(完整)初一数学《基本的几何图形》测试题
初中数学青岛版七年级上册第1章 基本的几何图形1.4线段的比较与作法-章节测试习题(1)
章节测试题1.【答题】已知点O是线段AB上的一点,且AB=12cm,点M、N分别是线段AO、线段BO的中点,那么线段MN的长度是( )A. 6cmB. 5cmC. 4cmD. 无法确定【答案】A【分析】根据线段中点的性质,可得OM,ON,根据线段的和差,可得答案.【解答】∵点O是线段AB上一点,∴AO+BO=AB=12∵点M、N分别是线段AO、线段BO的中点,∴MO=AO,NO=BO.∴MN=MO+NO=(AO+BO)=6(cm).选A.2.【答题】下列关系中,与图示不符合的式子是( )A. AD-CD=AB+BCB. AC-BC=AD-DBC. AC-BC=AC+BDD. AD-AC=BD-BC【答案】C【分析】根据线段之间的和差关系依次进行判断即可得出正确答案.【解答】解: A. AD-CD=AC=AB+BC,正确;B. AC-BC=AD-DB=AB,正确;C. AC-BC=AC+BD,错误;D. AD-AC=BD-BC=CD,正确.选C.3.【答题】平面上有四点,经过其中的两点画直线最多可画出( )A. 三条B. 四条C. 五条D. 六条【答案】D【分析】画出图形即可确定最多能画的直线的条数.【解答】解:如图,最多可画6条直线.选D.方法总结:此题考查直线问题,只有在任意三点不在同一直线时,才能画出最多的直线.4.【答题】为比较两条线段AB与CD的大小,小明将点A与点C重合使两条线段在一条直线上,点B在CD的延长线上,则( )A. AB<CDB. AB>CDC. AB=CDD. 以上都有可能【答案】B【分析】根据线段的比较,点A与点C重合使两条线段在一条直线上,点B在CD的延长线上,可得答案.【解答】解:由点A与点C重合使两条线段在一条直线上,点B在CD的延长线上,得AB>CD.选B.5.【答题】线段AB=2 cm,延长AB到C,使BC=AB,再延长BA到D,使BD =2AB,则线段DC的长为( )A. 4 cmB. 5 cmC. 6 cmD. 2 cm【答案】C【分析】由已知条件可知,BD=2AB,直接代入求值即可.【解答】解:∵BD=2AB,AB=2cm,∴BD=4cm,DC=DB+BC=4+2=6cm.选C.方法总结:在未画图类问题中,正确画图很重要.所以能画图的一定要画图这样才直观形象,便于思维.6.【答题】已知线段AB=1 cm,BC=3 cm,则点A到点C的距离为( )A. 4 cmB. 2 cmC. 2 cm或4 cmD. 无法确定【答案】D【分析】没有明确A、B、C三点是否在同一直线上,故点A到点C的距离无法确定.【解答】解:选D.7.【答题】下列说法正确的是( )A. 两点之间直线最短B. 画出A,B两点间的距离C. 连接点A与点B的线段,叫A,B两点间的距离D. 两点之间的距离是一个数,不是指线段本身【答案】D【分析】根据线段的性质,两点间的距离的定义对各选项分析判断利用排除法求解.【解答】解: A. 两点之间线段最短,故A错误;B. 量出A,B两点间的距离,故B错误;C. 连接点A与点B的线段的长,叫A,B两点间的距离,故C错误;D. 两点之间的距离是一个数,不是指线段本身,正确.选D.8.【答题】如图,C,D是线段AB上的两个点,CD=3 cm,M是AC的中点,N 是DB的中点,AB=7.8 cm,那么线段MN的长等于( )A. 5.4 cmB. 5.6 cmC. 5.8 cmD. 6 cm【答案】A【分析】由已知根据线段的和差和中点的性质可求得MC+DN的长度,再根据MN=MC+CD+DN不难求解.【解答】解:∵M是AC的中点,N是DB的中点,CD=3cm,AB=7.8cm,∴MC+DN=(AB-CD)=2.4cm,∴MN=MC+DN+CD=2.4+3=5..4cm.选A.9.【答题】C为AB的一个三等分点,D为AB的中点,若AB的长为6.6 cm,则CD的长为( )A. 0.8 cmB. 1.1 cmC. 3.3 cmD. 4.4 cm【答案】B【分析】题干中只是说C是线段AB的三等分点,并没有说是哪一个三等分点,线段的三等分点有两个,故应分类讨论,分为AC=AB和BC=AB两种情况.在不同的情况下根据线段之间的关系得出AB的长度.【解答】根据三等分点可得:AC=6.6÷3=2.2cm,根据中点的性质可得:AD=6.6÷2=3.3cm,则CD=AD-AC=3.3-2.2=1.1cm,故选择B.方法总结:本题主要考查的就是中点以及三等分点的性质,属于简单的题型,解决这个问题我们首先要能够根据给出的条件画出图形,然后根据所得的图形进行线段的长度计算.在求线段长度的题目中很多时候我们要根据点的位置关系来进行分类讨论,做题的时候一定要注意这个点是在线段上还是直线上.10.【答题】如图,AB=CD,那么AC与BD的大小关系是( )A. AC=BDB. AC<BDC. AC>BDD. 不能确定【答案】A【分析】由题意已知AB=CD,根据等式的基本性质,两边都减去BC,等式仍然成立.【解答】根据AB=CD可得:AC+BC=BD+BC,则AC=BD,故选择A.11.【答题】下列错误的判断是( )A. 任何一条线段都能度量长度B. 因为线段有长度,所以它们之间能比较大小C. 利用圆规配合尺子,也能比较线段的大小D. 两条直线也能进行度量和比较大小【答案】D【分析】根据直线、线段的性质:直线不可以度量,无法比较长短;线段可以度量,能比较长短,逐项判定即可.【解答】直线和射线的长度是无法度量的,则两条直线不能比较大小.12.【答题】如图,C是线段AB上的点,D是线段AC的中点,E是线段BC的中点,若DE=10,则AB的长为( )A. 10B. 20C. 30D. 40【答案】B【分析】灵活运用寻求到的解题线索,搞清图形中隐含的线段之间的和、倍、差的关系,并合理利用等量代换或消元处理等代数方法证明几何问题,用代数方法证明几何中的问题是很重要的方法.【解答】∵点D是线段AC的中点,∴CD=AC,∵点E是线段BC的中点,∴DE=CD+CE= (AC+BC),∴AC+BC=2DE=20.∴AB=AC+BC=20选B.13.【题文】如图,是线段上一点,M是线段的中点,N是线段BC的中点且MN=3cm,则的长为cm.【答案】6【分析】根据线段中点的性质,可得AC+CB=2MN的长,依此可得AB的长.【解答】解:∵M是线段AC的中点,N是线段BC的中点,∴AC=2MC,BC=2CN,∴AB=AC+BC=2(MC+CN)=2MN=6cm.故答案为:6.14.【题文】直线上有A,B,C三点,点M是线段AB的中点,点N是线段BC 的一个三等分点,如果AB=6,BC=12,求线段MN的长度.【答案】1或5或7或11.【分析】分类讨论点C在AB的延长线上,点C在B的左边,根据线段的中点,三等分点的性质,可得BM、BN的长,根据线段的和差,可得答案.【解答】解:(1)点C在射线AB上,如:点M是线段AB的中点,点N是线段BC的三等分点,MB=AB=3,BN=CB=4,或BN′=BC=8,MN=BM+BN=3+4=7,或MN′=BM+BN′=3+8=11;(2)点C在射线BA上,如:点M是线段AB的中点,点N是线段BC三等分点,MB=AB=3,BN=CB=4,或BN′=BC=8,MN=BN﹣BM=4﹣3=1,或MN′=BN′﹣BM=8﹣3=5.方法总结:本题考查了两点间的距离,分类讨论是解题的关键,根据线段中点的性质,线段的和差,可得出答案.15.【题文】已知x=﹣3是关于x的方程(k+3)x+2=3x﹣2k的解.(1)求k的值;(2)在(1)的条件下,已知线段AB=6cm,点C是直线AB上一点,且BC=kAC,若点D是AC的中点,求线段CD的长.【答案】(1)k=2;(2)CD的长为1cm或3cm.【分析】(1)把x=-3代入方程进行求解即可得k的值;(2)由于点C的位置不能确定,故应分点C在线段AB上与点C在BA的延长线上两种情况进行讨论即可得.【解答】解:(1)把x=﹣3代入方程(k+3)x+2=3x﹣2k得:﹣3(k+3)+2=﹣9﹣2k,解得:k=2;(2)当k=2时,BC=2AC,AB=6cm,∴AC=2cm,BC=4cm,当C在线段AB上时,如图1,∵D为AC的中点,∴CD=AC=1cm;当C在BA的延长线时,如图2,∵BC=2AC,AB=6cm,∴AC=6cm,∵D为AC的中点,∴CD=AC=3cm,即CD的长为1cm或3cm.16.【题文】(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M,N分别是AC,BC的中点,求线段MN的长度.(2)在(1)中,如果AC=acm,BC=bcm,其它条件不变,你能猜出MN的长度吗?请你用一句简洁的话表述你发现的规律.(3)对于(1)题,如果我们这样叙述它:“已知线段AC=6cm,BC=4cm,点C 在直线AB上,点M,N分别是AC,BC的中点,求MN的长度.”结果会有变化吗?如果有,求出结果.【答案】(1)5cm;(2)MN=,直线上相邻两线段中点间的距离为两线段长度和的一半;(3)有变化,会出现两种情况:①当点C在线段AB上时,MN==5cm;②当点C在AB或BA的延长线上时,MN=1cm.【分析】(1)(2)在一条直线或线段上的线段的加减运算和倍数运算,首先明确线段间的相互关系,最好准确画出几何图形,再根据题意进行计算;(3)会出现两种情况:①点C在线段AB上;②点C在AB或BA的延长线上.不要漏【解答】解:(1)∵AC=6cm,BC=4cm,点M,N分别是AC,BC的中点,(2)直线上相邻两线段中点间的距离为两线段长度和的一半;(3)如图,有变化,会出现两种情况:①当点C在线段AB上时,②当点C在AB或BA的延长线上时,17.【题文】已知:线段a,b求作:线段AB,使AB=2a+b(用直尺、圆规作图,不写作法,但要保留作图痕迹)【答案】见解析【分析】先在射线上依次截取再截取,则线段【解答】解:如图:,线段AB即为所求.18.【题文】如图,已知B、C两点把线段AD分成2:4:3的三部分,M是AD 的中点,若CD=6,求:(1)线段MC的长.(2)AB:BM的值.【答案】(1)3(2)4:5【分析】(1)AB:BC:CD=2:4:3,可得线段、线段的长,根据线段的和差,可得线段的长,根据线段中点的性质,可得的长,根据线段的和差,可得答案;(2)根据线段中点的性质,可得的长,根据线段的和差,可得的长,根据比的意义,可得答案.【解答】解:(1)由AB:BC:CD=2:4:3,CD=6,得AB=4,BC=8.由线段的和差,得AD=AB+BC+CD=4+8+6=18.由线段中点的性质,得由线段的和差,得MC=MD−CD=9−6=3;(2)由线段的和差,得BM=AM−AB=9−4=5.由比的意义,得AB:BM=4:5.19.【题文】如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是﹣4,点C在数轴上表示的数是4,若线段AB以3个单位长度/秒的速度向右匀速运动,同时线段CD以1个单位长度/秒的速度向左匀速运动.(1)问运动多少秒时BC=2(单位长度)?(2)线段AB与线段CD从开始相遇到完全离开共经过多长时间?(3)P是线段AB上一点,当B点运动到线段CD上,且点P不在线段CD上时,是否存在关系式BD﹣AP=3PC.若存在,求线段PD的长;若不存在,请说明理由.【答案】(1)1或2;(2)1.5秒;(3)5或 3.5.【分析】(1)分点B在点C的左边和点B在点C的右边两种情况讨论;(2)所走路程为这两条线段的和,用路程,速度,时间之间的关系可求解;(3)随着点B的运动,分别讨论当点B和点C重合、点C在点A和B之间及点A与点C重合时的情况.【解答】解:(1)设运动t秒时,BC=2单位长度,①当点B在点C的左边时,由题意得:3t+2+t=6,解得:t=1;②当点B在点C的右边时,由题意得:3t﹣2+t=6,解得:t=2.(2)(2+4)÷(3+1)=1.5(秒).答:线段AB与线段CD从开始相遇到完全离开共经过1.5秒长时间.(3)存在关系式BD﹣AP=3PC.设运动时间为t秒,①当t=(4+2)÷(3+1)=1.5时,点B和点C重合,点P在线段AB上,0<PC≤2,且BD=CD=4,PA+3PC=AB+2PC=2+2PC,当PC=1时,BD=AP+3PC,即BD﹣AP=3PC;②当1.5<t<2.5时,点C在点A和点B之间,0<PC<2:当点P在线段BC上时,BD=CD﹣BC=4﹣BC,AP+3PC=AC+4PC=AB﹣BC+4PC=2﹣BC+4PC当PC=0.5时,有BD=AP+3PC,即 BD﹣AP=3PC,③当t=2.5时,点A与点C重合,0<PC≤2,BD=CD﹣AB=2,AP+3PC=4PC,当PC=0.5时,有BD=AP+3PC,即BD﹣AP=3PC,∵P在C点左侧或右侧,∴PD的长有2种可能,即5或3.5.20.【题文】已知线段AB=6cm,点P是线段AB的中点,E是线段AB延长线上的一点,BE=AB,求线段PE的长.【答案】5cm.【分析】根据线段的倍分关系与和差关系求解. 【解答】解:∵点P是线段AB的中点,AB=6cm,∴PB=AB=3cm,∵EB=AB,∴EB=2cm,∴PE=PB+BE=5cm.。
初中数学青岛版七年级上册第1章 基本的几何图形1.2几何图形-章节测试习题(5)
章节测试题1.【题文】竖直放置的柱体,用一个水平放置的平面去截,所得到的截口是六边形,想一想这个柱体是几棱柱.【答案】见解析【分析】竖直放置的柱体,用一个水平放置的平面去截,所得到的截口是六边形,说明截面与六个面相交,即这个柱体有六个侧面,所以这个柱体是六棱柱.【解答】解:答:这个棱体是六棱柱.2.【题文】如果用平面截掉一个长方体的一个角,剩下的几何体有几个顶点、几条棱、几个面?【答案】答案不惟一.【分析】当截面截取由三个顶点组成的面时可以得到三角形,剩下的几何体有7个顶点、12条棱、7个面;当截面截取一棱上的一点和两顶点组成的面时可剩下几何体有8个顶点、13条棱、7个面;当截面截取由2条棱上的点和一顶点组成的面时剩下几何体有9个顶点、14条棱、7个面;当截面截取由三棱上的点组成的面时,剩余几何体有10个顶点、15条棱、7个面.【解答】解:剩下的几何体可能有:7个顶点、12条棱、7个面;或8个顶点、13条棱、7个面;或9个顶点、14条棱、7个面;或10个顶点、15条棱、7个面.如图所示:3.【题文】用平面截下列几何体,写出下列截面的形状.【答案】见解析【分析】由图可知.【解答】解:如图所示:4.【题文】如下图的几何体,分别由哪个平面图形绕某条直线旋转一周得到?请画出相应的平面图形.【答案】详见解析.【分析】画出图形从前面看时的平面图,然后从正中间画一条竖直的线,保留边框即可.【解答】解:如图.5.【题文】如图,把下列平面图形(1)~(6)绕虚线旋转一周,便能形成A~F的某个几何体,请找出来.【答案】答案见解析【分析】由几何图形基本特征入手,且根据面动成体的特性和生活中的常识即可得解.【解答】解:(1)~(6)分别对应C,D,B,A,F,E.6.【题文】已知长方形的长为.宽为,将其绕它的一边所在的直线旋转一周,得到一个几何体,(1)求此几何体的体积;(2)求此几何体的表面积.(结果保留)【答案】(1)或;(2)或【分析】分以长为轴旋转所得圆柱和以宽为轴旋转所得圆柱两种情况求解即可.【解答】解:(1)情况①,情况②,(2)情况①,情况②,7.【答题】如图所示,截去正方体一角变成一个新的多面体,这个多面体有______个面.【答案】7【分析】根据所截得的几何体的特征解答即可.【解答】解:这个多面体有7个面.故答案为:7.8.【答题】若一个棱柱有十个顶点,且所有侧棱长的和为,则每条侧棱长为______;【答案】6【分析】根据棱柱的特征解答即可.【解答】一个棱柱有十个顶点,棱柱上下对称,所以是5棱柱,30÷5=6cm,所以这个棱柱的棱长为6cm.9.【答题】用一个平面去截一个三棱柱,截面图形的边数最多的为______边形.【答案】五【分析】一个平面去截一个三棱柱,截面图形有:矩形、三角形、梯形和五边形,由此可得出答案。
七年级数学上册第一章基本的几何图形复习题试题
根本的几何图形一、选择题:1、下面的几何体中,不属于多面体的是( )A B C D2、以下几何体中,属于锥体的有( )A B C D3、以下判断正确的选项是( )①正方体是棱柱,长方体不是棱柱。
②正方体是棱柱,长方体也是。
③正方体是柱体,圆柱也是柱体。
④正方体不是柱体,圆柱是柱体。
A 1个B 2个C 3个D 4个4、以下说法正确的选项是〔〕A、棱柱的所有侧面都相等B、棱柱的侧面都是长方形C、棱柱的所有棱长都相等D、棱柱的两个底面都平行5、以下是平面图形的有〔〕A、三角形B、四边形C、正方体D、圆E、正六边形6、如以下图所示,右边的图形旋转一周形成左边图形的是( )A B C D7、以下语句错误的选项是( )A 、点A 一定在直线AB 上 B 、两直线相交只有一个交点C 、画出8厘米长的直线D 、点A 在直线AB 上和直线AB 经过点A 意义一样8、如图下面说法中错误的选项是( )A 、点B 在直线MC 上 B 、点A 在直线BC 外C 、点C 在线段MB 上D 、点M 在线段BC 上9、A 、B 、C 是平面内的三个点,经过其中任意两点画直线,可以画出的直线有( )A 、1条B 、3条C 、1条或者3条D 、无数条10、以下说法中,正确的个数有 〔 〕〔1〕射线AB 与射线BA 一定不是同一条射线;〔2〕直线AB 与直线BA 一定是同一条直线;〔3〕线段AB 与线段BA 一定是同一条线段。
〔A 〕0个 〔B 〕1个 〔C 〕2个 〔D 〕3个ABC M11、在直线上取两点A、B那么这条直线上一共有射线〔〕〔A〕1条〔B〕2条〔C〕3条〔D〕4条12、以下说法不正确的选项是( )A、直线AB与直线BA是同一条直线B、射线OA与射线AO不是同一条射线C、线段AB与线段BA是同一条线段D、经过两点不止一条线段13、以下有关作图的表达中,正确的选项是( )A、延长直线ABB、延长射线OMC、延长线段AB到C ,使BC=ABD、画直线AB=3cm14、以下判断错误的选项是( )A、任何两条线段都能度量长度B、因为线段有长短,所以它们之间能判断长短C、利用圆规和直尺,也能比拟线段的长短D、两条直线也能进展度量和比拟大小15、以下说法中正确的选项是( )(1)过两点有且只有一条直线 (2)连接两点的线段叫做两点间的间隔(3)两点之间的所有连线中,线段最短 (4)射线比直线少一半A、1个B、2个C、3个D、4个16、同一平面内有4点,每过2个点画一条直线,那么直线的条数是( )A、1条B、4条C、6条D、1条、4条或者6条二、填空题:1、三棱柱的侧面有个长方形,上、下两个底面是两个都一样的三角形。
2024年数学七年级上册几何基础练习题(含答案)
2024年数学七年级上册几何基础练习题(含答案)试题部分一、选择题(每题2分,共20分)1. 下列哪个图形是一个正方形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,四个角都是直角的四边形D. 四条边不等长,四个角都是锐角的四边形2. 下列哪个图形是一个矩形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,四个角都是直角的四边形D. 四条边不等长,四个角都是锐角的四边形3. 下列哪个图形是一个菱形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,四个角都是直角的四边形D. 四条边不等长,四个角都是锐角的四边形4. 下列哪个图形是一个正三角形?A. 三条边等长,三个角都是直角的三角形B. 三条边等长,三个角都是锐角的三角形C. 三条边不等长,三个角都是直角的三角形D. 三条边不等长,三个角都是锐角的三角形5. 下列哪个图形是一个等腰三角形?A. 三条边等长,三个角都是直角的三角形B. 三条边等长,三个角都是锐角的三角形C. 三条边不等长,两个角是直角的三角形D. 三条边不等长,两个角是锐角的三角形6. 下列哪个图形是一个等边三角形?A. 三条边等长,三个角都是直角的三角形B. 三条边等长,三个角都是锐角的三角形C. 三条边不等长,三个角都是直角的三角形D. 三条边不等长,三个角都是锐角的三角形7. 下列哪个图形是一个梯形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,两个角是直角的四边形D. 四条边不等长,两个角是锐角的四边形8. 下列哪个图形是一个平行四边形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,四个角都是直角的四边形D. 四条边不等长,四个角都是锐角的四边形9. 下列哪个图形是一个圆形?A. 所有边都是直线的图形B. 所有边都是曲线的图形C. 所有边都是直角三角形的图形D. 所有边都是锐角三角形的图形10. 下列哪个图形是一个椭圆?A. 所有边都是直线的图形B. 所有边都是曲线的图形C. 所有边都是直角三角形的图形D. 所有边都是锐角三角形的图形二、判断题(每题2分,共10分)1. 正方形的对角线互相垂直且相等。
数学七年级上册 几何图形初步检测题(WORD版含答案)
一、初一数学几何模型部分解答题压轴题精选(难)1.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.(2)MN=【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值.2.如图,直线m与直线n互相垂直,垂足为O,A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动.(1)若∠BAO和∠ABO的平分线相交于点P,在点A、B的运动过程中,∠APB的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(2)若△ABO的两个外角的平分线AQ、BQ相交于点Q,AP的延长线交QB的延长线于点C,在点A、B的运动过程中,∠Q和∠C的大小是否会发生变化?若不发生变化,请求出∠Q和∠C的度数;若发生变化,请说明理由.【答案】(1)解:不变化.理由:∵AP和BP分别是∠BAO和∠ABO的平分线,∠AOB=90°,∴∠APB=180°(∠OAB+∠ABO)=180° ×90°=135°(2)解:都不变.理由:∵AQ和BQ分别是∠BAO的邻补角和∠ABO的邻补角的平分线,AP和BP分别是∠BAO和∠ABO的平分线,∴∠CAQ=∠QBP=90°,又∠APB=135°,∴∠Q=45°,∴∠C=45°【解析】【分析】根据角平分线定义和三角形内角和定理得到∠APB=180° −(∠OAB+∠ABO);根据邻补角的平分线互相垂直,得到∠CAQ=∠QBP=90°,由∠APB的度数,求出∠Q和∠C的度数.3.将一副直角三角板如图1摆放在直线AD上(直角三角板OBC和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC不动,将三角板MON绕点O以每秒10°的速度顺时针旋转,旋转时间为t秒(1)当t=________秒时,OM平分∠AOC?如图2,此时∠NOC﹣∠AOM=________°;(2)继续旋转三角板MON,如图3,使得OM、ON同时在直线OC的右侧,猜想∠NOC 与∠AOM有怎样的数量关系?并说明理由;(3)若在三角板MON开始旋转的同时,另一个三角板OBC也绕点O以每秒5°的速度顺时针旋转,当OM旋转至射线OD上时同时停止,(自行画图分析)①当t=________秒时,OM平分∠AOC?(4)②请直接写出在旋转过程中,∠NOC与∠AOM的数量关系.【答案】(1)2.25;45(2)解:∠NOC﹣∠AOM=45°,∵∠AON=90°+10t,∴∠NOC=90°+10t﹣45°=45°+10t,∵∠AOM=10t,∴∠NOC﹣∠AOM=45°(3)3(4)解:②∠NOC﹣∠AOM=45°.∵∠AOB=5t,∠AOM=10t,∠MON=90°,∠BOC=45°,∵∠AON=90°+∠AOM=90°+10t,∠AOC=∠AOB+∠BOC=45°+5t,∴∠NOC=∠AON﹣∠AOC=90°+10t﹣45°﹣5t=45°+5t,∴∠NOC﹣∠AOM=45°.【解析】【解答】解:(1)∵∠AOC=45°,OM平分∠AOC,∴∠AOM= =22.5°,∴t=2.25秒,∵∠MON=90°,∠MOC=22.5°,∴∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;故答案为:2.25,45;·(3)①∵∠AOB=5t,∠AOM=10t,∴∠AOC=45°+5t,∵OM平分∠AOC,∴∠AOM= AOC,∴10t= (45°+5t),∴t=3秒,故答案为:3.【分析】(1)根据角平分线的定义得到∠AOM= =22.5°,于是得到t=2.25秒,由于∠MON=90°,∠MOC=22.5°,即可得到∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;(2)根据题意得∠AON=90°+10t,求得∠NOC=90°+10t﹣45°=45°+10t,即可得到结论;(3)①根据题意得∠AOB=5t,∠AOM=10t,求得∠AOC=45°+5t,根据角平分线的定义得到∠AOM= AOC,列方程即可得到结论;(4)②根据角的和差即可得到结论.4.如图1,已知线段AB=16cm,点C为线段AB上的一个动点,点D、E分别是AC和BC 的中点.(1)若点C恰为AB的中点,求DE的长;(2)若AC=6cm,求DE的长;(3)试说明不论AC取何值(不超过16cm),DE的长不变;(4)知识迁移:如图2,已知∠AOB=130°,过角的内部任一点C画射线OC,若OD、OE 分别平分∠AOC和∠BOC,试说明∠DOE=65°与射线OC的位置无关.【答案】(1)解:∵点C恰为AB的中点,∴AC=BC= AB=8cm,∵点D、E分别是AC和BC的中点,∴DC= AC=4cm,CE= BC=4cm,∴DE=8cm(2)解:∵AB=16cm,AC=6cm,∴BC=10cm,由(1)得,DC= AC=3cm,CE= CB=5cm,∴DE=8cm(3)解:∵点D、E分别是AC和BC的中点,∴DC= AC,CE= BC,∴DE= (AC+BC)= AB,∴不论AC取何值(不超过16cm),DE的长不变(4)解:∵OD、OE分别平分∠AOC和∠BOC,∴∠DOC= ∠AOC,∠EOC= ∠BOC,∴∠DOE=∠DOC+∠EOC= (∠AOC+∠BOC)= ∠AOB=65°,∴∠DOE=65°与射线OC的位置无关【解析】【分析】(1)由点C恰为AB的中点,得到AC=BC的值,再由点D、E分别是AC和BC的中点,求出DE的值;(2)由(1)得,DC= AC的值,CE= CB的值,得到DE的值;(3)由点D、E分别是AC和BC的中点,得到不论AC取何值(不超过16cm),DE 的长不变;(4)由OD、OE分别平分∠AOC和∠BOC,根据角平分线定义,得到∠DOE=∠DOC+∠EOC=(∠AOC+∠BOC)=∠AOB,得到∠DOE=65°与射线OC的位置无关.5.如图,已知点,且,满足 .过点分别作轴、轴,垂足分别是点A、C.(1)求出点B的坐标;(2)点M是边上的一个动点(不与点A重合),的角平分线交射线于点N,在点M运动过程中,的值是否变化?若不变,求出其值;若变化,说明理由. (3)在四边形的边上是否存在点,使得将四边形分成面积比为1:4的两部分?若存在,请直接写出点的坐标;若不存在,说明理由.【答案】(1)解:由得:,解得:∴点的坐标为(2)解:不变化∵轴∴BC∥x轴∴∵平分∴∴∴(3)解:点P可能在OC,OA边上,如下图所示,由(1)可知,BC=5,AB=3,故矩形的面积为15若点P在OC边上,可设P点坐标为,则三角形BCP的面积为,剩余部分面积为,所以,解得,P点坐标为;若点P在OA边上,可设P点坐标为,则三角形BAP的面积为,剩余部分面积为,所以,解得,P点坐标为 .综上,点的坐标为, .【解析】【分析】(1)由绝对值和算术平方根的非负性可知由两个非负数的和为0,则这两个数都为0,由此可列出关于,的二元一次方程组,解之即可得出B点坐标;(2)根据平行线和角平分线的性质可证明,所以比值不变化;(3)点P只能在OC,OA边上,表示出两部分的面积,依比值求解即可.6.如图四边形ABCD中,AD∥BC,∠BCD=90°,∠BAD的平分线AG交BC于点G.(1)求证:∠BAG=∠BGA;(2)如图2,∠BCD的平分线CE交AD于点E,与射线GA相交于点F,∠B=50°.①若点E在线段AD上,求∠AFC的度数;②若点E在DA的延长线上,直接写出∠AFC的度数;(3)如图3,点P在线段AG上,∠ABP=2∠PBG,CH∥AG,在直线AG上取一点M,使∠PBM=∠DCH,请直接写出∠ABM:∠PBM的值.【答案】(1)证明:∵AD∥BC,∴∠GAD=∠BGA,∵AG平分∠BAD,∴∠BAG=∠GAD,∴∠BAG=∠BGA;(2)解:①∵CF平分∠BCD,∠BCD=90°,∴∠GCF=45°,∵AD∥BC,∠ABC=50°,∴∠AEF=∠GCF=45°;∠DAB=180°﹣50°=130°,∵AG平分∠BAD,∴∠BAG=∠GAD=65°,∴∠AFC=65°﹣45°=20°;②如图:∵∠AGB=65°,∠BCF=45°,∴∠AFC=∠CGF+∠BCF=115°+45°=160°;(3)解:有两种情况:①当M在BC的下方时,如图:∵∠ABC=50°,∠ABP=2∠PBG,∴∠ABP=()°,∠PBG=()°,∵AG∥CH,∴∠BCH=∠AGB=65°,∵∠BCD=90°,∴∠DCH=∠PBM=90°﹣65°=25°,∴∠ABM=∠ABP+∠PBM=( +25)°=()°,∴∠ABM:∠PBM=()°:25°= ;②当M在BC的上方时,如图:同理得:∠ABM=∠ABP﹣∠PBM=(﹣25)°=()°,∴∠ABM:∠PBM=()°:25°= ;综上,∠ABM:∠PBM的值是或.【解析】【分析】(1)根据AD//BC可知∠GAD=∠BGA,由AG平分∠BAD可知∠BAG=∠GAD,即可得答案.(2)①根据CF平分∠BCD,∠BCD=90°,可求出∠GCF的度数,由AD//BC可求出∠AEF和∠DAB的度数,根据三角形外角的性质求出∠AFC的度数即可;②根据三角形外角性质求出即可;(3)根据M点在BP的上面和下面两种情况讨论,分别求出∠PBM和∠ABM的值即可.7.如图(1),AB∥CD,在AB、CD内有一条折线EPF.(1)求证:∠AEP+∠CFP=∠EPF.(2)如图(2),已知∠BEP的平分线与∠DFP的平分线相交于点Q,试探索∠EPF与∠EQF 之间的关系.(3)如图(3),已知∠BEQ= ∠BEP,∠DFQ= ∠DFP,则∠P与∠Q有什么关系,说明理由.(4)已知∠BEQ= ∠BEP,∠DFQ= ∠DFP,则∠P与∠Q有什么关系.(直接写结论) 【答案】(1)证明:如图1,过点P作PG∥AB,∵AB∥CD,∴PG∥CD,∴∠AEP=∠1,∠CFP=∠2,又∵∠1+∠2=∠EPF,∴∠AEP+∠CFP=∠EPF(2)解:如图2由(1),可得∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ,∵∠BEP的平分线与∠DFP的平分线相交于点Q,∴∠EQF=∠BEQ+∠DFQ∴(3)解:如图3,,由(1),可得∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ,∵∴∠Q=∠BEQ+∠DFQ∴(4)解:由(1),可得∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ,∵∴∠Q=∠BEQ+∠DFQ∴【解析】【分析】(1)如图1,过点P作PG∥AB,根据两直线平行,内错角相等,可得∠AEP=∠1,∠CFP=∠2,从而可得∠AEP+∠CFP=∠EPF.(2)由(1),可得∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ,利用角平分线的定义,可得∠EQF=∠BEQ+∠DFQ=(∠BEP+∠DFP),利用平角定义,可得∠BEP+∠DFP=360°-(∠AEP+∠CFP)=360°-∠EPF,从而可得∠EPF+2∠EQF=360°.(3)同(2)方法,即可得出∠P+3∠Q=360°.(4)同(2)方法,即可得出结论.8.已知:如图所示,直线,另一直线交于,交于,且,点为直线上一动点,过点的直线交于点,且 .(1)如图1,当点在点右边且点在点左边时,的平分线与的平分线交于点,求的度数;(2)如图2,当点在点右边且点在点右边时,的平分线与的平分线交于点,求的度数;(3)当点在点左边且点在点左边时,的平分线与的平分线所在直线交于点,请直接写出的度数,不说明理由.【答案】(1)解:过点作 .∵平分 .∴ .∴(两直线平行,内错角相等).同理可证..∴ .(2)解:过点作 .∵ .∴ .∵平分 .∴ .∴(两直线平行,同旁内角互补).∵平分 .∴(两直线平行,内错角相等).∴ .(3)解:过点作 .∵平分 .∴(两直线平行等,内错角相等).∴平分 ..∴ .∴(两直线平行,同旁内角互补)..【解析】【分析】(1)过点作,由角平分线定义可得,利用两直线平行内错角相等,可得,同理可得∠CPE=∠PCA= ∠DCA=25°,从而求出∠BPC的度数.(2)过点作 . 利用邻补角定义可得∠DBA=100°,由角平分线定义可得∠DBP= ∠DBA=50°,根据两直线平行,同旁内角互补可得∠BPE=130°.根据角平分线定义及两直线平行,内错角相等角可得∠PCA=∠CPE= ∠DCA=25°,从而求∠BPC的度数.(3)过点作 . 根据两直线平行,内错角相等角可得∠DBP=∠DPE=40°,根据邻补角可求出∠CPE的度数,由角平分线的定义可得∠PCA= ∠DCA=65°,根据两直线平行,同旁内角互补可求出∠CPE的度数,继而求出∠BPC的度数.9.将一副直角三角板按如图1摆放在直线AD上直角三角板OBC和直角三角板MON,,,,,保持三角板OBC不动,将三角板MON绕点O以每秒的速度顺时针方向旋转t秒(1)如图2, ________度用含t的式子表示;(2)在旋转的过程中,是否存在t的值,使?若存在,请求出t的值;若不存在,请说明理由.(3)直线AD的位置不变,若在三角板MON开始顺时针旋转的同时,另一个三角板OBC 也绕点O以每秒的速度顺时针旋转.当 ________秒时,;请直接写出在旋转过程中,与的数量关系________ 关系式中不能含 .【答案】(1)(2)解:当MO在∠BOC内部时,即t 时,根据题意得:90﹣8t=4(45﹣8t)解得:t ;当MO在∠BOC外部时,即t 时,根据题意得:90﹣8t=4(8t﹣45)解得:t .综上所述:t 或t(3)5或10;3∠NOD+4∠BOM=270°.【解析】【解答】(1)∠NOD一开始为90°,然后每秒减少8°,因此∠NOD=90﹣8t.故答案为90﹣8t.( 3 )①当MO在∠BOC内部时,即t 时,根据题意得:8t﹣2t=30解得:t=5;当MO在∠BOC外部时,即t 时,根据题意得:8t﹣2t=60解得:t=10.故答案为5或10.②∵∠NOD=90﹣8t,∠BOM=6t,∴3∠NOD+4∠BOM=3(90﹣8t)+4×6t=270°.即3∠NOD+4∠BOM=270°.【分析】(1)把旋转前∠NOD的大小减去旋转的度数就是旋转后的∠NOD的大小.(2)相对MO与CO的位置有两种情况,所以要分类讨论,然后根据∠NOD=4∠COM建立关于t 的方程即可.(3)①其实是一个追赶问题,分MO没有追上CO与MO超过CO两种情况,然后分别列方程即可.②分别用t的代数式表示∠NOD和∠BOM,然后消去t即可得出它们的关系.10.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D 点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;② 的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.【答案】(1)解:由题意:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP.∴点P在线段AB上的处(2)解:如图:∵AQ-BQ=PQ,∴AQ=PQ+BQ,∵AQ=AP+PQ,∴AP=BQ,∴PQ= AB,∴(3)解:② 的值不变.理由:如图,当点C停止运动时,有CD= AB,∴CM= AB,∴PM=CM-CP= AB-5,∵PD= AB-10,∴PN= AB-10)= AB-5,∴MN=PN-PM= AB,当点C停止运动,D点继续运动时,MN的值不变,所以【解析】【分析】(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的处;(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ与AB的关系;(3)当点C停止运动时,有CD= AB,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以MN=PN−PM= AB.11.如图1,直线CB∥OA,∠A=∠B=120°,E ,F在BC上,且满足∠FOC =∠AOC,并且OE 平分∠BOF.(1)求∠AOB及∠EOC的度数;(2)如图2,若平行移动AC,那么∠OCB: ∠OFB的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值;【答案】(1)解:∵CB∥OA∴∠BOA+∠B=180°∴∠BOA=60°∵∠FOC=∠AOC,OE平分∠BOF∴∠EOC=∠EOF+∠FOC= ∠BOF+ ∠F0A= (∠BOF+∠FOA)= ×60°=30°(2)解:不变∵CB∥OA∴∠OCB=∠COA,∠OFB=∠FOA∵∠FOC=∠AOC∴∠COA= ∠FOA, 即∠OCB:∠OFB=1:2【解析】【分析】(1)利用两直线平行,同旁内角互补,易证∠BOA+∠B=180°,即可求出∠AOB的度数;再利用角平分线的定义,可证得∠BOE=∠EOF,从而可推出∠EOC=∠AOB,代入计算求出∠EOC的度数。
初中数学几何图形初步基础测试题附答案
初中数学几何图形初步基础测试题附答案一、选择题1.如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是()A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等【答案】D【解析】【分析】【详解】解:已知AC//BD,根据平行线的的性质可得∠BAC+∠ABD=180°,选项B正确;因AO、BO分别是∠BAC、∠ABD的平分线,根据角平分线的定义可得∠BAO=∠CAO, ∠ABO=∠DBO,选项A正确,选项D不正确;由∠BAC+∠ABD=180°,∠BAO=∠CAO, ∠ABO=∠DBO即可得∠BAO+∠ABO=90°,选项A正确,故选D.2.如图,AB∥CD,EF平分∠GED,∠1=50°,则∠2=()A.50°B.60°C.65°D.70°【答案】C【解析】【分析】由平行线性质和角平分线定理即可求.【详解】∵AB∥CD∴∠GEC=∠1=50°∵EF平分∠GED∴∠2=∠GEF= 12∠GED=12(180°-∠GEC)=65°故答案为C.【点睛】本题考查的知识点是平行线性质和角平分线定理,解题关键是熟记角平分线定理.3.将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是()A.B.C.D.【答案】D【解析】解:Rt△ACB绕直角边AC旋转一周,所得几何体是圆锥,主视图是等腰三角形.故选D.首先判断直角三角形ACB绕直角边AC旋转一周所得到的几何体是圆锥,再找出圆锥的主视图即可.4.如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?()A.B.C.D.【答案】D【解析】分析:三棱柱的侧面展开图是长方形,底面是三角形,据此进行判断即可.详解:A选项中,展开图下方的直角三角形的斜边长为12,不合题意;B选项中,展开图上下两个直角三角形中的直角边不能与其它棱完全重合,不合题意;C选项中,展开图下方的直角三角形中的直角边不能与其它棱完全重合,不合题意;D选项中,展开图能折叠成一个三棱柱,符合题意;故选:D.点睛:本题主要考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.5.下列图形中,是正方体表面展开图的是()A.B.C.D.【答案】C【解析】【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体.故选C.【点睛】本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.6.如图,已知圆柱底面的周长为4 dm,圆柱的高为2 dm,在圆柱的侧面上,过点A和点C 嵌有一圈金属丝,则这圈金属丝的周长的最小值为()A.5B.2 dm C.25D.42【答案】D【解析】【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC 的长度.∵圆柱底面的周长为4dm ,圆柱高为2dm ,∴AB=2dm ,BC=BC′=2dm ,∴AC 2=22+22=4+4=8,∴AC=22dm ,∴这圈金属丝的周长最小为2AC=42dm .故选D .【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.7.如图,已知直线AB 和CD 相交于G 点,CG EG ⊥,GF 平分AGE ∠,34CGF ∠=︒,则BGD ∠大小为( )A .22︒B .34︒C .56︒D .90︒【答案】A【解析】【分析】 先根据垂直的定义求出∠EGF 的度数,然后根据GF 平分∠ABE 可得出∠AGF 的度数,再由∠AGC=∠AGF-∠CGF 求出∠AGC 的度数,最后根据对顶角相等可得出∠BGD 的度数.【详解】解:∵CG ⊥EG ,∴∠EGF=90°-∠CGF=90°-34°=56°,又GF 平分∠AGE ,∴∠AGF=∠EGF=56°,∴∠AGC=∠AGF-∠CGF=56°-34°=22°,∴∠BGD=∠AGC=22°.故选:A .【点睛】本题考查了对顶角的性质,垂直的定义以及角平分线的定义,掌握基本概念和性质是解题8.已知:在Rt△ABC中,∠C=90°,BC=1,AC=3,点D是斜边AB的中点,点E是边AC 上一点,则DE+BE的最小值为()A.2B.31C.3D.23【答案】C【解析】【分析】作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC=3,所以最小值为3.【详解】解:作B关于AC的对称点B',连接B′D,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,∵AB=AB',∴△ABB'为等边三角形,∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,∴最小值为B'到AB的距离3故选C.【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.9.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.12 BC AB【答案】C【解析】【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A、B、D都可以确定点C是线段AB中点【详解】解:A、AC=BC,则点C是线段AB中点;B、AB=2AC,则点C是线段AB中点;C、AC+BC=AB,则C可以是线段AB上任意一点;D、BC=12AB,则点C是线段AB中点.故选:C.【点睛】本题主要考查线段中点,解决此题时,能根据各选项举出一个反例即可.10.一把直尺和一块三角板ABC(含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CED =50°,那么∠BAF=()A.10°B.50°C.45°D.40°【答案】A【解析】【分析】先根据∠CED=50°,DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.【详解】∵DE∥AF,∠CED=50°,∴∠CAF=∠CED=50°,∵∠BAC=60°,∴∠BAF=60°﹣50°=10°,故选:A.【点睛】此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键. 11.如图,点A、B、C是直线l上的三个点,图中共有线段条数是()A.1条B.2条C.3条D.4条【答案】C【解析】解:图中线段有:线段AB、线段AC、线段BC,共三条.故选C.12.如图,圆柱形玻璃板,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离()cm.A.14 B.15 C.16 D.17【答案】B【解析】【分析】在侧面展开图中,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,求出A′Q,CQ,根据勾股定理求出A′C 即可.【详解】解:沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∴AP+PC=A′P+PC=A′C,∵CQ=12×18cm=9cm,A′Q=12cm﹣4cm+4cm=12cm,在Rt△A′QC中,由勾股定理得:A′C=22=15cm,129故选:B.【点睛】本题考查了圆柱的最短路径问题,掌握圆柱的侧面展开图、勾股定理是解题的关键.13.如图是正方体的表面展开图,请问展开前与“我”字相对的面上的字是()A.是B.好C.朋D.友【答案】A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“是”是相对面,“们”与“朋”是相对面,“好”与“友”是相对面.故选:A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.14.用一副三角板(两块)画角,能画出的角的度数是()A.145C B.95C C.115C D.105C【答案】D【解析】【分析】一副三角板由两个三角板组成,其中一个三角板的度数有45°、45°、90°,另一个三角板的度数有30°、60°、90°,将两个三角板各取一个角度相加,和等于选项中的角度即可拼成.【详解】选项的角度数中个位是5°,故用45°角与另一个三角板的三个角分别相加,结果分别为:45°+30°=75°,45°+60°=105°,45°+90°=135°,故选:D.【点睛】此题主要考查学生对角的计算这一知识点的理解和掌握,解答此题的关键是分清两块三角板的锐角的度数分别是多少,比较简单,属于基础题.15.若∠AOB =60°,∠AOC =40°,则∠BOC等于()A.100°B.20°C.20°或100°D.40°【答案】C【解析】【分析】画出符合题意的两个图形,根据图形即可得出答案.【详解】解: 如图1,当∠AOC在∠AOB的外部时,∵∠AOB=60°,∠AOC=40°∴∠BOC=∠AOB+∠AOC=60°+40°=100°如图2,当∠AOC在∠AOB的内部时,∵∠AOB=60°,∠AOC=40°∴∠BOC=∠AOB-∠AOC=60°-40°=20°即∠BOC的度数是100°或20°故选:C【点睛】本题考查了角的有关计算的应用,主要考查学生根据图形进行计算的能力,分类讨论思想和数形结合思想的运用.16.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A.圆锥,正方体,三棱锥,圆柱B.圆锥,正方体,四棱锥,圆柱C.圆锥,正方体,四棱柱,圆柱D.正方体,圆锥,圆柱,三棱柱【答案】D【解析】【分析】根据常见的几何体的展开图进行判断,即可得出结果.【详解】根据几何体的平面展开图,则从左到右,其对应的几何体名称分别为:正方体,圆锥,圆柱,三棱柱.故选D.【点睛】本题考查了常见几何体的展开图;熟记常见几何体的平面展开图的特征,是解题的关键.17.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【答案】B【解析】【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴1352CBE ABC∠=∠=︒,故选:B.【点睛】此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.18.如图,该表面展开图按虚线折叠成正方体后,相对面上的两个数互为相反数,则()x y+的值为()A.-2 B.-3 C.2 D.1【答案】C【解析】【分析】利用正方体及其表面展开图的特点,根据相对面上的两个数互为相反数,列出方程求出x、y的值,从而得到x+y的值.【详解】这是一个正方体的平面展开图,共有六个面,其中面“1”与面“x”相对,面“-3”与面“y”相对.因为相对面上的两个数互为相反数,所以1+0 30xy=⎧⎨-+=⎩解得:-13 xy=⎧⎨=⎩则x+y=2故选:C【点睛】本题考查了正方体的平面展开图,注意从相对面入手,分析及解答问题.19.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=12∠CGE.其中正确的结论是( )A.②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;②∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;③条件不足,无法证明CA平分∠BCG,故错误;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB)=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=12∠CGE,,正确.故选B.【点睛】本题主要考查了角平分线的定义,平行线的性质,三角形内角和定理及多边形内角和,三角形外角的性质,熟知直角三角形的两锐角互余是解答此题的关键.20.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A.B.C.D.【答案】D【解析】解:如右图,连接OP,由于OP是Rt△AOB斜边上的中线,所以OP=12AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.故选D.。
七年级上册数学 几何图形初步检测题(WORD版含答案)
一、初一数学几何模型部分解答题压轴题精选(难)1.如图,已知:点不在同一条直线, .(1)求证: .(2)如图②,分别为的平分线所在直线,试探究与的数量关系;(3)如图③,在(2)的前提下,且有,直线交于点,,请直接写出 ________.【答案】(1)证明:过点C作,则,∵∴∴(2)解:过点Q作,则,∵,∴∵分别为的平分线所在直线∴∴∵∴(3):1:2:2【解析】【解答】解:(3)∵∴∴∵∴∵∴∴∴∴ .故答案为: .【分析】(1)过点C作,则,再利用平行线的性质求解即可;(2)过点Q作,则,再利用平行线的性质以及角平分线的性质得出,再结合(1)的结论即可得出答案;(3)由(2)的结论可得出,又因为,因此,联立即可求出两角的度数,再结合(1)的结论可得出的度数,再求答案即可.2.如图AB∥CD,点H在CD上,点E、F在AB上,点G在AB、CD之间,连接FG、GH、HE,HG⊥HE,垂足为H,FG⊥HG,垂足为G.(1)求证:∠EHC+∠GFE=180°.(2)如图2,HM平分∠CHG,交AB于点M,GK平分∠FGH,交HM于点K,求证:∠GHD=2∠EHM.(3)如图3,EP平分∠FEH,交HM于点N,交GK于点P,若∠BFG=50°,求∠NPK的度数. 【答案】(1)解:∵HG⊥HE,FG⊥HG∴FG∥EH,∴∠GFE+∠HEF=180°,∵AB∥CD∴∠BEH=∠CHE∴∠EHC+∠GFE=180°(2)解:设∠EHM=x,∵HG⊥HE,∴∠GHK=90°-x,∵MH平分∠CHG,∴∠EHC=90°-2x,∵AB∥CD∴∠HMB=90°-x,∴∠HMB=∠MHG=90°-x,∵AB∥CD,∴∠BMH+∠DHM=180°,即∠BMH+∠GHM+∠GHD =180°,∴90°-x+90°-x+∠GHD =180°,解得,∠GHD =2x,∴∠GHD=2∠EHM;(3)解:延长FG,GK,交CD于R,交HE于S,如图,∵AB∥CD,∠BFG=50°∴∠HRG=50°∵FG⊥HG,∴∠GHR=40°,∵HG⊥HE,∴∠EHG=90°,∴∠CHE=180°-90°-40°=50°,∵AB∥CD,∴∠FEH=∠CHE=50°,∵EP是∠HEF的平分线,∴∠SEP= ∠FEH=25°,∵GH平分∠HGF,∴∠HGS= ∠HGF=45°,∴∠HSG=45°,∵∠SEP+∠SPE=∠HSP=45°,∴∠EPS=20°,即∠NPK=20°.【解析】【分析】(1)根据HG⊥HE,FG⊥HG可证明FG∥EH,从而得∠GFE+∠HEF=180°,再根据AB∥CD可得∠BEH=∠CHE,进而可得结论;(2)设∠EHM=x,根据MH是∠CHG的平分线可得∠MHG=90°-x,∠EHC=90°-2x,根据平行线的性质得∠HMB=90°-x,从而得∠HMB=∠MHG,再由平行线的性质得∠BMH+∠DHM=180°,从而可得结论;(3)分别延长FG,GK,交CD于R,交HE于S,由AB∥CD得∠HRG=50°,由FG⊥HG得∠GHR=40°,由MH平分∠CHG得∠CHE=50°,由AB∥CD得∠MEH=∠CHE=50°,可得∠SEP=25°,最后由三角形的外角可得结论.3.如图①,△ABC的角平分线BD,CE相交于点P.(1)如果∠A=80∘,求∠BPC= ________.(2)如图②,过点P作直线MN∥BC,分别交AB和AC于点M和N,试求∠MPB+∠NPC的度数(用含∠A的代数式表示)________.(3)将直线MN绕点P旋转。
初中数学青岛版七年级上册第1章 基本的几何图形1.2几何图形-章节测试习题(4)
章节测试题1.【答题】下列说法中,正确的个数是()①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤棱柱的侧面一定是长方形.A. 2个B. 3个C. 4个D. 5个【答案】B【分析】根据棱柱和棱锥的概念判断即可.【解答】解:①柱体包括圆柱、棱柱;∴柱体的两个底面一样大;故此选项正确,②圆柱、圆锥的底面都是圆,正确;③棱柱的底面可以为任意多边形,错误;④长方体符合柱体的条件,一定是柱体,正确;⑤棱柱分为直棱柱和斜棱柱,直棱柱的侧面应是长方形,故错误;共有3个正确,选B.2.【答题】把一个正方体展开,不可能得到的是()A.B.C.D.【答案】B【分析】根据平面图形的折叠及正方体的展开图解题.注意带“田”字的不是正方体的平面展开图.【解答】解: B选项带“田”字的不是正方体的平面展开图.选B.3.【答题】正方体的顶点数、面数和棱数分别是()A. 8、6、12B. 6、8、12C. 8、12、6D. 6、8、10【答案】A【分析】根据正方体的特征判断即可.【解答】解:正方体的顶点数是8个,有6个面,12条棱.选A.4.【答题】下列平面图形经过折叠不能围成正方体的是()A.B.C.D.【答案】C【分析】利用正方体及其表面展开图的特点解题.【解答】根据正方体展开的图形可得:A、B、D选项可以折叠成正方体,C选项不能.选C.【方法总结】能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢.注意只要有“田”字格的展开图都不是正方体的表面展开图.5.【答题】如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是()A. 传B. 统C. 文D. 化【答案】C【分析】根据两个面相隔一个面是对面,再根据翻转的规律,可得答案.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“扬”与“统”相对,面“弘”与面“文”相对,“传”与面“化”相对.选C.6.【答题】不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学:它有8条棱,该模型的形状对应的立体图形可能是()A. 三棱柱B. 四棱柱C. 三棱锥D. 四棱锥【答案】D【分析】根据几何体的特征判断即可.【解答】解:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.故选:D7.【答题】如图1所示,将一个正四棱锥(底面为正方形,四条测棱相等)的其中四条边剪开,得到图2,则被剪开的四条边有可能是()A. PA,PB,AD,BCB. PD,DC,BC,ABC. PA,AD,PC,BCD. PA,PB,PC,AD【答案】A【分析】根据棱锥的展开图特点判断即可.【解答】由棱锥的展开特点知,被剪开的四条边有可能是PA,PB,AD,BC.选A.8.【答题】下列各图中,可以是一个正方体的表面展开图的是()A.B.C.D.【答案】B【分析】利用正方体及其表面展开图的特点解题.【解答】正方体的展开图形共有11种情况,如下图所示:选项中只有B选项符合;故选B.。
完整版)初一几何练习题及答案
完整版)初一几何练习题及答案初一几何:三角形一、选择题(本大题共24分)1.以下列各组数为三角形的三条边,其中能构成直角三角形的是()A。
17,15,8B。
1/3,1/4,1/5C。
4,5,6D。
3,7,112.如果三角形的一个角的度数等于另两个角的度数之和,那么这个三角形一定是()A。
锐角三角形B。
直角三角形C。
钝角三角形D。
等腰三角形3.下列给出的各组线段中,能构成三角形的是()A。
5,12,13B。
5,12,7C。
8,18,7D。
3,4,84.如图已知:Rt△ABC中,∠C=90°,AD平分∠BAC,AE=AC,连接DE,则下列结论中,不正确的是()A。
DC=DEB。
∠___∠ADEC。
∠DEB=90°D。
∠___∠DAE5.一个三角形的三边长分别是15,20和25,则它的最大边上的高为()A。
12B。
10C。
8D。
56.下列说法不正确的是()A。
全等三角形的对应角相等B。
全等三角形的对应角的平分线相等C。
角平分线相等的三角形一定全等D。
角平分线是到角的两边距离相等的所有点的集合7.两条边长分别为2和8,第三边长是整数的三角形一共有()A。
3个B。
4个C。
5个D。
无数个8.下列图形中,不是轴对称图形的是()A。
线段MNB。
等边三角形C。
直角三角形D。
钝角∠AOB9.如图已知:△ABC中,AB=AC,BE=CF,AD⊥BC于D,此图中全等的三角形共有()A。
2对B。
3对C。
4对D。
5对10.直角三角形两锐角的平分线相交所夹的钝角为()A。
125°B。
135°C。
145°D。
150°11.直角三角形两锐角的平分线相交所夹的钝角为()A。
125°B。
135°C。
145°D。
150°12.___已知:∠A=∠D,∠C=∠F,如果△ABC≌△DEF,那么还应给出的条件是()A。
AC=DEB。
AB=DFC。
七年级上册《数学》几何图形专项练习题((含答案)
七年级上册《数学》几何图形专项练习题第1课时几何图形一、能力提升1.下列所列举的物体中,与圆锥的形状类似的是()A.足球B.字典C.易拉罐D.标枪的尖头2.下列图形属于柱体的是()3.下列第一行所示的四个图形,每个图形均是由四种简单的图形a,b,c,d(圆、直线、三角形、长方形)中的两种组成.例如由a,b组成的图形记作a☉b,那么由此可知,下面第二行的图中可以记作a☉d的是()4.如图,下面各几何体中,是三棱柱的是.(只填序号)5.下列说法:①圆锥和圆柱的底面都是圆;②棱锥底面边数与侧棱数相等;③棱柱的上、下底面是形状、大小相同的多边形;④四棱柱是长方体.其中正确的是.(填序号)6.有一个几何体,形状如图所示,这个几何体的面数为.7.如图,下列各图形主要由哪些简单的几何图形组成?二、创新应用8.请利用图中的几何体拼出蘑菇、台灯等图案,并和同伴一起交流,尽量拼出最多的图案.答案一、能力提升1.D.2.C.3.A.根据题意,知a代表长方形,d代表直线,因此记作a☉d的图形是长方形和直线的组合,故选A.4.④.5.①②③.6.6.7.解:(1)由圆组成;(2)由长方形和正方形组成;(3)由菱形(或四边形)组成;(4)由圆和圆弧组成(或由一个圆和两个小半圆组成).二、创新应用8.分析:本题是开放性试题,只要所给答案合理即可.解:答案不唯一,如图.第2课时几何图形的三种形状图与展开图一、能力提升1.如图,小李书桌上放了一本书,从上往下看得到的平面图形是()2.如图,一个带有方形空洞、圆形空洞的儿童玩具.如果用下列几何体作为塞子,那么既可以堵住方形空洞又可以堵住圆形空洞的几何体是()3.一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看到的图形如图所示,则这张桌子上碟子的总数为()A.11B.12C.13D.144.有3块正方体积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A.白B.红C.黄D.黑5.图①是一个小正方体的侧面展开图,小正方体从图②所示的位置依次翻到第1格、第2格、第3格,这时小正方体朝上一面的字是.图①图②6.根据下列多面体的平面展开图,填写多面体的名称:(1),(2),(3).7.如图,将下列图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去.(填序号)8.如图,画出所给几何体的从正面看、从左面看和从上面看得到的图形.9.如图①,在正方体中,点P,Q,S分别是所在边的中点,将此正方体展开,请在展开图②中标出点P,Q,S的位置.二、创新应用10.火箭的示意图如图所示(火箭圆柱底面的周长不等于圆柱的高),请你画出火箭的平面展开图.11.如图,在一个长方体的展开图上,每一面上都标注了字母(标字母的面是外表面),根据要求回答问题:(1)如果D面在多面体的左面,那么F面在哪里?(2)B面和哪个面是相对的面?(3)如果C面在前面,从上面看是D面,那么左面是哪个面?(4)如果B面在后面,从左面看是D面,那么前面是哪个面?(5)如果A面在右面,从下面看是F面,那么B面在哪里?答案一、能力提升1.A.2.B.从正面与上面分别看圆柱体所得的平面图形分别是长方形和圆,它既可以堵住方形空洞又可以堵住圆形空洞.3.B.因为右上角的碟子有5个,左下角的碟子有3个,左上角的碟子有4个,所以碟子的总数为3+4+5=12.4.C.根据第一个图和第二个图可知,与绿色相邻的四个面的颜色分别为白、黑、蓝、红,从第三个图可知第六个面为黄色,即为绿色一面的对面.5.国.翻到题图②第1格时朝下的为“了”字,第2格为“害”字,第3格为“厉”字,其对面为“国”字,即为这时小正方体朝上一面的字.6.(1)长方体.(2)三棱柱.(3)三棱锥.7.1或2或6.8.解:9.解:如图所示.二、创新应用10.解:11.解:(1)右面.(2)E面.(3)B面.(4)E面.(5)后面.4.1.2点、线、面、体一、能力提升1.如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()2.下列几何体有6个面的有()①长方体;②圆柱;③四棱柱;④正方体;⑤三棱柱.A.1个B.2个C.3个D.4个3.如果一个直棱柱有12个顶点,那么它的面的个数是()A.10B.9C.8D.74.下列说法正确的有()①四面体的各个面都是三角形;②棱柱的顶点数一定是偶数,棱的条数一定是3的倍数;③圆柱是由两个面围成的;④长方体的面不可能是正方形.A.1个B.2个C.3个D.4个5.观察下图,把左边的图形绕着给定的直线旋转一周后可能形成的立体图形是()6.薄薄的硬币在桌面上转动时,看上去像球,这说明了.7.航天飞机拖着“长长的火焰”,我们用数学知识可解释为点动成线.用数学知识解释下列现象:(1)一只小蚂蚁爬行留下的路线可解释为.(2)电动车车辐条运动形成的图形可解释为.8.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体从正面看的图形的面积是cm2.9.观察右图,填空:(1)这个图形的名称是;(2)这个几何体有个面,有个底面,有个侧面,底面是形,侧面是形.(3)侧面的个数与底面多边形的边数有什么关系?10.用数学的眼光去观察问题,你会发现很多图形都能看成是动静结合,舒展自如的.下面所给的三排图形都存在着某种联系,用线将它们连起来.11.如图①,把一张长为6厘米、宽为10厘米的长方形纸板分成两个相同的直角三角形.(1)甲三角形(如图②)绕轴旋转一周,可以形成一个怎样的几何体?它的体积是多少立方厘米?(2)乙三角形(如图③)绕轴旋转一周,可以形成一个怎样的几何体?它的体积是多少立方厘米?二、创新应用12.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:顶点数多面体面数(F) 棱数(E)(V)四面体 4 4长方体8 6 12正八面体8 12正十二面20 12 30体你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.(2)若一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是.(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱.设该多面体外表三角形的个数为x,八边形的个数为y,求x+y的值.答案一、能力提升1.D.2.C.3.C.直棱柱有12个顶点,一定是六棱柱,因此它的面的个数是8.4.B.5.D.由题中图形可以看出,左边的长方形的竖直的两条边与已知的直线平行,因而这两条边旋转形成两个柱形表面,旋转一周后可能形成的立体图形是一个管状的物体.6.面动成体.从运动的观点可知,薄薄的硬币在桌面上转动时,看上去像球,这种现象说明面转动成体.7.(1)点动成线.(2)线动成面.8.18.将正方形旋转一周所形成的图形是圆柱,从正面看圆柱是一个长方形,长方形的一边长为3cm,另一边长为6cm.因此面积为18cm2. 9.解:(1)六棱柱.(2)8;2;6;六边;长方.(3)侧面的个数与底面多边形的边数相等.10.解:从第一行的平面图形绕某一边旋转或沿某一方向平移可得到第二行的立体图形,从第二行的立体图形的上面看可得到第三行的平面图形.(1)→(三)→(D);(2)→(二)→(C);(3)→(四)→(B);(4)→(一)→(A).11.解:(1)甲三角形绕它的一条直角边所在直线旋转一周,形成一个底面半径是6厘米,高是10厘米的圆锥,它的体积是×π×62×10=120π(立方厘米).(2)乙三角形(如题图③)绕轴旋转一周,形成一个圆柱,且中间挖去了一个和圆柱同底等高的圆锥,它的体积是π×62×10-π×62×10=240π(立方厘米).二、创新应用12.解:(1)四面体的棱数为6;正八面体的顶点数为6;关系式为V+F-E=2.(2)由题意,得F-8+F-30=2,解得F=20.(3)因为有24个顶点,每个顶点处都有3条棱,两点确定一条直线,所以共有24×3÷2=36条棱.由(1)得24+F-36=2,解得F=14,所以x+y=14.。
七年级上册数学 几何图形初步检测题(WORD版含答案)
一、初一数学几何模型部分解答题压轴题精选(难)1.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.(2)MN=【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值. 2.如图(1),将两块直角三角板的直角顶点C叠放在一起.(1)试判断∠ACE与∠BCD的大小关系,并说明理由;(2)若∠DCE=30°,求∠ACB的度数;(3)猜想∠ACB与∠DCE的数量关系,并说明理由;(4)若改变其中一个三角板的位置,如图(2),则第(3)小题的结论还成立吗?(不需说明理由)【答案】(1)解:∠ACE=∠BCD,理由如下:∵∠ACD=∠BCE=90°,∠ACE+∠ECD=∠ECB+∠ECD=90°,∴∠ACE=∠BCD(2)解:若∠DCE=30°,∠ACD=90°,∴∠ACE=∠ACD﹣∠DCE=90°﹣30°=60°,∵∠BCE=90°且∠ACB=∠ACE+∠BCE,∠ACB=90°+60°=150°(3)解:猜想∠ACB+∠DCE=180°.理由如下:∵∠ACD=90°=∠ECB,∠ACD+∠ECB+∠ACB+∠DCE=360°,∴∠ECD+∠ACB=360°﹣(∠ACD+∠ECB)=360°﹣180°=180°(4)解:成立【解析】【分析】(1)根据同角的余角相等即可求证;(2)根据余角的定义可先求得∠ACE=∠ACD-∠DCE,再由图可得∠ACB=∠ACE+∠BCE,把∠ACE和∠BCE 的度数代入计算即可求解;(3)由图知,∠ACB=∠ACD+∠BCE-∠ECD,则∠ACB+∠ECD=∠ACD+∠BCE,把∠ACD和∠BCE的度数代入计算即可求解;(4)根据重叠的部分实质是两个角的重叠可得。
初一数学第一章基本的几何图形单元测试题
初一数学第一章基本的几何图形单元测试题一、选择题(每题3分,共45分)1、下列几何体属于柱体的个数是()A. 3 B . 4 C . 5 D . 62、下列说法错误的是()A、流星落下时在天空留下充满幻想的线条,说明点动成线;B汽车在雨中行驶,雨刷器来回摆动说明线动成面;C、旋转门旋转一周成为一个圆柱,说明面动成体;D面与面相交的地方是线,线有粗细之分4、如图是每个面上都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“国” 字相对的面是()A.中B .钓C .鱼D .岛5、如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B .两点之间线段最短C.垂线段最短D .在同一平面内,过一点有且只有一条直线与已知直线垂直6、如图,在直线上依次有五个点A、B C、D E,则图中线段和射线条数依次分别为()A. 4,2 B . 10,10 C . 10,20 D . 10,57、2015年8月12日济青高铁开工建设,建设中的济青高铁从济南出发,途径邹平-淄博- 潍坊-高密-胶州,最后到达青岛,若火车车票的价格由路程决定,则沿途总共有不同的票价()种.A. 14 B . 15 C . 42 D . 21&下列语句正确的是()A.画直线AB=10厘米B .若PA=PB则P是线段AB的中点;C•射线是直线的一半 D .延长线段AB到点C,使得BC=AB9、下列说法正确的是()A、连接两点的线段叫两点间的距离;B延长射线MN到C; C、三条直线两两相交,有3个交点;D不在同一直线上的三点确定一个平面3、如图中是正方体的展开图的有(个A 2个B、3个C、4个D、5个中国的钓鱼岛(1)⑵⑶⑷⑸⑹(T)⑻/ 从lEffi看A.1、 共15分)且所有侧棱的和为40cn ,则每条侧棱长为2、 、填空题(每题3分, 一个棱柱有10个面,如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原 cm.10、下列事实可以用“两点确定一条直线”来解释的有( )个①墙上钉木条至少要两颗钉子才能牢固;②农民拉绳播秧;③解放军叔叔打靶瞄准;④从 A 地到B 地架设电线,总是 尽可能沿着线段AB 架设.A. 1 B . 2 C . 3 D . 411、、将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为(12、 已知AB=8cm BC=3cm 且A ,B ,C 三点在同一条直线上,则 AC=( A. 11cm B . 5cm C . 8cm 或 3cm13、 观察图形,下列说法正确的个数是((2)射线AC 和射线AD 是同一条射线 定有三个交点.A. 1个B . 2个C14、 点C 是线段AB 上一点,点D 是BC 的中点,若AD=5cm 则AC+A 等于()A B 10cm C 、12cm D 、不确定15、 如图,一个几何体是由两个小正方体和一个圆锥构成,其主视图是(D . 5cm 或 11cm)(1)直线BA 和直线AB 是同一条直线(3) AB+B 8AD (4)三条直线两两相交时,.3个 D . 4个// :\、8cmA.C .D.因3、如图所示,以0为端点画六条射线OA OB OC OD OE OF,再从射线0A上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6, 7 , 8…后,那么所描的第2013个点在射线 __________ 上.4、从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为_________________5、点与直线的位置关系是 __________ 和 _____________ ,平面内两条直线的位置关系是_________ 和_____________三、解答题(每题12分,共60分)1、如图,已知线段a,b,c,用圆规和直尺画线段,使它等于a+2b-c3、先阅读下面材料,然后解答问题:材料一:如图(1),直线L上有A、A两个点,若在直线L上要确定一点P,且使点P到点A、A的距离之和最小,很明显点P的位置可取在A i和A之间的任何地方,此时距离之和为A到A的距离.如图(2),直线L上依次有A、A A三个点,若在直线L上要确定一点P,且使点P到点A、A A的距离之和最小,不难判断,点P的位置应取在点A处,此时距离之和为A到A 的距离.(想一想,这是为什么)不难知道,如果直线L上依次有A、A、A、A四个点,同样要确定一点P,使它到各点的距离之和最小,则点P应取在点A和A之间的任何地方;如果直线L上依次有A、A A A A五个点,则相应点P的位置应取在点A的位置.---- * ---------A图⑴囹⑵问题一:若已知直线L上依次有点A、A A、…、人5共25个点,要确定一点P,使它到已知各点的距离之和最小,则点P的位置应取在_________________________ ;若已知直线L上依次有点A、A、A、…、A共50个点,要确定一点P,使它到已知各点的距离之和最小,则点P的位置应取在____________________ .4、十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式。
部编数学七年级上册4.1几何图形测试(解析版)(人教版)含答案
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!专题4.1 几何图形一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2020·全国初一课时练习)下列各组图形中都是平面图形的是( )A.三角形、圆、球、圆锥B.点、线段、棱锥、棱柱C.角、三角形、正方形、圆D.点、角、线段、长方体【答案】C【解析】解:A.圆锥和球不是平面图形,故错误;B. 棱锥、棱柱不是平面图形,故错误;C.角,三角形,正方形,圆都是平面图形,故正确;D.长方体不是平面图形,故错误.故选C.2.(2020·全国初一课时练习)下列几何体中,属于柱体的有()A.1个B.2个C.3个D.4个【答案】B【解析】第一个图是圆锥;第二个图是三棱锥;第三个图是正方体,也是四棱柱;第四个图是球;第五个图是圆柱;其中柱体有2个,即第三个和第五个,故选:B.3.(2020·全国单元测试)一个长方体每个角都被割去(相邻两个角之间还有一段原来的棱),得到的几何体有________条棱.()A.24B.30C.36D.42【答案】C【解析】原长方体有12条棱,切去一个小角后增加3条棱,切去八个小角后增加24条棱,因此新几何体有36条棱;故选C4.(2020·广西环江·三模)水平地面上的球和圆柱体如图摆放,其主视图是()A .B .C .D .【答案】B 【解析】解:根据题意,由主观图的定义,则题目中的图形主视图为B 选项;故选:B .5.(2020·陕西西安·西北工业大学附属中学初一期中)现在社会快递业发展迅速,各种精美安全的包装也深受大家的喜欢,下图是某快递公司使用的包装 盒平面图,能够折叠呈长方体纸盒的是( )A .①②B .①③C .②③D .③④【答案】A 【解析】根据长方体的展开图可直接得到①②符合,③④不符合题意;故选A .6.(2020·湖北广水·初三其他)某几何体的三视图如图所示,则下列说法错误的是( )A .该几何体是长方体B .该几何体的高是3C .底面有一边的长是1D .该几何体的表面积为18平方单位【答案】D【解析】解:、该几何体是长方体,正确;、该几何体的高为3,正确;、底面有一边的长是1,正确;、该几何体的表面积为:平方单位,故错误,故选.7.(2019·深圳布心中学初一期中)如图,某同学在制作正方体模型的时候,在方格纸上画出几个小正方形(图A B C D ()212231322´´+´+´=D中阴影部分),但是由于疏忽少画了一个,请你给他补上一个,使之可以组合成正方体,你一共有( )种画法.A .2B .3C .4D .5【答案】B 【解析】解:如图所示;故答案为B.8.(2020·陕西神木·期末)如图,下列图形绕直线旋转一周后,能得到圆锥体的是( )A .B .C .D .【答案】B【解析】解:只有直角三角形绕直角边旋转一周,可以得到一个圆锥.故选:B .9.(2020·四川省成都市七中育才学校初一期末)用一个平面去截正方体,截面的形状不可能是( )A .四边形B .五边形C .六边形D .七边形【答案】D【解析】用平面去截正方体时最多与六个面相交得六边形,因此截面的形状可能是:三角形、四边形、五边形、六边形,不可能是七边形.故选:D.10.(2020·四川省射洪县射洪中学外国语实验学校月考)如图是一个正方体纸盒的表面展开图,若在其中三个正方形A 、B 、C 内分别填入适当的数,使它折成正方体后相对的面上的两数互为相反数,则填在正方形A 、B 、C 内的三个数依次为()lA.-2,1,0B.1,-2,0C.0,-2,1D.-2,0,1【答案】C【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“0”是相对面,“B”与“2”是相对面,“C”与“-1”是相对面,∵相对的面上的两个数互为相反数,∴填入正方形A、B、C内的三个数依次为0,-2,1.故选:C.11.(2020·广东源城·正德中学初一期末)如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为( )A.8B.12C.18D.20【答案】A【解析】解:由图可知长方体的高是1,宽是3-1=2,长是6-2=4,长方体的容积是4×2×1=8,故选:A.12.(2020·全国初一课时练习)如图,点A,B,C是正方体三条相邻的棱的中点,沿着A,B,C三点所在的平面将该正方体的一个角切掉,然后将其展开,其展开图可能是()A .B .C .D .【答案】D【解析】选项A. B. C 折叠后都不符合题意,只有选项D 折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点符合.故选D.13.(2020·浙江湖州·中考真题)如图,将一段标有0~60均匀刻度的绳子铺平后折叠(绳子无弹性),使绳子自身的一部分重叠,然后在重叠部分沿绳子垂直方向剪断,将绳子分为A 、B 、C 三段,若这三段的长度由短到长的比为1:2:3,则折痕对应的刻度不可能是( )A .20B .25C .30D .35【答案】C 【解析】解:设折痕对应的刻度为xcm ,依题意有绳子被剪为10cm ,20cm ,30cm 的三段,①x=+10=20,②x=+10=25,③x=+20=35,④x=+20=25,⑤x=+30=35,⑥x=+30=40.综上所述,折痕对应的刻度可能为20、25、35、40.故选C.14.(2019·贵州安顺·初一期末)以长,宽的长方形的边所在的直线为轴,旋转一周得到一个圆柱体,则它的体积是()A .B .C .或D .或【答案】D【解析】解:以长方形的长为轴旋转,底面积:π×32=9π,2023023021021022024cm 3cm 39m p 312cm p 39cm p 312cm p 336cm p 348m p体积:9π×4=;以长方形的宽为轴旋转,底面积:π×42=16π,体积:16π×4=;所以这个圆柱的体积是或,故选D .二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.(2019·福建福鼎·初一期中)七棱柱共有棱_________条.【答案】21【解析】七棱柱共有21条棱,故答案为:21.16.(2020·辽宁太和区第二初中初一月考)观察下面的几何体,从上面看到的是_______,从左面看到的是_________.从正面看到的是________.【答案】③ ② ①【解析】由图可知从上面看到的是,故填③;从左面看到的是,故填②;从正面看到的是,故填①.17.(2018·山东南区·青岛三十九中初一期末)在图中增加1个小正方形,使所得图形经过折叠能够围成一个正方体,在图中适合按要求加上小正方形的位置有_________个.【答案】4【解析】解:如图所示,336cm p 348m p 336cm p 348mp故答案为4,18.(2019·山东省招远市金岭镇邵家初级中学初一期中)把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有________朵花.【答案】17【解析】长方体下底面依次是紫色面、黄色面、绿色面、白色面,然后将对应的花的朵数相加即可.即故答案为17三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.(2020·全国初一课时练习)下面是从不同方向观察某一个用小方块搭的立体图形时,看到的两个平面图形,判断两位同学用小方块搭的立体图形是否正确.【答案】张度搭成的立体图形是正确的;李磊搭成的立体图形是错误的.【解析】观察图形可知,张度搭成的图形从正面看到的图形是,符合题意;526417+++=从上面看到的图形是,符合题意,∴张度搭成的立体图形是正确的;李磊搭成的图形从正面看到的图形是,符合题意;从上面看到的图形是,不符合题意,∴李磊搭成的立体图形是错误的.20.(2020·四平市第三中学校月考)如图所示的长方体的容器,AB=BC ,BB’=3AB 且这个容器的容积为192立方分米.(1)求这个长方体容器底面边长AB 的长为多少分米?(2)若这个长方体的两个底面和侧面都是用铁皮制作的,则制作这个长方体容器需要多少平方分米铁皮?(不计损耗)【答案】(1)4分米,(2)224平方分米.【解析】解:(1)设AB=BC ,BB’=3AB ,由这个容器的容积为192立方分米,(分米). (2)长方体的表面积为:(平方分米), 制作这个长方体容器需要平方分米的铁皮.21.(2020·渠县第四中学期中)学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如下表:(1)当桌子上放有x (个)碟子时,请写出此时碟子的高度(用含x 的式子表示);,AB x =Q ',3,BC x BB x \==3192,x x x \··=364,x \=4,x \=4AB \='4,12,AB BC BB ===Q \244441232192224´´+´´=+=\224(2)桌面上整齐地摆放几摞碟子,分别从三个方向上看,其三种形状图如下图所示,厨房师傅想把它们整齐叠成一摞,求叠成一摞后的高度.碟子的个数碟子的高度(单位: cm)1222+1.532+342+4.5……【答案】(1);(2)叠成一摞后的高度为18.5 cm【解析】(1)由图可知,每增加一个碟子高度增加1.5cm ,桌子上放有x 个碟子时,高度为2+1.5(x−1)=1.5x +0.5;(2)由图可知,共有3摞,左前一摞有5个,左后一摞有4个,右边前面一摞有3个,共有:3+4+5=12个,叠成一摞后的高度=1.5×12+0.5=18.5cm .答:叠成一摞后的高度为18.5 cm.22.(2020·浙江江北·初三学业考试)将立方体纸盒沿某些棱剪开,且使六个面连在一起,然后铺平,可以得到其表面展开图的平面图形.(1)以下两个方格图中的阴影部分能表示立方体表面展开图的是 (填A 或B ).(2)在以下方格图中,画一个与(1)中呈现的阴影部分不相似(包括不全等)的立方体表面展开图.(用阴影表示)()2 1.51x +-(3)如图中的实线是立方体纸盒的剪裁线,请将其表面展开图画在右图的方格图中.(用阴影表示)【答案】(1)A;(2)见解析;(3)见解析【解析】解:(1)两个方格图中的阴影部分能表示立方体表面展开图的是A,故答案为:A.(2)立方体表面展开图如图所示:(3)将其表面展开图画在方格图中如图所示:23.(2020·江西南昌·初一期末)把棱长为1cm的若干个小正方体摆放成如图所示的几何体,然后在露出的表面上涂上颜色(不含底面)(1)该几何体中有小正方体?(2)其中两面被涂到的有个小正方体;没被涂到的有个小正方体;(3)求出涂上颜色部分的总面积.【答案】(1)14;(2)4,1;(3)33cm 2【解析】(1)该几何体中正方体的个数为9+4+1=14个;(2)根据图中小正方体的位置可知:最底层外边中间的小正方体被涂到2个面,共4个,只有最底层正中间的小正方体没被涂到,故答案为4;1;(3)先算侧面--底层12个小面; 中层8个小面; 上层4个小面;再算上面--上层1个 中层3个(正方体是可以移动的,不管放在哪里,它压住的面积总是它的底面积,也就是一个,所以中层是4减1个)底层(9-4)=5个,∴总共12+8+4+1+3+5=33个小面.∴涂上颜色部分的总面积=1133=33cm 2.24.(2020·扬州中学教育集团树人学校初一月考)如图是一张长方形纸片,长为,长为.(1)若将此长方形纸片绕它的一边所在直线旋转一周,则形成的几何体是______;(2)若将这个长方形纸片绕边所在直线旋转一周,则形成的几何体的体积是____(结果保留);(3)若将这个长方形纸片绕它的一边所在直线旋转一周,求形成的几何体的表面积(结果保留).【答案】(1)圆柱;(2);(3)或.【解析】(1)圆柱;(2) 绕AB 旋转得到的圆柱的底面半径为,高为,体积;(3)绕边所在直线旋转得到的圆柱的底面半径为,高为3cm ,表面积是:;绕边所在直线旋转得到的圆柱的底面半径为,高为,表面积是:.答:形成的几何体的表面积是或.25.(2018·山西初一月考)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V )、面数(F )、棱数(E )之间存在一个有趣的关系式,这个关系式被称为欧拉公式.请你观察下列几种简单的多面体模型,解答下列问题:´´AB 3cm BC4cm AB 3cm p p 48p 240cm p 233cm p 4cm 3cm 234348cm p p =´´=AB 4cm ()22243440cm p p p ´´+´=AD 3cm 4cm ()22243333cm p p p ´´+´=240cm p 233cm p(1)完成表格:多面体顶点数(V )面数(F )棱数(E )四面体446长方体8612八面体6812某多面体20 30你发现顶点数(V )、面数(F )、棱数(E )之间存在的关系式是 F =;(用 含 V 、E 的式子表示)(2)如果一个多面体每个顶点处都有a 条棱,那么这个多面体的棱数(E )与顶点数(V )之间的关系式为 E =a ×V .现有一个二十面体,有12个顶点,每个顶点处有 5 条棱,那么该二十面体有多少条棱?(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和六边形两种多边形用含 n 的代数式表示)拼接而成,且有 18个顶点,每个顶点处都有4 条棱,设该多面体表面三角形的个数为 m ,六边形的个数为 n ,求m+n 的值.【答案】(1)12,;(2)30;(3)20【解析】解:(1)多面体顶点数()面数()棱数()四面体446长方体8612正八面体6812正十二面体201230(2)∵(条)∴该二十面体共有30条棱.(3))∵有18个顶点,每个顶点处都有4条棱,两点确定一条直线;122F E V =-+V F E 2F E V =-+125302´=∴共有18×4÷2=36(条棱),∵F=E−V+2∴18+F-36=2,解得:F=20,∴m+n=20;26.(2020·河南渑池·初一期末)如图所示,在一张正方形纸片的四个角上各剪去一个同样大小的正方形,然后把剩下的部分折成一个无盖的长方体盒子.请回答下列问题:(1)剪去的小正方形的边长与折成的无盖长方体盒子的高之间的大小关系为 ;(2)如果设原来这张正方形纸片的边长为,所折成的无盖长方体盒子的高为,那么,这个无盖长方体盒子的容积可以表示为 ;(3)如果原正方形纸片的边长为,剪去的小正方形的边长按整数值依次变化,即分别取时,计算折成 的无盖长方体盒子的容积得到下表,由此可以判断,当剪去的小正方形边长为时,折成的无盖长方体盒子的容积最大剪去的小正方 形的边长12345678910折成的无盖长方体的容积324576500384252128360【答案】(1)相等;(2)h (a-2h )2;(3)3【解析】解:(1)由折叠可知,剪去的小正方形的边长与折成的无盖长方体盒子的高之间的大小关系为相等,故答案为:相等;(2)这个无盖长方体盒子的容积=h (a-2h )(a-2h )=h (a-2h )2(cm 3);故答案为:h (a-2h )2;(3)当剪去的小正方形的边长取2时,m=2×(20-2×2)2=512,acm hcm 3cm 20cm 1,2,3,4,5,6,7,8,9,10cm cm cm cm cm cm cm cm cm cm cm /cm3/cm m n当剪去的小正方形的边长取3时,n=3×(20-2×3)2=588,当剪去的小正方形的边长的值逐渐增大时,所得到的无盖长方体纸盒的容积的值先增大后减小,当剪去的小正方形的边长为3cm时,所得到的无盖长方体纸盒的容积最大.故答案为:3.。
人教版七年级数学上册第四章《几何图形初步》测试卷(含答案)
人教版七年级数学上册第四章《几何图形初步》测试卷(含答案)一、选择题1.如图所示的四种物体中,哪种物体最接近于圆柱 ( )2.一个几何体从前面、左面、上面看到的图形如图所示,则该几何体是( )A.棱柱B.圆柱C.圆锥D.球3.如图所示的几何体是由右边哪个图形绕虚线旋转一周得到( )A. B. C. D.4.下列四个平面图形中,不能折叠成无盖的长方体盒子的是( )A. B. C. D.5.下列图形中的线段和射线能够相交的是( )6.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则2x+y的值为( )A.0B.﹣1C.﹣2D.17.七年级一班的同学想举行一次拔河比赛,他们想从两条大绳中挑出一条最长的绳子,请你为他们选择一种合适的方法( )A.把两条大绳的一端对齐,然后拉直两条大绳,另一端在外面的即为长绳B.把两条绳子接在一起C.把两条绳子重合,观察另一端情况D.没有办法挑选8.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是( )A.用两个钉子就可以把木条固定在墙上B.利用圆规可以比较两条线段的大小关系C.把弯曲的公路改直,就能缩短路程D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线9.下列语句正确的是( ).A.由两条射线组成的图形叫做角B.如图,∠A就是∠BACC.在∠BAC的边AB延长线上取一点D;D.对一个角的表示没有要求,可任意书定10.已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β与∠γ关系式为( )A.∠β﹣∠γ=90°B.∠β+∠γ=90°C.∠β+∠γ=80°D.∠β﹣∠γ=180°11.如图,C、D是线段AB上两点,已知图中所有线段的长度都是正整数,且总和为29,则线段AB的长度是()A.8 B.9 C.8或9 D.无法确定12.用一副学生用的三角板的内角(其中一个三角板的内角是45°,45°,90°;另一个是30°,60°,90°,可以画出大于0°且小于等于150°的不同角度的角共有( )种.A.8B.9C.10D.11二、填空题13.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出现这一现象的原因14.两条直线相交有个交点,三条直线相交最多有个交点,最少有个交点.15.用“度分秒”来表示:8.31度=度分秒.16.如图,点O是直线AD上的点,∠AOB,∠BOC,∠COD三个角从小到大依次相差25°,则这三个角的度数分别是.17.比较大小:52°52′________ 52.52°.(填“>”、“<”或“=”)18.如图,将长方形纸片ABCD的∠C沿着GF折叠(点F在BC上,不与点B,C重合),使点C落在长方形的内部点E处.若FH平分∠BFE,则∠GFH的度数是__________.三、作图题19.按要求画出图形,并回答问题:(1)画直线l,在直线l上取A,B,C三点,使点C在线段AB上,在直线l外取一点P,画直线BP,射线PC,连结AP;(2)在(1)中所画图中,共有几条直线,几条射线,几条线段?请把所有直线和线段用图中的字母表示出来.四、解答题20.如图(1),已知直角三角形两直角边的长分别为3和4,斜边的长为5.(1)试计算该直角三角形斜边上的高;(2)按如图(2),(3),(4)三种情形计算该直角三角形绕某一边旋转得到的立体图形的体积.(结果保留π)21.如图,点M是线段AC的中点,点B在线段AC上,且AB=4 cm,BC=2AB,求线段MC和线段BM的长.22.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中有多少个小于平角的角;(2)求出∠BOD的度数;(3)请通过计算说明OE是否平分∠BOC.23.如图,把一副三角尺的直角顶点O重叠在一起.(1)如图①,当OB平分∠COD时,则∠AOD和∠BOC的和是多少度?(2)如图②,当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度?24.如图,已知线段AB上有两点C,D,且AC∶CD∶DB=2∶3∶4,E,F分别为AC,DB的中点,EF=2.4 cm,求线段AB的长.25.如图,已知∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.(1)求∠EOF的度数;(2)若将条件“∠AOB是直角,∠BOC=60°”改为:∠AOB=x°,∠EOF=y°,其它条件不变.①则请用x的代数式来表示y;②如果∠AOB+∠EOF=156°.则∠EOF是多少度?答案1.A.2.B.3.C.4.A.5.D6.B7.A8.C9.B10.A11.C12.C13.答案为:两点之间,线段最短14.答案为:1;3;1.15.答案为:8,18,36.16.答案为:35°,60°,85°.17.答案为:>.18.答案为:90°19.解:(1)如图所示;(2)2条直线,12条射线,6条线段,直线l,直线BP,线段AC,BC,AB,AP,CP,BP.20.解:(1)三角形的面积为12×5h=12×3×4,解得h= 12/5.(2)在图4-11(2)中,所得立体图形的体积为13π×32×4=12π;在图4-11(3)中,所得立体图形的体积为13π×42×3=16π;在图4-11(4)中,所得立体图形的体积为13π×(125)2×5= 9.6π.21.解:因为AB=4 cm,BC=2AB,所以BC=8 cm,所以AC=AB+BC=12 cm,因为M是线段AC中点,所以MC=AM=12AC=6 cm,所以BM=AM-AB=2 cm22.解:(1)图中小于平角的角有∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB,共9个.(2)因为∠AOC=50°,OD平分∠AOC,所以∠DOC=1/2∠AOC=25°,∠BOC=180°-∠AOC=130°.所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE-∠DOC=90°-25°=65°.又因为∠BOE=∠BOD-∠DOE=155°-90°=65°,所以∠COE=∠BOE,即OE平分∠BOC.23.解:(1)∵∠AOB=∠COD=90°,当OB平分∠COD时,∠DOB=∠BOC=∠COA=45°,∴∠AOD+∠BOC=3×45°+45°=4×45°=180°.(2)∠AOD+∠BOC=∠AOB+(∠COD-∠BOC)+∠BOC=∠AOB+∠COD=90°+90°=180°.24.解:因为AC∶CD∶DB=2∶3∶4,所以设AC=2x cm,CD=3x cm,DB=4x cm.所以EF=EC+CD+DF=x+3x+2x=6x cm.所以6x=2.4,即x=0.4.所以AB=2x+3x+4x=9x=3.6 cm.25.解:(1)∵∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC. ∴∠EOF=∠EOC﹣∠FOC=12∠AOC﹣12∠BOC=12(∠AOB+∠BOC)﹣12∠BOC=12∠AOB=45°;(2)①∵∠AOB=x°,∠EOF=y°,OE平分∠AOC,OF平分∠BOC. ∴∠EOF=∠EOC﹣∠FOC=12∠AOC﹣12∠BOC=12(∠AOB+∠BOC)﹣12∠BOC=12∠AOB.即y=12x.②∵∠AOB+∠EOF=156°.则x+y=156°,又∵y=12x.联立解得y=52°. 即∠EOF是52°.。
七年级数学上册《基本的几何图形》单元测试卷(附答案)
七年级数学上册《基本的几何图形》单元测试卷(附答案)一.选择题1.如图所示的立方体,如果把它展开的图形是()A.B.C.D.2.下列几何体中,是圆锥的为()A.B.C.D.3.将下列平面图形绕轴旋转一周,可得到图中所示的立体图形的是()A.B.C.D.4.有一个几何体模型,甲同学:它的侧面是曲面;乙同学:它只有一个底面,且是圆形.则该模型对应的立体图形可能是()A.三棱柱B.三棱锥C.圆锥D.圆柱5.如果大圆的周长是小圆周长的4倍,那么小圆面积是大圆面积的()A.B.C.D.6.如图是一无盖的正方体盒子,下列展开图不能叠合成无盖正方体的是()A.B.C.D.7.有一个正方体木块,每一块的各面都写上不同的数字,三块的写法完全相同,现把它们摆放成如图所示的位置.请你判断数字4对面的数字是()A.6 B.3 C.2 D.18.图中的圆柱体是由下面哪个图形旋转面成的()A.B.C.D.9.下面的几何体,是由A、B、C、D中的哪个图旋转一周形成的()A.B.C.D.10.一个正方体的表面涂满了颜色,按如图所示将它切成27个大小相等的小立方块,设其中仅有i个面(1,2,3)涂有颜色的小立方块的个数为x i,则x1、x2、x3之间的关系为()A.x1﹣x2+x3=1 B.x1+x2﹣x3=1 C.x1+x3﹣x2=2 D.x1﹣x3+x2=2二.填空题11.七棱柱共有棱条.12.用一张正方形的纸片剪出一个面积最大的圆形纸片,如果已知正方形的边长是4厘米,那么这个圆形的面积是平方厘米.13.如图为某几何体的展开图,该几何体的名称是.14.已知长方形的长为5,宽为2,将其绕它的一条边所在的直线旋转一周,得到一个几何体,该几何体的体积为(结果保留π).15.一个棱柱有6个面,则它的棱数是.16.一个长方形的长AB为4cm,宽BC为3cm,则将其绕AB边旋转一周,得到一个圆柱体,则该圆柱体的体积是cm3(保留π).17.如图,把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去了7个小正方体),所得到的几何体的表面积是.18.下列图形中,不能折成正方体的有(填序号).19.如果按图中虚线对折可以做成一个上底面为无盖的盒子,那么该盒子的下底面的字母是.20.一个几何体的面数为12,棱数为30,它的顶点数为.三.解答题21.有一个硬纸做成的礼品盒,用彩带扎住(如图),打结处用去的彩带长18厘米.(1)共需要彩带多少厘米?(2)做这样一个礼品盒至少要多少硬纸?(3)这个礼品盒的体积是多少?(π取3.14)22.如图,用棱长为1的小立方体搭成几何体,请计算它的体积和表面积.23.如图所示是一张铁皮.(1)计算该铁皮的面积;(2)它能否做成一个长方体盒子?若能,画出来,计算它的体积;若不能,说明理由.24.如图.已知大圆的直径为4厘米,求图中空白部分的面积.25.如图所示,已知直角三角形纸板ABC,直角边AB=4cm,BC=8cm.(1)将直角三角形纸板绕三角形的边所在的直线旋转一周,能得到种大小不同的几何体?(2)分别计算绕三角形直角边所在的直线旋转一周,得到的几何体的体积?(圆锥的体积=πr2h,其中π取3)26.在一个长方形中,长和宽分别为4cm、3cm,若该长方形绕着它的一边旋转一周,形成的几何体的体积是多少?(结果用π表示)27.将一个正方体的表面涂上颜色.如图把正方体的棱2等分,然后沿等分线把正方体切开,能够得到8个小正方体,通过观察我们可以发现8个小正方体全是3个面涂有颜色的.如果把正方体的棱三等分,然后沿等分线把正方体切开,能够得到27个小正方体,通过观察我们可以发现这些小正方体中有8个是3个面涂有颜色的,有12个是2个面涂有颜色的,有6个是1个面涂有颜色的,还有1个各个面都没有涂色.(1)如果把正方体的棱4等分,所得小正方体表面涂色情况如何呢?把正方体的棱n等分呢?(请填写下表):棱等分数4等分n等分个个3面涂色的正方体个个2面涂色的正方体个个1面涂色的正方体个个各个面都无涂色的正方体(2)请直接写出将棱7等分时只有一个面涂色的小正方体的个数.参考答案与解析一.选择题1.解:选项A、C中折叠后带图案的三个面不能相交于同一个点,与原立方体不符;选项B中折叠后三角形和圆的位置不符,所以正确的是D.故选:D.2.解:圆锥是由一个圆形的底面,和一个弯曲的侧面围成的,因此选项B中的几何体符合题意,故选:B.3.解:A、绕轴旋转一周可得到圆柱,故此选项不合题意;B、绕轴旋转一周,可得到球体,故此选项不合题意;C、绕轴旋转一周,可得到一个中间空心的几何体,故此选项不合题意;D、绕轴旋转一周,可得到图中所示的立体图形,故此选项符合题意;故选:D.4.解:侧面是曲面,底面是圆形,该模型对应的立体图形可能是圆锥,故选:C.5.解:设小圆的周长为a,则大圆周长为4a,因此小圆半径为,大圆半径为,所以小圆面积为π×()2=,大圆的面积为π×()2=,因此小圆面积是大圆面积的,故选:C.6.解:C中有两个正方形重合,无法叠合成无盖正方体,故C错误;故选:C.7.解:由图可知,与4相邻的数字有1、2、5、6,所以,数字4对面的数字为3.故选:B.8.解:圆柱可以看成绕矩形的一边旋转得到,观察图像可知,圆柱的高大于底面圆的直径,故选项B符合题意,故选:B.9.解:根据面动成体,可知A图旋转一周形成圆台这个几何体,故选:A.10.解:根据以上分析可知x1+x3﹣x2=2.故选:C.二.填空题11.解:七棱柱上下底面是七边形,侧面是七个长方形,则共有棱7×2+7=21条,故答案为21.12.解:∵正方形的边长是4厘米,∴剪出的最大的圆直径为4厘米,半径=2厘米,所以,圆的面积=πr2=3.14×22=12.56(平方厘米).故答案为:12.56.13.解:由几何体上下底面是五边形,可知该几何体是五棱柱,故答案为五棱柱.14.解:长方形绕一边旋转一周,得圆柱.情况①:π×52×2=50π(cm3);情况②:π×22×5=20π(cm3);故答案为:50π或20π.15.解:由n棱柱有(n+2)个面,因此有n+2=6,解得,n=4,又四棱柱有4×3=12条棱,故答案为:12.16.解:由题意得,绕AB边旋转一周,得到的圆柱体的底面半径为3cm,高为4cm,因此体积为π×32×4=36π(cm3),故答案为:36π.17.解:如图所示,周边的六个挖空的正方体每个面增加4个正方形,减少了1个小正方形,则每个面的正方形个数为12个,则表面积为12×6×1=72.故答案为:72.18.解:③可以折成正方体;①、②、④折叠后有一个面重合,缺少一个底面,故不能折成正方体.故答案为:①、②、④.19.解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴做成一个无盖的盒子,盒子的底面的字母是B,周围四个字母分别是AECD,故答案为:B.20.解:∵简单多面体的顶点数V、面数F及棱数E间的关系为:V+F﹣E=2,一个棱柱的面数为12,棱数是30,∴则其顶点数为:V+12﹣30=2,解得:V=20.故答案为:20三.解答题21.解:(1)50×4+20×4+18=298(cm),(2)π×()2×2+π×20×50=200π+1000π=1200π(cm2),(3)π×()2×50=5000π≈15700(cm3),答:做这样一个礼品盒共需要彩带298厘米;至少要1200π平方厘米的硬纸;这个礼品盒的体积约为15700立方厘米.22.解:小立方体的棱长是1,所以每个小立方体的体积是1,有7个小立方体,所以这个几何体的体积是7;从正面看,有4个面,从后面看有4个面,从上面看,有4个面,从下面看,有4个面,从左面看,有6个面,从右面看,有6个面,所以几何体的表面积为(4+4+6)×2=28.23.解:(1)(1×3+2×3+1×2)×2=22(m2),(2)根据棱柱的展开与折叠,可以折叠成长方体的盒子,如图所示,其长、宽、高分别为3m,2m,1m,因此体积为:1×2×3=6(m3),24.解:如图,通过割补法,空白部分的面积可以转化为正方形ACBD的面积,S=AB•CD=×4×4=8(cm2),正方形ACBD答:图中空白部分的面积为8cm2.25.解:(1)将直角三角形纸板ABC绕三角形的三条边所在的直线旋转一周,能得到3种大小不同的几何体.故答案为:3.(2)以AB为轴:×3×82×4=×3×64×4=256(立方厘米);以BC为轴:×3×42×8=×3×16×8=128(立方厘米).答:以AB为轴得到的圆锥的体积是256立方厘米,以BC为轴得到的圆锥的体积是128立方厘米.26.解:绕长所在的直线旋转一周得到圆柱体积为:π×32×4=36πcm3.绕宽所在的直线旋转一周得到圆柱体积:π×42×3=48πcm3.故形成的几何体的体积是36πcm3或48πcm3.27.解:(1)三面涂色8,8;二面涂色24,12(n﹣2),一面涂色24,6(n﹣2)2各面均不涂色8,(n﹣2)3;(2)当n=7时,6(n﹣2)2=6×(7﹣2)2=150,所以一面涂色的小正方第11页共11页。
初中数学几何图形初步基础测试题含答案
初中数学几何图形初步基础测试题含答案一、选择题1.如图,已知AB∥DC,BF平分∠ABE,且BF∥DE,则∠ABE与∠CDE的关系是()A.∠ABE=2∠CDE B.∠ABE=3∠CDEC.∠ABE=∠CDE+90°D.∠ABE+∠CDE=180°【答案】A【解析】【分析】延长BF与CD相交于M,根据两直线平行,同位角相等可得∠M=∠CDE,再根据两直线平行,内错角相等可得∠M=∠ABF,从而求出∠CDE=∠ABF,再根据角平分线的定义解答.【详解】解:延长BF与CD相交于M,∵BF∥DE,∴∠M=∠CDE,∵AB∥CD,∴∠M=∠ABF,∴∠CDE=∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∴∠ABE=2∠CDE.故选:A.【点睛】本题考查了平行线的性质和角平分线的定义,作辅助线,是利用平行线的性质的关键,也是本题的难点.2.下列图形中,是正方体表面展开图的是()A.B.C.D.【解析】【分析】利用正方体及其表面展开图的特点解题.【详解】解:A 、B 、D 经过折叠后,下边没有面,所以不可以围成正方体,C 能折成正方体. 故选C .【点睛】本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.3.如图,O 是直线AB 上一点,OC 平分∠DOB,∠COD=55°45′,则∠AOD=( )A .68°30′B .69°30′C .68°38′D .69°38′【答案】A【解析】【分析】先根据平分,求出∠COB ,再利用互补求∠AOD【详解】∵OC 平分∠DOB ,∠COD=55°45′∴∠COB=55°45′,∠DOB=55°45′+55°45′=111°30′∴∠AOD=180-111°30′=68°30′故选:A【点睛】本题考查角度的简单推理,计算过程中,设计到了分这个单位,需要注意,分与度的进率是604.如图,已知直线AB 和CD 相交于G 点,CG EG ⊥,GF 平分AGE ∠,34CGF ∠=︒,则BGD ∠大小为( )A .22︒B .34︒C .56︒D .90︒【答案】A【解析】先根据垂直的定义求出∠EGF的度数,然后根据GF平分∠ABE可得出∠AGF的度数,再由∠AGC=∠AGF-∠CGF求出∠AGC的度数,最后根据对顶角相等可得出∠BGD的度数.【详解】解:∵CG⊥EG,∴∠EGF=90°-∠CGF=90°-34°=56°,又GF平分∠AGE,∴∠AGF=∠EGF=56°,∴∠AGC=∠AGF-∠CGF=56°-34°=22°,∴∠BGD=∠AGC=22°.故选:A.【点睛】本题考查了对顶角的性质,垂直的定义以及角平分线的定义,掌握基本概念和性质是解题的关键.5.下列图形不是正方体展开图的是()A.B.C.D.【答案】D【解析】【分析】根据正方体展开的11种形式对各选项分析判断即可【详解】A、B、C是正方体展开图,错误;D折叠后,有2个正方形重合,不是展开图形,正确故选:D【点睛】本题是空间想象力的考查,解题关键是在脑海中折叠图形,看是否满足条件6.在直角三角形ABC中,∠C=90°,AD平分∠BAC交BC于点D,BE平分∠ABC交AC于点E,AD、BE相交于点F,过点D作DG∥AB,过点B作BG⊥DG交DG于点G.下列结论:①∠AFB=135°;②∠BDG=2∠CBE;③BC平分∠ABG;④∠BEC=∠FBG.其中正确的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据角平分线性质、三角形内角和定理以及平行线的性质,即可判定①②正确;根据等角的余角相等,即可判定④正确.【详解】∵AD平分∠BAC交BC于点D,BE平分∠ABC交AC于点E,∴∠BAF=12∠BAC,∠ABF=12∠ABC,又∵∠C=90°,∴∠ABC+∠BAC=90°,∴∠BAF+∠ABF=45°,∴∠AFB=135°,故①正确;∵DG∥AB,∴∠BDG=∠ABC=2∠CBE,故②正确;∵∠ABC的度数不确定,∴BC平分∠ABG不一定成立,故③错误;∵BE平分∠ABC,∴∠ABF=∠CBE,又∵∠C=∠ABG=90°,∴∠BEC+∠CBE=90°,∠ABF+∠FBG=90°,∴∠BEC=∠FBG,故④正确.故选:C【点睛】本题考查了角平分线性质、三角形内角和定理、平行线的性质以及等角的余角相等等知识,熟练运用这些知识点是解题的关键.7.下列说法,正确的是( )A.经过一点有且只有一条直线B.两条射线组成的图形叫做角C.两条直线相交至少有两个交点D.两点确定一条直线【答案】D【解析】【分析】根据直线的性质、角的定义、相交线的概念一一判断即可.【详解】A、经过两点有且只有一条直线,故错误;B、有公共顶点的两条射线组成的图形叫做角,故错误;C、两条直线相交有一个交点,故错误;D、两点确定一条直线,故正确,故选D.【点睛】本题考查直线的性质、角的定义、相交线的概念,熟练掌握相关知识是解题的关键.8.图①是由白色纸板拼成的立体图形,将它的两个面的外表面涂上颜色,如图②所示.则下列图形中,是图②的表面展开图的是().A.B.C.D.【答案】B【解析】试题分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解:由图中阴影部分的位置,首先可以排除C、D,又阴影部分正方形在左,三角形在右,而且相邻,故只有选项B符合题意.故选B.点评:此题主要考查了几何体的展开图,本题虽然是选择题,但答案的获得需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念.9.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.12 BC AB【答案】C【解析】【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A、B、D都可以确定点C是线段AB中点【详解】解:A、AC=BC,则点C是线段AB中点;B、AB=2AC,则点C是线段AB中点;C、AC+BC=AB,则C可以是线段AB上任意一点;D、BC=12AB,则点C是线段AB中点.故选:C.【点睛】本题主要考查线段中点,解决此题时,能根据各选项举出一个反例即可.10.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A.B.C.D.【答案】D【解析】解:如右图,连接OP,由于OP是Rt△AOB斜边上的中线,所以OP=12AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.故选D.11.如图,小强从A处出发沿北偏东70°方向行走,走至B处,又沿着北偏西30°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A.左转 80°B.右转80°C.右转 100°D.左转 100°【答案】C【解析】【分析】过C点作CE∥AB,延长CB与点D,根据平行线的性质得出∠A+∠ABH=180°,∠ECB=∠ABC,求出∠ABH=110°,∠ABC=80°,即可求出∠ECB=80°,得出答案即可.【详解】过C点作CE∥AB,延长CB与点D,如图∵根据题意可知:AF∥BH,AB∥CE,∴∠A+∠ABH=180°,∠ECB=∠ABC,∵根据题意可知:∠FAB=70°,∠HBC=30°,∴∠ABH=180°−70°=110°,∠ABC=110°−30°=80°,∴∠ECB=80°,∴∠DCE=180°−80°=100°,即方向的调整应是右转100°.故答案选C.【点睛】本题考查了平行线的判定与性质,解题的关键是熟练的掌握平行线的判定与性质.12.已知直线m∥n,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),并且顶点A,C分别落在直线m,n上,若∠1=38°,则∠2的度数是()A.20°B.22°C.28°D.38°【答案】B【解析】【分析】过C作CD∥直线m,根据平行线的性质即可求出∠2的度数.【详解】解:过C作CD∥直线m,∵∠ABC=30°,∠BAC=90°,∴∠ACB=60°,∵直线m∥n,∴CD∥直线m∥直线n,∴∠1=∠ACD,∠2=∠BCD,∵∠1=38°,∴∠ACD=38°,∴∠2=∠BCD=60°﹣38°=22°,故选:B.【点睛】本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.13.如图,在△ABC中,∠ABC=90°,∠C=52°,BE为AC边上的中线,AD平分∠BAC,交BC边于点D,过点B作BF⊥AD,垂足为F,则∠EBF的度数为()A.19°B.33°C.34°D.43°【答案】B【解析】【分析】根据等边对等角和三角形内角和定理可得∠EBC=52°,再根据角平分线的性质和垂直的性质可得∠FBD=19°,最后根据∠EBF=∠EBC﹣∠FBD求解即可.【详解】解:∵∠ABC=90°,BE为AC边上的中线,∴∠BAC=90°﹣∠C=90°﹣52°=38°,BE=12AC=AE=CE,∴∠EBC=∠C=52°,∵AD平分∠BAC,∴∠CAD=12∠BAC=19°,∴∠ADB=∠C+∠DAC=52°+19°=71°,∵BF⊥AD,∴∠BFD=90°,∴∠FBD=90°﹣∠ADB=19°,∴∠EBF=∠EBC﹣∠FBD=52°﹣19°=33°;故选:B.【点睛】本题考查了三角形的角度问题,掌握等边对等角、三角形内角和定理、角平分线的性质、垂直的性质是解题的关键.14.如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是()A.B.C.D.【答案】A【解析】【分析】对一个物体,在正面进行正投影得到的由前向后观察物体的视图,叫做主视图.【详解】解:由主视图的定义可知A选项中的图形为该立体图形的主视图,故选择A.【点睛】本题考查了三视图的概念.15.下列说法中,正确的个数为( )①过同一平面内5点,最多可以确定9条直线;②连接两点的线段叫做两点的距离;=,则点B是线段AC的中点;③若AB BC④三条直线两两相交,一定有3个交点.A.3个B.2个C.1个D.0个【答案】D【解析】【分析】根据直线交点、两点间距离、线段中点定义分别判断即可得到答案.【详解】①过同一平面内5点,最多可以确定10条直线,故错误;②连接两点的线段的长度叫做两点的距离,故错误;=,则点B不一定是线段AC的中点,故错误;③若AB BC④三条直线两两相交,可以都交于同一点,故错误;故选:D.【点睛】此题考查直线交点、两点间距离定义、线段中点定义,正确理解定义是解题的关键.16.下列说法中不正确的是()①过两点有且只有一条直线②连接两点的线段叫两点的距离③两点之间线段最短④点B在线段AC上,如果AB=BC,则点B是线段AC的中点A.①B.②C.③D.④【答案】B【分析】依据直线的性质、两点间的距离、线段的性质以及中点的定义进行判断即可.【详解】①过两点有且只有一条直线,正确;②连接两点的线段的长度叫两点间的距离,错误③两点之间线段最短,正确;④点B在线段AC上,如果AB=BC,则点B是线段AC的中点,正确;故选B.17.如图,一副三角尺按不同的位置摆放,下列摆放方式中∠α与∠β互余的是()A.B.C.D.【答案】A【解析】【分析】根据同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.【详解】A、图中∠α+∠β=180°﹣90°=90°,∠α与∠β互余,故本选项正确;B、图中∠α=∠β,不一定互余,故本选项错误;C、图中∠α+∠β=180°﹣45°+180°﹣45°=270°,不是互余关系,故本选项错误;D、图中∠α+∠β=180°,互为补角,故本选项错误.故选:A.【点睛】此题考查余角和补角,熟记概念与性质是解题的关键.18.若∠AOB =60°,∠AOC =40°,则∠BOC等于()A.100°B.20°C.20°或100°D.40°【答案】C【解析】【分析】画出符合题意的两个图形,根据图形即可得出答案.【详解】当∠AOC在∠AOB的外部时,∵∠AOB=60°,∠AOC=40°∴∠BOC=∠AOB+∠AOC=60°+40°=100°如图2,当∠AOC在∠AOB的内部时,∵∠AOB=60°,∠AOC=40°∴∠BOC=∠AOB-∠AOC=60°-40°=20°即∠BOC的度数是100°或20°故选:C【点睛】本题考查了角的有关计算的应用,主要考查学生根据图形进行计算的能力,分类讨论思想和数形结合思想的运用.19.如图,已知点P(0,3) ,等腰直角△ABC中,∠BAC=90°,AB=AC,BC=2,BC边在x轴上滑动时,PA+PB的最小值是()A102B26C.5 D.6【答案】B【分析】过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´ A 交x 轴于点E ,则当A´、P 、B 三点共线时,PA +PB 的值最小,根据勾股定理求出A B '的长即可.【详解】如图,过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´A 交x 轴于点E ,则当A´、P 、B 三点共线时,PA +PB 的值最小,∵等腰直角△ABC 中,∠BAC=90°,AB=AC ,BC =2,∴AE=BE=1,∵P (0,3) ,∴A A´=4, ∴A´E=5, ∴22221526A B BE A E ''=+=+=,故选B.【点睛】本题考查了勾股定理,轴对称-最短路线问题的应用,解此题的关键是作出点A 关于直线PD 的对称点,找出PA +PB 的值最小时三角形ABC 的位置.20.如图将两块三角板的直角顶点重叠在一起,DOB ∠与DOA ∠的比是2:11,则BOC ∠的度数为( )A .45︒B .60︒C .70︒D .40︒【答案】C【解析】【分析】 设∠DOB=2x ,则∠DOA=11x ,可推导得到∠AOB=9x=90°,从而得到角度大小【详解】∵∠DOB与∠DOA的比是2:11∴设∠DOB=2x,则∠DOA=11x∴∠AOB=9x∵∠AOB=90°∴x=10°∴∠BOD=20°∴∠COB=70°故选:C【点睛】本题考查角度的推导,解题关键是引入方程思想,将角度推导转化为计算的过程,以便简化推导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学《基本的几何图形》测试题
一选择题(每题3分,共45分)
1、平面上有任意四点,经过其中两点画一条直线,共可画()
A.1条直线 B.4条直线 C.6条直线 D.1条或4条或6条直线
2、点C是线段AB上一点,点D是BC的中点,若AD=5cm,则AC+AB等于( )
A、8cm
B、10cm
C、12cm
D、不确定
3、过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其展开图正确的为()
A. B. C. D.
4、若AB=MA+MB,AB<NA+NB,则()
A.点N在线段AB上,点M在线段AB外;B.点M、N均在线段AB上;
C.点M、N均在线段AB外; D.点M在线段AB上,点N在线段AB外
5、下列图形中,能通过折叠围成一个三棱柱的是()
A B C D
6、2012年12月26日京广高铁全线通车.一列往返于北京和广州的火车,沿途要经过石家庄、郑州、
武汉、长沙四站,铁路部门要为这趟列车准备印制()种车票.
A.6 B.12 C.15 D.30
7、已知线段AB=10cm,在AB直线上有一点C,BC=4cm,M是线段AC的中点,则AM的长是()
A、3cm
B、7cm
C、3cm或7cm
D、6cm
8、把立方体的六个面分别涂上六种不同颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况列表
如下.现将上述大小相同,颜色、花朵分布完全一样的四个立方体拼成一个水平放置的长方体,如图所示,那么长方体的下底面共有()朵花.
A.15 B.16 C.21 D.17
9、李强同学用棱长为L的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色,则表面
被他染成红色的面积为()
A.37 B.33 C.24 D.21
10、长方形剪去一个角后还有()个角
A、3个
B、4个
C、5个
D、以上都有可能
11、如图所示的正方体的展开图是()
A. B. C. D.
12、有一正方体,六个面上分别写有数字1,2,3,4,5,6,有三个人从不同的角度观察的结果如图.如
果记6的对面的数字为a,2的对面的数字为b,那么a+b的值为()
A.3 B.7 C.8 D.11
13、如图所示为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为()
A.4 B.6 C.8 D.12
14、图1是一个正方体的展开图,该正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格、
第5格,此时这个正方体朝上一面的字是()
A.我 B.的 C.梦 D.中
15、如图,一根长为10厘米的木棒,棒上有两个刻度,若把它作为尺子,量一次要量出一个长度,
能量的长度共有()
A.7个 B.6个 C.5个 D.4个
二、填空题(每题4分,共24分)
1、如图所示,以O为端点画六条射线OA,OB,OC,OD,OE,OF,再从射
线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线
所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个
点在射线上.
2、一条直线可以把平面分成两部分,两条直线最多可以把平面分成4部
分,三条直线最多可以把平面分成 _________ 部分,四条直线最多可以把平面分成 _________ 部分,试画图说明;n条直线最多可以把平面分成部分。
3、观察下列图形的排列规律(其中△是三角形,□是正方形,○是圆),○△□□○△□○△□□○△□
┅┅若第一个图形是正方形,则第2015个图形是(填图形名称).
4、以长为24cm,宽为10cm的长方形的一边所在直线为旋转轴,旋转一周形成一个圆柱.则这个圆柱的
底面半径是 cm.
5、从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为
6、有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,
则滚动第2014次后,骰子朝下一面的点数是.
三、解答题(8+6+8+9)
1、十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:
(1)根据上面多面体模型,完成表格中的空格:
多面体顶点数(V)面数(F)棱数(E)
四面体 4 4
长方体8 6 12
正八面体8 12
正十二面体20 12 30
你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.
(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是.
(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y 的值.
2、如图所示,沿江街AB段上有四处居民小区A,C,D,B,且有AC=CD=DB,为改善居民的购物环境,想在AB上建一家超市,每个小区的居民各执一词,难以定下具体的建设位置,高经理是超市负责人,从便民、获利的角度考虑,你觉得他会把超市建在哪儿
3、在同一直线上有三个点A、B、C,若AB=10cm,AC=30cm,点M是AB的中点,点N是AC的中点,求线段MN的长。
4、探索规律:用棋子按如图所示的方式摆正方形。
…………
1 2 3
(1)按图示规律填写下表:
图形编号 1 2 3 4 5 6
棋子个数
(2)按照这种方式摆下去,摆第20个正方形需要多少个棋子?
(3)按照这种方式继续摆下去,摆第n个正方形需要多少个棋子?。