质谱基本原理97666

合集下载

质谱工作原理

质谱工作原理

质谱工作原理
质谱(MS)是通过检测化合物中某种特定的元素而将化合物
中所有可能存在的原子(分子)以一定的顺序排列起来,从而对
化合物进行定性和定量分析。

质谱工作原理如下:
电离源是质谱的核心部件,它将离子从样品溶液中分离出来,再经加速和电离而得到高质量的离子束(离子源)。

常用的有分
子离子化源和化学离子化源。

分子离子化源有电喷雾质谱仪和喷雾质谱仪两种。

电喷雾质
谱的工作原理是用高压气体使样品溶液雾化,形成无数细小的液滴,在飞行时间质谱仪中被加速到一定速度后,使液滴撞击基质
中的离子发生碰撞而使样品离子与离子相碰撞而产生碎片离子。

这些碎片离子在进入质谱检测器前,会被扫描器滤除。

因此,分
子离子化源又称为滤去离子化源或滤除(filter)离子源。

这类
质谱仪以液体为工作介质。

化学离子化源是利用有机化合物分子在离子化过程中所发生
的化学反应而产生电离产物(主要是氢化物)。

这种质谱仪称为
化学电离质谱仪(CID)。

—— 1 —1 —。

质谱法简介—质谱法基本原理(分析化学课件)

质谱法简介—质谱法基本原理(分析化学课件)

m/z 123 -CH3
-CO 108
80
m/z 80 离子是由分子离子经过两步裂解产生的,而不是一步形成的
质谱法基本原理
4.同位素离子
大多数元素都是由具有一定自然丰度的同位素组成。化合物 的质谱中就会有不同同位素形成的离子峰,由于同位素的存在, 可以看到比分子离子峰大一个质量单位的峰M+1;有时还可以 观察到M+2,M+3。通常把由同位素形成的离子峰叫同位素峰。
离子子还可能进一步裂解成更小的碎片离子,在裂解的同时也可能
发生重排。
质谱法基本原理
3.亚 稳 离 子(m*)
在离子源中形成的碎片离子没有进一步裂解,而是在 飞行进入检测器的过程中发生自行的裂解,这样所形成的低 质量的离子叫亚稳离子。 形成过程 m1 (母离子) m2 (子离子) 中性碎片
表观质量 m m22
37
(a+b)n=(3+1)2=9+6+1
即三种同位素离子强度之比为9:6:1。 这样,如果知道了同位素的元素个数,可以推测各同
位素离子峰强度之比。 同样,如果知道了各同位素离子强度之比,可以估计
出分子中是否含有S、Cl、Br原子以及含有的个数。
质谱法基本原理 四、质谱法的特点与主要用途
❖ 特点: ❖ 1.样品用量少。灵敏度高,精密度好。 ❖ 2.分析速度快。 ❖ 3.分析范围广,适合联机。 ❖ 4.能够同时给出样品的精确分子质量和结构信息
色谱-质谱联用分析法 气质联用(GC-MS)的应用领域:
气质联用已经成为有机化合物常规检测中的
必备工具。环保领域的有机污染物检测,特别是
低浓度的有机污染物;药物研究生产质控的进出
口环节;法庭科学中对燃烧爆炸现场调查,残留

质谱的原理和图谱的分析-97页文档

质谱的原理和图谱的分析-97页文档

3、基本原理
质谱仪示意图 离子在质谱仪中被电场加速。加速后其动能和位能相等, 即:
1 mv2 zV 2
m: 离子质量;v: 离子速度;z: 离子电荷;V: 加速电压
被加速的离子进入磁分析器时,磁场再对离子进行作 用,让每一个离子按一定的弯曲轨道继续前进。
其行进轨道的曲率半径决定于各离子的质量和所带电 荷的比值m/z。
◎分子中含2 Br, (a+b)2, M : M+2 : M+4≈1 : 2 :1
◎分子中含1Cl 和1Br
(a1+b1) (a2+b2), M : M+2 : M+4≈3 : 4 : 1
(3a+b)(a+b)=3a2+4ab+b2
查Beynon表 法
C H N O m/z M+1 M+2
理论计算值,会出现不符合N律和不符合UN的一般规律。
(2)分子离子峰的相对强度(RI)
• 芳环(包括芳杂环)> 脂环化合物 >硫醚、硫酮 > 共轭烯 分子离子峰比较明显。
• 直链醛、酮、酸、酯、酰胺、卤化物等通常显示 分子离子峰。
• 脂肪族醇、胺、亚硝酸酯、硝酸酯、硝基化合物 、 腈类及多支链化合物容易裂解,分子离子峰通常 很弱或不出现。
(3)分子式的推导 低分辨质谱数据(同位素相对丰度) 高分辨质谱数据(分子量的尾数)
Matrix-Assisted Laser Desorption Ionization
•使热敏感或不挥发的化合物由固相直接得到离子。 •待测物质的溶液与基质的溶液混合后蒸发,使分析物 与基质成为晶体或半晶体,用一定波长的脉冲式激光 进行照射时,基质分子能有效的吸收激光的能量,使 基质分子和样品分子进入气相并得到电离。

质谱基本原理

质谱基本原理

质谱基本原理质谱(Mass Spectrometry,MS)是一种用于分析化合物分子结构和确定化合物分子量的重要分析技术。

它通过将化合物分子转化为离子,然后根据离子的质量和电荷比进行分析,从而得到化合物的质谱图谱。

质谱技术在化学、生物、药学等领域具有广泛的应用,是一种非常重要的分析手段。

质谱的基本原理可以简单地概括为离子化、分离、检测和数据处理四个步骤。

首先,样品中的化合物分子被转化为离子,这一过程通常通过电离源完成。

常用的电离源包括电子轰击电离源、化学电离源和电喷雾电离源等。

不同的电离源适用于不同类型的化合物,选择合适的电离源对于获得准确的质谱数据至关重要。

接下来,离子经过质谱仪中的分析部分,根据其质荷比(m/z)进行分离。

质谱仪通常包括离子源、质量分析器和检测器。

质量分析器的种类有多种,包括飞行时间质谱仪、四级杆质谱仪和离子阱质谱仪等。

这些质谱仪能够根据离子的质荷比进行高效分离,从而得到高质量的质谱数据。

在检测部分,分离后的离子被检测器检测到,并转化为电信号。

这些信号随后被转化为质谱图谱,显示出离子的质荷比和相对丰度。

通过分析质谱图谱,可以得到化合物的分子量、结构信息以及相对丰度等重要数据。

最后,得到的质谱数据需要进行处理和解释。

数据处理包括质谱图谱的峰识别、质谱数据的校正和质谱图谱的解释等步骤。

这些步骤需要借助专业的质谱数据处理软件进行,以确保得到准确可靠的结果。

总的来说,质谱的基本原理是将化合物分子转化为离子,然后根据离子的质量和电荷比进行分析,最终得到化合物的质谱数据。

质谱技术在化学、生物、药学等领域具有广泛的应用,对于研究化合物的结构和性质具有重要意义。

随着质谱技术的不断发展,相信它将在更多领域展现出强大的应用潜力。

第四章--质谱PPT课件

第四章--质谱PPT课件

化合物可达到10-12-10-15g的检测灵敏度;并可适用于多种接口
联机技术(如流动注射,HPLC,HPCE)。
.
8
2.分析器
(1)静电场和磁场分析器
单聚焦仪器的分析器由磁场组成,双聚焦仪器的分析器由 静电场和磁场组成(顺置型),磁场在前,静电场在后,属于 倒置型。 (2)四极质量分析器
四极质量分析器是由四根互相平行的电极组成。
(2)论文记录法
论文记录方式如下(也是 m/z与RA%列表):32(M+) (66)
3l
(100)
29
(64)
15
(13)
:
:
括号中的数值表示该离子的相对强度。
表格形式虽然也可以准确地表示相对强度,甚至很弱的峰也能表示出来, 但不如棒图一目了然。
. 17
4.1.4 质谱仪的分辨率
质谱仪的分辨率 指的是能把相邻两个 峰分开的能力,两个 高度相等质量分别为M1 和M2的相邻峰正好分开。 分辨率定义为:
①按质荷比大小排列:m/z 15 16 17 28 29 30 31 32 33 34
RA% 13 0.21 1.0 6.3 64 38 100 66 0.98 0.14
②按相对强度次序排列:m/z 31 32 29 15 28 30 17 33 16 34
RA% 100 66 64 13 6.3 3.8 1.0 0.98 0.21 0.14
对于质荷比m/z100的离子,分辨率R=100时,它能与m/z101的峰分辨开; R=1000时它能与m/z100.1的峰分辨开;R=10000时它能与m/z100.01的峰分 辨开,R值越高越能与质荷比相近的离子分开。
如十三烷基苯(C19H32)M=260.2505,十一烷基苯酮(C18H28O)M=260.2140和 l,2-二甲基4-苯甲酰基萘(C19H160)M=260.1204,分辨率R=1000的低分辨仪器

质谱基本原理

质谱基本原理

质谱基本原理质谱是一种通过分析物质的离子质量和相对丰度来确定其组成和结构的分析技术。

质谱仪是实现质谱分析的仪器,它可以将物质中的分子或原子转化为离子,并根据离子的质量-电荷比进行分析。

质谱技术在化学、生物学、环境科学等领域有着广泛的应用,下面我们来详细了解一下质谱的基本原理。

首先,质谱分析的基本原理是将待分析的物质通过不同的方法转化为离子,然后根据离子的质量-电荷比进行分析。

这个过程包括样品的离子化、离子的分离和检测三个基本步骤。

在样品的离子化过程中,常用的方法包括电离、化学离子化和质子化等。

离子的分离是通过质谱仪中的质子分析器或质谱仪中的离子漂移管等部件来实现的。

最后,通过检测器来检测离子的质量-电荷比,从而得到质谱图谱。

其次,质谱分析的基本原理还包括质谱仪的工作原理。

质谱仪主要由离子源、质子分析器和检测器组成。

离子源用于将待分析的物质转化为离子,质子分析器用于分离离子,检测器用于检测离子的质量-电荷比。

其中,离子源可以采用不同的方法,如电子轰击、化学离子化和质子化等。

质子分析器根据离子的质量-电荷比进行分离,常用的方法包括磁场分离和电场分离。

检测器则根据离子的质量-电荷比进行检测,常用的方法包括离子倍增器和光电离探测器等。

最后,质谱分析的基本原理还包括质谱图谱的解析和应用。

质谱图谱是通过质谱仪得到的离子的质量-电荷比和相对丰度的图谱,它可以用来确定物质的组成和结构。

在质谱图谱的解析中,需要根据离子的质量-电荷比和相对丰度来确定物质的分子式和结构式。

质谱图谱在化学、生物学、环境科学等领域有着广泛的应用,可以用来分析有机化合物、生物大分子、环境污染物等。

总之,质谱分析是一种通过分析物质的离子质量和相对丰度来确定其组成和结构的分析技术。

质谱分析的基本原理包括样品的离子化、离子的分离和检测三个基本步骤,质谱仪的工作原理以及质谱图谱的解析和应用。

质谱技术在化学、生物学、环境科学等领域有着广泛的应用,对于研究物质的组成和结构具有重要意义。

质谱分析的基本原理及方法

质谱分析的基本原理及方法

O
失去一个n电子形成的分子离子: R C R' -e
+ O R C R'
失去一个电子形成的分子离子:
-e
+
HH
失去一个电子形成的分子离子: R C C R' -e
HH
正电荷位置不确定时用 + 表示: RCH2CH3 -e
HH
R C+ .C R'
HH
RCH2CH3 +
分子离子峰主要用于分子量的测定。
[质谱表]
甲烷的质谱表
m/e
2
相对强度 1.36
12
13
3.65 9.71
14 18.82
15 90.35
16
17
100.00 1.14
四. 离子的主要类型、形成及其应用 1. 分子离子 (奇电子离子)
化合物分子失去一个外层电子而形成的带正电荷的离子。
M -e
M+.
中性分子 分子离子
对于一般有机物电子失去的程度: n电子 > 电子 > 电子
+
CH3
CH2
OH
+
CH3 + CH2 OH m/e 31
+
CH3CH2 O CH2 CH3
+
CH3(CH2)6 CH2 NH2
X+
CH3 CH CH3
CH3
+
CH3CH2 O CH2 + CH3 m/e 59
CH3(CH2)6
+
X
+ CH2
+
NH2
+ CH CH3
2) 产生碳正离子的裂解

质谱原理及使用PPT课件

质谱原理及使用PPT课件
形磁分析器。离子束经加速后飞入磁 极间的弯曲区,由于磁场作用,飞行 轨道发生弯曲,见图21.7。
此时离子受到磁场施加的向心力 Bzeυ作用,且离子的离心力mυ2·r-1也 同时存在,r为离子圆周运动的半径。 只有在上述两力平衡时,离子才能飞 出弯曲区,即
Bzeυ=mυ2/r
其中B为磁感应强度,ze为电荷, υ为运动速度,m为质量,r为曲率半 径。调整后,可得
质谱分析器的电磁场中,根据所选择 的分离方式,最终实现各种离子按m /z进行分离。
(二)质谱仪的主要性能指标
1.质量测定范围 质谱仪的质量测定范围表示质谱仪 所能够进行分析样品的相对原子质量( 或相对分子质量)范围,通常采用原子 质量单位(unified atomic mass unit, 符号u)进行度量。原子质量单位是由 12C来定义的,即一个处于基态的12C中 性原子的质量的1/12,即
(4)火花源
对于金属合金或离子型残渣之类的 非挥发性无机试样,必须使用不同于上 述离子化源的火花源。火花源类似于发 射光谱中的激发源。向一对电极施加约 30 kV脉冲射频电压,电极在高压火花 作用下产生局部高热,使试样仅靠蒸发 作用产生原子或简单的离子,经适当加 速后进行质量分析。火花源具有一些优 点:
4.质量分析器
质谱仪的质量分析器位于离子源和检 测器之间,依据不同方式将样品离子按质 荷比m/z分开。质量分析器的主要类型 有:磁分析器、飞行时间分析器、四极滤 质器、离子捕获分析器和离子回旋共振分 析器等。随着微电子技术的发展,也可以 采用这些分析器的变型。
(l)磁分析器 最常用的分析器类型之一就是扇
1 u1 1(2 6.012.0 22 1 012 0 0 g 1 4 3 1C 2 C 0 2原 /m 0/1 m 子 o C 2 1 lo C 2) l

质谱技术原理

质谱技术原理

质谱技术原理质谱技术是一种高效、精密的分析方法,被广泛应用于化学、生物、环境等领域。

它通过测定化合物的质量和相对丰度,可以确定其分子结构、组成成分以及同位素丰度,具有高灵敏度、高分辨率和高准确性的特点。

下面我们将详细介绍质谱技术的原理。

首先,质谱技术的基本原理是将待测样品中的分子离子化,并将其加速到一定速度,然后通过磁场和电场的作用使其偏转轨迹,最终根据不同质荷比将其分离出来。

这一过程包括离子化、质量分析和检测三个基本步骤。

离子化是指将待测样品中的分子转化为带电离子的过程。

常用的离子化方法包括电子轰击离子源、化学离子源和光解离子源等。

在离子化过程中,待测样品中的分子会失去或获得电子,形成带正电荷或负电荷的离子。

质量分析是指对离子进行质量筛选和分离的过程。

常用的质量分析方法包括飞行时间质谱、四极杆质谱和离子阱质谱等。

在质量分析过程中,离子会受到外加电场和磁场的作用,根据其质量和电荷比的不同,被分离出来并进入检测器。

检测是指对分离出来的离子进行检测和信号转换的过程。

常用的检测方法包括离子倍增器检测器、荧光检测器和质谱仪检测器等。

在检测过程中,离子会与检测器中的电子发生作用,产生电荷转移或荧光等现象,最终被转化成电信号输出。

总的来说,质谱技术的原理是通过离子化、质量分析和检测三个基本步骤,将待测样品中的分子转化为离子,根据其质量和电荷比进行分离和检测,最终得到质谱图谱。

质谱图谱可以提供待测样品的分子结构、组成成分和同位素丰度等信息,为化学、生物、环境等领域的研究和分析提供重要依据。

总结一下,质谱技术是一种高效、精密的分析方法,具有高灵敏度、高分辨率和高准确性的特点。

其原理是通过离子化、质量分析和检测三个基本步骤,将待测样品中的分子转化为离子,根据其质量和电荷比进行分离和检测,最终得到质谱图谱。

希望本文对质谱技术的原理有所帮助。

质谱基本原理

质谱基本原理

• 一、质谱仪
• 化合物旳质谱是由质谱仪测得旳。一般质谱仪由下列几种部分构 成:
进样系统 离子源 质量分析器 离子接收器 信号放大记录系统
高真空系统
• 最简朴旳质谱仪为单聚焦(磁偏转)质谱仪。它旳构造如下图。
f
真空泵
b
d
c
q
a
图12-26 单聚焦质谱仪示意图
i
样品
• 整个系统是高真空旳,气体样品从进样口a进入离解室,样品分
对 强
60
度 40
20
M 甲烷质谱图
M+1 12 13 14 15 16
m/z
• 12.8 相对分子质量和分子式确实定
• 一、分子离子和相对分子质量 • 分子失去一种电子生成旳自由基分子正离子叫做分子离子。因它
只带一种正电荷,质荷比(m/z)在数值上与分子旳质量相同,所以, 在质谱中,找到分子离子峰就可拟定相对分子质量。这是质谱旳 主要应用之一。它比用其他措施,如冰点降低、沸点升高法测定 相对分子质量简朴得多。 • 分子离子峰一般是质谱图中质荷比最大旳峰。但多数情况下其右 侧还伴随有弱旳同位素峰和反应离子峰。有些化合物旳分子离子 比较稳定,峰旳强度较大,在质谱图谱上轻易找到;但有些化合 物旳分子离子不够稳定,轻易生成碎片,此时,这些分子离子峰 很弱或几乎找不到(如带支链旳烷烃、醇类等)。这时,可采用降 低质谱仪撞击电子流旳能量旳措施,或以其他经验措施来拟定分 子离子峰。
• 含偶数电子旳离子裂分不能产生自由基,只能生成偶数电子旳中 性分子和正离子。
• 偶数电子规律:
M 奇数电子离子
M
A +B C + D (偶数电子分子)
偶数电子离子 A
E + F (偶数电子分子)

质谱基本原理

质谱基本原理

质谱基本原理质谱是一种用于分析化合物结构和确定化合物组成的重要技术,它在生物医药、环境保护、食品安全等领域有着广泛的应用。

质谱的基本原理包括样品的离子化、质谱仪的质量分析和信号检测三个方面。

首先,样品需要经过离子化处理,通常采用电离源将样品分子转化为离子。

电离源常用的有电喷雾电离源(ESI)和化学电离源(CI)。

在电喷雾电离源中,样品通过高压气体雾化成微小液滴,然后通过高电压喷射出来,形成带电离子。

而在化学电离源中,样品分子与化学试剂发生化学反应,生成离子。

这样处理后的样品就可以进入质谱仪进行分析了。

其次,质谱仪的质量分析是质谱技术的核心部分。

质谱仪通常由离子源、质量分析器和检测器组成。

在离子源中,样品离子被加速形成能量较高的离子束,然后进入质量分析器。

质量分析器根据离子的质荷比对其进行分离和测量,最常用的质量分析器包括飞行时间质谱仪(TOF)、四极杆质谱仪和离子阱质谱仪。

不同的质谱仪有着不同的工作原理和适用范围,但都可以实现对样品离子的分析和检测。

最后,质谱仪通过检测器对质谱信号进行检测和记录。

检测器通常采用光电倍增管(PMT)或者光电二极管(PD)等器件,将离子信号转化为电信号进行放大和处理,最终形成质谱图谱。

质谱图谱可以通过质谱数据库进行比对和分析,从而确定样品的成分和结构。

总的来说,质谱技术的基本原理包括样品的离子化、质谱仪的质量分析和信号检测三个方面。

通过这些基本原理,质谱技术可以实现对样品的高灵敏度、高分辨率的分析,为化学、生物和环境领域的研究提供重要的技术支持。

质谱测定的基本原理

质谱测定的基本原理

质谱测定的基本原理
质谱测定的基本原理是利用质谱仪对样品中的分子进行分析和鉴定。

它包括以下几个步骤:
1. 样品的进样:样品可以是气体、液体或固体,它们需要经过适当的前处理步骤,如挥发、抽取或溶解等,以便能够进入质谱仪进行分析。

2. 离子化:样品分子经过电离源(如电子轰击、电喷雾、化学电离等)使其成为带电离子,一般为正离子。

离子化的目的是使分子能够在质谱仪的离子光束中产生可探测的信号。

3. 离子分离和加速:带电离子通过一系列离子光学元件(如电场、磁场等)进行分离和加速,使它们能够以不同的速度进入质谱仪的质量分析器。

4. 质量分析:质谱仪的质量分析器一般采用质量过滤器或质量分析器,如磁扇形质量分析器、四极杆质量分析器、飞行时间质量分析器等。

这些质量分析器能够根据离子的质量/电荷比(m/z)对离子进行分离和筛选。

5. 检测和信号处理:离子依次通过质量分析器后,被探测器探测到。

探测器可以是电子倍增器、离子化检测器、光电倍增管等。

探测器将离子的信号转化为电信号,并送入信号处理系统进行放大、记录和分析。

通过分析不同m/z的离子的丰度和相对分子质量,可以确定样
品中存在的化合物的种类和含量。

质谱测定广泛应用于化学、生物、医药、环境科学等领域。

质谱分析的基本原理及方法

质谱分析的基本原理及方法
通过化学反应使样品分子 带正电或负电。
激光离子化
利用激光束将样品分子电 离,常用于生物样品和有 机化合物的分析。
质量分离
质量过滤
利用磁场或电场使不同质量的离子分 开。
色谱分离
结合色谱技术,如气相色谱、液相色 谱等,对复杂样品进行分离。
检测与数据分析
检测器
用于收集经过质量分离后的离子,并将其转换为可测量的电信号。
数据分析复杂
质谱数据分析需要专业的软件 和技能,对实验人员的技能要
求较高。
05
质谱分析的未来发展
高分辨质谱技术
总结词
高分辨质谱技术能够提供更精确的分子质量和结构信息,有助于深入解析复杂生物分子和环境样品中 的化合物。
详细描述
高分辨质谱技术利用先进的离子光学系统和探测器技术,提高了分辨率和灵敏度,能够更准确地测定 分子质量和结构特征。这对于解析蛋白质、多糖等复杂生物分子以及环境污染物、药物等化合物的结 构和性质具有重要意义。
用于检测食品中的添加剂、农药残留和有 害物质等,保障食品安全。
02
质谱分析方法
气相色谱-质谱联用(GC-MS)
总结词
气相色谱-质谱联用是一种常用的质谱分析方法,通过气相色谱将混合物中的各组分分离,然后进入质谱仪进行 检测。
详细描述
GC-MS的优点在于能够分离和鉴定复杂混合物中的化合物,特别适用于挥发性有机化合物的分析。该方法首先 将样品中的化合物通过气相色谱分离,然后通过接口技术将组分引入质谱仪中,最后通过质谱检测各组分的分子 量和结构信息。
环境科学领域
用于药物代谢、蛋白质组学、基因组学等 方面的研究,可检测生物样品中的代谢物 、蛋白质、多肽和核酸等。
用于检测空气、水体和土壤等环境样品中 的污染物,如重金属、有机污染物和农药 残留等。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.用途:
①求精确分子量,从而确定分子式
②鉴定化合物
③推断结构
④推算Cl、Br、S等原子数
b
4
4.发展史:
1911年: 世界第一台质谱装置(J.J. Thomson) 40年代: 用于同位素测定和无机元素分析 50年代: 开始有机物分析(分析石油) 60年代: 研究GC-MS联用技术 70年代: 计算机引入 80年代: 新的质谱技术出现:快原子轰击电离子源, 基质辅助激光解吸电离源,电喷雾电离源,大气压化学电 离源;LC-MS联用仪,感应耦合等离子体质谱仪,傅立 叶变换质谱仪等 目前质谱分析法已广泛地应用于化学、化工、材料、 环境、地质、能源、药物、刑侦、生命科学、运动医学等 各个领域。
43
57
29 15
71 85 99 113 142
m/z
纵坐标:离子的相对强度
横坐标:质荷比 m/z
b
3
2.质谱分析的特点: (1). 应用范围广:可用于无机成分、有机成分分以及 同位素分析;
(2).不受试样物态限制:可对气体、液体、固体等进 行分析; (3).分析速度快:完成一次扫描仅需1~几秒; (4).灵敏度高:检测限可达10-11g;分析速度快,样品 用量少。
于有机物电离;
灯丝 (阴极)
阳极
b
13
M+ e (高速)
M.+ + 2e (低速)
++
: R1
: R2
+
: R3
++
: R4 :e
(M-R2)+
(M-R1)+
(M-R3)+
M+
Mass Spectrum
b
14
EI的特点 :是最常用的一种离子化方式,能量较高 (~70eV),所得碎片离子峰比较丰富,常用于标准MS图 的制备,便于进行鉴定和结构解析 ,但所得分子离子峰往 往并不很强甚至不能识别 ,不利于确定分子量。
真空泵
质谱形成过程示意图
b
质谱图
6
光源
单色器
样品池 检测器
分光光度计组成示意图
记录装置
由上图可见,质谱图 的形成与光谱图类似。 质谱仪的离子源、质量 分析器和检测器分别类 似于光谱仪中的光源、 单色器和检测器。但两 者的原理不同,质谱不 属于光谱的范畴。
43
57
29 15
71 85 99 113 142
2.色谱联用导入试样:利用与质谱仪联机的气相色 谱仪或高效液相色谱仪将混合物分离后,通过特殊
的联机“接口”进入离子源,依次进行各组分的质
谱分析。
b
12
(三)离子源
1.离子源的作用:将被分析样品离子化,并使其具有一 定的能量。
2. 离子源的分类及适用条件:
(1)电子轰击源(electron impact source; EI) :常用
m/z
纵坐标:离子的相对强度
横坐标:质荷比 m/z
b
7
一、质谱法的基本原理
1、基本原理:质谱法是应用多种离子化技术(如高能离 子流轰击、化学电离、强电场作用等),使物质分子失去 外层价电子形成分子离子(molecular ion; ),分子离 子中化学键发生某些有规律的断裂而形成不同质量的碎片 离子(fragment ion)。
b
5
第一节 基本原理和质谱仪
质谱的形成:气态样品通过导入系统进入离子源,被电离 成分子离子和碎片离子,由质量分析器将其分离并按质核 比大小依次进入检测器,信号经放大、记录得到质谱图 (mass spectrun; MS)。
样品导 入系统
产生离子流
离子源
m/z
质量扫描
质量 分析器
检测器
H0
放大器 记录器
(2)化学电离源(chemical ionization source,CI):属于 软电离,是极为有用的一种,谱形简单,能提供较强的准 分子离子峰和很少的碎片峰。
高能电子流(100~240eV)先
+
轰击反应气(如甲烷,气压
+
10~100Pa,是样品的103~105 倍),反应气首先被电离, 再与试样分子碰撞,产生准 分子离子。
第十五章 质谱法 (mass spectrometry MS)
b
1
要求:
1 掌握质谱法的基本原理及特点; 2 掌握质谱中不同离子的类型及在结构解 析中的作用;
3 熟悉质谱仪各主要部件的工作原理。
b
2
概述 generalization
1.质谱分析法(mass spectrometry或mass spectroscopy MS):是利 用离子化技术,将物质 分子转化为离子,按其 质核比(m/z)的差异进行 分离测定。
进样系统
离子源
质量分析器
检测器
1.气体扩散 2.直接进样 3.气相色谱
1.电子轰击 2.化学电离 3.场致电离 4.激光
1.单聚焦 2.双聚焦 3.飞行时间 4.四极杆
(一)真高空系统
质谱仪属于高真空装置,因此,高真空系统是使质谱
仪正常工作的保障系统。质谱仪的进样系统、离子源、
质量分析器、检测器等主要部件均需在高空状态下工作
(10-4~10-6Pa)。
b
11
1、高真空的作用: (1)避免离子散射以及离子与残余气体分子碰撞引起能 量变化; (2) 降低本底和记忆效应。
2、高真空系统的组成:一般由旋转泵和扩散泵串联而 成,亦可采用分子泵以获得更高的真空度。
(二)样品导入系统
1.直接进样:
试样分子
+ 准分子离子
电子
(M+1)+;(M+17) +;(M+29) +;
b
15
(3)快原子轰击离子源(FAB):可直接进行分析,毋需做 成衍生物;适用于较大分子的MS分析,而EI、CI、FI、FD 等方法只能用于中、小分子有机化合物的测定 .
(4)场致电离源(FI):适用于易变分子的离子化 ,如碳水 化合物、氨基酸、多肽、抗生素和苯丙胺类药物均宜采用;能 产生较强的分子离子峰和准分子离子峰。
M -e
+ 碎片离子 + 中性分子
选择其中带正电荷的离子使其在电场或磁 场的作用下,根据其质荷比(m/z,离子质量与 电荷之比)的差异进行分离,按各离子m/z的顺 序及相对强度大小记录的图谱即为质谱。
b
8
2.质谱图的表示:常见的质谱图是经过计算机处理过的 棒图(Bar graphs) 。
相 对 强 度
(%)
相对强度:以质谱中最强峰的高度为100%,并将此峰称为 基峰,其余峰按与基峰的比例加以表示,又称相对强度。
注:根据质谱图的峰位可进行定性鉴别,根据相对
强度可进行定量测定。
b
9
二、质谱仪(Mass Spectrometers)
双聚焦质谱仪
b Elan9000电感耦合等离子体质谱仪10
质谱仪的构成:高真空系统、样品导入系统、离子源、 质量分析器、离子检测器及记录装置等。
相关文档
最新文档