AD =.点M 为边BC 的中点,以M 为顶点作EMF B ∠=∠,射线ME 交腰AB 于点E ,射线MF 交腰CD 于点F ,联结EF .(1)求证:△MEF ∽△BEM ;(2)若△BEM 是以BM 为腰的等腰三角形,求EF 的长;(3)若EF CD ⊥,求BE 的长.【作业】1、如图,在ABC ∆中,90C ∠=︒,6AC =,43=BC AC ,D 是BC 边的中点,E 为AB 边上的一个动点,作90DEF ∠=︒,EF 交射线BC 于点F .设BE x =,BED ∆的面积为y .(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)如果以B 、E 、F 为顶点的三角形与BED ∆相似,求BED ∆的面积.2、如图,已知在△ABC 中, AB =AC =6,BC =5,D 是AB 上一点,BD =2,E 是BC 上一动点,连结DE ,并作DEF B ∠=∠,射线EF 交线段AC 于F .(1)求证:△DBE ∽△ECF ;(2)当F 是线段AC 中点时,求线段BE 的长;(3)联结DF ,如果△DEF 与△DBE 相似,求FC 的长.3、已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且BC =6,AB =DC =4,点E 是AB 的中点.(1)如图,P 为BC 上的一点,且BP =2.求证:△BEP ∽△CPD ;(2)如果点P 在BC 边上移动(点P 与点B 、C 不重合),且满足∠EPF =∠C ,PF 交直线CD于点F ,同时交直线AD 于点M ,那么:①当点F 在线段CD 的延长线上时,设BP =x ,DF =y ,求y 关于x 的函数解析式,并写出函数的定义域;②当BEP DMF S S ∆∆=49时,求BP 的长.。
相似三角形专题——一线三等角
相似三角形专题——一线三等角(总2页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--相似三角形专题——“一线三等角”图形中的相似教学目标:巩固“一线三等角”图形中的相似判定及分类讨论结合“一线三等角”图形中相似三角形的特点,确定动点位置 会根据一线两等角图形添加第三个等角构造相似三角形 教学重难点:重点是“一线三等角”图形中判定三角形相似及两类三个三角形两两相似的分类讨论,难点在根据“一线三等角”图形中相似三角形的特点,确定动点位置,构造相似三角形 教学过程:一、巩固“一线三等角”图形中相似的判定及分类讨论 1. 如图,在△ABC 中,AB=AC ,点D 在BC 上,作∠EDF = ∠B , 点 E 、F 分别落在边AD 、AC 上,求证:△BED ∽△CDF*(A A )突出“一线三等角,外角证相似” 2. 思考1:练习中,联结EF若点D 是BC 边的中点,求证:△EDF ∽△EBD*注重证明过程,注意BD 与CD 的等量代换及比例的内向交换 3. 思考2:练习中,联结EF若 BE = CF ,求证:△EDF ∽△DBE*通过比例的转化,更应注意可证明EF 与BC 平行 4.提问:思考3:联结EF若△BDE 与△EDF 相似,应该分析哪些请况*问题直接总结上述两种相似情况,同时为后面分类讨论问题铺垫二、分类讨论,结合“一线三等角”图形中相似三角形的特点,确定动点位置 1. 练习:如图,在△ABC 中,AB = AC ,点D 在BC 上,若点E 、点D 是AB 、BC 上的点,且BE=√(6),作∠当△DEF 与△CDF 相似时,求CF 与BD 的长2. 如图,在正方形格子中有一个矩形ABCD ,在AB 上,找出点E ,联结DE 、CE ,使得△DEC 与△DAE 及△EBC 都相似*注意AB 中点不正确的说明3. 思考:如图,在矩形ABCD 中,点M 在AD 上, 将△DMC 沿MC 翻折,点D 恰好落在AB 边的E 点位置, 若△MEC 与△AME 相似,求:矩形相邻两边AD 与AB 的比BE*三个相似三角形带来的特点要注意三、会根据一线两等角图形添加第三个等角构造相似三角形 例题:如图,在Rt △ABC 中,∠C=90°,点D 在AC 上,联结BD过D 作DE ⊥BD 交AB 边于点E ,若 BC = 4,AC = 8, △BDE ∽△BCD ,求CD*也可以利用角平分线特点,做DG ⊥AB练习如图,在Rt △ABCD 中,∠C = 90°,AD = 5,AB = 8, BC = 9,点E 是BC 边上一点,且∠DEF = 60°, 若△DEF 与△BEF 相似,求BE 长C5B。
一线三等角相似模型
在物理学中,可以利用一线三等角 相似模型来研究物理现象和规律, 如光的反射和折射、波的传播等。
04 一线三等角相似模型的证 明方法
直接证明法
定义
直接证明法是通过直接使用已知条件和定理来证明结论的 方法。
步骤
首先,根据已知条件,明确一线三等角的定义和性质;然后, 通过比较两个三角形中的角度和边长,利用相似三角形的性质
03
注意事项
反证法需要熟练掌握反证法的原理和 推理技巧,以及能够灵活运用已知条 件。
综合法与分析法
定义
综合法是从已知条件出发,逐步推导出结论的方法;分析法是从结论出发,逐步推导出已知条件的方法。
步骤
在综合法中,首先明确已知条件和目标结论;然后,根据已知条件逐步推导所需结论;最后,总结推导过程。在分析 法中,首先明确目标结论和已知条件;然后,根据结论逐步推导所需条件;最后,总结推导过程。
,逐步推导出所需的结论。
注意事项
直接证明法需要熟练掌握相似三角形的性质和定理,以及 灵活运用已知条件。
反证法
01
定义
反证法是通过假设结论不成立,然后 推导出矛盾,从而证明结论成立的方 法。
02
步骤
首先,假设结论不成立;然后,根据 已知条件和反证法的原理,推导出与 已知条件相矛盾的结论;最后,根据 矛盾的结论,得出结论成立。
相似变换的性质
相似变换具有一些重要的性质,如保持角度不变、线 段长度比例不变等。
相似变换的应用
相似变换在几何学、物理学、工程学等领域有着广泛 的应用,如建筑设计、机械制造、航天技术等。
相似多边形的性质与应用
1 2
相似多边形的定义
相似多边形是指各对应角相等、各对应边成比例 的多边形。
相似三角形中的 “一线三等角”模型-2023年新九年级数学核心知识点与常见题型(沪教版)(解析版)
重难点专项突破:相似三角形中的“一线三等角”模型【知识梳理】一线三等角指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。
或叫“K字模型”。
三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下:当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。
一般类型:基本类型:同侧“一线三等角”异侧“一线三等角”【考点剖析】例1.如图,直角梯形ABCD 中,AB // CD ,90ABC ∠=︒,点E 在边BC 上,且34AB BE EC CD ==, AD = 10,求AED ∆的面积.【答案】24.【解析】90ABC ∠=,//AB CD , ∴90DCB ABC ∠=∠=.又34AB BE EC CD ==, ABE ECD ∴∆∆∽.∴AEB EDC ∠=∠. ∴34AE AB ED EC ==.90EDC DEC ∠+∠=,∴90AEB DEC ∠+∠=. ∴90AED ∠=.在Rt AED ∆中,10AD =,68AE ED ∴==,. 24AED S ∆∴=.【总结】本题考查一线三等角模型的相似问题,还有外角知识、平行的判定等.例2.已知:如图,△ABC 是等边三角形,点D 、E 分别在边BC 、AC 上,∠ADE =60°.(1)求证:△ABD ∽△DCE ;(2)如果AB =3,EC =,求DC 的长.【分析】(1)△ABC 是等边三角形,得到∠B =∠C =60°,AB =AC ,推出∠BAD =∠CDE ,得到△ABD∽△A B C DEDCE ;(2)由△ABD ∽△DCE ,得到=,然后代入数值求得结果.【解答】(1)证明:∵△ABC 是等边三角形,∴∠B =∠C =60°,AB =AC ,∵∠B+∠BAD =∠ADE+∠CDE ,∠B =∠ADE =60°,∴∠BAD =∠CDE∴△ABD ∽△DCE ;(2)解:由(1)证得△ABD ∽△DCE ,∴=,设CD =x ,则BD =3﹣x ,∴=,∴x =1或x =2,∴DC =1或DC =2.【点评】本题考查了等边三角形的性质,相似三角形的判定和性质,注意数形结合和方程思想的应用. 例3.已知,在等腰ABC ∆中,AB = AC = 10,以BC 的中点D 为顶点作EDF B ∠=∠, 分别交AB 、AC 于点E 、F ,AE = 6,AF = 4,求底边BC 的长.【答案】46.【解析】EDC B BED ∠=∠+∠,而EDC EDF FDC ∠=∠+∠,∴B BED EDF FDC ∠+∠=∠+∠. 又EDF B ∠=∠,∴BED FDC ∠=∠.AB C D EFAB AC=,∴B C∠=∠.EDB DCF∴∆∆∽.BE BDDC CF∴=.106104BDDC−∴=−,24DC BD∴=.又12CD DB BC==,BC∴=【总结】本题是对“一线三等角”模型的考查.例4.已知:如图,AB⊥BC,AD // BC, AB = 3,AD = 2.点P在线段AB上,联结PD,过点D作PD的垂线,与BC相交于点C.设线段AP的长为x.(1)当AP = AD时,求线段PC的长;(2)设△PDC的面积为y,求y关于x的函数解析式,并写出函数的定义域;(3)当△APD∽△DPC时,求线段BC的长.满分解答:(1)过点C作CE⊥AD,交AD的延长线于点E.∵AB⊥BC,CE⊥AD,PD⊥CD,AD // BC,∴∠ABC =∠AEC =∠PDC = 90°,CE = AB = 3.∵AD // BC,∴∠A +∠ABC = 180°.即得∠A = 90°.又∵∠ADC =∠DCE +∠DEC,∠ADC =∠ADP +∠PDC,∴∠ADP =∠DCE.又由∠A =∠DEC = 90°,得△APD∽△DCE.∴AD APCE DE=.于是,由AP = AD = 2,得DE = CE = 3.…………………………(2分)在Rt△APD和Rt△DCE中,得PD=,CD=1分)AB CDPAB CD(备用图)于是,在Rt △PDC 中,得 PC = (1分)(2)在Rt △APD 中,由 AD = 2,AP = x ,得 PD 1分)∵ △APD ∽△DCE ,∴AD PD CE CD =.∴ 32CD PD ==1分)在Rt △PCD 中,22113332224PCD S PD CD x ∆=⋅⋅=⨯=+.∴ 所求函数解析式为2334y x =+.…………………………………(2分) 函数的定义域为 0 < x ≤ 3.…………………………………………(1分)(3)当△APD ∽△DPC 时,即得 △APD ∽△DPC ∽△DCE .…………(1分)根据题意,当△APD ∽△DPC 时,有下列两种情况:(ⅰ)当点P 与点B 不重合时,可知 ∠APD =∠DPC .由 △APD ∽△DCE ,得 AP PD DE DC =.即得AP DE PD CD =. 由 △APD ∽△DPC ,得AP AD PD DC =. ∴AD DE CD CD =.即得 DE = AD = 2. ∴ AE = 4.易证得四边形ABCE 是矩形,∴ BC = AE = 4.…………………(2分)(ⅱ)当点P 与点B 重合时,可知 ∠ABD =∠DBC .在Rt △ABD 中,由 AD = 2,AB = 3,得 BD =.由 △ABD ∽△DBC ,得AD BD BD BC =.即得 =. 解得 132BC =.………………………………………………………(2分)∴ △APD ∽△DPC 时,线段BC 的长分别为4或132.方法总结本题重点在于:过点C 作CE ⊥AD ,交AD 的延长线于点E .(构造一线三角,出现相似三角形,进行求解) 例5.在梯形ABCD 中,AD ∥BC ,︒=∠===90,2,1A BC AB AD .(如图1)(1)试求C ∠的度数;(2)若E 、F 分别为边AD 、CD 上的两个动点(不与端点A 、D 、C 重合),且始终保持︒=∠45EBF ,BD 与EF交于点P .(如图2)①求证:BDE ∆∽BCF ∆;②试判断BEF ∆的形状(从边、角两个方面考虑),并加以说明;③设y DP x AE ==,,试求y 关于x 的函数解析式,并写出定义域.答案:(1)作BC DH ⊥,垂足为H ,在四边形ABHD 中,AD ∥BC ,︒=∠==90,1A AB AD ,则四边形ABHD 为正方形又在CDH ∆中,1,1,90=−====∠︒BH BC CH AB DH DHC , ∴︒︒=∠−=∠452180DHC C .(2)①∵四边形ABHD 为正方形,∴︒=∠45CBD ,︒=∠45ADB ,又∵︒=∠45EBF ,∴CBF DBE ∠=∠又∵︒=∠=∠45C BDE ,∴BDE ∆∽BCF ∆.②BEF ∆是等腰直角三角形,∵BDE ∆∽BCF ∆, ∴CB FB BD BE =,又∵︒=∠=∠45DBC EBF ,∴EBF ∆∽DBC ∆,又在DBC ∆中,︒=∠=∠45C DBC ,为等腰直角三角形,∴BEF ∆是等腰直角三角形. ③x x x x x x y +−=+−⨯=1221222,(0<x <1).方法总结 第三问方法提示:过点P 作AD 的垂线于点H ,构造一线三直角相似,进行求解,很简单。
2023中考数学专题复习-一线三等角(课件)
y
五、链接
一线三等角遇函数
A
如图,已知平面直角坐标系xOy中,
点A(m,6),B(n,1)
为两动点,其中0<m<3,连接OA,OB, OA⊥OB。
B4 2
1 3
(1)求证:mn=-6;
C
OD
x
分析:
①有1想2作3,要求mn的值就要求出A点和B点的坐标,作
BC⊥x轴于C点,AD⊥x轴于D点 ②根据变式3的分析由3个垂直得∠AOB=∠BCD=∠ADO=90°, ∠2+∠4=90°∠2+∠3=90°可得∠3=∠4 ③由∠BCD=∠ADO=90°∠3=∠4得△CBO △DOA .
A
变式1:已知:如图,AB⊥BC,
ED⊥CD,点C在BD上,AC⊥CE,
AC=CE.
E
求证:△ABC≌△CDE 分析:
┐13 2
┌
B
C
D
①由AB⊥BC,ED⊥CD,AC⊥CE,得∠B=∠3=∠D=90°;
②运用一线三直角, 由∠B=90°得∠A+∠1=90°, 由 ∠3=90° 得∠2+∠1=90°,得∠A=∠2
在△CEB和△ADC中,
2.如何证∠∠△43==∠∠C一52EB线≌三△渗直A透D角C数?模形型结在合综思合想题、中类的比运思用想。、 数学
模型的创B新C=应AC用思想。
∴△CEB ≌△ADC(AAS)
∴BE=DC=0.8cm,CE=AD=2.5cm
∴DE=CE-CD=2.5-0.8-1.7cm
三、说拓展延伸——图形变
由平角的定义 ∠2 +∠3+∠1=180°;
②由等式性质得∠A=∠2;
③由∠B=∠D,∠A=∠2,AC=CE得△ABC≌△CDE
培优专题25 相似三角形的一线三等角模型-解析版
培优专题25 相似三角形的一线三等角模型【专题讲解】1.常见基本类型:同侧型(通常以等腰三角形或者等边三角形为背景)异侧型2.模型构造1.图中已存在“一线三等角”,则直接应用模型结论解题.2.图中存在“一线两等角”,补上“一等角”,构造模型解题.3.图中某直线上只存在1个角,补上“两等角”,构造模型解题.如果直线上只有1个角,要补成“一线三等角”时,该角通常是特殊角(30°、45°、60°)特征:构造特殊角的等角时,一般是在“定线”上做含特殊角的直角三角形。
“一线三等角”得到的相似,通常用外边的两等角的两边对应成比例求解长度3.构造步骤:找角——通常找“特殊角”。
如:30°、45°、60°等;特别地:当tanα=1/2、1/3等特定值时,α也可以是特殊角;定线——通常以“水平线”或者“竖直线”为“一线三等角”中的“一线”;特殊角度时也可以是45°等倾斜直线;构相似——通常以“特殊角”为“中间角”,过“中间角”的两边与“一线”的交点构造两个含特殊角的Rt △;例:如右图,当∠ABP=45°时,∵∠ABP 在y 轴上,∴在y 轴上分别构造两个等腰直角三角形△AOE ,△PHG ,则在y 轴上存在∠AEB=∠ABP=∠PBG=45°,∴△AEB ∽△BGP ∴(常用)GPBEBG AE 4.模型特例——K 型图(三垂定理)应用:1.当一个直角放在一条直线上时,通常要构造“K 型图”解题2.当一个直角放在平面直角坐标系中时,亦常构造“K 型图”解题3.由“K 型图”得到的相似比,基本都可以转化成“特定角”的正切值来计算4.“K 型图”常和“A 字图”或“8字图”类的平行相似结合在一起求长度“K 型图”常见构造方法:过直角订单分别作水平或竖直的直线,再过直角两边顶点分别作直线的垂线。
如图:【专题训练】1.(2020·河南郑州·二模)如图,已知矩形ABCD 的顶点B A 、分别落在x 轴y 轴上,4OB OA ==,AB=2BC 则点C 的坐标是( )A .()9,3B .(9,C .(4+D .(2,∵四边形ABCD 是矩形,∴CD=AB ,∠ABC=90°,2.(2020·江苏常州·一模)如图,在平面直角坐标系中,△AOB中,∠AOB=90°,∠ABO=30°,顶点A在反比例函y=3x(x>0)上运动,此时顶点B也在反比例函数y=mx上运动,则m的值为()A.-9B.-12C.-15D.-18【点睛】本题考查反比例函数的图象和性质,直角三角形的性质、相似三角形的判定和性质等知识,求出反比例函数图象上点的坐标是解答前提的关键.3.(2021·浙江·九年级专题练习)如图,正方形ABCD边长为4,边BC上有一点E,以DE为边作矩形EDFG,使FG过点A,则矩形EDFG的面积是( )A.B.C.D.16【答案】D【分析】先利用等角的余角证明∠ADF=∠EDC,再根据相似三角形的判定方法证明△ADF∽△CDE,然后利用相似比计算DF与DE的关系式,最后根据矩形的面积公式求得矩形的面积便可..【详解】解:∵四边形ABCD为正方形,∴AD=CD=4,∠ADC=∠C=90°,∵四边形EDFG为矩形,4.(2020·重庆八中九年级阶段练习)如图,点,D E 是正ABC D 两边上的点,将BDE D 沿直线DE 翻折,点B 的对应点恰好落在边AC 上,当4AC AF =时,BDBE的值是( )A .23B .34C .35D .57【答案】D【分析】先证明ADF CFE D D ∽,再根据相似三角形的周长比等于相似比和折叠的性质进行转化即可求解.【详解】解:设AF =x ,∵ABC D 为等边三角形,∴AC=AB=BC =4x , ∠A =∠B =∠C =60°,CF =3x ∵BDE D 翻折得到FDE D ,∴B D=FD,BE=FE, ∠B=∠DFE =60°,∴∠AFD +∠DFE =∠C +∠FEC ,∴∠AFD=∠CEF ,∴ADF CFE D D ∽,5.(2020·重庆八中九年级阶段练习)如图,点A是双曲线2yx=在第一象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为边作等边ABCV,点C在第二象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线kyx=上运动,则k的值为()A.8-B.6-C.4-D.2-6.(2022·湖北襄阳·一模)如图,ABC V 为等边三角形,点D ,E 分别在边AB ,AC 上,3BD =,将ADE V 沿直线DE 翻折得到FDE V ,当点F 落在边BC 上,且4BF CF =时,DE AF ⋅的值为______.∵△ABC为等边三角形,∴∠DFE=∠DAE= 60°∴∠CFE+∠FEC=∠CFE7.(2022·江苏扬州·九年级期末)如图,在边长为6的等边△ABC 中,D 是边BC 上一点,将△ABC 沿EF 折叠使点A 与点D 重合,若BD : DE =2 : 3,则CF=____.【答案】2.4【分析】根据折叠的性质可得∠EDF =∠A ,DF =AF ,再由等边三角形的性质可得∠EDF =60°,8.(2021·安徽·淮北市烈山区淮选学校九年级阶段练习)如图,在四边形ABCD中,∠A=∠D=120°,AB=6、AD=4,点E、F分别在线段AD、DC上(点E与点A、D不重合),若∠BEF=120°,AE=x、DF=y,则y关于x的函数关系式为________9.(2019·浙江·九年级期末)已知ABC V 是等边三角形,6AB =,点D ,E ,F 点分别在边,,AB BC AC 上,:2:3BD BE =,DE 同时平分BEF Ð和BDF Ð,则BD 的长为_____.上一点,2⊥于点F,与BD交于点G,则EF的长是______.OE=,连接BE,过点A作AF BE11.(2022·江苏·九年级专题练习)如图,四边形ABCD 是矩形,点P 是对角线AC 上一动点(不与A 、C 重合),连接PB ,过点P 作PE PB ^,交射线DC 于点E ,已知3AD =,5AC =.设AP 的长为x .(1)AB =___________;当1x =时,PE PB=_________;(2)试探究:否是定值?若是,请求出这个值;若不是,请说明理由;(3)当PCE V 是等腰三角形时,请求出x 的值.Q 四边形ABCD 是矩形,3BC AD \==,5AC =,90ABC Ð=2222534AB AC BC \=-=-=.在Rt APM △中,1PA =,35PM =,165BM AB AM \=-=,=,90Q,所以只能EP EC PECÐ>°\Ð=Ð,EPC ECPQ,Ð=Ð=°90BPE BCE\Ð=Ð,BPC BCP\=,BP BC=.Q,所以只能CP CEÐ>°PCE90\Ð=Ð,CPE EÐ=ÐQ,PGB CGEÐ=Ð=°90GPB GCE\Ð=Ð=Ð,PBG E CPEÐ+Ð=Q,APB CPEÐ+Ð=°ABP PBC9012.(2022·上海·七年级专题练习)等边△ABC边长为6,P为BC上一点,含30°、60°的直角三角板60°角的顶点落在点P上,使三角板绕P点旋转.(1)如图1,当P为BC的三等分点,且PE⊥AB时,判断△EPF的形状;(2)在(1)问的条件下,FE、PB的延长线交于点G,如图2,求△EGB的面积;(3)在三角板旋转过程中,若CF=AE=2,(CF≠BP),如图3,求PE的长.【答案】(1)等边三角形13.(2022·山东菏泽·三模)(1)问题如图1,在四边形ABCD 中,点P 为AB 上一点,当90DPC A B Ð=Ð=Ð=°时,求证:AD BC AP BP ⋅=⋅.(2)探究若将90°角改为锐角或钝角(如图2),其他条件不变,上述结论还成立吗?说明理由.(3)应用如图3,在ABC V 中,AB =45B Ð=°,以点A 为直角顶点作等腰Rt ADE △.点D 在BC 上,点E在AC 上,点F 在BC 上,且45EFD Ð=°,若CE =CD 的长.【答案】(1)见解析;(2)成立,理由见解析;(3)5CD =【分析】(1)由∠DPC =∠A =B =90°,可得∠ADP =∠BPC ,即可证到△ADP ∽△BPC ,然后运用相似三角形的性质即可解决问题;14.(2021·吉林·长春市绿园区教师进修学校九年级期末)【感知】如图①,在四边形ABCD 中,点P 在边AB 上(点P 不与点A 、B 重合),90A B DPC Ð=Ð=Ð=°.易证DAP PBC △△∽.(不需要证明)【探究】如图②,在四边形ABCD 中,点P 在边AB 上(点P 不与点A 、B 重合),A B DPC Ð=Ð=Ð.若4PD =,8PC =,6BC =,求AP 的长.【拓展】如图③,在ABC V 中,8AC BC ==,12AB =,点P 在边AB 上(点P 不与点A 、B 重合),连结CP ,作CPE A Ð=Ð,PE 与边BC 交于点E ,当CPE △是等腰三角形时,直接写出AP 的长.15.(2021·全国·九年级专题练习)如图,在Rt△ABC中,∠ACB=90°,BC mAC n=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则DEDF= ;(2)数学思考:①如图2,若点E在线段AC上,则DEDF= (用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC BC=DF=CE的长.16.(2021·浙江衢州·中考真题)【推理】如图1,在正方形ABCD 中,点E 是CD 上一动点,将正方形沿着BE 折叠,点C 落在点F 处,连结BE ,CF ,延长CF 交AD 于点G .(1)求证:BCE CDG △△≌.【运用】(2)如图2,在【推理】条件下,延长BF 交AD 于点H .若45HD HF =,9CE =,求线段DE 的长.【拓展】(3)将正方形改成矩形,同样沿着BE 折叠,连结CF ,延长CF ,BF 交直线AD 于G ,两点,若AB k BC =,45HD HF =,求DE EC 的值(用含k 的代数式表示).(2)如图,连接EH,由(1)得BCE CDG △△≌,9CE DG \==,由折叠得BC BF =,CE FE =同理得HG HF =,DG m \=,同理可得BCE CDG △∽△,可得m CE FE k==,mx DE k \=,2222HF FE DH DE +=+Q ,。
完整版相似三角形模型讲一线三等角问题讲义解答
」、相似三角形判定的基本模型认识(一) A 字型、反 A 字型(斜A 字型)(二) 8字型、反8字型(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(六)双垂型: A(平行)(不平行)△B(平行) (三)母子型(蝴蝶型)相似三角形判定的变化模型一线三直角的2AB=AC ADL BC 于 D, CG// AB BG 分别交 AD AC 于 E 、F .求证:BE=EF? EG2 .如图,在△ ABC 中,AB=AC=10 BC=16点D 是边BC 上(不与 B, C 重合)一动点,/ ADE=Z B=a, DE 交 AC 于点E .下列结论:①AD 2=AE? A B ② 3.6 W AE V 10;③当 AD=2 i 时,△ ABD^A DCE ④厶DCE 为直角三角形时, BD 为8或12.5 . 其中正确的结论是 _____________ .(把你认为正确结论的序号都填上)3.已知:如图,△ ABC 中,点 E 在中线 AD 上,/ DEB=/ ABC 求证:(1) DB=DE? D A(2 )Z DCE=/ DACAD// BC,对角线 AG BD 交于点O, BE// CD 交CA 延长线于 E.求证:OC=OA?OE6.已知:如图,在 Rt △ ABC 中,/ C=90°, BC=2 AC=4 P 是斜边 AB 上的一个动点, PD 丄AB 交边 AC 于点 D (点D 与点A C 都不重合),E 是射线DC 上一点,且/ EPD=/ A.设A P 两点的距离为 x ,A BEP 的面积为 (1)求证:AE=2PE(2)求y 关于x 的函数解析式,并写出它的定义域;8.如图,已知△ ABC 是等边三角形,点 D B C E 在同一条直线上,且/ DAE=120 (1) 图中有哪几对三角形相似?请证明其中的一对三角形相似;9.(已知:如图,在 Rt △ ABC 中,AB=AC / DAE=45 .求证:BC=2DE10.如图,在等边厶 ABC 中,边长为 6, D 是BC 边上的动点,/ EDF=60 (1) 求证:△ BD 0A CFD②若BP=x CQ=y 求y 与x 之间的函数关系式,并写出函数的定义域;(2) 正方形ABCD 勺边长为5 (如图),点P 、Q 分别在直线CB DC 上 (点P 不与点C 点B 重合),且保持 / APQ=90度.当CQ=1时,写出线段BP 的长(不需要计算过程,请直接写出结果)13 .已知梯形 ABCD 中, AD// BC,且 AD< BC, AD=5, AB=DC=2 (1) 如图,P 为AD 上的一点,满足/ BPC=ZA ,求AP 的长;(2) 如果点P 在AD 边上移动(点 P 与点A D 不重合),且满足/ BPE=Z A, PE 交直线BC 于点E ,同时交直 线DC 于点Q.①当点Q 在线段DC 的延长线上时,设 AP=x CQ=y 求y 关于x 的函数关系式,并写出自变量 x的取值范围;求BE 的长.11. (1)在厶ABC 中,AB=AC=5 BC=8点P 、Q 分别在射线 CB AC 上(点P 不与点 C 点B 重合),且保持 / APQ 2 ABC14.如图,在梯形ABCD中, AD// BC, AB=CD=BC=,6 AD=3.点M为边BC的中点,以M为顶点作/ EMF M B, 射线ME交腰AB于点E,射线MF交腰CD于点F,连接EF.(1)求证:△ ME®A BEM(2)若厶BEM是以BM为腰的等腰三角形,求EF的长;(3 )若EF丄CD求BE的长.15 .已知在梯形ABCD中, AD// BC AD< BC 且BC=6 AB=DC=4 点E 是AB 的中点.(1) 如图,P为BC上的一点,且BP=2.求证:△ BEP^A CPD(2) 如果点P在BC边上移动(点P与点B C不重合),且满足/ EPF=Z C, PF交直线CD于点F,同时交直线AD于点M,那么①当点F在线段CD的延长线上时,设BP=x, DF=y,求y关于x的函数解析式,并写出函数的定义域;16.如图所示,已知边长为3的等边△ ABC点F在边BC上, CF=1,点E是射线BA上一动点,以线段EF为边向右侧作等边厶EFG直线EG FG交直线AC于点M, N,(1)写出图中与△ BEF相似的三角形;(2)证明其中一对三角形相似;(3)设BE=x , MN=y求y与x之间的函数关系式,并写出自变量x的取值范围;(4)若AE=1,试求△ GMN勺面积.丄CP 交直线AB 于点E ,设PD=x AE=y,(1)写出y 与x 的函数解析式,并指出自变量的取值范围; (2)如果△ PCD 的面积是△ AEP 面积的4倍,求CE 的长;(3) 是否存在点 卩,使厶APE 沿PE 翻折后,点A 落在BC 上?证明你的结论.18. 如图,在 Rt △ ABC 中,/ C=90°, AB=5,工匸-=,点D 是BC 的中点,点 E 是AB 边上的动点, 交射线AC 于点F .(1 )求AC 和BC 的长;(2) 当 EF// BC 时,求 BE 的长;(3) 连接EF ,当厶DEF 和△ ABC 相似时,求 BE 的长.(备用图)19. 如图,在 Rt △ ABC 中,/ C=90°, AC=BC D 是AB 边上一点,E 是在AC 边上的一个动点(与点 重合),DF 丄DE DF 与射线BC 相交于点F .(1) 如图2,如果点 D 是边AB 的中点,求证:DE=DF (2) 如果 AD: DB=m 求DE DF 的值;17.如图所示,已知矩形 ABCD 中, CD=2 AD=3,点P 是AD 上的一个动点(与 A 、D 不重合),过点 P 作PEDF 丄DEA 、C 不(3)如果AC=BC=6 AD DB=1: 2,设AE=x BF=y,①求y关于x的函数关系式,并写出定义域;(2)如果以线段BC 为直径的圆与以线段 AE 为直径的圆相切,求线段 BE 的长;421. 如图,在梯形 ABCD 中, AB// CD AB=2 AD=4, tanC=^,/ ADC M DAB=90 , P 是腰 BC 上一个动点(不J含点B C ),作PQLAP 交CD 于点Q.(图1) (1 )求BC 的长与梯形 ABCD 勺面积;(2)当PQ=DQ 寸,求BP 的长;(图2)20. 如图,在厶ABC 中,/ C=90° EF 交射线BC 于点F .设BE=x , (1 )求y 关于x 的函数关系式, ,AC=6 •斗_彳,D 是BC 边的中点, △ BED 的面积为y .并写出自变量 x 的取值范围; E 为AB 边上的一个动点, 作/ DEF=90 ,②以CE 为直径的圆与直线 AB 是否可相切?若可能,求出此时 x 的值;若不可能,请说明理由.BED 相似,求△ BED 的面积.(2)••• AD 是中线,• CD=BD • C D=AD? DE,又/ ADC N CDE DEC^A DCA :丄 DCE N DAC证明:连接CE 如右图所示,•/ AB=AC AD L BC, • AD 是/ BAC 的角平分线,• BE=CE •••/ EBC=z ECB 又•••/ ABC=Z ACBABC- / EBC 2 ACB-Z ECB1. 解 答:2. 解 答: 证明:••• AD// BC4,又 BE// CD •••丄』,二二丄,即 OC=OA? OEOC OBOB OE OC OE解:①••• AB=ACB=Z C ,又•••/ ADE=Z B.••/ ADE N C ,「.A ADE^A ACD •••4 仝,.•• AE J =AE ? AB,AE AD故①正确,②易证得厶 CDE^A BAD T BC=16 设 BD=y, CE=x •••魁=—,•1° 工,整理得: CD CE 16-y x2即(y - 8) =64 - 10x , • O v x < 6.4 ,•/ AE=AC- CE=10- x , • 3.6 < AE< 10.故②正确. 2y - 16y+64=64 - 10x ,3.解 答: ③作AGL BC 于G •/ AB=AC=10 / ADE 玄 B=a ,COS a_4•/ BC=1Q • AG=6 •/ AD=2 I ,• DG=2 • CD=8 • AB=CD •△ ABD-与^ DCE 全等;故③正确; ④当/ AED=90 时,由①可知:△ ADE^A ACD •/ ADC=Z AED •••/ AED=90 , ADC=90 , 即 AD L BC, •/ AB=AC • BD=CD ADE 玄 B=a 且 COS a = , AB=10, BD=8/ B=a 且 COS a J. AB=10, ••• cosB=二 •• BD 」.故④正确5 BD 5 2当/ CDE=90 时,易厶 CDE^A BAD •••/ CDE=90 , BAD=90 ,故答案为:①②④.B U G C证明:(1)在厶BDE 和A DAB 中•••/ DEB=/ ABC / BDE=/ ADB BDE^A ADBD£__BD • BE J =AD ? DE4.解 答:.CD 二 AD'DE _CD实用文档即/ ABEK ACE又••• CGI AB,:/ ABEh CGF :丄 CGF 2 FCE 又/ FEC=/ CEGCEF^A GEC 二 CE EF=EG CE 即 C^=EF? EG 又 CE=BE ••• BU=EF? EG又 EF 为 AD 的垂直平分线,• AF=FD / DAF=/ ADF, DAC / CAF=/ B+/ BAD•••/ CAF=/ B ,•// AFC 玄 AFC •△ ACF^A BAF,即丄仝,• AF "=CF? BF ,即 F[J=CF? BF.AF B?ripr r>ri i •// EPD=/ A, /PED=/ AER EPD^A EAR •定义域是 0< x v 一-—5得 「二_二= 21寸PEAP 2 (2)由厶 EPD^A EAR6.解 答:PD BC 1AP AC 2• PE=2DE • AE=2PE=4DE 作EHL AB,垂足为点H,•/ AP=x •- PD 二x , •/ PD// HE2又AB=2 ■ , y =—•-上J 亠- 'PD AD 3.(2 _ ";- x)? —x ,即 y=-3^ • HE :x .3X 2+二' 3x .另解:由厶EPD^A EAR 得DE PD 1 PE• PE=2DE • AE=2PE=4DE • AE --S AAB =—X y x ——X X 2=1 x , • ABx .定义域是 0< x < —'.厂丄• PE 二x? • HE AC ,当厶BEP-与^ ABC 相似时,只有两种情形:/(3)由厶 PEH ^A BAC 得x .32BEP=/ C=90° 或/ EBP=/ C=90°.• △ ADP ^A ABC • A=/ A ,X2 x,2SAABE 2 1…y= - — x2 37.解 答:8.解 答:证明:••• BD CE 分别是AC 与AB 边上的高,•/ BEC 2 BDC• B 、C D E 四点共圆,•/ AED=/ ACB 而/ A=Z A, • △ AED^A ACB •- -丄; BC AR•/ BD 丄AC,且/ A=60°,A Z ABD=30 , AD=迅,• BC=2DE•/△ ABC 是等边三角形•/ ABC=/ ACB 玄 BAC=60 . •/ D+Z DAB=60 , •••/ DAE=120,•/ DAB+Z EAC=60 . •/ D=Z CAE / E=Z DAB •••/ D=Z D,Z E=Z E ,「.A DAE^A DBA^A ACE(2)•••△ DBA^A ACE •- DB: AC=AB CE•/ AB=AC=BC DB=2 CE=6i BC ?=DB? CE=12 •/ BO0, • BC=2,/ £.Z E+Z CAE=60 .9.解证明:(1)在Rt △ ABC 中, 答: •/ AB=AC •/ B=Z C=45.•••/ BAE=/ BAD+Z DAE Z DAE=45,•/ BAE=/ BAD+45 . 而/ ADC Z BAD+Z B=Z BAD+45 , • Z BAE=/ CDA • △ ABE^A DCA(2)由厶 ABE^^ DCA 得翌• BE? CD=AB AC.AB CD2 2 2 2 2 2而 AB=AC BC=AB+AC ,「. BC=2AB . • BC=2BE? CD10.解(1)证明:•••△ ABC 为等边三角形,•/ B=Z C=60°, 答: vZ EDF=60,•/ BED+Z EDB 玄 EDB+Z FDC=120 ,• Z BED Z FDC •△ BD 0A CFD(2)解:由(1 )知厶 BDE^A CFDBE =BD CD =CF(i )当/ BEP=90时,旦县,•••罗》=丄.解得x 型迈.PB 起药厂V5 4• y=-二x X_X 5+''X …亠.31&3 4 16(ii )当/ EBP=90时,同理可得 x=邑匹,y=J .24•/ BC=6 BD=1,「. CD=B G BD=5, •••翌=丄,解得 BE 壬.5 3 3解解:(1)①•••/ APQ+Z CPQ 2 B+Z BAP, / APQ 2 ABC BAP=Z CQP又••• AB=AC •••/ B=Z C.• △ CPQ^A BAP若点P 在线段CB 的延长线上,如图.•••/ APQ M APB 亡 CPQ/ ABC 玄 APB+Z PAB /APQ M ABC •••/ CPQ MPAB又 T Z ABP=180 -Z ABC Z PCQ=180 -Z ACB Z ABC Z ACB • Z ABP=/ PCQ11. 答:BP AB•/ AB=AC=5 BC=8 BP=6 CP=8- 6=2 , • CQ CP•/ BP=x, BC=8,「. CP=BC- BP=8- x , ,即丁 _ 7 y5②若点P 在线段CB 上,由(1 )知又••• CQ=y AB=5 •工E _ 1X 5故所求的函数关系式为CQ 2» 12 6 3CQ 飞CQ PC ■/ BP=x CP=BC+BP=8+, AB=5, CQ=y实用文档QCP^ PBA 里/:.实用文档圉①(2)①当点P 在线段BC 上,•••/ APQ=90,•/ APB+Z QPC=90 , •••/ PAB 亡 APB=90,•/ PAB=/ QPC•••/ B=/ C=90°.・.A ABP^A PCQ • AB: PC=BP CQ-J : 或. | -②当点P 在线段BC 的延长线上,则点 Q 在线段 同理可得:△ ABN A PCQ • AB: PC=BP CQ即 5: ( 5 - BP ) =BP 1,解得:2DC 的延长线上,••• 5: (BP- 5) =BP: 1,解得: BP=— ③当点P 在线段CB 的延长线上,则点 Q 在线段 同理可得:△ ABN A PCQ • AB: PC=BP CQ • 5: (BP+5) =BP 1,解得:E _ . DC 的延长线上, A=Z D 13.解 解:(1)v ABCD 是梯形,AD// BC AB=DC 「./ •••/ ABP+/ APB+/ A=180°,Z APB-/ DPC / BPC=180 , / BPC 玄 A 解得:AP=1 或 AP=4.答: •••/ ABPK DPC ABN A DPC. AP 民即. AP 2 CD FD 2 ~5-AP 14. 答: (2)①由(1) •;」即:DQ~PD②当CE=1时,富二22fy~ 5-i•/△ PDQ^A ECQ • CE_CQPD~DQ ,:,解得:AP=2或(舍去).G怙 ■ 4. 『-t * -i;\Fi/i解证明:(1)在梯形ABCD 中,•/ AD// BC, AB=CD 「・/ B=/ C ,•••/ BMF / EMB / EMF / C+/ MFC又•••/ EMF=/ B, •/ EMB / MFC •△ EMB^A MFC •- _L "一EM ~MF ' •/ MC=M , • 一 UL關—和,又丄即匕B’iEi B EM(2)解:若△ BEM 是以BM 为腰的等腰三角形,则有两种情况:① BM=ME 那么根据厶 ME &A BEM .•.二1="- ,•. £=也,即 EF=MFHE 01 ME EF根据第(1)问中已证厶BM 0A MFC ■ ■, 即 MF=FC •••/ FMC 2 C,HE FC又•••/ B=Z C,.Z FMC M B ,. MF// AB延长BA 和CD 相交于点 G 又点M 是BC 的中点, • MF >^ GBC 的中位线,• MF=GB2!又••• AD// BC,GAD^A GBC • 塑=型=丄4 ,•.塑=1, 即 AG=AB=6GB BC 6 2 AG• GB=12 • MF=EF=6② BM=BE=3 .•点E 是AB 的中点,又厶 MEF^A BEM.•.型=世=1,即MF=ME • EF 是梯形 ABCD 勺中位线,• EF 丄(AD+BC — ( 3+6)戈;Bg ME 2 2 2(3 )T EF ± CD• / BEP=/ FPC •△ BEP^A CPF , • ^^^-4 (2< x v 4)•②当点F 在线段CD 的延长线上时,•••/ FDM Z C=Z B, / BEP=/ FPCK FMD •△ BEP^A DMF DF 3 y.T , • x - 3x+8=0 , △< 0.•此方程无实数根..•尸gF - 3K +4 .2 ____________、,15. 答:• / EFC=90 , △ MEF^A BEM / MFE / MFC / BME=45 ,解一:过点E 作EH! BC,则可得△ EHM 等腰直角三角形, EH=MH 」 故 EH=MH 设 BE=x 贝U BH 丄•-, 4解二:过点M 作MN L DC MC=3由厶 MEF^A MFCt • T ,即 P 旳TCI 5 4NIC 』.M43弓&亏"解 (1)证明:•••在梯形 ABCD 中 , AD// BC, AB=DC=FN FC= i i : - - 2BE —— 丨.• / B=Z C.BE=2, BP=2, CP=4 CD=4 •••里=!!?.•••△ BEP^A CPDCP CD(2)解:①•••/ B=Z C=Z EPF• 180 —/ B=180-Z EPF=/ BEP+Z BPE=Z BPE+Z CPFHE 閏.•crP 2 si 6-iSZ1DJIF^43ABEP, … DF BP"3 y 八. △ BEP^A CPF , • EB BPl • 1 2 xCP '"cr£ - 工 4 _ y.、/9•当 £ADMF ^^ABEP,得 2故当点F 在线段CD 的延长线上时,不存在点 P 使SADMF =-|SABEP ; 当点F 在线段 CD 上时,同理△ BEP^A DMF• x - 9x+8=0 ,解得X1=1 , X2=8.由于X2=8 不合题意舍去.• x=1 ,即BP=1. 时,BP的长为1.实用文档16.解解:(BE&A AM 0A CFW A GMN 答:证明:(2)在厶BEF 与厶AME 中,•••/ B=Z A=60°,「./ AEM 社 AME=120 ,•/△ BEF^A AME •- BE: AM=BF AE ,同理可证厶 BEF ^A CFN • BE: CF=BF CN即:x : 1=2: CN •- CN 丄,即: x : AM=2 (3- x ) , • AM=•••/ GEF=60 ,•••/ AEM # BEF=120BEF=Z AME :, △ BEF ^A AME备用图一备甲图二解:(3) (i )当点E 在线段AB 上,点M N 在线段AC 上时,如图,实用文档(ii )当点E 在线段AB 上,点6在厶ABC 内时,如备用图一,同上可得:AM= 丁 i ;, C N L ,2x•/ AC=AM+CN MN ••• 3= _ /+%+上—yy=— J %*民 一 4 ( o v x < 1 );2 x2x(iii )当点E 在线段BA 的延长线上时,如备用图二,AM= -------- 二,CN=,2 £ •/ AC=MN+C Z AM • 3=y+Z - ' _ 刃,• y=J 一 彳&张—° ( x > 3);± 2 2x综上所述:y= -£-娄细竺( o v x < 1),或y=^-3,十6豪 -4( x > 1); 2x 2x(4) (i )当AE=1时,△ GMN 是边长为1等边三角形,S MM =_X 1 X 二=丄;(1 分)::(ii )当 AE=1 时,△ GMN1 有一个角为 30° 的 Rt △, ••• x=4,. y= 「一,一丄,NG=FG FN=4X ;- 1 X ・;=;, 2X4 2 222• s =1X22 2 g17. 答: 解(1)解:T PEI CP,.可得:△ y 3 _ Xx" 2(2)解:当△ PCD 的面积是厶AEP 面积的4倍, 则:相似比为2: 1 , •又••• CD=2 AD=3 设 PD=x, AE=y,.・.AF PAEAP^^ PDC ••亠-PD CD• y = — 1 2 卫 ,…y = - r ,0v x v 3;................... .AE AP_1'PD"CD"2,_•/ CD=2 • AP=1, PD=2 • PE= - , PC=2 :■: , • EC= 111. (3 )不存在.作AF 丄PE,交PE 于O, BC 于 F ,连接EFT AF 丄 PE, CP 丄 PE/. AF=CP= , •, PE=::,-.',(3-7~2 •/△ CDP^A POA=£2 23x —6x+4=0,OA=PA PC (3- x)x =l 2△ =6 — 4 X 4 X 3= — 12 x 无解因此,不存在.实用文档y—, •••设 AC=3k, BC=4k, /• AB=5k=5,「. k=1,「. AC=3 BC=4 BC 4| (2)过点E 作EH! BC,垂足为 H.易得△ EHB^A ACB 设 EH=CF=3k BH=4k, BE=5k ; •/ EF// BC ••/ EFD=/ FDC•••/ FDE 玄 C=90°A ^ EFD^^ FDC ・ —F D=EF? CD,即 9k 2+4=2 (4 -4k )化简,得 9k 2+8k - 4=0(负值舍去),•••二_■丨 ';19.解(1)证明:如图2,连接DC答: •••/ ACB=90 , AC=BC A=Z B=45° ,•••点 D 是 AB 中点,BCD 2 ACD=45 , CD=BD ACD=/ B=45°•/ ED ! DF , CD!AB,•••/ EDC 丄 CDF=90 , / CDF+Z FDB=90 , EDC M FDB•••△ CED^A BFD (ASA ) , • DE=DF(2) 解:如图1,作DP ! AC, DQL BC,垂足分别为点 Q, P.•••/ B=Z A , / APD=/ BQD=90 , ADP^A BDQ• DP DQ=AD DB=m•••/ CPD / CQD=90 , / C=90°, •/ QDP=90 , •/ DF 丄 DE, •/ EDF=90 , •/ QDF / PDE•••/ DQF / DPE=90 , DQF^A DPE• DE DF=DP DQ • DE DF=DP DQ=AD DB=m(3) 解:①如备用图1,作EGL AB, FH! AB,垂足分别为点 G H. 在 Rt △ ABC 中,/ C=90° , AC=BC=6 •- AB= ■:,18. 答: E 作EH! BC,垂足为H.易得△ BE=5k(3)过点 设 EH=3k, •••/ HED 丄 HDE=90 / FDC+ZHDE=90EHB^A ACB•••/ EHD 2 C=90°•••△ EHD^A DCF•••/ HED=/FDC • I 方五,当厶DEF 和△ ABC 相似时,有两种情况:1°CD~4,即.解得••-丄,24 K 厲 DE BC 4 综合1°、2 ° , 2° 2,•呼5匸卫 • 即亠CD -3 2 "3 当厶DEF 和△ ABCt 目似时,BE 的长为上或丄 2 g 解得w ,—丄.FD _CD解 解:(1)在 Rt △ ABC 中,/C=90°实用文档20. 答:•/ AD DB=1: 2,:. AD三•:, DB= 「由/ AGE M BHF=90,/ A=Z B=45°可得AG=EG= 一.,BH=FH2 K 2易证△ DG0A FHD :• DG GE匸」「,GD= —_ .,<2 V2----- 資 ----- V2 2rW2②如备用图2,取CE的中点0,作OM L AB于M.可得CE=6- x, A0=-十二,HD=:'7,0M=]:「_±,.AB相切,贝U —2 _ 2 2若以CE为直径的圆与直线解得.•:当八时,以,•: y=8 -2x,CE为直径的圆与直线AB相切.备冒图1 备用图』解解: (1)T在厶ABC中,/ C=90°, AC=6 t述斗,•:BC=8 AB=10,定义域是•: CD=DB=4过点E作EH! CB于H.则可求得EH丄x.54 x '■ x= x (0 V x <5 5-'或5V x w 10).(2)取AE OGL BC于G 连接OD则x10+y32 '(10+x), GD=C- CG=4-I (10-x)4 2-- T •251 2 2两圆外切,则可得*BC1;AE=OD:.( BC+AE =4OD,2 Q 2+——x ]25•: 0D=2:•( 8+10- x) =4[ (10+x)100若两圆内切,得|-;BC--;AEFOD,解得4实用文档•••( BC — AE ) 2=4OD ,.・.(8 - 10+x )2=4[— ( 10+x )100解得x=-二J (舍去),所以两圆内切不存在•所以,线段7(3)由题意知/ BEF M 90°,故可以分两种情况. ①当/ BEF 为锐角时,由已知以 B E 、F 为顶点的三角形与△ BED 相似,又知/ EBF=Z DBE / BEF <Z BED 所以/ BEF=Z BDE过点D 作DM L BA 于M 过E 作EH L BC 于H. 根据等角的余角相等,可证得/ MDE N HDE • EM=EH21.解解:(1)作BHLCD ,垂足为H,则四边形 ABHD 为矩形;答: • BH=DA=4 DH=AB=2在 Rt △ BCH 中,上皿二寻• 6冷讣■=$,(1 分)BC 討E H '+CH~5; 又 CD=CH+DH=5 • S 梯形 ABCI ^ (血+CD) AD =14;2(2)连接AQ由 DQ=PQ 可知△ APQ AP=AD=4 作PE! AB 交AB 的延长线于点 E , (1分)在 Rt △ BPE 中,二工_;二上--口一-二,令 BE=3k PE=4k. 则在Rt △ APE 中, AF ^A W+P E ,2224A /21 - &即 4=(2+3k ) + (4k ),解得:2+—x 2]25BE 的长为二丄3又 EM=M — EB — - x ,5由(1)知:EH 士 x ,「亍冗兀②当/ BEF 为钝角时,同理可求得 x - ,• x=2.•16 =3x=8.「. y=§X 8=坐 5 512或 48 55x ,•所以,△ BED 的面积是实用文档•『'i :■ - ' | :厂-「- -(3)作PF丄CD交CD于点F,由/ AEF=/ EFD=/ APQ=90 , 可得:△ AEP^A PFQaQF _屮芹H• OF EPPF~AE,化简得:QF二一16 卫二"SO+ISX5 50+15X3010•….定义域为(0v x v 5).。
《一线三等角——相似三角形知识拓展》
《一线三等角——相似三角形知识拓展》相似三角形,是初中几何学习的重要内容,也是中考考查的重要内容,但是统观近几年的中考考题,单纯考查证明两个三角形相似的知识很少,几乎都是考查它与函数、与圆等知识的综合运用。
而且从各地近几年中考题当中可以发现,一线三等角这一模型是最近几年考试的热门模型,鉴于此,于是我就想在教学中给学生补充这一模型,并且让学生能够快速认识这一模型,并且能够利用这一模型提升解题技能。
根据这一目标,这堂课我主要设计了以下七个环节:(一)整理旧知,提炼模型这一环节,根据学生的认知规律,我设计了如下四个问题:问题1:如图1,等腰直角三角形ABC的顶点B在直线l上,AB=BC,∠ABC=90°,AD⊥直线l于点D,CE⊥直线l于点E.求证:△ADB≌△BEC问题2:如图2,已知点A、C、E在同一条直线上,∠A=∠BCD=∠E=90°,图中三角形相似吗?请说明理由。
问题3:如图3,已知已知点A、C、E在同一条直线上,∠A=∠BCD=∠E=60°,图中三角形相似吗?请说明理由。
问题4:如图4,已知点A、C、E在同一条直线上,∠A=∠BCD=∠E=120°,图中三角形相似吗?请说明理由。
(二)揭示本质,提炼模型第一环节的四个问题,由学生很熟悉的两个三角形全等的图形引入,逐渐弱化条件,从而发现当一条直线上有三个相等角的顶点都在这条直线上,从而所构成的三角形相似。
归纳出这一模型之后,马上强调,以后在做题的过程中,如果碰到一线三等角这一模型的图形,就可联想到有三角形相似,从而可以得出对应边和对应角的关系。
(三)模型运用学生只是认识了这一模型,还不够,于是我又接着设计了这一环节,让学生能快速识别并写出相似的三角形。
于是我设计了一组练习题,如下:下列各图形中,若∠1=∠2=∠3,请你快速找出图中符合“一线三等角”模型的相似三角形。
学生在做完这一组练习之后,帮助学生归纳两个一线三等角模型的相似三角形,对应角的位置之间存在一种交错的对应关系,这一方法,主要便于学生以后碰到一线三等角模型的相似三角形,从而可以快速确定边、角之间的对应关系。
相似三角形几何模型一线三等角(知识讲解)学年九年级数学上册基础知识讲与练(北师大版)
专题4.37 相似三角形几何模型-一线三等角(知识讲解)模型一:一线三直角图一 图二90;B ACE D ABC CDE ∠=∠=∠=∆∆如图一、二,已知:结论:(1)(2)AB DE =BC CD模型二:一线三等角图三 图四;B ACE D ABC CDE ABC CDE ACE α∠=∠=∠=∆∆∆∆∆如图三、四,已知:结论:(1)(2)AB DE =BC CD(3)当C 为BD 中点时,特别说明:一线三等角相似三角形往往以等腰三角形或等边三角形为背景,如下图五。
图五特别说明:一线三直角相似三角形往往以矩形或正方形背景,如下图六。
图六【典型例题】类型一、一线三直角模型1.如图,在四边形ABCD 中,AB ∥CD ,90B =∠,7CD =,E 为BC 上一点,且AE ED ⊥,若12BC =,:1:2BE EC =,求AB 的长.【答案】327【分析】由题意易知AB 和CD 所在的两个三角形相似,再利用相似比即可求出所求线段的长度.解:∵AB 平行CD ,90B =∠,∵180B C ∠+∠=, ∵90B =∠,∵90B C ∠=∠=,90BEA BAE ∠+∠=, ∵AE ED ⊥,∵90AEB DEC ∠+∠=, ∵BAE DEC ∠=∠, ∵ABE ECD ∆∆∽, ∵AB BEEC DC=, ∵12BC =,12BE EC =, ∵48BE EC ==,, ∵7DC =, ∵432877BE AB EC DC =⋅=⨯=. 【点拨】此题主要考查学生对梯形的性质及相似三角形的性质的理解及运用.举一反三【变式1】如图,将矩形ABCD 沿CE 向上折叠,使点B 落在AD 边上的点F 处,AB=8,BC=10.(1)求证:∵AEF∵∵DFC ;(2)求线段EF的长度.EF=.【答案】(1)证明见分析;(2)5【分析】(1)由四边形ABCD是矩形,于是得到∵A=∵D=∵B=90°,根据折叠的性质得∵EFC=∵B=90°,推出∵AEF=∵DFC,即可得到结论;(2)根据折叠的性质得CF=BC=10,根据勾股定理得到6D F,求得AF=4,然后根据勾股定理列方程即可得到结论.解:(1)∵四边形ABCD是矩形,∵∵A=∵D=∵B=90°,CD=AB=8,根据折叠的性质得∵EFC=∵B=90°,∵∵AFE+∵AEF=∵AFE+∵DFC=90°,∵∵AEF=∵DFC,∵∵AEF∵∵DFC;(2)根据折叠的性质得:CF=BC=10,BE=EF,∵6D F=,∵AF=4,∵AE=AB-BE=8-EF,∵EF2=AE2+AF2,即EF2=(8-EF)2+42,EF=.解得:5【点拨】本题主要考查了相似三角形的判定,矩形的性质、翻折变换的性质及其应用问题.解题的关键是灵活运用矩形的性质、翻折变换的性质来分析、判断、解答.【变式2】如图1,在矩形ABCD中,E为DC边上一点,把ADE沿AE翻折,使点D 恰好落在BC边上的点F处.~;(1)求证:ABF FCEAD=,求EC的长;(2)若AB=6+(3)如图2,在第(2)问的条件下,若P,Q分别是AE,AD上的动点,求PD PQ 的最小值.【答案】(1)见分析;(2)EC =;(3)PD PQ +的最小值为 【分析】(1)选证得AFB CEF ∠=∠,即可证明结论;(2)利用折叠的性质,在Rt △ABF 中,求得BF 的长,设CE =x ,在Rt △CEF 中,利用勾股定理构建关于x 的方程,即可求解;(3)根据折叠的性质,点F 、D 关于直线AE 对称,过F 作FQ ∵AD 于Q ,交AE 于P ,此时PD +PQ 的最小值为FQ ,证明四边形QFCD 是矩形,即可求解.(1)证明:∵四边形ABCD 是矩形,∵90B C D ∠=∠=∠=︒, ∵90CEF EFC ∠+∠=︒, ∵AEF 由ADE 翻折得到, ∵90AFE D ∠=∠=︒, ∵90AFB EFC ∠+∠=︒,∵AFB CEF ∠=∠,90ABF FCE ∠=∠=︒, ∵ABF FCE ~;(2)∵四边形ABCD 是矩形,∵AB CD ==6AD BC ==.设CE x =,则DE x =,在Rt ABF 中,3BF ==, ∵633CF BC BF =-=-=,在Rt CEF 中,222EF CE CF =+,即222)3x x =+,解得x =EC =(3)如图,根据折叠的性质,点F 、D 关于直线AE 对称,过F 作FQ ∵AD 于Q ,交AE 于P ,此时PD +PQ 的最小值为FQ ,∵四边形ABCD 是矩形, ∵∵C =∵ADC =90︒,又FQ ∵AD , ∵四边形QFCD 是矩形,∵FQ =CD =AB∵PD PQ +的最小值为【点拨】本题考查了矩形的性质折叠变换,相似三角形的判定和性质,轴对称的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数解决问题.类型二、一线三等角模型2.如图,在∵ABC 中,点D 、E 分别在边BC 、AC 上,连接AD 、DE .且∵B =∵ADE=∵C .(1)证明:∵BDA ∵∵CED ;(2)若∵B =45°,BC =6,当点D 在BC 上运动时(点D 不与B 、C 重合).且∵ADE 是等腰三角形,求此时BD 的长.【答案】()见分析;(2)6-或3. 【分析】(1)根据题目已知条件可知180ADE ADB EDC ∠+∠+∠=︒,180B ADB DAB ∠+∠+∠=︒,所以得到DAB EDC ∠=∠,即可得证.(2)由题意易得ABC 是等腰直角三角形,所以90BAC ∠=︒,当ADE 是等腰三角形时,根据分类讨论有三种情况:∵AD =AE ,∵AD =DE ,∵AE =DE ;因为点D 不与B C 、重合,所以第一种情况不符合,其他两种情况根据等腰三角形的性质“等边对等角”及45B ADE ∠=∠=︒,求出问题即可.解:(1)180ADE ADB EDC ∠+∠+∠=︒在ABD △中,180B ADB DAB ∠+∠+∠=︒B ADE ∠=∠∴EDC DAB ∠=∠又B C ∠=∠∴BDA CED △∽△;(2)B ADE C ∠=∠=∠,45B ∠=︒∴ABC 是等腰直角三角形 ∴90BAC ∠=︒BC =6,∴AB =AC ∵当AD =AE 时,则ADE AED ∠=∠45B ∠=︒,∴=45B ADE AED ∠=∠∠=︒ ∴90DAE ∠=︒ ∴90DAE BAC ∠=∠=︒点D 在BC 上运动时(点D 不与B C 、重合),点E 在AC 上 ∴此情况不符合题意.∵当AD =DE 时,如图,∴DAE DEA ∠=∠∴由(1)可知EDC DAB ∠=∠又B C ∠=∠ BDA CED ≌∴AB =DC =∴6BD =-∵当AE =DE 时,如图45B ∠=︒,∴==45B C DAE ADE ∠∠∠=∠=︒ ∴AD 平分BAC ∠,AD BC ⊥ ∴1=32BD BC =.综上所述:BD =6-3.【点拨】本题主要考查相似三角形的判定及等腰三角形的存在性问题,解题的关键是利用“K ”型相似模型及根据“等边对等角”、等腰直角三角形的性质得到线段的等量关系,进而求解问题.举一反三【变式1】如图,点M 是AB 上一点,AE 与BD 交于点C ,DME A B α∠=∠=∠=,且DM 交AC 于F ,ME 交BC 于G .(1)求证:∽AMF BGM ; (2)请你再写出两对相似三角形.【答案】(1)见分析;(2)AME MFE △∽△,DMG DBM ∽△△. 【分析】(1)根据三角形内角和证AFM BMG ∠=∠即可;(2)根据公共角相等,利用两个角对应相等,写出相似三角形即可. (1)证明:∵DME A ∠=∠,180AMF BMG DME ∠+∠+∠=︒,180A AMF AFM ∠+∠+∠=︒,∵AFM BMG ∠=∠, ∵A B ∠=∠,∵∽AMF BGM ;(2)∵DME A ∠=∠,∵E=∵E ,∵AME MFE △∽△,同理,DMG DBM ∽△△. 【点拨】本题考查了相似三角形的判定,熟记相似三角形判定定理并能灵活应用是解题关键.【变式2】∵ABC 中,AB =AC ,∵BAC =90°,P 为BC 上的动点,小慧拿含45°角的透明三角板,使45°角的顶点落在点P ,三角板可绕P 点旋转.(1)如图a ,当三角板的两边分别交AB 、AC 于点E 、F 时.求证:∵BPE ∵∵CFP ; (2)将三角板绕点P 旋转到图b 情形时,三角板的两边分别交BA 的延长线、边AC 于点E 、F .∵BPE 与∵CFP 还相似吗?(只需写出结论)(3)在(2)的条件下,连结EF ,∵BPE 与∵PFE 是否相似?若不相似,则动点P 运动到什么位置时,∵BPE 与∵PFE 相似?说明理由.【答案】(1)证明见分析;(2)∵BPE ∵∵CFP ;(3)动点P 运动到BC 中点位置时,∵BPE 与∵PFE 相似,理由见分析.【分析】(1)找出∵BPE 与∵CFP 的对应角,其中∵BPE+∵BEP=135°,∵BPE+∵CPF=135°,得出∵BEP=∵CPF ,从而解决问题;(2)利用(1)小题证明方法可证:∵BPE∵∵CFP ;(3)动点P 运动到BC 中点位置时,∵BPE 与∵PFE 相似,同(1),可证∵BPE∵∵CFP ,得 CP :BE=PF :PE ,而CP=BP ,因此 PB :BE=PF :PE ,进而求出,∵BPE 与∵PFE 相似.(1)证明:∵在∵ABC 中,∵BAC =90°,AB =AC ,∵∵B =∵C =45°.∵∵B +∵BPE +∵BEP =180°, ∵∵BPE +∵BEP =135°. ∵∵EPF =45°,又∵∵BPE +∵EPF +∵CPF =180°, ∵∵BPE +∵CPF =135°,∵∵BEP =∵CPF , 又∵∵B =∵C , ∵∵BPE ∵∵CFP .(2)∵BPE ∵∵CFP ;理由:∵在∵ABC 中,∵BAC =90°,AB =AC ,∵∵B =∵C =45°.∵∵B +∵BPE +∵BEP =180°, ∵∵BPE +∵BEP =135°. ∵∵EPF =45°,又∵∵BPE +∵EPF +∵CPF =180°, ∵∵BPE +∵CPF =135°, ∵∵BEP =∵CPF , 又∵∵B =∵C , ∵∵BPE ∵∵CFP .(3)动点P 运动到BC 中点位置时,∵BPE 与∵PFE 相似,证明:同(1),可证∵BPE ∵∵CFP , 得CP :BE =PF :PE , 而CP =BP ,因此PB :BE =PF :PE . 又因为∵EBP =∵EPF , 所以∵BPE ∵∵PFE【点拨】此题主要考查了相似三角形的判定.它以每位学生都有的三角板在图形上的运动为背景,既考查了学生图形旋转变换的思想,静中思动,动中求静的思维方法,又考查了学生动手实践、自主探究的能力.类型三、一线三等角综合3.数学模型学习与应用.【学习】如图1,90BAD ∠=︒,AB AD =,BC AC⊥于点C ,DE AC ⊥于点E .由12290D ∠+∠=∠+∠=︒,得∵1=∵D ;又90ACB AED ∠=∠=︒,可以通过推理得到ABC ∵DAE △.我们把这个数学模型称为“一线三等角”模型;(1)【应用】如图2,点B ,P ,D 都在直线l 上,并且ABP APC PDC α∠=∠=∠=.若BP x =,2AB =,5BD =,用含x 的式子表示CD 的长;(2)【拓展】在ABC 中,点D ,E 分别是边BC ,AC 上的点,连接AD ,DE ,B ADEC ∠=∠=∠,5AB =,6BC =.若CDE △为直角三角形,求CD 的长;(3)如图3,在平面直角坐标系xOy 中,点A 的坐标为()2,4,点B 为平面内任一点.AOB 是以OA 为斜边的等腰直角三角形,试直接写出点B 的坐标.【答案】(1)21522CD x x =-+(2)3(3)()3,1或()1,3-(1)解:∵ABP APC PDC α∠=∠=∠=,∵A APB APB CPD ∠+∠=∠+∠, ∵A CPD ∠=∠, 又∵ABP PDC ∠=∠, ∵ABP △∵PDC △, ∵AB BP PD CD =, 即25x CD x=-, ∵21522CD x x =-+.(2)解:如图4,当90CED ∠=︒时,∵ADE C ∠=∠,CAD DAE ∠=∠, ∵ACD △∵ADE , ∵90ADC AED ∠=∠=︒,∵B C ∠=∠,90ADC ∠=︒∵点D 为BC 的中点, ∵116322CD BC ==⨯=. 如图5,当90EDC ∠=︒时,∵B C ∠=∠,∵90BAD EDC ∠=∠=︒,过点A 作AF BC ⊥,交BC 于点F , ∵132BF BC ==,3cos 5BF AB B AB BD ===, 2563BD =>,不合题意,舍去, ∵3CD =.(3)解:分两种情况:∵如图6所示,过A 作AC ∵y 轴于D ,过B 作BE ∵x 轴于E ,DA 与EB 相交于C ,则∵C =90°,∵四边形OECD 是矩形∵点A 的坐标为(2,4),∵AD =2,OD =CE =4,∵∵OBA =90°,∵∵OBE +∵ABC =90°,∵∵ABC +∵BAC =90°,∵∵BAC =∵OBE ,在△ABC 与△BOE 中,90C BEO BAC OBE AB BO ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∵∵ABC ∵∵BOE (AAS ),∵AC =BE ,BC =OE ,设OE =x ,则BC =OE =CD =x ,∵AC =BE =x -2,∵CE =BE +BC =x -2+x =OD =4,∵x =3,x -2=1,∵点B 的坐标是(3,1);∵如图7,同理可得,点B 的坐标(-1,3),综上所述,点B 的坐标为(3,1)或(-1,3).【点拨】本题是三角形综合题目,考查了全等三角形的判定和性质,等腰三角形的性质,等腰直角三角形的性质等知识;正确的作出辅助线,证明三角形全等是解题的关键.举一反三【变式1】感知:(1)数学课上,老师给出了一个模型:如图1,90BAD ACB AED ∠=∠=∠=︒,由12180BAD ∠+∠+∠=︒,2180D AED ∠+∠+∠=︒,可得1D ∠=∠ ;又因为90ACB AED =∠=︒,可得ABC DAE △△∽,进而得到BC AC=______.我们把这个模型称为“一线三等角”模型. 应用:(2)实战组受此模型的启发,将三等角变为非直角,如图2,在ABC 中,10AB AC ==,12BC =,点P 是BC 边上的一个动点(不与B 、C 重合),点D 是AC 边上的一个动点,且APD B ∠=∠.∵求证:ABP PCD △△∽;∵当点P 为BC 中点时,求CD 的长;拓展:(3)在(2)的条件下如图2,当APD △为等腰三角形时,请直接写出BP 的长.【答案】感知:(1)AEDE;应用:(2)∵见分析;∵3.6;拓展:(3)2或113【分析】(1)根据相似三角形的性质,即可求解;(2)∵根据等腰三角形的性质得到∵B=∵C,根据三角形的外角性质得到∵BAP=∵CPD,即可求证;∵根据相似三角形的性质计算,即可求解;(3)分P A=PD、AP=AD、DA=DP三种情况,根据等腰三角形的性质、相似三角形的性质,即可求解.解:感知:(1)∵∵ABC∵∵DAE,∵BC AC AE DE=,∵BC AE AC DE=,故答案为:AE DE;应用:(2)∵∵∵APC=∵B+∵BAP,∵APC=∵APD+∵CPD,∵APD=∵B,∵∵BAP=∵CPD,∵AB=AC,∵∵B=∵C,∵∵ABP∵∵PCD;∵BC=12,点P为BC中点,∵BP=PC=6,·∵∵ABP∵∵PCD,∵AB BPPC CD=,即1066CD=,解得:CD=3.6;拓展:(3)当P A=PD时,∵ABP∵∵PCD,∵PC=AB=10,∵BP=BC-PC=12-10=2;当AP =AD 时,∵ADP =∵APD ,∵∵APD =∵B =∵C ,∵∵ADP =∵C ,不合题意,∵AP ≠AD ;当DA =DP 时,∵DAP =∵APD =∵B ,∵∵C =∵C ,∵∵BCA ∵∵ACP , ∵BC AC AC CP =,即121010CP=, 解得:253CP =, ∵25111233BP BC CP =-=-=, 综上所述,当APD △为等腰三角形时, BP 的长为2或113 . 【点拨】本题考查的是三角形相似的判定定理和性质定理、全等三角形的判定定理和性质定理以及三角形的外角性质,掌握相似三角形的判定定理和性质定理是解题的关键.【变式2】【感知模型】“一线三等角”模型是平面几何图形中的重要模型之一,请根据以下问题,把你的感知填写出来:∵如图1,ABC 是等腰直角三角形,90C ∠=︒,AE =BD ,则AED ≌_______; ∵如图2,ABC 为正三角形,,60BD CF EDF =∠=︒,则BDE ≌________; ∵如图3,正方形ABCD 的顶点B 在直线l 上,分别过点A 、C 作AE l ⊥于E ,CF l ⊥于F .若1AE =,2CF =,则EF 的长为________.【模型应用】(2)如图4,将正方形OABC 放在平面直角坐标系中,点O 为原点,点A的坐标为(,则点C 的坐标为________.【模型变式】(3)如图5所示,在ABC 中,90ACB ∠=︒,AC BC =,BE CE ⊥于E ,AD ∵CE 于D ,4cm DE =,6cm AD =,求BE 的长.【答案】∵∵BDF ;∵∵CFD ;∵3;(2)((3)2cm 【分析】∵根据等腰直角三角形的性质及和角关系,可得∵AED ∵∵BDF ;∵根据等边三角形的性质及和角关系,可得∵BDE ∵∵CFD ;∵根据正方形的性质及和角关系,可得∵ABE ∵∵BCF ,由全等三角形的性质即可求得EF 的长;(2)分别过A 、C 作x 轴的垂线,垂足分别为点D 、E ,根据正方形的性质及和角关系,可得∵COE ∵∵OAD ,从而可求得OE 、CE 的长,进而得到点C 的坐标;(3)由三个垂直及等腰直角三角形可证明∵BCE ∵∵CAD ,由全等三角形的性质即可求得BE 的长.解:∵∵∵ABC 是等腰直角三角形,∵C =90゜∵∵A =∵B =45゜∵∵BDF +∵BFD =180゜−∵B =135゜∵∵EDF =45゜∵∵ADE +∵BDF =180゜−∵EDF =135゜∵∵ADE =∵BFD在∵AED 和∵BDF 中A B ADE BFD AE BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∵∵AED ∵∵BDF (AAS )故答案为:∵BDF ;∵∵∵ABC 是等边三角形∵∵B =∵C =60゜∵∵BDE +∵BED =180゜−∵B =120゜∵∵EDF =60゜∵∵BDE +∵CDF =180゜−∵EDF =120゜∵∵BED =∵CDFB C BED CDF BD CF ∠=∠⎧⎪∠=∠⎨⎪=⎩∵∵BDE ∵∵CFD (AAS )故答案为:∵CFD ;∵∵四边形ABCD 是正方形∵∵ABC =90゜,AB =BC∵∵ABE +∵CBF =180゜−∵ABC =90゜∵AE ∵l ,CF ∵l∵∵AEB =∵CFB =90゜∵∵ABE +∵EAB =90゜∵∵EAB =∵CBF在∵ABE 和∵BCF 中AEB CFB EAB CBF AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∵∵ABE ∵∵BCF (AAS )∵AE =BF =1,BE =CF =2∵EF =BE +BF =2+1=3故答案为:3;(2)分别过A 、C 作x 轴的垂线,垂足分别为点D 、E ,如图所示∵四边形OABC 是正方形∵∵AOC =90゜,AO =OC∵∵COE +∵AOD =180゜−∵ACO =90゜∵AD ∵x 轴,CE ∵x 轴∵∵CEO =∵ADO =90゜∵∵ECO +∵COE =90゜∵∵ECO =∵AODCEO ADO ECO AOD OC AO ∠=∠⎧⎪∠=∠⎨⎪=⎩∵∵COE ∵∵OAD (AAS )∵CE =OD ,OE =AD∵A∵OD =1,AD =∵CE =1,OE =∵点C 在第二象限∵点C的坐标为(故答案为:(; (3)∵∵ACB =90゜∵∵BCE +∵ACD =90゜∵BE ∵CE ,AD ∵CE∵∵CEB =∵ADC =90゜∵∵BCE +∵CBE =90゜∵∵CBE =∵ACD在∵BCE 和∵CAD 中CBE ACD CEB ADC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∵∵BCE ∵∵CAD (AAS )∵BE =CD ,CE =AD =6cm∵BE =CD =CE -DE =6-4=2(cm)【点拨】本题是三角形全等的综合,考查了全等三角形的判定与性质,掌握全等三角形的判定方法是关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《一线三等角——相似三角形知识拓展》
发表时间:2019-12-24T15:47:23.033Z 来源:《教育学文摘》2019年14期作者:张运春[导读] 相似三角形,是初中几何学习的重要内容,也是中考考查的重要内容,但是统观近几年的中考考题,单纯考查证明两个三角形相似的知识很少
相似三角形,是初中几何学习的重要内容,也是中考考查的重要内容,但是统观近几年的中考考题,单纯考查证明两个三角形相似的知识很少,几乎都是考查它与函数、与圆等知识的综合运用。
而且从各地近几年中考题当中可以发现,一线三等角这一模型是最近几年考试的热门模型,鉴于此,于是我就想在教学中给学生补充这一模型,并且让学生能够快速认识这一模型,并且能够利用这一模型提升解题技能。
根据这一目标,这堂课我主要设计了以下七个环节: (一)整理旧知,提炼模型这一环节,根据学生的认知规律,我设计了如下四个问题:问题1:如图1,等腰直角三角形ABC的顶点B在直线l上,AB=BC,∠ABC=90°,AD⊥直线l于点D,CE⊥直线l于点E.求证:△ADB≌△BEC
问题2:如图2,已知点A、C、E在同一条直线上,∠A=∠BCD=∠E=90°,图中三角形相似吗?请说明理由。
问题3:如图3,已知已知点A、C、E在同一条直线上,∠A=∠BCD=∠E=60°,图中三角形相似吗?请说明理由。
问题4:如图4,已知点A、C、E在同一条直线上,∠A=∠BCD=∠E=120°,图中三角形相似吗?请说明理由。
(二)揭示本质,提炼模型第一环节的四个问题,由学生很熟悉的两个三角形全等的图形引入,逐渐弱化条件,从而发现当一条直线上有三个相等角的顶点都在这条直线上,从而所构成的三角形相似。
归纳出这一模型之后,马上强调,以后在做题的过程中,如果碰到一线三等角这一模型的图形,就可联想到有三角形相似,从而可以得出对应边和对应角的关系。
(三)模型运用
学生只是认识了这一模型,还不够,于是我又接着设计了这一环节,让学生能快速识别并写出相似的三角形。
于是我设计了一组练习题,如下:
下列各图形中,若∠1=∠2=∠3,请你快速找出图中符合“一线三等角”模型的相似三角形。
学生在做完这一组练习之后,帮助学生归纳两个一线三等角模型的相似三角形,对应角的位置之间存在一种交错的对应关系,这一方法,主要便于学生以后碰到一线三等角模型的相似三角形,从而可以快速确定边、角之间的对应关系。
(四)实战演练,知识运用学生通过上一环节,已经能够比较快速找出相似三角形,可是学习一线三等角模型的主要目的,是便于更好的提升解题技能,围绕这一目标,我设计了以下练习:例1 如图1,已知D为△ABC的边BC上一点,若∠B=∠C=∠EDF=60°,BE=6,CD=3,CF=4,则BD= . 例2 如图2,矩形ABCD中,把DA沿AF对折,使点D与CB边上的点E重合,若AD=10,AB= 8,则EF= . 例3 如图3,等边△ABC的顶点B与原点重合,点C的坐标为(5,0),DE∥BC,且DE=3. P为DE上的一个动点(不与D、E重合),使∠BPQ=120°. 若设DP=x,EQ=y,求y与x的函数关系式,并写出自变量x的取值范围.
(3。