基于51单片机数字钟的设计与实现
基于51单片机的多功能电子钟设计

基于51单片机的多功能电子钟设计1. 本文概述随着现代科技的发展,电子时钟已成为日常生活中不可或缺的一部分。
本文旨在介绍一种基于51单片机的多功能电子钟的设计与实现。
51单片机因其结构简单、成本低廉、易于编程等特点,在工业控制和教学实验中得到了广泛应用。
本文将重点阐述如何利用51单片机的这些特性来设计和实现一个具有基本时间显示、闹钟设定、温度显示等功能的电子钟。
本文的结构安排如下:将详细介绍51单片机的基本原理和特点,为后续的设计提供理论基础。
接着,将分析电子钟的功能需求,包括时间显示、闹钟设定、温度显示等,并基于这些需求进行系统设计。
将详细讨论电子钟的硬件设计,包括51单片机的选型、时钟电路、显示电路、温度传感器电路等。
软件设计部分将介绍如何通过编程实现电子钟的各项功能,包括时间管理、闹钟控制、温度读取等。
本文将通过实验验证所设计的电子钟的功能和性能,并对实验结果进行分析讨论。
通过本文的研究,旨在为电子钟的设计提供一种实用、经济、可靠的方法,同时也为51单片机的应用提供一个新的实践案例。
2. 51单片机概述51单片机,作为一种经典的微控制器,因其高性能、低功耗和易编程的特性而被广泛应用于工业控制、智能仪器和家用电器等领域。
它基于Intel 8051微处理器的架构,具备基本的算术逻辑单元(ALU)、程序计数器(PC)、累加器(ACC)和寄存器组等核心部件。
51单片机的核心是其8位CPU,能够处理8位数据和执行相应的指令集。
51单片机的内部结构主要包括中央处理单元(CPU)、存储器、定时器计数器、并行IO口、串行通信口等。
其存储器分为程序存储器(ROM)和数据存储器(RAM)。
程序存储器通常用于存放程序代码,而数据存储器则用于存放运行中的数据和临时变量。
51单片机还包含特殊功能寄存器(SFR),用于控制IO端口、定时器计数器和串行通信等。
51单片机的工作原理基于冯诺伊曼体系结构,即程序指令和数据存储在同一块存储器中,通过总线系统进行传输。
基于51单片机的简易数字钟系统设计

简易数字钟系统设计完成一个简易数字时钟系统设计。
要求:用3个独立按键调整时间。
一个按键控制启动运行。
在调整结束后按运行键后开始运行。
1,开机时,显示00:00:00时间从零开始调整。
2,P10控制秒的调整,每按一次加1s。
3,p11控制分的调整,每按一次加1min。
4,p12控制时的调整,每按一次加1h。
5,p13控制运行和停止。
程序:#include<reg52.h>sbit key1=P3^4;sbit key2=P3^5;sbit key3=P3^6;sbit key4=P3^7;#define uchar unsigned char#define uint unsigned intuchar shi,ge,aa,num,num1,num2,tt;uint n;uchar q1,q2,b1,b2;sbit dula=P2^6;sbit wela=P2^7;void keyscan();void delay(uint);void display();uchar table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};void keyscan(){if(key1==0){ num2++;if(num2==24)num2=0;while(!key1);if(key2==0){num1++;if(num1==60)num1=0;while(!key2);}if(key3==0){num++;if(num==60)num=0;while(!key3);}if(key4==0){ TR0=~TR0;while(!key4);}}void main(){TMOD=0x00;TH0=(65536-50000)/256;TL0=(65536-50000)%256;EA=1;ET0=1;while(1){ k eyscan();display();}}void time0()interrupt 1{TH0=(65536-50000)/256;TL0=(65536-50000)%256;tt++;if(tt==100){ tt=0;num++;if(num==60){ num=0;num1++;if(num1==60){ num1=0;num2++;if(num2==24)num2=0;}}}}void display(){q1=num2/10;q2=num2%10;b1=num1/10;b2=num1%10;shi=num/10;ge=num%10;wela=1;P0=0xfe;wela=0;P0=0xff;P0=table[q1]; dula=0; delay(1);wela=1;P0=0xfd; wela=0;P0=0xff; dula=1;P0=table[q2]; dula=0; delay(1);wela=1;P0=0xfb; wela=0;P0=0xff; dula=1;P0=table[b1]; dula=0; delay(1);wela=1;P0=0xf7; wela=0;P0=0xff; dula=1;P0=table[b2]; dula=0; delay(1);wela=1;P0=0xef; wela=0;P0=0xff; dula=1;P0=table[shi]; dula=0; delay(1);wela=1;P0=0xdf;P0=0xff;dula=1;P0=table[ge];dula=0;delay(1);}void delay(uint x){uint i,j;for(i=x;i>0;i--)for(j=110;j>0;j--); }。
基于-51单片机可调数字钟的设计

师学院单片机技术课程实践——基于89C51单片机可调数字钟的仿真设计班级::学号:辅导老师:设计时间:1. 设计目的1.1设计目的(1)掌握51系列部定时/计数器的原理和基本应用;(2)掌握使用单片机处理复杂逻辑的方法;(3)掌握多位数码管动态显示的方法;(4)掌握独立式(和矩阵)键盘的编程方法;(5)掌握利用汇编语言编写单片机系统的应用软件的方法;(6) 巩固,加深和扩大单片机应用的知识面,提高综合及灵活运用所学知识解决工业控制的能力;(7) 培养针对课题需要,选择和查阅有关手册,图表及文献资料的自学能力,提高组成系统,编程,调试的动手能力;(8) 熟悉单片机用系统开发,研制的过程,软硬件设计方法,容及步骤.(9) 了解数字钟的组成及工作原理.1.2设计性能(1)用51单片机的定时/计数器TMR0产生一秒的定时时间,作为秒计数时间;(2)当一秒产生时,秒计数加1;(3)开机时,显示00.00.00,并开始连续计时;(4)计时满23.29.59时,返回00.00.00重新开始计时;(5)在以上设计基础上,在单片机的I/O口上分别接入四个按键:K0—控制“秒”的调整,每按一次加1秒;K1—控制“分”的调整,每按一次加1分;K2—控制“时”的调整,每按一次加1小时;K3—时间复位按键。
2.系统电路的方案2.1实现时钟计时的基本方法用AT89C51单片机的定时/计数器T0产生一秒的定时时间,作为秒计数时间,当一秒产生时,秒计数加1开机时。
显示00-00-00的时间,开始计时;计时满23-59-59时,返回00-00-00重新计时AT89C51单片机的部16位定时/计数器是一个可编程定时/计数器,它既可以工作在13位定时方式,也可以工作在16位定时方式和8位定时方式。
只要通过设置特殊功能寄存器TMOD,即可完成。
定时/计数器何时工作也是通过TCON特殊功能寄存器来设置的。
在此设计中,选择16位定时工作方式。
基于51单片机的简易电子钟设计

基于51单片机的简易电子钟设计一、设计目的现代社会对于时间的要求越来越精确,电子钟成为家庭和办公场所不可缺少的设备之一、本设计基于51单片机,旨在实现一个简易的电子钟,可以显示当前的时间,并且能够通过按键进行时间的调整和设置闹钟。
二、设计原理本设计主要涉及到51单片机的IO口、定时器、中断、LCD显示技术等方面知识。
1.时钟模块时钟模块采用定时器0的中断进行时间的累加和更新。
以1秒为一个时间单位,每当定时器0中断发生,就将时间加1,并判断是否需要更新小时、分钟和秒的显示。
同时,根据用户按键的操作,可以调整时间的设定。
2.显示模块显示模块采用16x2字符LCD显示屏,通过51单片机的IO口与LCD连接。
可以显示当前时间和设置的闹钟时间。
初次上电或者重置后,LCD显示时间为00:00:00,通过定时器中断和键盘操作,实现时间的更新和设定闹钟功能。
3.键盘模块键盘模块采用矩阵键盘连接到51单片机的IO口上,用于用户进行时间的调整和设置闹钟。
通过查询键盘的按键状态,根据按键的不同操作,实现时间的调整和闹钟设定功能。
4.中断模块中断模块采用定时器0的中断,用于1秒的定时更新时间。
同时可以添加外部中断用于响应用户按键操作。
三、主要功能和实现步骤1.系统初始化。
2.设置定时器,每1秒产生一次中断。
3.初始化LCD显示屏,显示初始时间00:00:00。
4.查询键盘状态,判断是否有按键按下。
5.如果按键被按下,根据不同按键的功能进行相应的操作:-功能键:设置、调整、确认。
-数字键:根据键入的数字进行时间的调整和闹钟设定。
6.根据定时器的中断,更新时间的显示。
7.判断当前时间是否与闹钟设定时间相同,如果相同,则触发闹钟,进行提示。
8.循环执行步骤4-7,实现连续的时间显示和按键操作。
四、系统总结和改进使用51单片机设计的简易电子钟可以显示当前时间,并且实现时间的调整和闹钟设定功能。
但是由于硬件资源有限,只能实现基本的功能,不能进行其他高级功能的扩展,例如闹铃的音乐播放、温度、湿度的显示等。
基于51单片机的数字钟设计

基于51单片机的数字钟设计摘要:该电子钟使用12MHZ晶振与单片机AT89C51相连接,通过软件编程的方法实现了以24小时为一个周期同时显示小时,分钟和秒的要求,并在计时过程中具有报时功能,当时间到达整点进行蜂鸣报时。
该电子钟设有三个按键:s1,s2和s3键,使之具备了校时,定时功能。
关键词:电子钟;51系列单片机;A T89C51;晶振数字电子钟设计与制作可采用数字电路实现,也可以采用单片机来完成。
若用数字电路完成,所设计的电路相当复杂,大概需要十几片数字集成块,其功能也主要依赖于数字电路的各功能模块的组合来实现,焊接的过程比较复杂,成本也非常高。
若用单片机来设计制作完成,由于其功能的实现主要通过软件编程来完成,那么就降低了硬件电路的复杂性,而且其成本也有所降低,所以在该设计与制作中采用单片机AT89C51,它是低功耗、高性能的CMOS型8位单片机。
片内带有.4KB的Flash存储器,且允许在系统内改写或用编程器编程。
另外,AT89C51的指令系统和引脚与8051完全兼容,片内有128B的RAM、32条I /O口线、2个16位定时计数器、5个中断源、一个全双工串行口等。
1 硬件电路的设计该电子钟是以单片机AT89C51为核心来完成的,在硬件电路中采用P0口作为6位LED 数码管的驱动接口,这是由于Po口输出驱动电路工作处于开漏状态,它的驱动能力强,故只需外接上拉电阻便可以把LED数码管点亮。
因为共阴的LED数码管它的驱动电流是分开的,在单片机进行动态扫描的时候不会影响彼此的电流,故该电路中的6位LED数码管均用共阴极的数码管。
在6位ELD显示时,为了简化电路,降低成本,6个LED显示器共用一个8位的I/O,6位LED数码管的位选线分别由相应的P2.0~P2.5控制,而将其相应的段选线并联在一起,由一个8位的I/O口控制,即Po口。
在电路中还设有三个按键Sl,S2和S3用来进行定时,选时和调时的选择,他们分别与单片机的P1.2,P1.4,P1.6口相连接。
基于51单片机的智能数字闹钟设计与实现

基于51单片机的智能数字闹钟设计与实现摘要单片机自20世纪70年代问世以来,因为单片机极高的性能价格比,越发受到了人们的重视和关注,应用领域广泛、发展很快.而51单片机是各单片机中最为典型的,也是最具有代表性的一种。
本设计是一款基于AT89C51的智能数字钟,该数字钟表由主控模块、按键模块、定时模块、温度检测模块和显示模块构成.主控模块由主控芯片AT89C51、晶振电路和复位电路构成;定时模块采用时钟芯片DS1302实现精确定时;用温度传感器DS18B20作为温度采集源,检测当前温度;用液晶显示器1602显示年、月、日、时间及温度.通过这种方法的实现,使智能数字闹钟的电路简单,性能可靠,实时性好,时间和温度精度高,操作简单。
在Proteus和Keil µvision4的环境下,完成了电路原理图的绘制以及程序的编译后,用焊接的方法在电路板上焊接实物,将Keil µvision4中生成的。
hex文件的程序烧到电路中,检测并调试电路,实现智能数字闹钟的功能。
该智能数字闹钟可以应用于人们的生活和工作中,也可通过改装,将智能数字闹钟的性能提高,还可以增加新的功能,让智能数字闹钟显示更多方面的内容与功能,给人们的生活和工作带来更多的方便。
关键词:单片机,时钟芯片,温度传感器,液晶显示器,智能数字钟AT89S52 based Digital Clock Design of IntelligentAbstractAbstractSCM since the advent of the 1970s , because of high performance and low cost single chip , has been more and more people's attention and concern ,widely used in the field ,has developed rapidly。
基于51单片机的电子时钟的设计与实现综述

基于51单片机的电子时钟的设计与实现综述基于51单片机的电子时钟是一种常见的嵌入式系统设计项目。
它通过使用51单片机作为核心处理器,结合外部电路和显示设备,实现了时间的计时和显示功能。
本文将对基于51单片机的电子时钟的设计和实现进行综述,包括硬件设计和软件设计两个部分。
一、硬件设计1.时钟电路时钟电路是电子时钟的核心部分,它提供稳定的时钟信号供给单片机进行计时。
常用的时钟电路有晶振电路和RTC电路两种。
晶振电路通过外接晶体振荡器来提供时钟信号,具有较高的精度和稳定性;RTC电路则是通过实时时钟芯片来提供时钟信号,具有较高的时钟精度和长期稳定性。
2.显示电路显示电路用于将时钟系统计算得到的时间信息转换为人们可以直接观察到的显示结果。
常用的显示器有数码管、液晶显示屏、LED显示屏等。
显示电路还需要与单片机进行通讯,将计时的结果传输到显示器上显示出来。
3.按键电路按键电路用于实现对电子时钟进行设置和调节的功能。
通过设置按键可以实现修改时间、调节闹钟等功能。
按键电路需要与单片机进行接口连接,通过读取按键的输入信号来实现对时钟的操作。
4.供电电路供电电路为电子时钟提供电源,通常使用直流电源。
供电电路需要满足单片机和其他电路的电源需求,同时还需要考虑电源的稳定性和保护措施等。
二、软件设计1.系统初始化系统初始化主要包括对单片机进行外设初始化、时钟初始化和状态变量初始化等。
通过初始化将各个外设配置为适合电子时钟功能运行的状态,并设置系统初始时间、闹钟时间等。
2.计时功能计时功能是电子时钟的核心功能,通过使用定时器和中断技术来实现。
通过设置一个固定时间间隔的定时器中断,单片机在每次定时器中断时对计时寄存器进行增加,实现时间的累加。
同时可以将计时结果转化为小时、分钟、秒等形式。
3.显示功能显示功能通过将计时结果传输到显示器上,实现时间信息的显示。
通过设置显示器的控制信号,将时间信息依次发送到各个显示单元上,实现数字或字符的显示功能。
基于51单片机的数字钟设计与制作

一.基于52单片机制作的数字钟1.设计任务⑴时间显示: 上电后,系统自动进入时钟显示,从00:00:00开始计时,此时可以设定当前时间.⑵时间调整:按下k1,k2,k3键可以顺序设置秒、分、时,并在相应数码管上显示设置值,直至6位设置完毕。
2.系统基本方案选择和论证本时钟的设计具体有两种方法。
一是通过单纯的数字电路来实现;二是使用单片机来控制实现。
本次设计选取了较为简单的单片机控制;而选择这一方法后还要进行各个芯片的选择。
以下是我在这次设计中所用的方案。
2.1 芯片的选择方案一:采用AT89C51芯片,其为高性能CMOS 8位单片机,该芯片内含有4k bytes的可反复擦写的只读程序存储器(PEROM)、128 bytes的随机存取数据存储器(RAM)、 32位可编程I/O口线、2个16位定时/计数器、6个中断源、可编程串行UART通道及低功耗空闲和掉电模式,但是由于AT89C51芯片可擦写的空间不够大,且中断源提供的较小,为防止运行过程中出现不必要的问题,我们不选用AT89C51。
方案二:采用AT89C52芯片,它除了具备AT89C51的所有功能与部件外,其最大的优势就是AT89C52提供了8K字节可擦写Flash闪速存储器空间、8个中断源、及256*8字节内部存储器(RAM),解决了我们对可反复擦写的Flash闪速存储器空间大小与中断源的不够问题的担心。
2.2显示模块选择方案和论证方案一:采用LCD,电路比较简单,且在软件设计上也相对简单,具有低功耗功能。
价格贵。
方案二:采用LED数码管显示,显示较为清楚。
价格便宜。
所以本方案采用LED数码管显示。
2.3 时钟信号的选择方案和论证直接采用单片机定时计数器提供的秒信号,使用程序实现年、月、日、周、时、分、秒计数。
采用此种方案可减少芯片的使用,节约成本,实现的时间误差较小。
2.4 电路设计最终方案决定综上各方案所述,对此次数字时钟的方案选定为: 采用AT89C52作为主控制系统; 并由其定时计数器提供时钟; LED作为显示电路来实现功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
郑州科技学院《单片机原理及应用》课程设计题目基于单片机数字钟的设计与实现学生姓名连盼盼专业班级12级通信工程1班学号201251022院(系)信息工程学院指导教师王清珍完成时间2015年月日目录0引言 (1)1设计方案 (2)2系统设计 (6)2.1 硬件原理 (6)2.2 软件流程图 (14)3实验与仿真 (16)4结论 (18)参考文献 (19)附录1 原理图 (20)附录2 源程序 (21)0引言单片机自20世纪70年代问世以来,以其极高的性能价格比,受到人们的重视和关注,应用很广、发展很快。
单片机全称为单片机微型计算机(Single Chip Microsoftcomputer)。
从应用领域来看,单片机主要用来控制,所以又称为微控制器(Microcontroller Unit)或嵌入式控制器。
单片机是将计算机的基本部件微型化并集成在一块芯片上的微型计算机。
1975年,美国德克萨斯仪器公司首次推出4位单片机TMS-1000;此后,各个计算机公司竞相推出四位单片机。
四位单片机的主要应用领域有:PC机的输入装置,电池充电器,运动器材,带液晶显示的音/视频产品控制器,一般家用电器的控制及遥控器,电子玩具,钟表,计算器,多功能电话等。
1972年,美国Intel公司首先推出8位微处理器8008,并于1976年9月率先推出MCS-48系列单片机。
8位单片机由于功能强,被广泛用于自动化装置、智能仪器仪表、智能接口、过程控制、通信、家用电器等各个领域。
1983年以后,集成电路的集成度可达几十万只管/片,各系列16位单片机纷纷面市。
这一阶段的代表产品有1983年Intel 公司推出的MCS-96系列,1987年Intel推出了80C96,美国国家半导体公司推出的HPC16040,NEC公司推出的783XX系列等。
16位单片机主要用于工业控制,智能仪器仪表,便携式设备等场合。
随着高新技术只智能机器人,光盘驱动器,激光打印机,图像与数据实时处理,复杂实时控制,网络服务器等领域的应用与发展,20世纪80年代末推出了32位单片机,如Motorlora公司的MC683XX系列,Intel 的80960系列,以及近年来流行的ARM系列单片机。
32位单片机是单片机的发展趋势,随着技术的发展及开发成本和产品价格的下降,将会与8位单片机并驾齐驱。
近年来,64位单片机在引擎控制,智能机器人,磁盘控制,语音图像通信,算法密集的实时控制场合已有应用,如英国Inmos公司的Transputer T800是高性能的64位单片机。
单片机体积小、重量轻、抗干扰能力强、环境要求不高、价格低廉、可靠性高、灵活性好、开发较为容易。
由于具有上述优点,在我国,单片机已广泛地应用在工业自动化控制、自动检测、智能仪器仪表、家用电器、电力电子、机电一体化设备等各个方面,而51单片机是各单片机中最为典型和最有代表性的一种。
这次毕业设计通过对它的学习、应用,以AT89S52芯片为核心,辅以必要的电路,设计了一个简易的电子时钟,它由4.5V直流电源供电,通过数码管能够准确显示时间,调整时间,从而到达学习、设计、开发软、硬件的能力。
1设计方案单片机的特点单片机的存储器ROM和RAM时严格区分的。
ROM称为程序存储器,只存放程序,固定常数,及数据表格。
RAM则为数据存储器,用作工作区及存放用户数据。
采用面向控制的指令系统。
为满足控制需要,单片机有更强的逻辑控制能力,特别是单片机具有很强的位处理能力。
单片机的I/O口通常时多功能的。
由于单片机芯片上引脚数目有限,为了解决实际引脚数和需要的信号线的矛盾,采用了引脚功能复用的方法,引脚处于何种功能,可由指令来设置或由机器状态来区分。
单片机的外部扩展能力很强。
在内部的各种功能部件不能满足应用的需求时,均可在外部进行扩展,与许多通用的微机接口芯片兼容,给应用系统设计带来了很大的方便。
AT89S52是一个低功耗,高性能CMOS 8位单片机,片内含4k Bytes ISP(In-system programmable)的可反复擦写1000次的Flas h只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的AT89S51可为许多嵌入式控制应用系统提供高性价比的解决方案。
AT89S52具有如下特点:40个引脚,4k Bytes Flash片内程序存储器,128 bytes的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,5个中断优先级2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器。
此外,AT89S51设计和配置了振荡频率可为0Hz并可通过软件设置省电模式。
空闲模式下,CPU暂停工作,而RAM定时计数器,串行口,外中断系统可继续工作,掉电模式冻结振荡器而保存RAM的数据,停止芯片其它功能直至外中断激活或硬件复位。
同时该芯片还具有PDIP、TQFP和PLCC等三种封装形式,以适应不同产品的需求。
本文主要介绍用单片机内部的定时/计数器来实现电子时钟的方法,本设计由单片机AT89S51芯片和LED数码管为核心,辅以必要的电路,构成了一个单片机电子时钟。
现代的电子时钟是基于单片机的一种计时工具,采用延时程序产生一定的时间中断,用于一秒的定义,通过计数方式进行满六十秒分钟进一,满六十分小时进一,满二十四小时小时清零。
从而达到计时的功能,是人民日常生活补课缺少的工具。
现在高精度的计时工具大多数都使用了石英晶体振荡器,由于电子钟、石英钟、石英表都采用了石英技术,因此走时精度高,稳定性好,使用方便,不需要经常调试,数字式电子钟用集成电路计时时,译码代替机械式传动,用LED显示器代替指针显示进而显示时间,减小了计时误差,这种表具有时、分、秒显示时间的功能,还可以进行时和分的校对,片选的灵活性好。
数字电子钟具有走时准确,一钟多用等特点,在生活中已经得到广泛的应用。
虽然现在市场上已有现成的电子钟集成电路芯片,价格便宜、使用也方便,但是人们对电子产品的应用要求越来越高,数字钟不但可以显示当前的时间,而且可以显示期、农历、以及星期等,给人们的生活带来了方便。
另外数字钟还具备秒表和闹钟的功能,且闹钟铃声可自选,使一款电子钟具备了多媒体的色彩。
单片机具有体积小、功能强可靠性高、价格低廉等一系列优点,不仅已成为工业测控领域普遍采用的智能化控制工具,而且已渗入到人们工作和和生活的各个角落,有力地推动了各行业的技术改造和产品的更新换代,应用前景广阔。
电子时钟的基本特点时钟电路在计算机系统中起着非常重要的作用,是保证系统正常工作的基础。
在一个单片机应用系统中,时钟有两方面的含义:一是指为保障系统正常工作的基准振荡定时信号,主要由晶振和外围电路组成,晶振频率的大小决定了单片机系统工作的快慢;二是指系统的标准定时时钟,即定时时间,它通常有两种实现方法:一是用软件实现,即用单片机内部的可编程定时/计数器来实现,但误差很大,主要用在对时间精度要求不高的场合;二是用专门的时钟芯片实现,在对时间精度要求很高的情况下,通常采用这种方法,典型的时钟芯片有:DS1302,DS12887,X1203等都可以满足高精度的要求。
本文主要介绍用单片机内部的定时/计数器来实现电子时钟的方法,本设计由单片机AT89S51芯片和LED数码管为核心,辅以必要的电路,构成了一个单片机电子时钟。
设计方案论证与比较方案一:数字时钟方案数字时钟是本设计的最主要的部分。
根据需要,可利用两种方案实现。
(1)本方案采用Dallas公司的专用时钟芯片DS12887A。
该芯片内部采用石英晶体振荡器,其芯片精度不大于10ms/年,且具有完备的时钟闹钟功能,因此,可直接对其以用于显示或设置,使得软件编程相对简单。
为保证时钟在电网电压不足或突然掉电等突发情况下仍能正常工作,芯片内部包含锂电池。
当电网电压不足或突然掉电时,系统自动转换到内部锂电池供电系统。
而且即使系统不上电,程序不执行时,锂电池也能保证芯片的正常运行,以备随时提供正确的时间。
(2)本方案完全用软件实现数字时钟。
原理为:在单片机内部存储器设三个字节分别存放时钟的时、分、秒信息。
利用定时器与软件结合实现1秒定时中断,每产生一次中断,存储器内相应的秒值加1;若秒值达到60,则将其清零,并将相应的分字节值加1;若分值达到60,则清零分字节,并将时字节值加1;若时值达到24,则将十字节清零。
该方案具有硬件电路简单的特点。
但由于每次执行程序时,定时器都要重新赋初值,所以该时钟精度不高。
而且,由于是软件实现,当单片机不上电,程序不执行时,时钟将不工作。
基于硬件电路的考虑,本设计采用方案二完成数字时钟的功能。
方案二:数码管显示方案本电子时钟设计首要的工作是结合以往所学的单片机程序编写理论和编写规则来编写电子时钟的软件部分,编写时要结合所配的AT89S52芯片的管脚功能和其他硬件电路,该部分运用keil单片机软件来完成。
在编写完软件并检测完正确后再编译成.hex载入用Isis仿真软件布好的仿真硬件中运行检测程序是否正确,并调试。
待这一切工作做好后再利用已焊接好的小系统板硬件电路来实践实现软件功能与硬件的结合。
此步骤要用progisp单片机烧写软件来实现。
在硬件设计上:(1)用四个电位按键来实现对电子时钟的调试工作,当按第一下总控键时进入时钟的调整状态,有两个电位按键分别来调整时钟的分和时,在调整时秒正常运行;当按第二下总控键时时钟进入闹钟一设置,有两个电位按键分别来调整时钟的分和时的设定,另外有一个时钟控键来实现闹钟是否开启;当按第三下总控键时时钟进入闹钟二设置,其余操作同闹钟一设置操作,当按第四下总控键时时钟退出调整模式进入正常时钟走势。
(2)用两个四位数码管来实现设计的显示部分,其演示模式是:时时-分分-秒秒。
该数码管组合的功能管脚是八个位选择连接芯片的p2引脚,八个显示管位并联再接入到芯片p0引脚。
从而在功能上区分开,实现数码管的显示功能。
(3)用一个led灯和电阻组成的简易电路结合设计来实现正点报时的功能,当时钟走到正点时,该led灯便能够闪烁五秒刚好是五下,之后进入暗的状态,等到下一个整点到来。
(4)用一个喇叭和三极管等配件组成一个闹钟电路,再与芯片的p1.0引脚连接。
当时钟到设定的报时点时便会发出“嘟嘟嘟嘟….‘的声音来实现闹钟功能。
(5)用一个按键和其他部件组成的复位电路与芯片连接来实现整个程序及硬件的重新复位功能。
鉴于本次课程设计的实际需求,采用数码管显示方案。
2 系统设计2.1 硬件原理电路原理设计是基于小系统包括电源电路、复位电路、按键电路、时钟电路、数码管显示驱动电路、输出控制电路。