第七章参数估计参考答案

合集下载

第7章参数估计答案

第7章参数估计答案

·61·第7章 参数(点)估计系 班姓名 学号一、填空题1、设总体X 服从二项分布),(p N B ,10<<P ,n X X X 21,是其一个样本,那么矩估计量=N ˆ )X /B 1/(X 2- ,=p ˆ XB 12- .2、设总体X 服从指数分布 )0(00)(>⎩⎨⎧≤>=-λλϕλx x e x x n X X X ,,21是来自X的样本,则未知参数λ的矩估计量是 X /1 ,极大似然估计量是 X /1 .3. 设 总 体)p ,1(B ~X , 其 中 未 知 参 数 01<<p , X X X n 12,, 是 X的 子样, 则 p 的 矩 估 计 为_∑=n 1i i X n 1_, 子 样 的 似 然 函 数 为_ii X 1n 1i X )p 1(p -=-∏__。

(x x)p 1(p)p ;x (f -= 为 X 的 概 率 密 度 函 数 ).4、 总 体 X 服 从 密 度 函 数 为f x x x (;)[()],()θπθ=+--∞<<+∞112 的 哥 西分 布。

),,(1n X X 为 从 X 抽 得 的 样 本, 则 当 n =1时 θ有 极 大 似 然 估 计 为θ=_1X。

5. 设 X X X n 12,, 是 来 自 总 体),(N ~X 2σμ的 样 本, 则 有 关 于 μ及 σ2的似 然 函 数L X X X n (,,£;,)12 μσ=_2i )X (21n1i e21μ-σ-=∏σπ__。

二、选择题1、设n X X X ,,21是取自总体),0(2σN 的样本,则可以作为2σ的无偏估计量是( A ).A 、∑=n i i X n 121B 、∑=-n i i X n 1211C 、∑=ni i X n 11D 、∑=-ni i X n 1112、设罐子里装有黑球和白球,有放回地抽取一个容量为n 的样本,其中k 个白球,则罐子里黑球数与白球数之比R 的最大似然估计量为( B ).·62·A 、nk B 、1-knC 、1D 、kn三、计算和证明题1、设总体X 具有分布密度10,)1(),(<<+=x x x P ααα,其中1->α是未知参数,n X X X ,,21为一个样本,试求参数α的矩估计和极大似然估计.解:因⎰⎰++=+=1011α1α1αdx x dx x x X E a)()()(2α1α2α1α102++=++=+|a x 令2α1α++==ˆˆ)(X X EXX --=∴112αˆ为α的矩估计 因似然函数221211αα),()(),,(n n n X X X X X X L +=∑=++=∴ni i X n L 1α1αln )ln(ln ,由∑==++=∂∂ni i X nL 101ααln ln 得,α的极大似量估计量为)ln (ˆ∑=+-=ni iXn11α2、设总体X 服从二项分布),(p k b ,k 是正整数,10<<p ,两者都是未知参数,n X X X 21,是一个样本,试求k 和p 的矩估计.解:由于)(~1P k b Xkp X =∈∴)( )1()(p kp X D -=于是令⎪⎩⎪⎨⎧--==∑=ni i X X n X D XX E 1)(11)()( 解之得XX X n X p ni i ∑=---=12)(11ˆ])(11[ˆ122∑=---=ni i X X n X Xk3、设n X X X ,,21为从一总体中抽出的一组样本,总体均值μ已知,用∑=--ni i X n 12)(11μ去估计总体方差2σ,它是否是2σ的无偏估计,应如何修改,才能成为无偏估计.·63·解:因∑∑==--=--n i n i ii X E n X n E 1122)(11])(11[μμ221σσ≠-=n n ∑=--∴ni i X n 12)(11μ不是2σ的无偏估计 但∑=-n i i X n 12)(1μ是2σ的无偏估计4、设一批产品中含有废品,从中随机抽取75件,其中有废品10件,试估计这批产品的废品率.解:设这批产品的废品率为p ,⎩⎨⎧=次抽到合格品第次抽到废品第i i X i 01于是p X P i ==)1(p X P i -==1)0(即ii x xi i ij p p x X P p x f --===1)1()()(72,11,0 ==i x i故极大似然函数∑-∑=-===--=751751751751)1()1(i ii iii x x x x i p pp p L π∑∑==--+=751751)1ln()75(ln ln i i i i p x p x p L令∑∑===---=7517510)75(111ln i i i i x p x p dp L d解之得p 的极大似然估计值 ∑====7511527510751ˆi i x p。

概率论与数理统计第四版课后习题答案

概率论与数理统计第四版课后习题答案

概率论与数理统计课后习题答案第七章 参数估计1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计)求总体均值μ及方差σ2的矩估计,并求样本方差S 2。

解:μ,σ2的矩估计是 6122106)(1ˆ,002.74ˆ-=⨯=-===∑ni i x X n X σμ621086.6-⨯=S 。

2.[二]设X 1,X 1,…,X n 为准总体的一个样本。

求下列各总体的密度函数或分布律中的未知参数的矩估计量。

(1)⎩⎨⎧>=+-其它,0,)()1(cx x c θx f θθ其中c >0为已知,θ>1,θ为未知参数。

(2)⎪⎩⎪⎨⎧≤≤=-.,010,)(1其它x x θx f θ其中θ>0,θ为未知参数。

(5)()p p m x p px X P x m xmx,10,,,2,1,0,)1()(<<=-==- 为未知参数。

解:(1)X θcθθc θc θc θdx x c θdx x xf X E θθcθθ=--=-===+-∞+-∞+∞-⎰⎰1,11)()(1令,得cX Xθ-=(2),1)()(10+===⎰⎰∞+∞-θθdx xθdx x xf X E θ2)1(,1X X θX θθ-==+得令(5)E (X ) = mp令mp = X ,解得mXp=ˆ 3.[三]求上题中各未知参数的极大似然估计值和估计量。

解:(1)似然函数 1211)()()(+-===∏θn θn nni ix x x c θx f θL0ln ln )(ln ,ln )1(ln )ln()(ln 11=-+=-++=∑∑==ni ini i xc n n θθd θL d x θc θn θn θL∑=-=ni icn xnθ1ln ln ˆ (解唯一故为极大似然估计量)(2)∑∏=--=-+-===ni i θn n ni ix θθnθL x x x θx f θL 112121ln )1()ln(2)(ln ,)()()(∑∑====+⋅-=ni ini ix nθxθθn θd θL d 121)ln (ˆ,0ln 2112)(ln 。

统计学第五版课后练答案(7-8章)

统计学第五版课后练答案(7-8章)

第七章 参数估计7.1 (1)x σ==(2)2x z α∆= 1.96=1.54957.2 某快餐店想要估计每位顾客午餐的平均花费金额。

在为期3周的时间里选取49名顾客组成了一个简单随机样本。

(1)假定总体标准差为15元,求样本均值的抽样标准误差。

x σ==(2)在95%的置信水平下,求估计误差。

x x t σ∆=⋅,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t=2z α 因此,x x t σ∆=⋅2x z ασ=⋅0.025x z σ=⋅=1.96×2.143=4.2 (3)如果样本均值为120元,求总体均值 的95%的置信区间。

置信区间为:2x z x z αα⎛-+ ⎝=()120 4.2,120 4.2-+=(115.8,124.2)7.322x z x z αα⎛-+ ⎝=104560±(87818.856,121301.144) 7.4 从总体中抽取一个n=100的简单随机样本,得到x =81,s=12。

要求:大样本,样本均值服从正态分布:2,x N n σμ⎛⎫ ⎪⎝⎭ 或2,s x N n μ⎛⎫⎪⎝⎭置信区间为:22x z x z αα⎛-+ ⎝=1.2 (1)构建μ的90%的置信区间。

2z α=0.05z =1.645,置信区间为:()81 1.645 1.2,81 1.645 1.2-⨯+⨯=(79.03,82.97)(2)构建μ的95%的置信区间。

2z α=0.025z =1.96,置信区间为:()81 1.96 1.2,81 1.96 1.2-⨯+⨯=(78.65,83.35)(3)构建μ的99%的置信区间。

2z α=0.005z =2.576,置信区间为:()81 2.576 1.2,81 2.576 1.2-⨯+⨯=(77.91,84.09)7.5 (1)2x z α±=25 1.96±=(24.114,25.886)(2)2x z α±119.6 2.326±=(113.184,126.016)(3)2x z α± 3.419 1.645±(3.136,3.702)7.6 (1)2x z α±=8900 1.96±=(8646.965,9153.035)(2)2x z α±8900 1.96±=(8734.35,9065.65)(3)2x z α±8900 1.645±=(8761.395,9038.605)(4)2x z α±8900 2.58±=(8681.95,9118.05)7.7 某大学为了解学生每天上网的时间,在全校7 500名学生中采取重复抽样方法随机抽取36人,调解:(1)样本均值x =3.32,样本标准差s=1.611α-=0.9,t=2z α=0.05z =1.645,x z α± 3.32 1.645±=(2.88,3.76)1α-=0.95,t=z α=0.025z =1.96,x z α± 3.32 1.96±(2.79,3.85)1α-=0.99,t=z α=0.005z =2.576,2x z α± 3.32 2.76±(2.63,4.01)7.82x t α±=10 2.365±7.9 某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成的一个随机样本,他们到单位的距离(单位:km)分别是:10 3 14 86 9 12 117 5 1015 9 16 13 2假定总体服从正态分布,求职工上班从家里到单位平均距离的95%的置信区间。

第七章 参数估计-含答案

第七章 参数估计-含答案
D.对于一个参数只能有一个估计值
答案:B
3.假定抽样单位数为400,抽样平均数为300和30,相应的变异系数为50%和20%,试以0.9545的概率来确定估计精度为()。
A.15和0.6B.5%和2%
C.95%和98% D.2.5%和1
答案:C
4.根据10%抽样调查资料,甲企业工人生产定额完成百分比方差为25,乙企业为49。乙企业工人数四倍于甲企业,工人总体生产定额平均完成率的区间()。
C.总体参数取值的变动范围
D.抽样误差的最大可能范围
答案:A
11.无偏性是指( )。
A.抽样指标等于总体指标 B.样本平均数的平均数等于总体平均数
C.样本平均数等于总体平均数 D. 样本成数等于总体成数
答案:B
12.一致性是指当样本的单位数充分大时,抽样指标( )。
A.小于总体指标 B. 等于总体指标
答案:ABC
4.点估计( )。
A.考虑了抽样误差大小B.没有考虑抽样误差大小
C.能说明估计结果的把握程度D.是抽样估计的主要方法
E.不能说明估计结果的把握程度
答案:BE
5.在其它条件不变时,抽样推断的置信度1-α越大,则( )。
A.允许误差范围越大B.允许误差范围越小
C.抽样推断的精确度越高D.抽样推断的精确度越低
答案:D
18.设X~N(μ,σ2)σ为未知,从中抽取n=16的样本,其样本均值为 ,样本标准差为s,则总体均值的置信度为95%的置信区间为()。
答案:C
二、多项选择题
1.在区间估计中,如果其他条件保持不变,置信度与精确度之间存在下列关系( )。
A.前者愈低,后者也愈低B. 前者愈高,后者也愈高
C. 前者愈低,后者愈高D.前者愈高,后者愈低

统计学第五版课后练答案

统计学第五版课后练答案

统计学第五版课后练答案(7-8章)(总11页)-本页仅作为预览文档封面,使用时请删除本页-第七章 参数估计(1)x σ==(2)2x z α∆= 1.96=某快餐店想要估计每位顾客午餐的平均花费金额。

在为期3周的时间里选取49名顾客组成了一个简单随机样本。

(1)假定总体标准差为15元,求样本均值的抽样标准误差。

x σ==(2)在95%的置信水平下,求估计误差。

x x t σ∆=⋅,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t=2z α 因此,x x t σ∆=⋅2x z ασ=⋅0.025x z σ=⋅=×=(3)如果样本均值为120元,求总体均值 的95%的置信区间。

置信区间为:22x z x z αα⎛-+ ⎝=()120 4.2,120 4.2-+=(,)22x z x z αα⎛-+ ⎝=104560±=(,) 从总体中抽取一个n=100的简单随机样本,得到x =81,s=12。

要求:大样本,样本均值服从正态分布:2,x N n σμ⎛⎫ ⎪⎝⎭或2,s x N n μ⎛⎫⎪⎝⎭置信区间为:22x z x z αα⎛-+ ⎝= (1)构建μ的90%的置信区间。

2z α=0.05z =,置信区间为:()81 1.645 1.2,81 1.645 1.2-⨯+⨯=(,)(2)构建μ的95%的置信区间。

2z α=0.025z =,置信区间为:()81 1.96 1.2,81 1.96 1.2-⨯+⨯=(,) (3)构建μ的99%的置信区间。

2z α=0.005z =,置信区间为:()81 2.576 1.2,81 2.576 1.2-⨯+⨯=(,)(1)2x z α±=25 1.96±=(,) (2)2x z α±=119.6 2.326±=(,)(3)2x z α±=3.419 1.645±=(,)(1)2x z α±=8900 1.96±=(,)(2)2x z α±=8900 1.96±=(,)(3)2x z α±=8900 1.645±=(,) (4)2x z α±=8900 2.58±=(,)某大学为了解学生每天上网的时间,在全校7 500名学生中采取重复抽样方法随机抽取36解:(1)样本均值x =,样本标准差s=1α-=,t=2z α=0.05z =,2x z α±=3.32 1.645±=(,)1α-=,t=2z α=0.025z =,2x zα±3.32 1.96±=(,)1α-=,t=2z α=0.005z =,2x z α±3.32 2.76±(,)x t α±=10 2.365±某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成的一个随机样本,他们到单位的距离(单位:km)分别是: 10 3 14 8 6 9 12 11 7 5 10 15 9 16 13 2假定总体服从正态分布,求职工上班从家里到单位平均距离的95%的置信区间。

第七章参数估计参考答案

第七章参数估计参考答案
1 2 n i 1
f ( xi ; )
.
定义: 设总体的分布类型已知,但含有未知参数θ. (1)设 ( x , x
1 2
, , x n )
为总体 X 的一个样本观察值,若似
1 2
然函数 L ( ) 在 ˆ ˆ ( x , x
, , xn )
处取到最大值,则称
ˆ ( x1 , x 2 , , x n ) 为θ的极大似然估计值.
f ( xi ; 1 , 2 , , k )
将其取对数,然后对 1 , 2 , , k 求偏导数,得
ln L ( 1 , 2 , , k ) 0 1 ln L ( 1 , 2 , , k ) 0 k
1 2 n i i 1
(2) 设连续型总体 X 的概率密度函数为 f ( x ; ) , 则样本
( X 1 , X 2 , , X n ) 的联合概率密度函数
f ( x1 ; ) f ( x 2 ; ) f ( x n ; )
n

i 1
f ( x i ; )
n
仍称为似然函数,并记之为 L ( ) L ( x , x , , x ; )
用上面的解来估计参数θi就是矩法估计.
例: 设总体 X 服从泊松分布 ( ) ,参数λ 未知,
( X 1 , X 2 , , X n ) 是来自总体的一个样本,求参数λ
的矩
估计量.
解 总体X的期望为 E ( X ) 从而得到方程

1
X n
i 1
n
i
所以λ的矩估计量为
ˆ
得到含有未知参数(θ1,…,θk)的k个方程.解这k 个联立方程组就可以得到(θ1,…,θk)的一组解:

第7章 参数估计

第7章   参数估计

七、参数估计1.估计量的含义是指()。

A.来估计总体参数的统计量的名称B.用来估计总体参数的统计量的具体数值C.总体参数的名称D.总体参数的具体数值2.在参数估计中,要求通过样本的统计量来估计总体参数,评价统计量的标准之一是使它与总体参数的离差越小越好。

这种评价标准称为()。

A.无偏性B.有效性C.一致性D.充分性3.根据一个具体的样本求出的总体均值的95%的置信区间()。

A.以95%的概率包含总体均值B.有5%的可能性包含总体均值C.一定包含总体均值D.要么包含总体均值,要么不包含总体均值4.无偏估计是指()。

A.样本统计量的值恰好等于待估的总体参数B.所有可能样本估计值的数学期望等于待估总体参数C.样本估计值围绕待估总体参数使其误差最小D.样本量扩大到和总体单元相等时与总体参数一致5.总体均值的置信区间等于样本均值加减边际误差,其中的边际误差等于所要求置信水平的临界值乘以()。

A.样本均值的抽样标准差B.样本标准差C.样本方差D.总体标准差6.当样本量一定时,置信区间的宽度()。

A.随着置信系数的增大而减小B.随着置信系数的增大而增大C.与置信系数的大小无关D.与置信系数的平方成反比7.当置信水平一定时,置信区间的宽度()。

A.随着样本量的增大而减小B.随着样本量的增大而增大C.与样本量的大小无关D.与样本量的平方根成正比8.一个95%的置信区间是指()。

A.总体参数有95%的概率落在这一区间内B.总体参数有5%的概率未落在这一区间内C.在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D.在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数9. 95%的置信水平是指()。

A.总体参数落在一个特定的样本所构造的区间内的概率为95%B.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为95%C总体参数落在一个特定的样本所构造的区间内的概率为5%D在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为5%10.一个估计量的有效性是指()。

统计学课后练答案

统计学课后练答案

第七章 参数估计(1)x σ==(2)2x z α∆==1.96=某快餐店想要估计每位顾客午餐的平均花费金额。

在为期3周的时间里选取49名顾客组成了一个简单随机样本。

(1)假定总体标准差为15元,求样本均值的抽样标准误差。

x σ=== (2)在95%的置信水平下,求估计误差。

x x t σ∆=⋅,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t=z α 因此,x x t σ∆=⋅x z ασ=⋅0.025x z σ=⋅=×=(3)如果样本均值为120元,求总体均值 的95%的置信区间。

置信区间为:2x z x z αα⎛-+ ⎝=()120 4.2,120 4.2-+=(,)2x z x z αα⎛-+ ⎝=104560±(,) 从总体中抽取一个n=100的简单随机样本,得到x =81,s=12。

要求:大样本,样本均值服从正态分布:2,x N n σμ⎛⎫ ⎪⎝⎭:或2,s x N n μ⎛⎫⎪⎝⎭:置信区间为:22x z x z αα⎛-+ ⎝, (1)构建μ的90%的置信区间。

2z α=0.05z =,置信区间为:()81 1.645 1.2,81 1.645 1.2-⨯+⨯=(,) (2)构建μ的95%的置信区间。

2z α=0.025z =,置信区间为:()81 1.96 1.2,81 1.96 1.2-⨯+⨯=(,) (3)构建μ的99%的置信区间。

2z α=0.005z =,置信区间为:()81 2.576 1.2,81 2.576 1.2-⨯+⨯=(,)(1)2x z α±=25 1.96±(,) (2)2x z α±=119.6 2.326±=(,) (3)2x z α±=3.419 1.645±(,) (1)2x z α±=8900 1.96±=(,)(2)2x z α±=8900 1.96±=(,) (3)2x z α±=8900 1.645±=(,)(4)2x z α±=8900 2.58±=(,) 某大学为了解学生每天上网的时间,在全校7 500名学生中采取重复抽样方法随机抽取36人,调查解:(1)样本均值x =,样本标准差s=1α-=,t=z α=0.05z =,xz α±=3.32 1.645±(,) 1α-=,t=z α=0.025z =,x z α±=3.32 1.96±(,)1α-=,t=z α=0.005z =,x zα±=3.32 2.76±(,)2x t α±=10 2.365±=,某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成的一个随机样本,他们到单位的距离(单位:km)分别是:10 3 14 8 6 9 12 11 7 5 10 15 9 16 13 2假定总体服从正态分布,求职工上班从家里到单位平均距离的95%的置信区间。

统计学第七章、第八章课后题答案

统计学第七章、第八章课后题答案

统计学复习笔记第七章 参数估计一、 思考题1. 解释估计量和估计值在参数估计中,用来估计总体参数的统计量称为估计量。

估计量也是随机变量.如样本均值,样本比例、样本方差等。

根据一个具体的样本计算出来的估计量的数值称为估计值。

2. 简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。

(2)有效性:是指估计量的方差尽可能小.对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。

(3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。

3. 怎样理解置信区间在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。

置信区间的论述是由区间和置信度两部分组成。

有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。

因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌.在公布调查结果时给出被调查人数是负责任的表现。

这样则可以由此推算出置信度(由后面给出的公式),反之亦然。

4. 解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。

也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。

不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以0.95的概率覆盖总体参数.5. 简述样本量与置信水平、总体方差、估计误差的关系。

1. 估计总体均值时样本量n 为2. 样本量n 与置信水平1—α、总体方差、估计误差E 之间的关系为 其中: 2222)(E z n σα=n z E σα2=▪ 与置信水平成正比,在其他条件不变的情况下,置信水平越大,所需要的样本量越大;▪ 与总体方差成正比,总体的差异越大,所要求的样本量也越大;▪ 与与总体方差成正比,样本量与估计误差的平方成反比,即可以接受的估计误差的平方越大,所需的样本量越小。

浙大版概率论与数理统计答案---第七章

浙大版概率论与数理统计答案---第七章

第七章 参数估计注意: 这是第一稿(存在一些错误)1、解 由θθθμθ2),()(01===⎰d x xf X E ,204103)(2221θθθ=-==X D v ,可得θ的矩估计量为X 2^=θ,这时θθ==)(2)(^X E E ,nnX D D 5204)2()(22^θθθ=⋅==。

3、解 由)1(2)1(2)1(2)(21θθθθμ-=-+-==X E ,得θ的矩估计量为:3262121^=-=-=X θ。

建立关于θ的似然函数:482232)1(4)1())1(2()()(θθθθθθθ-=--=L令0148))1ln(4ln 8()(ln =--=∂-+∂=∂∂θθθθθθθL ,得到θ的极大似然估计值:32^=θ 4、解:矩估计:()1012122μθλθλθλ=⋅+⋅+⋅--=--,()()()()2222222121νθλθθλλθλθλ=--++-++--, 11A =,234B =, 故()()()()222ˆˆ221,3ˆˆˆˆˆˆˆˆˆˆ222121.4θλθλθθλλθλθλ⎧--=⎪⎨--++-++--=⎪⎩解得1ˆ,43ˆ.8λθ⎧=⎪⎪⎨⎪=⎪⎩为所求矩估计。

极大似然估计:(){}()33214526837,0,2,11L P X X X X X X X X θλθλθλ==========--,()()(),ln ,3ln 2ln 3ln 1l L θλθλθλθλ==++--,()(),330,1,230.1l l θλθθθλθλλλθλ∂⎧=-=⎪⎪∂--⎨∂⎪=-=⎪∂--⎩解得3ˆ,81ˆ.4θλ⎧=⎪⎪⎨⎪=⎪⎩即为所求。

5、解 由33)1(3)1(3)(222+-=-+-+=p p p p p p X E ,所以得到p 的矩估计量为^394(3)34322X X p -----==建立关于p 的似然函数:3210)1()2)1(3()()2)1(()(22n n n n p p p p p p p L ---= 令0)(ln =∂∂pp L ,求得到θ的极大似然估计值:n n n n p 22210^++=6、解:(1)()1112EX x x dx θθθθ+=+=+⎰, 由ˆ1ˆ2X θθ+=+得21ˆ1X X θ-=-为θ的矩估计量。

概率论与数理统计第七章参数估计习题答案

概率论与数理统计第七章参数估计习题答案

æ çè
x
±
ua
/
2
s n
ö ÷ø
=
(14.95
±
0.1´1.96)
=
(14.754,15.146)
大学数学云课堂
3028709.总体X ~ N (m,s 2 ),s 2已知,问需抽取容量n多大的样本,
才能使m的置信概率为1 -a,且置信区间的长度不大于L?
解:由s
2已知可知m的置信度为1
-
a的置信区间为
64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1)求m的置信概率为0.95的置信区 间.
(2)求s 2的置信概率为0.95的置信区间.
解:x = 76.6, s = 18.14,a = 1- 0.95 = 0.05, n = 20,
大学数学云课堂
3028706.设X1,X 2,L,X n是取自总体X的样本,E(X)= m,D(X)= s 2,
n -1
å sˆ 2 = ( X i+1 - X i )2 ,问k为何值时sˆ 2为s 2的无偏估计. i =1 解:令 Yi = X i+1 - X i , i = 1, 2,¼, n -1, 则E(Yi ) = E( X i+1) - E( X i ) = m - m = 0, D(Yi ) = 2s 2 , n -1 å 于是Esˆ 2 = E[k ( Yi2 )] = k(n -1)EY12 = 2s 2 (n -1)k, i =1 那么当E(sˆ 2 ) = s 2 ,即2s 2 (n -1)k = s 2时, 有k = 1 . 2(n -1)
的密度函数为f
(x,q

概率论与数理统计(第三版)课后答案习题7

概率论与数理统计(第三版)课后答案习题7

第七章 参数估计1. 解 )1()(,)(),,(~p np X D np X E p n B X -==∴⎩⎨⎧=-=⎩⎨⎧==22)1(,)()(B p np X np B X D X X E 即由解之,得n,p 的矩估计量为XB p B X X n 2221,-=⎥⎥⎦⎤⎢⎢⎣⎡-=∧∧注:“[ ]”表示取整。

2. 解 因为:220)(22)(1)1()(1)()(λλθλλθλθλθλ++=⋅=+=⋅==⎰⎰⎰∞+--∞+--∞+∞-dx e x x E dx e x dx x xf x E x x所以,由矩估计法得方程组: ⎪⎩⎪⎨⎧++=+=2221)1(1λλθλθA X 解得λθ,的矩估计量为 ⎪⎩⎪⎨⎧=-=∧∧221B B X λθ3. 解 (1) 由于 222)]([)()(X E X E X D -==σ令 ∑===n i iX n A X E 12221)( 又已知 μ=)(X E故 2σ的矩估计值为 ∑∑==∧-=-=-=n i i n i i X n X n A 12122222)(11μμμσ(2) μ已知时,似然函数为:⎭⎬⎫⎩⎨⎧--⋅=∑=-ni in x L 122222)(21exp )2()(μσπσσ因此∑=---=ni ixn L 12222)(21)2ln(2)(ln μσπσσ令 0)(2112)(ln 124222=-+-=∑=ni ixn L d dμσσσσ解得2σ的极大似然估计为: ∑=∧-=n i i X n 122)(1μσ4. 解 矩估计:λλ=∴=)()(X E X E 令X X E =)(故X =∧λ为所求矩估计量。

注意到 λ=)(X D 若令 2)(B X D =, 可得: 2B =∧λ似然估计:因为λλ-==e k k X P k!)(所以,λ的似然函数为∏=-=ni i xe x L i1!)(λλλ取对数λλλn x x L ni i ni i --=∑∑==11)!ln(ln )(ln令ln 1=-=∑=n xd d ni iλλλ, 解得∑=∧=ni ix n 11λ故,λ极大似然估计量为 X =∧λ5. 解 矩估计:21)1()()(11++=+==⎰⎰+∞+∞-θθθθdx x dx x xf X E令 X X E =)(, 即 X=++21θθ; 解之X X --=∧112θ 似然估计: 似然函数为⎪⎩⎪⎨⎧<<+=⎪⎩⎪⎨⎧<<+=∏∏==其它其它,010,)()1(,010,)1()(11i ni i ni n i i x x x x L θθθθθ 只需求10,)()1()(11<<+=∏=i ni i nx x L θθθ的驻点即可.又∑=++=ni ix n L 11ln )1ln()(ln θθθ令∑=++=ni ix n L d d 11ln 1)(ln θθθ; 解之∑=∧--=ni ixn1ln 1θ6. 解:似然函数为∑===---=-=---∏∏ni i i xn i i n ni x i ex ex L 12222)(l n 21112212)(l n 12)()2(21),(μσσμπσσπσμ取对数得 ∑----===∏n i ini i x x n L 122122)(l n 21)l n ()2l n (2),(ln μσπσσμ由 0)(l n 2112),(ln 0)1()(ln 221),(ln 124222122=∑-+⋅-=∂∂=∑-⋅--=∂∂==n i i n i i x n L x L μσσσμσμσσμμ联立解之,2,σμ的极大似然估计值为 ∑∑-=∑===∧=∧n i n i i in i i x n x n x n 12121)ln 1(ln 1,ln 1σμ7. 解:似然函数为 n i x x e ax L i i n i x a i ai ,,2,1;0,00,)(11 =⎪⎩⎪⎨⎧≤>=∏=--λλλ只需求∑⋅===--==--∏∏ni ai ai x a n i n n ni x a i ex a eax L 111111)()(λλλλλ的最值点。

概率论与数理统计第7章参数估计习题及答案

概率论与数理统计第7章参数估计习题及答案

概率论与数理统计第7章参数估计习题及答案第7章参数估计 ----点估计⼀、填空题1、设总体X 服从⼆项分布),(p N B ,10<计量=pXN. 2、设总体)p ,1(B ~X,其中未知参数 01<则 p 的矩估计为_∑=n 1i i X n 1_,样本的似然函数为_ii X 1n1i X )p 1(p -=-∏__。

3、设 12,,,n X X X 是来⾃总体 ),(N ~X 2σµ的样本,则有关于 µ及σ2的似然函数212(,,;,)n L X X X µσ=_2i 2)X (21n1i e21µ-σ-=∏σπ__。

⼆、计算题1、设总体X 具有分布密度(;)(1),01f x x x ααα=+<<,其中1->α是未知参数,n X X X ,,21为⼀个样本,试求参数α的矩估计和极⼤似然估计.解:因?++=+=101α2α1α102++=++=+|a x 令2α1α++==??)(X X EXX --=∴112α为α的矩估计因似然函数1212(,,;)(1)()n n n L x x x x x x ααα=+∑=++=∴ni i X n L 1α1αln )ln(ln ,由∑==++=??ni i X nL 101ααln ln 得,α的极⼤似量估计量为)ln (?∑=+-=ni iXn11α2、设总体X 服从指数分布 ,0()0,x e x f x λλ-?>=??其他,n X X X ,,21是来⾃X 的样本,(1)求未知参数λ的矩估计;(2)求λ的极⼤似然估计.解:(1)由于1()E X λ=,令11X Xλλ=?=i x nn L x x x eλλ=-∑=111ln ln ln 0nii ni ni ii L n x d L n n x d xλλλλλ====-=-=?=∑∑∑故λ的极⼤似然估计仍为1X。

第七章_参数估计_含答案

第七章_参数估计_含答案

第七章参数估计一、单项选择题1.区间X2.58S的含义是〔〕。

xA. 99%的总体均数在此围B. 样本均数的99%可信区间C. 99%的样本均数在此围D. 总体均数的99%可信区间答案:D2.以下关于参数估计的说确的是〔〕。

A. 区间估计优于点估计B. 样本含量越大,参数估计准确的可能性越大C. 样本含量越大,参数估计越准确D. 对于一个参数只能有一个估计值答案:B3.假定抽样单位数为400,抽样平均数为300和30,相应的变异系数为50%和20%,试以0.9545的概率来确定估计精度为〔〕。

A.15和0.6B.5%和2%答案:C4.根据10%抽样调查资料,甲企业工人生产定额完成百分比方差为25,乙企业为49。

乙企业工人数四倍于甲企业,工人总体生产定额平均完成率的区间〔〕。

A.甲企业较大B.乙企业较大C.两企业一样D.无法预期两者的差异答案:A5.对某轻工企业抽样调查的资料,优质品比重40%,抽样误差为4%,用多大的概率才能确信全及总体的这个指标不小于32%〔〕。

A.0.6827B.0.9545C.0.9973D.2.00答案:B6.根据抽样调查的资料,某城市人均日摄入热量2500千卡,抽样平均误差150千卡,该市人均摄入热量在2350千卡至2650千卡之间的置信度为〔〕。

A.0.9545B. 0.6827C.1D. 0.90答案:B7.对进口的一批服装取25件作抽样检验,发现有一件不合格。

概率为0.9545时计算服装不合格率的抽样误差为7.3%。

要使抽样误差减少一半,必须抽〔〕件服装做检验。

A.50B.100C.625D.25答案:B8.根据以往调查的资料,某城市职工平均每户拥有国库券和国债的方差为1600,为使极限抽样误差在概率保证程度为0.9545时不超过4元,应抽取〔〕户来进展调查。

A.I600B.400C.10D.200答案:B9.一般情况下,总体平均数的无偏、有效、一致的估计量是〔〕。

概率与数理统计第7章参数估计习题与答案

概率与数理统计第7章参数估计习题与答案

第7章参数估计----点估计一、填空题1、设总体X服从二项分布B(N,p),0P1,X1,X2X n是其一个样本,那么矩估计量p?XN.2、设总体X~B(1,p),其中未知参数0p1,X1,X2,X n是X的样本,则p的矩估计为_ 1n in1X i _,样本的似然函数为_in1X i(1p)1Xp__。

i3、设X1,X2,,X n是来自总体X~N(,2)的样本,则有关于及2的似然函数2L(X,X,X n;,)_12 in112e12(X) i22__。

二、计算题1、设总体X具有分布密度f(x;)(1)x,0x1,其中1是未知参数,X1,X2,X为一个样本,试求参数的矩估计和极大似然估计.n解:因E(X ) 1x1a()α1(α1)xdx1x dxαα112a2|xααα12令E(X)X?α?α122X1α?为的矩估计1Xn因似然函数L(x1,x2,x;)(1)(x1x2x)nnnlnLnln(α1)lnX,由αii1 l nLαnα 1inlnX0得,i1n ?的极大似量估计量为(1)αnln Xii12、设总体X服从指数分布f(x)xe,x00,其他,X1,X2,X n是来自X的样本,(1)求未知参数的矩估计;(2)求的极大似然估计.56解:(1)由于1 E(X),令11 X X,故的矩估计为? 1 X(2)似然函数nL(x,x,,x )e12ni nx i 1nlnLnlnxii1 ndlnLnnx0 indi1x ii1故的极大似然估计仍为1 X 。

3、设总体 2 X~N0,, X 1,X 2,,X n 为取自X 的一组简单随机样本,求 2 的极大似然估计;[解](1)似然函数n1 Le i122 x i 2 22n 22en 2x i 2 i 12于是n2nnx2i lnLln2ln2222i1 dlnLn1d224 22n i1 2x i,令 d lnL 2d 2 0,得的极大似然估计:n 122X ini1. 4、设总体X 服从泊松分布P(),X 1,X 2,,X n 为取自X 的一组简单随机样本,(1)求 未知参数估计;(2)求大似然估计. 解:(1)令E(X )X?X ,此为估计。

第7章参数估计习题答案

第7章参数估计习题答案

第7章 参数估计习题参考答案7.1 参数的点估计习题答案1 解 (1)总体X 的期望 ()E X mp =, 从而得到方程 11ˆni i m p X n==∑所以p 的矩估计量为 111ˆni i p X X m nm===∑.(2)总体X 服从二项分布,则有 ()(1),0,1,..x xm xmP X x C p p x m-==-= 从而似然函数为11121()(1) (1)nniiiiin i i nx m n x x x m x x x x mm mmi L p Cpp C CCpp ==--=∑∑=-=-∏取对数 1211ln ()ln(...)ln ()ln(1)n nnx x x m m mi i i i L p C C C x p m n x p ===++--∑∑,令1111ln ()()01nnii i i d L p x m n x dppp===--=-∑∑,解得p 的极大似然估计值为 111ˆni i px x m nm===∑,故极大似然估计量为 111ˆni i pX X m nm===∑.2. 解(1)11()1E X x xdx θθθθ-==+⎰,从而得到方程1ˆ1ˆ1nii xx nθθ===+∑所以θ的矩估计值为 ˆ1xxθ=-.(2)似然函数为1121()(,)(...)nni n i L f x x x x θθθθ-===∏取对数 1l n ()l n (1)l n nii L nx θθθ==+-∑,令1ln ()ln 0nii d nL xd θθθ==+=∑,得θ的极大似然估计值为1ˆln nii nxθ==-∑7.2估计量的评选标准习题答案1.解 (1) 1123123111111ˆ()442442E E X X X E X E X E X μμ=++=++=2123123111111ˆ()623623E E X X X E X E X E X μμ=++=++= 3123123111111ˆ()333333E E X X X E X E X E X μμ=++=++=, 123ˆˆˆ,,μμμ∴均为μ的无偏估计量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
并且对于任何k,只要E(Xk)存在,同样有
lim P{|
n
1
n
i 1
n
X i E ( X ) | } 0 ,
k k
k 1, 2 ,...
因此,很自然地想到用样本矩来代替总体矩,从而 得到总体分布中参数的一种估计.
• 定义:用样本矩来代替总体矩,从而得到总体 分布中参数的一种估计.这种估计方法称为矩法估 计.它的思想实质是用样本的经验分布和样本矩去 替换总体的分布和总体矩.今后称之为替换原则. • 设总体X具有已知类型的概率函数 p(x;θ1,…,θk), (θ1,…,θk)∈Θ是k个未知参 数.(X1,X2,…,Xn)是来自总体X的一个样本.假若X的 k阶矩γk=E(Xk)存在,则对于i≤k, E(Xi)都存在,并 且是(θ1,…,θk)的函数γi (θ1,…,θk).
~ X
例:设总体 X 服从参数为λ 的指数分布,其中λ 未
( 知, X
1
, X 2 , , X n )
( 为从总体抽取一个样本, x
1
, x 2 , , x n )
为其样本观测值, 试求参数λ 的极大似然估计值和 估计量.
解 总体X服从参数为λ的指数分布,则有
e x f ( ; x ) 0 x0 x0
1
X n
i 1
n
i
X
例: 设总体 X 服从参数为λ 的指数分布,其中参 数λ 未知, ( X
1
, X 2 , , X n ) 是来自总体的一个样本,
求参数λ 的矩估计量.
解 其概率密度函数为 总体X的期望为 从而得到方程
e x , x 0 f ( x, ) 0, x 0
(2) 设 ( X
1
, X 2 , , X n )
为总体 X 的一个样本,若ˆ ( x , x
1 1
2
, , xn )
为θ的极大似然估计值, 则称 ˆ ( X 数θ的极大似然估计量.
, X 2 , , X n )
为参
设总体的分布类型已知,但含有未知参数θ .设
( x1 , x 2 , , x n )
, X 2 , , X n )
,就得到它的一个具体数值 的点估计值.
ˆ ( x1 , x 2 , , x n ) ,这个数值称为θ
§1.1 矩估计法
• 设(X1,X2,…,Xn)是来自总体X的一个样本,根据 大数定律,对任意ε>0,有
lim P{| X E ( X ) | } 0
1 2 n i 1
f ( xi ; )
.
定义: 设总体的分布类型已知,但含有未知参数θ. (1)设 ( x , x
1 2
, , x n )
为总体 X 的一个样本观察值,若似
1 2
然函数 L ( ) 在 ˆ ˆ ( x , x
, , xn )
处取到最大值,则称
ˆ ( x1 , x 2 , , x n ) 为θ的极大似然估计值.


EX
X , 1 250
A1
1
X n
i 1
i
X
ˆ 则 x
( 0 75 1 90 6 1) 1 . 22
所以
X ,
ˆ 估计值 1 . 22。
§1.2 极大似然估计法
极大似然估计的基本思想
• 极大似然原理的直观想法是:一个随机试验 如有若干个可能的结果A,B,C,„.若在一次试 验中,结果A出现, 则一般认为A出现的概率最 大,也即试验条件对A出现有利.或者说在试验 的很多可能条件中,认为应该是使事件A发生 的概率为最大的那种条件存在.
得到含有未知参数(θ1,…,θk)的k个方程.解这k 个联立方程组就可以得到(θ1,…,θk)的一组解:
ˆ ˆ 1 1 ( X 1 , X 2 ,..., X n ) ˆ ˆ 2 2 ( X 1 , X 2 ,..., X n ) .......... .......... .......... ..... ˆ ˆ k k ( X 1 , X 2 ,..., X n )
( x1 , x 2 , , x n )
,这时总体的概率函数为
f ( x; 1 , 2 , , k )
.设
为总体 X 的一个样本观察值,若似然函数

i 1 n
L ( 1 , 2 , , k ) L ( x1 , x 2 , , x k ; 1 , 2 , , k )
为总体 X 的一个样本观察值, 若似然函数 可导.
d d L ( ) 0
L ( ) 关于θ

解此方程得θ的极大似然估计值 ( x1 , x 2 , , x n ) ,
ˆ ( X 1 , X 2 , , X n ) . 从而得到θ的极大似然估计量
ˆ
因为 解方程
d d
L ( )
解 设(x1,x2,…,xn)是样本 (X1,X2,…,Xn)的一组观测值. n 于是似然函数 xi x n i 1 n L ( ) L ( ; x1 , x 2 ,..., x n ) ( e ) e n
i
i 1
xi !
x!
i i 1
两边取对数得
( X 1 , X 2 , , X n )
,构造一个统计量 ˆ ˆ ( X
1
1
, X 2 , , X n )
来估
计θ ,我们称 ˆ ( X 量 ˆ ( X
, X 2 , , X n ) 为θ
的点估计量,它是
1
一个随机变量。 将样本观测值 ( x
1
, x 2 , , x n ) 代入估计
( X 1 , X 2 , , X n ) 的联合分布律
p ( x1 ; ) p ( x 2 ; ) p ( x n ; )
n

i 1
p ( x i ; )
n
称为似然函数,并记之为 L ( ) L ( x , x , , x ; ) p ( x ; ) .

E ( X ) 1 ( 1 , 2 ,..., k ) A1 2 E ( X ) 2 ( 1 , 2 ,..., k ) A2 .......... .......... .......... . E ( X k ) ( , ,..., ) A k 1 2 k k
参数估计的基本思想
X~P(λ),X~E(λ),X~N(μ,σ2)
用所获得的样本值去估计参数取值称为参数估计.
区间估计

参 数 估 计
点估计

用某一数值作为 参数的近似值 在要求的精度范围内 指出参数所在的区间

§1 参数的点估计
设总体 X 的分布函数 F ( x ; ) 形式已知,其中θ 是待估计的参数,点估计问题就是利用样本
第七章 参数估计
在实际问题中, 经常遇到随机变量 X (即总体 X) 的分布函数的形式已知,但它的一个或者多个参数未 知的情形,此时写不出确切的概率密度函数.若通过简 单随机抽样,得到总体 X 的一个样本观测值
( x1 , x 2 , , x n ) ,我们自然会想到利用这一组数据来估计
这一个或多个未知参数.诸如此类,利用样本去估计总 体未知参数的问题,称为参数估计问题.参数估计问题 有两类,分别是点估计和区间估计.
f ( xi ; 1 , 2 , , k )
将其取对数,然后对 1 , 2 , , k 求偏导数,得
ln L ( 1 , 2 , , k ) 0 1 ln L ( 1 , 2 , , k ) 0 k
如果样本中白球数为0,则应估计p=1/4,而不估计 p=3/4.因为具有X=0的样本来自p=1/4的总体的可 能性比来自p=3/4的总体的可能性要大.一般当 X=0,1时,应估计p=1/4;而当X=2,3时,应估计p=3/4.
定义:设总体 X 的分布类型已知,但含有未知参数θ. (1)设离散型总体 X 的概率分布律为 p ( x ; ) ,则样本
1 2 n i i 1
(2) 设连续型总体 X 的概率密度函数为 f ( x ; ) , 则样本
( X 1 , X 2 , , X n ) 的联合概率密度函数
f ( x1 ; ) f ( x 2 ; ) f ( x n ; )
n

i 1
f ( x i ; )
n
仍称为似然函数,并记之为 L ( ) L ( x , x , , x ; )
• 例:假若一个盒子里有许多白球和红球,而且已 知它们的数目之比是3:1,但不知是白球多还是红球 多.设随机地在盒子中取一球为白球的概率是p.如 果有放回地从盒子里取3个球,那么白球数目X服从 二项分布 P ( X k ) C 3k p k (1 p ) 3 k
X 0 1 27/64 9/64 2 9/64 27/64 3 1/64 27/54 P=1/4 时 P{X =k} 27/64 P=3/4 时 P{X =k} 1/64
n
2 i
X
2

1
(X n
i 1
n
i
X)
2
例 : 设某炸药厂一天中发生着火现象的次数X服从
参数为 的泊松分布, 未知,有以下样本值; 试估计参数 (用矩法)。
着火的次数 k 发生 k 次着火天数 n k 0 75 1 90 2 54
n
3 22
4 6
5 2
6 1
250
n n i 1 i 1
相关文档
最新文档