离散型动态规划问题(举例)
4.3动态规划的建模与求解
5 5 13 5
k=2
f 2 s 2 max g 2 u 2 f 3 s3
0u 2 s 2
工厂 1 投资额 1 2 3 4.5 7 9
2 2 4.5 7.5
3 5 7 8
sk+1 = sk -uk
s3
u3
f 3 ( s3 )
u3
*
0 0 0
0
1 1 5 1
2 2 7 2
i k n
U k {uk | 0 uk sk }
最优值函数 f k sk :第k阶段可分配的资金数为sk时, 第k至第n个项目的最大总收益 求f1 a
最优值函数 f k sk :在第k阶段分配的资金数为sk时, 第k至第n个项目的最大总收益
建立递推公式:
f k s k
fk( sk ) =在工厂k,可供分配的资金数为sk时, 投资工厂k至工厂3所得的最大总收益 求f1( 5 ) 基本方程: f k s k max g k u k f k 1 s k 1 0u k sk k 3,2,1 f 4 s4 0 f 3 s3 max g 3 u3 k=3 0 u 3 s3 s3 0 4 1 2 3
0
0 0 0
0
4 5 2 3 0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 5 2 7 7 4.5 8 9 9.5 7.5 10 10 11.512.511 13 12 12.514.5 16 15 12.5 16 5 7 9.5 3 2 4 0 0或1 1 5 3 4 5
解:设A---整个系统正常工作,Ai—部件i正常工作 A A1 A2 An ,
则P A P A1 P A2 P An pi xi
动态规划的应用举例大全
在0/1背包问题的基础上,通过动态规 划的方式解决多个约束条件下的物品 选择问题。
排程问题
作业车间调度问题
通过动态规划的方式,求解给定一组作业和机器,如何分配作业到机器上,使得 完成时间最早且总等待时间最小。
流水线调度问题
通过动态规划的方式,解决流水线上的工件调度问题,以最小化完成时间和总延 误时间。
应用场景
在基因组测序、进化生物学和生物分类学等领域中,DNA序列比对是关键步骤。通过比对,可以发现物种之间的相 似性和差异,有助于理解生物多样性和进化过程。
优势与限制
动态规划算法在DNA序列比对中具有高效性和准确性,能够处理大规模数据集。然而,对于非常长的序 列,算法可能需要较长时间来运行。
蛋白质结构预测
应用场景
深度学习中的优化算法广泛应用于语音识别、图像处理、 自然语言处理等领域,动态规划可以帮助提高训练效率和 模型的准确性。
自适应控制和系统优化
问题描述
动态规划方法
自适应控制和系统优化是针对动 态系统的优化和控制问题。在这 些问题中,动态规划可以用于求 解最优控制策略和系统参数调整。
通过定义状态转移方程和代价函 数,将自适应控制和系统优化问 题转化为动态规划问题。状态表 示系统的当前状态和参数,代价 函数描述了在不同状态下采取不 同行动的代价。
考虑风险因素和概率
动态规划可以考虑到风险因素和概率,以制定最优的风险评估和管 理策略。
考虑风险承受能力和资本充足率
动态规划可以考虑到风险承受能力和资本充足率,以制定最优的风 险评估和管理策略。
04 动态规划在生物信息学中 的应用
DNA序列比对
算法描述
DNA序列比对是生物信息学中常见的问题,通过动态规划算法可以高效地解决。算法将DNA序列视为字符串,并寻 找两个或多个序列之间的最佳匹配。
动态规划练习例题
动态规划方法总结
动态规划算法的设计步骤
– – – – – – – 将问题表示成多步判断 确定是否满足优化原则——必要条件 确定子问题的重叠性——估计算法效率 列出关于优化函数的递推方程(或不等式)和边界条件 自底向上计算子问题的优化函数值----非递归的算法 备忘录方法记录中间结果 标记函数追踪问题的解
• S(i)表示结束于位置i的最大子区间和 • max{S(i)}即为所求最大子区间和 • 考虑如何递推求解并反算问题解
最大子矩阵
• 已知矩阵的大小定义为矩阵中所有元素的 和。给定一个矩阵,找到最大的非空(大小 至少是1 * 1)子矩阵。 • 例如这个矩阵的最大子矩阵大小为15。
0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
动态规划练习例题在棋盘上移动在一个nn的棋盘上棋子可以向上方右上方或左上方移动每次从x方格移动到y方格将获得pxy元钱pxy不一定是正数现求一个获得钱最多的从底边到顶边的一种移动棋子的方案
动态规划练习例题
在棋盘上移动
• 在一个n×n的棋盘上,棋子可以向上方、 右上方或左上方移动,每次从x方格移动到y 方格将获得p(x,y)元钱, p(x,y)不一定是正 数,现求一个获得钱最多的从底边到顶边 的一种移动棋子的方案。
解题思路
Qx, y 1 Q x, y max Qx 1, y 1 Q x 1, y 1 y 1 px, y 1, x, y y 1 px 1, y 1, x, y y 1且x 1 px 1, y 1, x, y y 1且x 字符串X=x1,x2,…xm和Y=y1,y2,…yn 使用一系列编辑操作将字符串X转变成Y。允许使 用插入,删除,修改三种操作,每种操作都有 一定的代价,求一个总代价最小的操作序列。 – 设从字符X中删除符号xi的代价为D(xi) – 将符号yj插入X的代价为I(yj) – 将X中的符号xi修改成yj的代价为C(xi,yj)
动态规划算法的详细原理及使用案例
动态规划算法的详细原理及使用案例一、引言动态规划是一种求解最优化问题的算法,它具有广泛的应用领域,如机器学习、图像处理、自然语言处理等。
本文将详细介绍动态规划算法的原理,并提供一些使用案例,以帮助读者理解和应用这一算法的具体过程。
二、动态规划的基本原理动态规划算法通过将问题分解为多个子问题,并利用已解决子问题的解来求解更大规模的问题。
其核心思想是利用存储技术来避免重复计算,从而大大提高计算效率。
具体来说,动态规划算法通常包含以下步骤:1. 定义子问题:将原问题分解为若干个子问题,这些子问题具有相同的结构,但规模更小。
这种分解可以通过递归的方式进行。
2. 定义状态:确定每个子问题的独立变量,即问题的状态。
状态具有明确的定义和可计算的表达式。
3. 确定状态转移方程:根据子问题之间的关系,建立状态之间的转移方程。
这个方程可以是简单的递推关系式、递归方程或其他形式的方程。
4. 解决问题:使用递推或其他方法,根据状态转移方程求解每个子问题,直到获得最终解。
三、动态规划的使用案例1. 背包问题背包问题是动态规划算法的经典案例之一。
假设有一个背包,它能容纳一定重量的物品,每个物品有对应的价值。
目的是在不超过背包总重量的前提下,选取最有价值的物品装入背包。
这个问题可以通过动态规划算法来求解。
具体步骤如下:(1)定义问题:在不超过背包容量的限制下,选取物品使得总价值最大化。
(2)定义状态:令dp[i][j]表示将前i个物品放入容量为j的背包中所能获得的最大价值。
(3)状态转移方程:dp[i][j] = max(dp[i-1][j-w[i]]+v[i], dp[i-1][j]),其中w[i]为第i个物品的重量,v[i]为第i个物品的价值。
(4)解决问题:根据状态转移方程依次计算每个子问题的解,并记录最优解,直到获得最终答案。
2. 最长公共子序列最长公共子序列(Longest Common Subsequence,简称LCS)是一种经典的动态规划问题,它用于确定两个字符串中最长的共同子序列。
动态规划例题
动态规划例题动态规划是一种以最优化原理为基础的问题求解方法,通过拆分问题为若干阶段,每个阶段求解一个子问题,再逐步推导出整个问题的最优解。
例如,有一个背包能够承受一定的重量,现有一些物品,每个物品都有自己的重量和价值。
我们希望将物品放入背包中,使得背包的总价值最大。
这个问题可以用动态规划来解决。
首先,我们定义一个二维数组dp,其中dp[i][j]表示在前i个物品中,容量为j的背包中所能放入的物品的最大价值。
那么,对于每一个物品,可以选择放入背包或者不放入背包。
如果选择放入背包,最大价值为dp[i-1][j-w[i]] + v[i],其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。
如果选择不放入背包,最大价值为dp[i-1][j]。
因此,dp[i][j]的状态转移方程为:dp[i][j] = max(dp[i-1][j-w[i]] + v[i], dp[i-1][j])。
基于这个状态转移方程,可以逐步求解从第1个物品到第n个物品的最大价值。
最终,dp[n][W]即为问题的最优解,其中W 表示背包的容量。
举个简单的例子,假设背包的容量为10,有3个物品,它们的重量分别为3、4、5,价值分别为4、5、6。
此时,可以得到如下的dp矩阵:0 0 0 0 0 0 0 0 0 0 00 0 0 4 4 4 4 4 4 4 40 0 0 4 5 5 9 9 9 9 90 0 0 4 5 5 9 10 10 14 14我们可以看到,dp[3][10]的最大价值为14,表示在前3个物品中,容量为10的背包中所能放入的物品的最大价值为14。
通过动态规划,我们可以有效地求解背包问题,得到物品放入背包的最优解。
这个例子只是动态规划的一个简单应用,实际上,动态规划可以解决各种复杂的问题,如最长公共子序列、最大子数组和、最大字段和等。
因此,学习动态规划是非常有意义的。
动态规划-例题众多-详细讲解
步骤2:状态转移方程:
步骤3:以自底向上的方法来计算最优解
12
程序的实现
BuyTicks(T, R)
1 n ← length[T]
2 f[0] ← 0
3 f[1] ← T[1]
4 for i ← 2 to n do
5
f[i] ← f[i-2]+R[i-1]
6
if f[i] > f[i-1]+T[i] then
n 0 1 2 3 4 5 6 7 8 9 10 F(n) 1 1 2 3 5 8 13 21 34 55 89
2
递归 vs 动态规划
递归版本:
F(n)
1 if n=0 or n=1 then
2
return 1
3 else
4
return F(n-1) + F(n-2)
太慢!
动态规划:
F(n)
1 A[0] = A[1] ← 1
这里是某支股票的价格清单: 日期 1 2 3 4 5 6 7 8 9 10 11 12 价格 68 69 54 64 68 64 70 67 78 62 98 87 最优秀的投资者可以购买最多4次股票,可行方案中的一种是: 日期 2 5 6 10 价格 69 68 64 62 输入 第1行: N (1 <= N <= 5000),股票发行天数 第2行: N个数,是每天的股票价格。 输出 输出文件仅一行包含两个数:最大购买次数和拥有最大购买次数的方案数(<=231) 当二种方案“看起来一样”时(就是说它们构成的价格队列一样的时候),这2种方 案被认为是相同的。
你的任务是,已知所有N位同学的身高,计算最少需要 几位同学出列,可以使得剩下的同学排成合唱队形。
离散型随机变量的例子
离散型随机变量的例子
1. 你看抛硬币不,正面或反面朝上,这就是一个离散型随机变量的典型例子呀!每次抛硬币,结果都是不确定的,就好像人生的选择一样,每一次都充满了未知和惊喜呢!
2. 彩票算吧!彩票的中奖号码不就是离散型随机变量嘛。
你想想,买的时候你根本不知道会中还是不会中,那心情,一会儿期待得不行,一会儿又觉得没啥希望,这感觉多刺激呀!
3. 骰子的点数也属于离散型随机变量哦。
在玩游戏的时候,扔出骰子的那一刻,谁知道会是几点呢,心里是不是会有点小紧张,小期待呀,就像等待一个重要的消息一样。
4. 生男生女也是呀,宝宝还没出生前,你知道是男孩还是女孩吗?不知道对吧,这就是个离散型随机变量嘛,多神奇呀!
5. 抽查产品的质量合格与否,这也是离散型随机变量呢。
每次抽检都像是一场冒险,合格了大家开心,不合格就着急上火,这不就跟生活中的起伏一样吗?
6. 学生考试及格或不及格,也可以看成离散型随机变量呢。
考试前的忐忑,等待成绩的焦急,那种感觉是不是特别熟悉?这就像在人生道路上等待一个个结果一样。
我的观点结论就是:离散型随机变量在我们生活中无处不在,给我们的生活带来了很多不确定和乐趣,同时也让我们体验到各种不同的心情和经历。
动态规划算法的常见实例
动态规划算法的常见实例动态规划算法是一种将复杂问题分解为简单子问题来解决的算法,它可被应用于多个领域中,如经济学、生物学、计算机科学等。
在本文中,我们将详细讨论动态规划算法的常见实例。
一、最长公共子序列问题最长公共子序列(LCS)问题是一个经典的计算机科学问题,它要求在两个字符串中找到最长的相同连续子序列。
例如,对于字符串“ABCD”和“ACDF”,最长公共子序列为“ACD”。
使用动态规划方法来解决LCS问题。
首先定义一个m行n列的二维矩阵,其中m和n分别表示两个字符串的长度。
然后,使用以下递推关系:1. 如果一个字符串的长度为0,LCS为0。
2. 如果两个字符不相同,则LCS为它们的前一个字符集合和它们的后一个字符集合的最大值。
3. 如果两个字符相同,则LCS为它们的前一个字符集合和它们的后一个字符集合所组成的子序列中的最大值加1。
最后,矩阵右下角的值就是LCS的长度。
二、背包问题背包问题(Knapsack problem)是一个经典的组合优化问题,被广泛应用于计算机科学和其他领域。
在一个决策者必须决定是否将某些物品放入背包中的场景中,背包问题就发挥了作用。
具体来说,我们要解决的问题是:对于一个固定容量的背包,有一些物品,它们的重量和价值都不同,如何在不超过背包容量的前提下,使所装载物品的总价值最大化。
一种解决方案是使用动态规划方法。
定义一个二维数组,其行表示物品,列表示背包大小。
然后,使用以下递推关系:1. 如果所考虑的物品重量大于背包容量,则不选此物品。
2. 否则,在选取该物品和不选该物品两种情况中选择最优解作为最终结果。
最后,矩阵中右下角的值就是最大的总价值。
三、矩阵链乘法矩阵链乘法是一种计算矩阵乘积的优化算法。
它使用动态规划算法来确定矩阵乘积的最小值。
对于一个长度为n的矩阵链,我们可以定义一个n×n 的矩阵M,其中第i行第j列的元素Mi,j表示第i个矩阵与第j个矩阵相乘的最小次数。
动态规划与随机控制
动态规划与随机控制1953年,R . Bellman 等人,根据某类多阶段序贯决策问题的特点,提出了著名的“最优性原理”。
在这个原理的指导下,他将此类多阶段决策问题转变为一系列的互相联系的单阶段决策问题,然后,逐个阶段予以解决,最后再形成总体解决。
从而创建了求解优化问题的新方法——动态规划。
1957年,他的名著《动态规划》出版。
1.离散型动态规划离散型确定性动态规划在解决美式期权问题时,我们通常采用倒向递推的方法来比较即时执行价格与继续持有价格。
这是利用动态规划原理的一个典型例子。
Richard Bellman在1953年首次提出动态规划原理.最优化原理:无论过去的状态和决策如何,相对于前面的决策侧所形成的的状态而言,余下的决策序列必然构成最优子策略.求解最短路径问题:来看下面一个具体的例子:我们要求从Q点到T点的最短路径其基本思想是分阶段求出各段到T点的最短路径:•Ⅳ:C1—T 3•Ⅲ --Ⅳ : B1—C1—T 4•Ⅱ--Ⅲ--Ⅳ:A2—B1—C1—T 7•Ⅰ--Ⅱ--Ⅲ --Ⅳ:•Q—A2—B1—C1—T 11•Q--A3—B1—C1—T 11•Q--A3—B2—C2—T 11从以上分析可以看出最短路径不唯一。
最短路径解的特点•1、可以将全过程求解分为若干阶段求解;------多阶段决策问题•2、在全过程最短路径中,将会出现阶段的最优路径;-----递推性•3、前面的终点确定,后面的路径也就确定了,且与前面的路径(如何找到的这个终点)无关;-----无后效性•3、逐段地求解最优路径,势必会找到一个全过程最优路径。
-----动态规划离散型不确定性动态规划离散型不确定性动态规划的特点就是每一阶段的决策不是确定的,是一个随机变量,带有一定的随机性,因此处理起来就相对复杂些。
一个动态规划的经典问题:你打算与一个你遇到的最富有的人结婚,你的最优策略是什么?这里做几点基本的假设:1、如果碰到满足你要求的人,他无条件接受;2、有个人供你选择;N 3、每个备选对象的财富值都服从[0, 1].区间上的均匀分布;那么你要找具有最大期望财富值的结婚对象的最优策略是什么?这是一个看似简单但是很难解决的问题.通常的方法是顺序递推法,如果首先考虑碰到第一个人的财富,接着考虑碰到下一个人的财富值与第一个人的财富值进行比较,依次进行下去,但是你期望下一个对象的财富值的确定是一个很复杂的问题,并且很难进行比较.因此这里我们考虑倒向递推的方法进行计算,我们首先逆向考虑一个简单的问题就是假如你只面对2个人的情况,当你只碰到倒数第一个人时,我们认为他的财富期望值为0.5,我们知道,你将选择与倒数第二个对象结婚时只有在他的财富值大于0.5的情况下,否则你将与倒数第一个对象结婚。
动态规划应用案例
动态规划应用案例动态规划是一种解决复杂问题的优化算法。
它通过将问题拆分成多个子问题,并记录每个子问题的解,以避免重复计算,从而提高算法的效率。
在实际应用中,动态规划被广泛用于解决各种问题,包括最优化问题、路径搜索问题、序列问题等。
本文将介绍几个动态规划的应用案例,以展示其在实际问题中的强大能力。
案例一:背包问题背包问题是动态规划中经典的一个例子。
假设有一个背包,容量为V,现有n个物品,每个物品的重量为wi,价值为vi。
要求在不超过背包容量的前提下,选取一些物品放入背包,使得背包中的物品总价值最大。
这个问题可以用动态规划来解决。
首先定义一个二维数组dp,其中dp[i][j]表示在前i个物品中选择一些物品,使得它们的总重量不超过j时的最大总价值。
然后,可以得到如下的状态转移方程:dp[i][j] = max(dp[i-1][j], dp[i-1][j-wi] + vi)最后,根据状态转移方程,可以循环计算出dp[n][V]的值,即背包中物品总价值的最大值,从而解决了背包问题。
案例二:最长递增子序列最长递增子序列是指在一个序列中,选取一些数字,使得这些数字按照顺序排列,且长度最长。
动态规划也可以应用于解决最长递增子序列问题。
假设有一个序列nums,长度为n。
定义一个一维数组dp,其中dp[i]表示以nums[i]为结尾的最长递增子序列的长度。
然后,可以得到如下的状态转移方程:dp[i] = max(dp[j] + 1),其中j < i且nums[j] < nums[i]最后,循环计算出dp数组中的最大值,即为最长递增子序列的长度。
案例三:最大子数组和最大子数组和问题是指在一个数组中,选取一段连续的子数组,使得子数组的和最大。
动态规划也可以用于解决最大子数组和问题。
假设有一个数组nums,长度为n。
定义一个一维数组dp,其中dp[i]表示以nums[i]为结尾的连续子数组的最大和。
然后,可以得到如下的状态转移方程:dp[i] = max(dp[i-1] + nums[i], nums[i])最后,循环计算出dp数组中的最大值,即为最大子数组的和。
动态规划讲解大全(含例题及答案)
多阶段决策过程的最优化问题。 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在 它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当然,各个阶段决策的选取不 是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当各个阶段决策确定后,就组成一个 决策序列,因而也就确定了整个过程的一条活动路线,如图所示:(看词条图) 这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问 题就称为多阶段决策问题。
在前面的例子中,第一个阶段就是点 A,而第二个阶段就是点 A 到点 B,第三个阶段是点 B 到点 C,而第四个阶段是点 C 到点 D。
状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称 为不可控因素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前 一阶段某支路的终点。
fout.close(); return 0; }
USACO 2.3 Longest Prefix
题目如下: 在生物学中,一些生物的结构是用包含其要素的大写字母序列来表示的。生物学家对于把长的序 列分解成较短的(称之为元素的)序列很感兴趣。 如果一个集合 P 中的元素可以通过串联(允许重复;串联,相当于 Pascal 中的 “+” 运算符) 组成一个序列 S ,那么我们认为序列 S 可以分解为 P 中的元素。并不是所有的元素都必须出现。 举个例子,序列 ABABACABAAB 可以分解为下面集合中的元素: {A, AB, BA, CA, BBC} 序列 S 的前面 K 个字符称作 S 中长度为 K 的前缀。设计一个程序,输入一个元素集合以及一 个大写字母序列,计算这个序列最长的前缀的长度。 PROGRAM NAME: prefix INPUT FORMAT 输入数据的开头包括 1..200 个元素(长度为 1..10 )组成的集合,用连续的以空格分开的字 符串表示。字母全部是大写,数据可能不止一行。元素集合结束的标志是一个只包含一个 “.” 的行。 集合中的元素没有重复。接着是大写字母序列 S ,长度为 1..200,000 ,用一行或者多行的字符串 来表示,每行不超过 76 个字符。换行符并不是序列 S 的一部分。 SAMPLE INPUT (file prefix.in) A AB BA CA BBC . ABABACABAABC OUTPUT FORMAT 只有一行,输出一个整数,表示 S 能够分解成 P 中元素的最长前缀的长度。 SAMPLE OUTPUT (file prefix.out) 11 示例程序如下: #include <stdio.h>
动态规划问题常见解法
动态规划问题常见解法动态规划(Dynamic Programming)是一种常用的算法思想,用于解决一类具有重叠子问题性质和最优子结构性质的问题。
动态规划通常通过将问题划分为若干个子问题,并分别求解子问题的最优解,从而得到原问题的最优解。
以下是动态规划问题常见的解法:1. 斐波那契数列斐波那契数列是动态规划问题中的经典案例。
它的递推关系式为 F(n) = F(n-1) + F(n-2),其中 F(0) = 0,F(1) = 1。
可以使用动态规划的思想来解决斐波那契数列问题,通过保存已经计算过的子问题的结果,避免重复计算。
2. 背包问题背包问题是一个经典的优化问题,可以使用动态规划的方法进行求解。
背包问题包括 0/1 背包问题和完全背包问题。
0/1 背包问题中每个物品要么被选中放入背包,要么不选。
完全背包问题中每个物品可以被选中多次放入背包。
通过定义状态转移方程和使用动态规划的思想,可以高效地求解背包问题。
3. 最长递增子序列最长递增子序列是一个常见的子序列问题,可以使用动态规划的方法进行求解。
最长递增子序列指的是在一个序列中,找到一个最长的子序列,使得子序列中的元素按照顺序递增。
通过定义状态转移方程和使用动态规划的思想,可以有效地求解最长递增子序列问题。
4. 最长公共子序列最长公共子序列是一个经典的字符串问题,可以使用动态规划的方法进行求解。
给定两个字符串,找到它们之间最长的公共子序列。
通过定义状态转移方程和使用动态规划的思想,可以高效地求解最长公共子序列问题。
5. 矩阵链乘法矩阵链乘法是一个求解最优括号化问题的经典案例,可以使用动态规划的方法进行求解。
给定多个矩阵的大小,需要找到一个最优的计算顺序,使得计算乘积的次数最少。
通过定义状态转移方程和使用动态规划的思想,可以高效地求解矩阵链乘法问题。
以上是动态规划问题的常见解法,通过使用动态规划的思想和方法,可以解决这些问题,并求得最优解。
动态规划应用举例
40+13=53
4 0 51
51+0=51
最优解为:
(s1 4) x1* 1, ( s2 s1 x1* 4 1 3) x2* 0, ( s3 s2 x2* 3 0 3) x3* 3
即项目A投资1万元,项目B投资0万元,项目C投资3万元, 最大效益为60万吨。
生产库存问题
442 18s2
对应 x2 13 s2
k 1时
f1 s1 min c1x1 f2 s1 x1` d1
及 x1 9 s1
min 8s1 x1 9s1
7x1 18s1 442
379 11s1
因 s1 2 所以 f1 s1 357 并且 x1 7
与上述运算顺序反推,结合状态转移方程,可得最优策略为:
表4.6
月份(k) 购买单价Ck 销售单价 pk
1
10
12
2
9
8
3
11
13
4
15
17
解 按月份划分为4个阶段, k 1, 2,3, 4
状态变量 Sk 为第 k 月初时仓库中的存货量(含上月订货); 决策变量 xk 为第 k 月卖出的货物数量;决策变量 yk 为第 k 月订购;的货物数量.
状态转移方程为 sk1 sk yk xk 第k段的指标为第k段的盈利: vk pk xk Ck yk
x1 xi
x2 x3 10 0 (i 1, 2,3)
1. 阶段k:每投资一个项目作为一个阶段(k=1,2,3)
2. 状态变量sk:投资第k个项目前的资金数;
3. 决策变量xk:第k个项目的投资额;
4. 决策允许集合:0≤xk≤sk (k=1,2), x3=s3
5. 状态转移方程:sk+1=sk-xk ( k=1,2)
4种常见的动态规划模型
例谈四种常见的动态规划模型动态规划是解决多阶段决策最优化问题的一种思想方法,本文主要结合一些例题,把一些常见的动态规划模型,进行归纳总结。
(一)、背包模型可用动态规划解决的背包问题,主要有01背包和完全背包。
对于背包的类型,这边就做个简单的描述:n个物品要放到一个背包里,背包有个总容量m,每个物品都有一个体积w[i]和价值v[i],问如何装这些物品,使得背包里放的物品价值最大。
这类型的题目,状态表示为:f[j]表示背包容量不超过j时能够装的最大价值,则状态转移方程为:f[j]:=max{f[j-w[i]]+v[i]},边界:f[0]:=0;简单的程序框架为:beginreadln(m,n);for i:=1 to n do readln(w[i],v[i]);f[0]:=0;for i:=1 to m dofor j:=1 to n dobeginif i>=w[j] then t:=f[i-w[j]]+v[j];if t>f[i] then f[i]:=t;end;writeln(f[m]);end.这类型的题目应用挺广的(noip1996提高组第4题,noip2001普及组装箱问题,noip2005普及组采药等),下面一个例子,也是背包模型的简单转化。
货币系统(money)【问题描述】母牛们不但创建了他们自己的政府而且选择了建立了自己的货币系统。
他们对货币的数值感到好奇。
传统地,一个货币系统是由1,5,10,20或25,50,100的单位面值组成的。
母牛想知道用货币系统中的货币来构造一个确定的面值,有多少种不同的方法。
使用一个货币系统{1,2,5,10,..}产生18单位面值的一些可能的方法是:18×1,9×2,8×2+2×1,3×5+2+1等等其它。
写一个程序来计算有多少种方法用给定的货币系统来构造一个确定的面值。
【输入格式】货币系统中货币的种类数目是v(1≤v≤25);要构造的面值是n(1≤n≤10,000);第1行:二个整数,v和n;第2..v+1行:可用的货币v个整数(每行一个)。
动态规划算法题(5题)
动态规划算法题(5题)1、题⽬描述(⽹易)有 n 个学⽣站成⼀排,每个学⽣有⼀个能⼒值,⽜⽜想从这 n 个学⽣中按照顺序选取 k 名学⽣,要求相邻两个学⽣的位置编号的差不超过d,使得这 k 个学⽣的能⼒值的乘积最⼤,你能返回最⼤的乘积吗?输⼊描述:每个输⼊包含 1 个测试⽤例。
每个测试数据的第⼀⾏包含⼀个整数 n (1 <= n <= 50),表⽰学⽣的个数,接下来的⼀⾏,包含 n 个整数,按顺序表⽰每个学⽣的能⼒值 ai(-50 <= ai <= 50)。
接下来的⼀⾏包含两个整数,k 和 d (1 <= k <= 10, 1 <= d <= 50)。
输出描述:输出⼀⾏表⽰最⼤的乘积。
试题分析:本题要使⽤动态规划来解,动态规划的特点:1.求解的是最优化问题;2.可以分解为最优⼦结构本题可以先求解在第i个学⽣的位置下,j(j<K)个学⽣的能⼒值的最⼤值,得到所有学⽣位置下j个学⽣的能⼒值的最⼤值;在j个学⽣的情况下,得到j+1个学⽣的最⼤值,样例输出: 10 8 7 2 -7 9 5 4 10 -7 1 3 3输出: 630如上,第⼀步先计算k=2的情况:7:在d=3的情况下,最⼤最⼩值都为562:在d=3的情况下,最⼤值为16,最⼩值为14-7:在d=3的情况下,最⼤值为-14,最⼩值为-56......得到第⼀趟的结果k=3的情况下(这⾥以第⼀趟的结果为基础,只有这样就不需要考虑第⼀趟中d=3的限制):2:在d=3的情况下,最⼤最⼩值都为112(56*2)-7:在d=3的情况下,最⼤值为-98(14*-7)最⼩值为-392(56*-7)9:在d=3的情况下,最⼤值为504(56*9)最⼩值为-504(-56*9)......得到第⼆趟的结果返回最⼤值就是最后的结果#-*- coding:utf-8 -*-n=input()array=[int(i) for i in raw_input().split()]k,d=[int(i) for i in raw_input().split()]# n=36array_max=array_min=array#轮询k-1趟即可for i in range(0,k-1):_max=[-float('inf')]*n#将最⼤值的数组赋值⽆穷⼩_min=[float('inf')]*n#将最⼩值的数组赋值⽆穷⼤for j in range(i+1,n):if j<=d+i:#下⾯对应的min、max都是考虑到array[j]为负值的情况下temp_max = max(max(ii*array[j] for ii in array_max[i:j]),max(ii*array[j] for ii in array_min[i:j]))temp_min = min(min(ii*array[j] for ii in array_max[i:j]),min(ii*array[j] for ii in array_min[i:j]))else:temp_max = max(max(ii*array[j] for ii in array_max[j-d:j]),max(ii*array[j] for ii in array_min[j-d:j]))temp_min = min(min(ii*array[j] for ii in array_max[j-d:j]),min(ii*array[j] for ii in array_min[j-d:j]))_max[j]=temp_max_min[j]=temp_minarray_max=_maxarray_min=_minprint array_maxprint array_minprint max(array_max)2、题⽬描述(腾讯):腾讯⼤厦有39层,你⼿⾥有两颗⼀抹⼀眼的玻璃珠。
最优化理论_动态规划讲解
§1 动态规划问题实例
例1 给定一个线路网络, 要从A向F铺设一条输油管道, 各点间连线上的数字表示距离,问应选择什么路线,可使总 距离最短?
2
C1
5
8
B1 3
4
D1
3
4
6
C2 5
5E14来自6A5
8 7
3
C3 4
B2
7
8
C4 4
D2 2
1
D3
3
3
E2
F
动态规划是解决多阶段决策问题的一种方法。所谓多阶段 决策问题是指这样的决策问题:其过程可分为若干个相互联 系的阶段,每一阶段都对应着一组可供选择的决策,每一决
(
sk
,
uk
)
f k 1 ( sk 1 )}
k 5,4,3,2,1
f6 (s6 ) 0
动态规划最优化原理:
不管该最优策略上某状态以前的状态和决策如何,对
最
该状态而言,余下的诸决策必定构成最优子策略。即
优
最优策略的任意后部子策略也是最优的。
性
原
C
理
B
fk (sk ) opt Fkn (sk , xk , sk1, xk1, , sn , xn )
最优指标函数:表示从第k阶段状态为 sk 时采用最佳策略 pk*n 到过程终止时的最佳效益。记为
fk (sk ) Vkn (sk , pk*n ) opt Vkn (sk , pkn )
pknDkn ( sk )
其中 opt 可根据具体情况取max 或min。
基本方程:此为逐段递推求和的依据,一般为:
4
A
5
2
B1 3
12个动态规划算法举例
动态规划是一种用于解决最优化问题的算法。
它通常用于找到最小或最大值。
这里列举了12 个常见的动态规划算法,并给出了每个算法的举例:
1 最长公共子序列(LCS)算法:用于比较两个序列,找出它们之
间的最长公共子序列。
2 最小编辑距离算法:用于比较两个字符串,找出将一个字符串变
为另一个字符串所需的最少编辑操作次数。
3 背包问题算法:用于在限制给定的总体积的情况下选择最优的物
品组合。
4 最短路径算法:用于求解有向图或路径的最短路径。
5 最小生成树算法:用于求解图的最小生成树。
6 线性规划算法:用于求解线性规划问题。
7 矩阵链乘法算法:用于计算矩阵链乘法的最优计算次序。
8 单源最短路径算法:用于求解有向图的单源最短路径问题。
9 拓扑排序算法:用于对有向无环图(DAG)进行拓扑排序。
10图形相似性算法:用两个图形进行对齐,并通过比较它们之间的差异来评估它们的相似程度。
11 11 区间动态规划算法:用于解决区间动态规划问题,例如
最小编辑代价问题。
12 分数背包问题算法:用于在限制给定的总价值的情况下选择
最优的物品组合。
13这些算法的具体细节及实现方式可以通过搜索或者学习相
关的资料来了解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表1 利润增长额 gi (x j ) (百元)
投资额
(j) 0 100 200 300 400 500 600
工厂(i)
2
0 25 45 57 65 70 73
f2 (600) max{g2 (0) f3(600), g2 (100) f3(500), g2 (200) f3(400), g2 (300) f3(300), g2 (400) f3(200), g2 (500) f3(100) g2 (600) f3(0)}
工厂(i)
4
0 28 47 65 74 80 85
自然问:现在还有多少钱?即 s4 =? s4 =0,100,200,300,400,500,600都有可能。 下面分情况讨论:
s4 0
表1 利润增长额 gi (x j ) (百元)
投资额
(j) 0 100 200 300 400 500 600
工厂2
状态 s3
投资x3
工厂3
投资x4
状态 s4 工厂4 s5
g1 (x1 )
s2 s1 x1 g 2 (x2 ) s3 s2 x2
s4 s3 x3 g3 (x3 )
g4 (x4 )
状态变量 sk :可用于第k, k+1,…n个工厂的投资额。
决策变量 xk :第 k 阶段对第 k 个工厂的投资额。 允许决策集 Dk : Dk {0, 100, , sk }
投资额
(j) 0 100 200 300 400 500 600
工厂(i)
4
0 28 47 65 74 80 85
f4 (s4 )
max {g
0x4 s4
4
(
x4
)
f5 (s5 )}
(注意到此时 f5 (s5 ) =0)
0mx4axs4{g4 (x4 )}
s1 600
投资x1
工厂1
(2)k=3时 到第三个工厂投资时,可利用的资金还有 s3 ,
若向第三个工厂投资 x3(万元),则自此即以后最大利润为:
f3 (s3 ) 0mx3axs3{g3 (x3 ) f4 (s4 )}
0mx3axs3{g3 (x3) f4 (s3 x3 )}
sk1 sk xk ,
状态转移方程:sk1 sk xk , k 1,2,3,4. 其中 s1 600
阶段指标函数 gk (xk ) :第 k 阶段投资xk 元时所产生的利 润。(见上表) 最优指标函数 fk (sk ) :第 k 阶段状态为sk 且采取最佳投资 策略,从第 k 个工厂以及以后的最大总利润。
max{g3(0) f4 (300), g3(100) f4(200), g3(200) f4 (100), g3(300) f4 (0)}
s4 x4
表2 k=4 时决策表
g4 (x4 )
0 100 200 300 400 500 600
f4(s4) x4
00
0
0
100 0 28
28
100
200 0 28 47
47
200
300 0 28 47 65
65
300
400 0 28 47 65 74
74
400
500 0 28 47 65 74 80
80
500
600 0 28 47 65 74 80 85 85
600
表1 利润增长额 gi (x j ) (百元)
投资额
(j) 工厂(i)
47 0
0+65 18+47 39+28 61+0
67 200
0+74 18+65 39+47 61+28 78+0
89 300
0+80 18+74 39+65 61+74 78+28 90+0
108 300
0+85 18+80 39+74 61+65 78+47 90+28 95+0 126 300
100 200 300 400 500 600 f2 (s2 )
x
2
0 0+0
00
100 0+28 25+0
28 0
200 0+47 25+28 45+0
53 100
300 0+67 25+47 45+28 57+0
73 200
400 0+89 25+67 45+47 57+28 65+0
同样问:s3 =?,即现在还有多少钱?它是允许决策集上界。
同理 s3 S3 {0,100 ,200 ,300 ,400 ,500 ,600}
表1 利润增长额 gi (x j ) (百元)
投资额
(j) 0 100 200 300 400 500 600 工厂(i)
3
0 18 39 61 78 90 95
s1 600
投资x1
工厂1
状态 s2
投资x2
工厂2
状态 s3
投资x3
工厂3
投资x4
状态 s4 工厂4 s5
g1 ( x1 )
s2 s1 x1 g2 (x2 ) s3 s2 x2
s4 s3 x3 g3 (x3 )
g4 (x4 )
表1 利润增长额 gi (x j ) (百元)
资源分配问题 (离散型)
例:设有6万元资金用于4个工厂的扩建,已知每个工厂的利
润增长额同投资额的大小有关,见下表。问应如何确定对这
四个工厂的投资额,使总利润增长额最大?
表1 利润增长额 gi (x j ) (百元)
投资额
(j) 0 100 200 300 400 500 600
工厂(i)
1
0 20 42 60 75 85 90
s2 s1 x1 g2 (x2 ) s3 s2 x2
s4 s3 x3 g3 (x3 )
g4 (x4 )
表1 利润增长额 gi (x j ) (百元)
投资额
(j) 0 100 200 300 400 500 600
工厂(i)
4
0 28 47 65 74 80 85
解:(1)k=4时 考虑:若到最后一个,第4个工厂投资时,还有资金 s4 , 若投资于第4个工厂的资金为 x4 ,则最大利润为
工厂(i)
时, 4
0 28 47 65 74 80 85
f4 (s4 )
max {g
0x4 s4
4
(
x4
)}
max{g
0x4 0
4
(
x4
)
}
max{g
x4 0
4
(
x4
)
}
max{0} 0.
x4 0
s4 100 时,
f4 (s4 )
max {g
0x4 s4
4
(
x4
max{0 f3(600),25 f3(500), 45 f3(400),57 f3(300), 65 f3(200),70 f3(100), 73 f3(0)}
表3 k=3 时决策表
x3
s3
0 100 200 300 400 500 600
g 3 (x3 ) f4 (s3 x3 )
f3 (s3 ) x3
0 100 200 300 400 500 600
0+0
00
0+28 18+0
28 0
0+47 18+28 39+0
47 0
0+65 18+47 39+28 61+0
67 200
0+74 18+65 39+47 61+28 78+0
89 300
0+80 18+74 39+65 61+74 78+28 90+0
0 0 28 0 28 0 28 0 28 0 28 0 28
47 47 65 47 65 74 47 65 74 80 47 65 74 80 85
f 4 (s4 )
x
4
0
0
28
100
47
200
65
300
74
400
80
500
85
600
表1 利润增长额 gi (x j ) (百元)
投资额
(j) 0 100 200 300 400 500 600
108 300
0+85 18+80 39+74 61+65 78+47 90+28 95+0 126 300
f2 (600) max{0 f3(600),25 f3(500),45 f3(400),57 f3(300), 65 f3(200),70 f3(100),73 f3(0)}
x3 200
所有情况讨论结果汇总成下表:
表3 k=3 时决策表
x3
s3
0 100 200 300 400 500 600
g 3 (x3 ) f4 (s3 x3 )
f3 (s3 )
x
3
0 100 200 300 400 500 600
0+0
00
0+28 18+0