最新142用力法解超静定结构
用力法求解超静定结构
用力法求解超静定结构概述超静定结构是指结构中的支座和约束条件多于结构自由度的情况。
用力法是一种经典的结构分析方法,常用于求解超静定结构。
本文将介绍用力法求解超静定结构的基本原理和步骤,并通过实例加以说明。
一、基本原理用力法的基本原理是根据平衡条件和变形约束,通过假设未知力的大小和方向,建立力的平衡方程和变形方程,解出未知力和结构的变形。
用力法适用于各种类型的结构,包括梁、柱、桁架等。
二、步骤用力法求解超静定结构的步骤如下:1. 选择合适的剖面根据结构的几何形状和约束条件,选择合适的剖面,将结构分割为若干个部分。
2. 假设未知力的方向和大小根据结构的特点和约束条件,假设未知力的方向和大小。
通常,未知力的方向可以根据结构的几何形状和外力的作用方向来确定,而未知力的大小则需要通过力的平衡方程来求解。
3. 建立力的平衡方程根据假设的未知力和结构的几何形状,建立力的平衡方程。
平衡方程包括力的平衡条件和力的矩平衡条件。
4. 建立变形方程根据结构的变形情况和约束条件,建立变形方程。
变形方程可以根据结构的刚度和约束条件来确定。
5. 解方程将力的平衡方程和变形方程联立,解方程组得到未知力和结构的变形。
6. 检验结果将求解得到的未知力和结构的变形代入原平衡方程和变形方程中,检验结果的准确性。
如果结果符合平衡和变形的要求,则求解成功;如果结果不符合要求,则需要重新假设未知力并重新求解。
三、实例分析为了更好地理解用力法求解超静定结构的步骤和原理,下面以一个简单的梁结构为例进行分析。
假设有一根悬臂梁,在梁的自重和外力作用下,需要求解支座反力和梁的变形。
1. 选择合适的剖面选择悬臂梁的剖面,将梁分割为两个部分:悬臂部分和支座部分。
2. 假设未知力的方向和大小假设支座反力的方向向上,大小为R。
3. 建立力的平衡方程根据力的平衡条件,可以得到悬臂部分的平衡方程:R - F = 0,其中F为梁的自重。
4. 建立变形方程根据梁的几何形状和约束条件,可以建立悬臂部分的变形方程,得到悬臂部分的弯矩和挠度。
材料力学-力法求解超静定结构
力法求解超静定结构时,可以根据计算结果优化结构设计,提高结构的强度和稳定性。
结论与总结
力法是求解超静定结构的有效方法,通过合理应用材料力学基础和力法的原理,我们能够准确求解反力分布并 分析结构的应力情况。
样例分析
结构:桥梁
使用力法求解桥梁上的悬臂梁,计算主梁的支座反 力和悬臂梁的应力分布。
结构:楼房
将力法应用于楼房结构,确定楼板的支座反力并分 析楼梯的受力情况。
实用提示和技巧
1 标定自由度
在应用力法时,正确标定结构的自由度是成功求解反力的重要步骤。
2 验证计算结果
对计算得到的反力进行验证,确保结果的准确性,避免错误的设计决策。
材料力学-力法求解超静 定结构
超静定结构的定义
超静定结构是指具有不止一个不可靠支持反力的结构。它们挑战了传统的结构分析方法,需要使用力法进行求 解。
材料力学基础
材料力学研究材料的受力和变形规律,包括弹性力学、塑性力学和损伤力学。 这些基础理论为力法求解超静定结构提供了必要的工具。
力法的原理
力法是一种基于平衡原理和支座反力法则的结构分析方法。它通过对超静定结构施加虚位移,建立受力平衡方 程,求解未知反力。
超静定结构应用力法求解的步骤
1
确定结构类型
了解结构是否为超静定结构,并确定不
计算反力
2
可靠支持反力的个数。
根据力法原理,建立并求解受力平衡方
程,计算未知反力。
3
验证平衡
通过检查受力平衡方程是否满足等式的
确定应力分布
4
要求,验证计算的反力是否正确。
பைடு நூலகம்
根据已知反力和结构的几何特性,计算 并绘制应力分布图。
(整理)力法求解超静定结构的步骤:.
第八章力法本章主要内容1)超静定结构的超静定次数2)力法的解题思路和力法典型方程(显然力法方程中所有的系数和自由项都是指静定基本结构的位移,可以由上一章的求位移方法求出(图乘或积分))3)力法的解题步骤以及用于求解超静定梁刚架桁架组合结构(排架)4)力法的对称性利用问题,对称结构的有关概念四点结论5)超静定结构的位移计算和最后内力图的校核6)§8-1超静定结构概述一、静力解答特征:静定结构:由平衡条件求出支反力及内力;超静定结构的静力特征是具有多余力,仅由静力平衡条件无法求出它的全部(有时部分可求)反力及内力,须借助位移条件(补充方程,解答的唯一性定理)。
二、几何组成特征:(结合例题说明)静定结构:无多余联系的几何不变体超静定结构:去掉其某一个或某几个联系(内或外),仍然可以是一个几何不变体系,如桁架。
即:超静定结构的组成特征是其具有多余联系,多余联系可以是外部的,也可能是内部的,去掉后不改变几何不变性。
多余联系(约束):并不是没有用的,在结构作用或调整结构的内力、位移时需要的,减小弯矩及位移,便于应力分布均匀。
多余求知力:多余联系中产生的力称为三、超静定结构的类型(五种)超静定梁、超静定刚刚架、超静定桁架、超静定拱、超静定组合结构四、超静定结构的解法综合考虑三个方面的条件:1、平衡条件:即结构的整体及任何一部分的受力状态都应满足平衡方程;2、几何条件:也称变形条件、位移条件、协调条件、相容条件等。
即结构的变形必须符合支承约束条件(边界条件)和各部分之间的变形连续条件。
3、物理条件:即变形或位移与内力之间的物理关系。
精确方法:力法(柔度法):以多余未知力为基本未知量位移法(刚度法):以位移为基本未知量。
力法与位移法的联合应用:力法与位移法的混合使用:混合法近似方法:力矩分配法、矩阵位移法、分层总和法、D值法、反弯点法等本章主要讲力法。
五、力法的解题思路(结合例子)把不会算的超静定结构通过会算的基本结构来计算。
用力法解超静定结构
ቤተ መጻሕፍቲ ባይዱ
n1 X1 n2 X 2 nn X n np 0
(三)力法典型方程中系数和自由项的计算
1、主系数δii — 表示基本结构由于 Xi 1的单独作用,在Xi 的作用点并沿Xi的方向产生的位移; 图A
ii
M
2 i
dx
EI
2、副系数δij —iiijijip表的示作基MMM用EM本EEIiii2E点MMiIIMd结Ix并jjpd构dx沿dxx由Xi于的X方j 向 1产的生单的独位作移用;,图在B Xi
例2:试用力法计算图示超静定刚架,并绘内力图。
解: 1.选择基本体系
2.建立力法方程
d11X1+D1P=0
3.计算系数和自由项,绘 M1和MP图
11
1 EI
1 2
l
l
2 3
l
2
2l 3 3EI
1P
1 EI
1
2
l ql 2
2 3
l2
2 3
l
ql 2 8
l
2
17ql 4
24EI
4.计算X1 5.绘内力图
=1
结构称为力法基本结构
基本结构
力法基本方程 — 利用基本体系的变形状态与原结构
一致的条件所建立的确定多余未知
力的方程
BACK
11X1 1P 0
11
M1M1 dx 1 (1 l l 2 l) l3
EI
EI 2
3
3EI
1P
M1M p dx 1 (1 l 1 ql 2 3 l) ql 4
ql3
24EI l
1 ql2 8
3EI
5、绘内力图 M M1X1 M p V V1 X1 Vp
力法求解超静定结构
力法求解超静定结构
超静定结构是指其支反力个数大于等于结构模式自由度的结构,
也就是说,该结构中的支撑点不够,会产生多余的支反力,这就导致
了该结构的解题难度非常大。
但是,采用力法求解可以有效地解决这
个问题。
首先,可以采用静力平衡方程来确定结构中的支反力。
静力平衡
方程是通过平衡结构中的所有受力和力矩,来确定支反力的方程。
它
的基本形式为ΣF=0和ΣM=0,其中ΣF表示所有力的总和,ΣM表示
所有力的总力矩。
然后,要使用结构分析的基本原理,即支点位移法。
支点位移法
通过改变结构中某些支点的位置,并计算相应的支反力和位移量,来
求解结构中的位移和反力。
在计算反力时,要注意支点位移前后对结
构的影响,以及反力大小的变化等因素。
此外,在解决超静定结构时,还要注意结构中梁、柱等构件的弹
性变形。
这些变形对结构的位移和反力也会产生影响,因此需要考虑
其中的因素。
最后,要注意力法求解的精度问题。
由于超静定结构中存在多余
的支反力,因此求解过程中难免会产生误差。
为了提高计算精度,可
以采用迭代的方法,在多次迭代中逐步优化计算结果,提高求解精度。
总之,采用力法求解超静定结构需要掌握一定的理论基础和实践技巧,同时要注意结构中的弹性变形、支点移动等因素,并采用迭代的方法进行计算,以提高计算精度。
这些掌握了的技巧和方法将在实际工程中具有指导意义。
结构力学 力法计算超静定结构
子项目一 力法计算超静定结构
情景一 超静定结构的基本特征
学习能力目标
1. 能够解释力法的基本概念。 2. 能够确定超静定的次数,得到静定的基本结构。 3. 了解超静定结构的特点。
项目表述
试分析如图 3 – 1 所示超静定结构,确定它的超静定次数。
情景一 超静定结构的基本特征 学习进程
情景一 超静定结构的基本特征 知识链接
② 去掉一个固定铰支座(图 3 – 6a)或拆去一个单铰相当于去掉两个约束(图 3 – 6b),可用两个多余未知力代替。
情景一 超静定结构的基本特征 知识链接
③ 去掉一个固定支座(图 3 – 7b)或切断一刚性杆(图 3 – 7c),相当于去掉 三链接
③ 超静定结构的内力和各杆的刚度比有关,而静定结构则不然。在计算超静定 结构时,除了用静力平衡条件外,还要用到结构的变形条件建立补充方程。而 结构的变形条件与各杆的刚度有关,在各杆的刚度比值发生变化时,结构各部 分的变形也相应变化,从而影响各杆的内力重新分布。利用在超静定结构中, 刚度大的部分将产生较大的内力,刚度较小的部分内力也较小的特点,可以通 过改变杆件刚度的方法来达到调整内力数值的目的。 ④ 在局部荷载作用下,超静定结构与静定结构相比,具有内力分布范围大,内 力分布较均匀,峰值小,且变形小、刚度大的特点。如图 3 – 9a 所示是三跨连 续梁在荷载 F 作用下的弯矩图和变形曲线,由于梁的连续性,两边跨也产生内 力和变形,最大弯矩在跨中为 0.175Fl。图 3 – 9b 所示是多跨静定梁在荷载 F 作用下的弯矩图和变形曲线,由于铰的作用,两边跨不产生内力和变形,最大 弯矩在跨中为 0.25Fl,约为前者的 1.4 倍。
情景一 超静定结构的基本特征 知识链接
力法解超静定结构举例
试求图示两端固定单跨梁在下属情况 下的M 下的M图. (a) A端逆时针转动单位转角. 端逆时针转动单位转角. (b) A端竖向向上移动了单位位移. 端竖向向上移动了单位位移. (c) A,B两端均逆时针转动单位转角. 两端均逆时针转动单位转角. (d) A,B两端相对转动单位转角. 两端相对转动单位转角. (e) A端竖向向上,BFP 端竖向向上, 端竖向向下移动了单 位位移. 位位移.
t 0 = 30 t = 10
FN = 1
有关. 温度改变引起的内力与各杆的绝对刚度 EI 有关.
FNK = 0
FNK = 0.5
M图
MK M s d + ∑FNKα t0 l Ky = ∑∫ EI αt . α + ∑ ∫ MKds = 3475 l ↑ h
FNK
返 章 首
温度低的一侧受拉,此结论同样适用于温度 温度低的一侧受拉,此结论同样适用于温度 同样 引起的超静定单跨梁. 引起的超静定单跨梁.
问题: 用拆除上 问题:若用拆除上 弦杆的静定结构作 为基本结构, 为基本结构,本题 应如何考虑? 应如何考虑?
FP
FP 基 本 体 系
解:力法方程的实质为:" 3,4两结点的 力法方程的实质 的实质为 等于所拆除杆的拉( 相对位移 34 等于所拆除杆的拉(压 )变形 l 34" 互乘求Δ1P
力法求解超静定结构的步骤
第八章力法本章主要内容1)超静定结构的超静定次数2)力法的解题思路和力法典型方程(显然力法方程中所有的系数和自由项都是指静定基本结构的位移,可以由上一章的求位移方法求出(图乘或积分))3)力法的解题步骤以及用于求解超静定梁刚架桁架组合结构(排架)4)力法的对称性利用问题,对称结构的有关概念四点结论5)超静定结构的位移计算和最后内力图的校核6)§8-1超静定结构概述一、静力解答特征:静定结构:由平衡条件求出支反力及内力;超静定结构的静力特征是具有多余力,仅由静力平衡条件无法求出它的全部(有时部分可求)反力及内力,须借助位移条件(补充方程,解答的唯一性定理)。
二、几何组成特征:(结合例题说明)静定结构:无多余联系的几何不变体超静定结构:去掉其某一个或某几个联系(内或外),仍然可以是一个几何不变体系,如桁架。
即:超静定结构的组成特征是其具有多余联系,多余联系可以是外部的,也可能是内部的,去掉后不改变几何不变性。
多余联系(约束):并不是没有用的,在结构作用或调整结构的内力、位移时需要的,减小弯矩及位移,便于应力分布均匀。
多余求知力:多余联系中产生的力称为三、超静定结构的类型(五种)超静定梁、超静定刚刚架、超静定桁架、超静定拱、超静定组合结构四、超静定结构的解法综合考虑三个方面的条件:1、平衡条件:即结构的整体及任何一部分的受力状态都应满足平衡方程;2、几何条件:也称变形条件、位移条件、协调条件、相容条件等。
即结构的变形必须符合支承约束条件(边界条件)和各部分之间的变形连续条件。
3、物理条件:即变形或位移与内力之间的物理关系。
精确方法:力法(柔度法):以多余未知力为基本未知量位移法(刚度法):以位移为基本未知量。
力法与位移法的联合应用:力法与位移法的混合使用:混合法近似方法:力矩分配法、矩阵位移法、分层总和法、D值法、反弯点法等本章主要讲力法。
五、力法的解题思路(结合例子)把不会算的超静定结构通过会算的基本结构来计算。
超静定结构的解法
力法的基本思路
超静定计算简图 解除约束转 化成静定的 基本结构承受荷 载和多余未知力
基本体系受力、变形解法已知
力法的基本思路
用已掌握的方法,分析单个基本未 知力作用下的受力和变形
位移包含基本未知力Xi
同样方法分析 “荷载”下的 受力、变形
为消除基本结构与原结构差别,建立位移协调条件
11 12 1P 1 21 22 2 P 2
11 X 1 1n X n 1 P 1 X X nn n nP n n1 1
或写作矩阵方程
δ X P
(3) 作基本结构在单位未知力和荷载(如果 有)作用下的弯矩(内力)图 M i , M P (4) 求基本结构的位移系数
小结:力法的解题步骤
(1) 确定结构的超静定次数和基本结构(体系)
超静定次数 = 基本未知力的个数
= 多余约束数
= 变成基本结构所需解除的约束数
(3 次)
或
(14 次)
或
(1 次)
(6 次)
(4 次)
确定超静定次数时应注意: (a) 切断弯曲杆次数3、链杆1,刚结变单铰1, 拆开单铰2。总次数也可由计算自由度得到。 (b) 一个超静定结构可能有多种形式的基本 结构,不同基本结构带来不同的计算工作量。 因此,要选取工作量较少的基本结构。 (c) 可变体系不能作为基本结构 (2) 建立力法典型方程
将未知问题转化为 已知问题,通过消除已 知问题和原问题的差别, 使未知问题得以解决。 这是科学研究的 基本方法之一。
由于从超静定转化为静定,将什么 约束看成多余约束不是唯一的,因此 力法求解的基本结构也不是唯一的。
力法求解超静定结构的步骤
力法求解超静定结构的步骤在结构力学中,超静定结构是指不仅能同时满足静力学平衡条件,而且还有多余的约束力,因此外加一个作用力时其约束力不会被破坏。
力法求解超静定结构是求解这类结构体系的一种有效方法,下面是力法求解超静定结构的步骤。
步骤1:建立超静定结构的外部受力与内力等效关系超静定结构的约束力有多余的约束力,即力学平衡条件所无法求解的约束力。
因此,我们需要建立超静定结构的外部受力与内力等效关系,通过已知的受力条件推导约束力的作用,确定超静定结构的内力状态。
步骤2:建立超静定结构的位移方程或应力方程建立超静定结构的位移方程或应力方程,是力法求解超静定结构的关键步骤之一。
位移方程的建立可以基于杆件测量法或截面受力法,应力方程的建立可以基于材料本构关系和边界条件等。
步骤3:解超静定结构的位移方程或应力方程解超静定结构的位移方程或应力方程,可以采用数值解法和解析解法两种方法。
数值解法主要包括矩阵法、有限元法、边界元法等,解析解法则借助微积分和常微分方程等数学方法进行求解。
步骤4:计算超静定结构的内力与应变通过已解出的位移或应力,可以计算得到超静定结构的内力状态和应变分布。
同时,超静定结构的内力状态也可以用于检验该结构的可靠性以及对超静定结构进行所需的修理和维护。
步骤5:检验超静定结构的可靠性超静定结构的可靠性检验,是通过计算得到的内力状态来评估该结构是否满足设计和使用要求的一项重要工作。
该步骤可以基于强度理论、变形理论等方法,利用计算机强度分析软件来实现。
,力法求解超静定结构是求解这类结构体系的一种常用方法。
通过以上步骤的实施,我们可以获得超静定结构的内力状态,进而检验该结构的可靠性。
力法求解超静定结构ppt课件
2a
9a 3 EI
1P
23
1 EI
2ma 2a
4ma 2
EI
由 11 X1 1P 0 得
X1
4m 9a
RA
RC
4m 9a
mA
mB
m 逆时针
3
24
等截面平面框架的受力情况如图所示。试 求最大弯矩及其作用位置。
25
1P
0
得
X1
qa 16
XB
qa 16
,
YB
9qa 16
21
XA
qa ,
16
YA
7qa 16
等截面梁的受力情况如图所示。试求A、 B、C三处的约束力。
22
M10 图
MP图
由反对称性知,B支座约束反力RB 0
11
1 EI
9a2 2
解除多余约束后得到的静定结构,称为原 静不定系统的静定基本系统,或相当系统。
(本章主要用力法解超静定结构)
4
补充-2 力法解超静定结构
在求解静不定结构时,一般先解除多余 约束,代之以多余约束力,得到基本静定系。 再根据变形协调条件得到关于多余约束力的补 充方程。这种以“力”为未知量,由变形协调
条件为基本方程的方法,称为力法。
X1
3qa 16
XC
3qa 16
,YC
0,M C
0
X A ()
X B ()
超静定结构计算力法
第十章超静定结构计算力法一.超静定次数确定1、 超静定结构的特性:与静定结构比较,超静定结构有如下特性:静定结构 超静定结构 几何特性 无多余约束的几何不变体系 有多余约束的几何不变体系静力特性满足平衡条件内力解答是唯一的,即仅由平衡条件就可求出全部内力和反力。
超静定结构满足平衡条件内力解答有无穷多种,即仅由平衡条件求不出全部内力和反力,还必须考虑变形条件。
非荷载外因的影响 不产生内力 产生了自内力内力与刚度的关系 无关荷载引起的内力与各杆刚度的比值有关,非载载外因引起的内力与各杆刚度的绝对值有关。
内力超静定,约束有多余,是超静定结构区别于静定结构的基本特点。
2、超静定次数的确定: 结构的超静定次数为其多余约束的数目,因此上,结构的超静定次数等于将原结构变成静定结构所去掉多余约束的数目。
在超静定结构上去掉多余约束的基本方式,通常有如下几种:(1)断一根链杆、去掉一个支杆、将一刚接处改为单铰联接、将一固定端改为固定铰支座,相当于去掉一个约束。
(2)断一根弯杆、去掉一个固定端,相当于去掉三个约束(3)开一个单铰、去掉一个固定铰支座、去掉一个定向支座,相当于去掉两个约束。
3、几点注意:①由图10-1结构的分析可得出结论:一个无铰闭合框有三个多余约束,其超静定次数等于三。
对于无铰闭合框结构其超静定次数=3×闭合框数。
如图10-2 所示结构的超静定次数为3×5=15次;对于带铰闭合框结构其超静定次数=3×闭合框数-结构中的单铰数(复铰要折算成单铰)如图10-3所示结构的超静 定次数为3×5-(1+1+3)=15次。
D点是连接四个刚片的复铰,相当于(4-1)=3个单铰。
②一结构的超静定次数是确定不变的,但去掉多余约束的方式是多种多样的。
如图10-1结构。
③在确定超静定次数时,要将内外多余约束全部去掉。
如图10-4结构外部1次超静定,内部6次超静定,结构的超静定次数是7。
力法—支座移动时超静定结构计算(建筑力学)
第八节 支座移动时超静定结构计算
由于超静定结构具有多余约束,因此,凡能使结构产生变 形的因素都将导致结构产生内力。
用力法计算超静定结构在支座移动作用下的内力时,力法 的基本原理和步骤并没有改变,所不同的是力法典型方程中 自由项的计算。
例 7 8 图
力法
解 (1) 此梁为一次超静定,取基本结构为悬臂梁,基本体 系如图b所示。
将系数和自由项代入力法典型方程,得
l3 3EI
X1
l
a
X1
3EI l2
a l
力法
(5) 绘制弯矩图 因为基本结构是静定结构,支座移动并不产生内力,故最 后内力是由多余未知力引起的。
M M 1X1 弯矩图如图d所示。
(2) 建立力法典型方程
11 X 1 1c a
(3) 计算系数和自由项 δ11与外因无关,其计算同前,自由项∆ic 计算公式为
ic F R c
力法
绘出基本结构在X1 =1 作用下的弯矩图 M 1 ,并求出相应的 反力(图c),利用位移公式求得
11
l3 3EI
1c l
(4) 求多余未知力
材料力学-力法求解超静定结构
内超静定系统:支座反力可由平 衡方程求出,但杆件的内力却不
能全由平衡方程求出;
简单的超静定结构
1 超静定系统的几个基本概念
求解超静定系统的基本方法,是解除多余约束, 代之以多余约束反力,根据多余约束处的变形协 调条件建立补充方程进行求解。
解除多余约束后得到的静定结构,称为原超静定 系统的静定基本系统。
在求解超静定结构时,一般先解除多余约束, 代之以多余约束力,得到基本静定系。再根 据变形协调条件得到关于多余约束力的补充 方程。这种以“力”为未知量,由变形协调 条件为基本方程的方法,称为力法。
a
A
A
C
l
F
A
C
B 1F
B F
F 01 单击此处添加标题
X1
02 单击此处添加标题
A
C
B
1X1
1 1 F 1 X0
MP图
M10图
材料力学Ⅰ电子教案
补充:力法求解超静定结构
11
1 EI
a2 2
2a 3
a2
a
4a 3 3 EI
1P
1 EI
qa 2
3
a
qa 4 2 ቤተ መጻሕፍቲ ባይዱI
由 11 X 1 1P 0
得
X1
3qa 8
X B 0,
YB
3qa 8
X A 0,
YA
11qa 8
,
M
A
qa 2 8
正对称载荷:绕对称轴对折 后,结构在对称轴两边的载 荷的作用点和作用方向将重 合,而且每对力数值相等。
反对称载荷:绕对称轴对 折后,结构在对称轴两边 的载荷的数值相等,作用 点重合而作用方向相反。
力法求解含刚度无穷大杆件超静定结构
力法求解含刚度无穷大杆件超静定结构摘要本文采用力法求解含刚度无穷大杆件超静定结构内力,通过不同解除多余约束的方式确定该结构为2次超静定结构,相应得到两种不同形式的基本结构,并建立了对应的力法方程。
并选取其中一个基本结构,完成了力法的具体求解过程,最后绘出了结构的弯矩图。
求解过程表明:用力法求解含刚度无穷大杆件超静定结构过程与求解杆件刚度全部有限大的超静定结构过程完全相同,刚度无穷大杆件仅影响结构内力大小的分布。
关键词力法,刚度无穷大杆件,多余未知力超静定结构超静定结构由于多余约束的存在,结构未知支座反力的个数多余平衡方程的个数,需要考虑位移协调条件建立补充方程求解。
同跨度相同荷载作用下超静定结构相对静定结构变形小、受力均匀,抗震性好,因此实际工程中的结构基本上都是超静定结构,求解超静定结构是《结构力学》课程的重点内容。
求解超静定结构的方法很多,有力法、位移法、渐近法、矩阵位移法等,其中力法最为基础,适用范围最广,求解荷载、温度、支座位移等因素影响的超静定结构都较为方便。
力法的理论建立数学及静力学的基础之上,对学生前期学习基础要求很高,成为学生学好《结构力学》的障碍;但力法由于可能选择不同基本结构进行求解,灵活性高,非常有益于训练学生的力学思维能力以及计算能力。
《结构力学》也是大多数高校土木工程类专业考研初试的指定的专业课程,含刚度无穷大杆件的超静定结构问题学生在复习备考的时候经常遇到,各类教辅资料通常采用位移法来求解此类问题,但用位移法求解时含刚度无穷力杆件的超静定结构独立位移未知量的分析就是一个极大的挑战,远不如力法超静定次数的确定容易。
如果采用位移法求解含刚度无穷大杆超静定结构,不能正确分析独立位移未知量,那后续求解过程就失去了意义。
因此本文拟采用实际教学中大多数学生掌握度相对较好的力法来求解图1所示的含刚度无限大杆件(DE杆刚度∞)的超静定结构B支座发生竖直向下位移Δ时的内力。
图1含刚度无穷大杆超静定结构1超静定次数及力法方程超静定结构的超静定次数的确定可以通过计算结构的计算自由度确定,也可以通过解除多余约束得到无多余联系的几何不变体系(即静定结构)的方法确定。
力法求解超静定结构的步骤
力法求解超静定结构的步骤:
1、先判定其超静定次数,(含多余联系数),去掉原结构的所有多余联系,用相应的多余力代替,得一静定的基本结构(形式可能很多,尽量简单);
2、根据基本结构在原荷载及所有多余力共同作用下,在每一个去掉的多余联系处位移和原结构相应位置的已知位移相同,建立力法典型方程;
3、求方程所有系数和自由项,(静定结构的位移计算)积分法或图乘法,写出基本结构X i∑=在单位力及原荷载分别单独作用下的内力表达式或作出内力图;
4、解方程,求出所有多余力;
5、作最后内力图(静定结构的计算问题)梁、刚架:M N P 组合结构:
6、校核,两方面:平衡条件(截取结构中+ X i N i ∑=M P →Q→N 桁架:N +M i M=0 )∑Y=0 ∑ X=0 ∑刚结点、杆件或某一部分,应满足;变形协调条件(多余约束处位移是否与已知位移相等)
注:选取基本结构的原则:
(1)基本结构为静定结构;
(2)选取的基本结构应使力法方程中系数和自由项的计算尽可能方便,并尽量使较多的副系数和自由项为0
(3)较易绘M 图及MP 图。
力法求解超静定结构讲课文档
B F
X1
C
A
B
1X1
C
B 1F
F
1
C
B
11
该体系中多出一个外部约束,为一次超静定梁。
解除多余支座B,并以多余约束X1代替。
以
表示B端沿X1方向的位移
1
1F 是,在F单独作用下引起的位移,
1 X 1 是在X1单独作用在引起的位移,
因此有
= 1
1F +
1X1
第7页,共43页。
B为支座,因此有
位于对称轴上的截面C的内力 QC=0
第39页,共43页。
力法正则方程:
11 X 1 12 X 2 13 X 3 1F 0 21 X 1 22 X 2 23 X 3 2F 0
31 X 1 32 X 2 33 X 3 3F 0
第40页,共43页。
当对称结构上受对称载荷作用时,在对称面 上,反对称内力等于零。
第35页,共43页。
正对称载荷:绕对称轴对折后,结构在对称轴
两边的载荷的作用点和作用方向将重合,而且
每对力数值相等。
第36页,共43页。
反对称载荷:绕对称轴对折后,结构在对称轴 两边的载荷的数值相等,作用点重合而作用方 向相反。
第37页,共43页。
第38页,共43页。
对称结构在正对称载荷作用下: 结构的内力及变形是对称的
第26页,共43页。
上面我们讲的是只有一个 多余约束的情况
那么多余约束不止一个时 ,力法方程什么样的呢?
第27页,共43页。
第28页,共43页。
变形协调条件:1 2 3 0 i表示Xi作用点沿着Xi方向的位移。
由叠加原理:
同理
第29页,共43页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1:试用力法计算图示超静定梁,并绘内力图。
解 1、确定基本未知量,选择基本体系。
2、根据位移条件△1 = 0,建立力法方程
11 X11P0
3、计算系数和自由项
例2:试用力法计算图示超静定刚架,并绘内力图。
解: 1.选择基本体系
2.建立力法方程
11X1+1P=0
3.计算系数和自由项,绘 M 1 和MP图
11E 1I1 2ll3 2l232E l3 I
1PE 1I1 2lq2l3 2l23 2lq82l2 l127 q4 E4lI
4.计算X1 5.绘内力图
X1
1P
11
17q l4 24EI
2l3
17ql 16
3EI
利用 MM1X1MP 计算各杆端弯矩
6.校核
四、力 法 的 典 型 方 程
力法计算超静定结构的基本思路
超静定结构
去掉多余约束代以多余 未知力X1
计算出多余未知力
静定结构
根据位移条件建立力法基本方程
BACK
(一)两次超静定结构的力法典型方程
轴力图
力 法 小结
多余未知力 基本体系 力法方程
关键 桥梁 条件
•力法基本原理
以多余约束中的多余未知力为基本未知量,根据基本体系 在去掉多余约束处的位移应与原结构一致的原则,建立力法方 程。解方程求出多余未知力,其后就是静定结构的计算问题了。
思考题
1.力法求解超静定结构的思路是什么? 2.试画出图示每一超静定结构的两种力法基本结构。
142用力法解超静定结构
M M1X1 M p FS FS X1 FSp
FS
二、力法计算超静定结构的基本思路
超静定结构
去掉多余约束代以多 余未知力Xi
静定结构
计算出多余未知力
根据位移条件建立力法基本方程
•力法基本原理
以多余约束中的多余未知力为基本未知量,根据基本体系在去掉多余 约束处的位移应与原结构一致的原则,建立力法方程。解方程求出多余未知 力,其后就是静定结构的计算问题了。
可建立n个力法方程
解出n个多余未知力
若原结构上对应于各多余未知力作用处的位移都为零,则n 次超静定结构的力法典型方程为:
11X1 12X2 1nXn 1p 0
21X1 22X2 2nXn 2p 0
n1X1 n2X2 nnXn np 0
(三)力法典型方程中系数和自由项的计算
1、主系数δii — 表示基本结构由于 Xi 1的单独作用,在Xi 的作用点并沿Xi的方向产生的位移; 图A
1 P 2 E 1 ( 1 2 I 1 4 0 1 2 1 ) E 1 ( 1 2 I 3 2 1 3 1 ) E 4 I
4、求解多余未知力
4
X1
1P
11
EI
2
2kN
EI
5、绘内力图
按叠加法绘弯矩图 即
MM1X1Mp
弯矩图绘出后,可取各杆件为脱离体,并利用杆件的力矩平衡条件求出杆端剪力, 然后按荷载与内力的微分关系绘出剪力图,如图f所示。
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
M
iM
p
dx
EI
(四)最后内力图的绘制
1、利用基本结构的单位内力图和荷载内力图按叠加法绘出
MM1X1M2X2 MnXn Mp FS FS1X1FS2X2 FSnXn Fp FN FN1X1FN2X2 FNnXn FNp
2、先按叠加法作出弯矩图,再由
弯矩图 杆件平衡条件
剪力图 结点平衡条件
绘出单位弯矩图M 1和荷载弯矩图MP
11E 1(I1 21l3 21)3E l I
1PE 1(I3 2l8 1q2l1 21)2 qE 3 4 l I
4、求解多余未知力,将系数和自由项代入力法
方程,得
X1
1p
11
ql3 24E
l
I1q 8
l2
3EI
5、绘内力图 M M1X1 Mp V V1X1 Vp
基本体系
位移 条件:
1 2
0
0
1 11121p 0 2 21222p 0
△11=δ11X1 △21=δ21X1
△12=δ12X2 △22=δ22X2
力法 方程:
1211XX111222XX2212PP00
(二)n次超静定结构的力法典型方程
n次超静定结构
n个多余约束
n个多余未知力
n个已知的位移条件
三、力法计算一次超静定结构
例1 试用力法计算图7-9a所示超静定梁,并绘内力图。 解:1、确定基本未知量,选择基本体系 2、建立力法方程
基本体系在B截面沿X1方向的相对转角应为零, 即Δ1=0。根据此位移条件建立力法方程:
11 X11P0
3、计算系数 11和自由项 1P
1 12 1 E (1 2 I1 4 3 2 1 ) E 1 (1 2 I1 4 3 2 1 ) E 2 I
ii
M
2 i
dx
EI
2、副系数δij
—
iiijijip表的 示作基MMM用EMI本EEiii2IE点IMMi IMd结x并jj pd构dxx沿dx由Xi于的X方j 向 1产的生单的独位作移用;,图在B Xi
3、副自系由数项存△在ip—如下表iijiip作关示用系基点MME:M本IE并ii2IMEδi结IdMx沿j i构dpjxX=dxiδ由的 j于方i 荷向载产的生单的独位作移用。,图C在Xi的