西安高新一中沣东中学必修第一册第一单元《集合与常用逻辑用语》检测题(答案解析)
(人教版)西安市必修第一册第一单元《集合与常用逻辑用语》检测卷(包含答案解析)
一、选择题1.以下四个命题中,真命题的是( )A .()0π,sin tan x x x ∃∈=,B .ABC 中,sin sin cos cos A B A B +=+是2C π=的充要条件C .在一次跳伞训练中,甲,乙两位同学各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示p q ∧ D .∀∈θR ,函数()()sin 2f x x θ=+都不是偶函数 2.下列命题中,不正确...的是( ) A .0x R ∃∈,200220x x -+≥B .设1a >,则“b a <”是“log 1a b <”的充要条件C .若0a b <<,则11a b> D .命题“[]1,3x ∀∈,2430x x -+≤”的否定为“[]01,3x ∃∈,200430x x -+>”3.已知非空集合A ,B 满足以下两个条件: (i ){}1,2,3,4,5AB =,A B =∅;(ii )A 的元素个数不是A 中的元素,B 的元素个数不是B 中的元素, 则有序集合对(),A B 的个数为( ) A .7B .8C .9D .104.已知实数0x >,0y >,则“1xy ≤”是“224x y +≤”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.已知a ∈R ,则“2a ≤”是“方程2210ax x ++=至少有一个负根”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.以下有关命题的说法错误的是( )A .命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠”B .“1x =”是“2320x x -+=”的充分不必要条件C .命题“在ABC 中,若A B >,则sin sin A B >”的逆命题为假命题D .对于命题p :存在x ∈R ,使得210x x +-<,则p ⌝:任意x ∈R ,则210x x +-≥7.“3k >”是“方程22133x y k k -=-+表示双曲线”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件8.已知条件:p k =q :直线2y kx =+与圆221x y +=相切,则q 是p 的( )A .充分必要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件9.下列有关命题的说法正确的是( )A .若命题p :0x R ∃∈,01x e <,则命题p ⌝:x R ∀∈,1x e ≥B .“sin x =的一个必要不充分条件是“3x π=”C .若+=-a b a b ,则a b ⊥D .α,β是两个平面,m ,n 是两条直线,如果m n ⊥,m α⊥,βn//,那么αβ⊥ 10.设,a b 是向量,“a a b =+”是“0b =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件11.已知函数32()(,,)f x x ax bx c a b c R =+++∈,则“230a b -≤”是“()f x 在R 上只有一个零点”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件12.已知a ,b R ∈,“1a b +<”是“11a b a b ⎧+<⎪⎨-<⎪⎩”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题13.集合{}22221,2,3,,A n =中所有3个元素的子集的元素和为__________.14.设U =R ,集合2{|320}A x x x =++=, ()2{|10}B x x m x m =+++=,若UA B,则m =__________.15.已知等比数列{}n a 中,10a >,则“12a a <”是“35a a <”的________条件.(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”) 16.已知()()21f n n n N*=+∈,集合{}{}1,2,3,4,5,3,4,5,6,7A B ==,记()(){}()(){},f A n f n A f B m f m B =∈=∈, 则()()f A f B ⋂=_________.17.已知下列命题:①命题“213x R x x ∃∈+>,”的否定是“213x R x x ∀∈+<,”;②已知,p q 为两个命题,若p q ∨“”为假命题,则()()“”p q ⌝⌝∧为真命题;③“2a >”是“5a >”的充分不必要条件;④“若0,xy =则0x =且0y =”的逆否命题为真命题.其中 真命题的序号是__________.(写出所有满足题意的序号)18.若集合A ={x|2≤x≤3},集合B ={x|ax -2=0,a ∈Z},且B ⊆A ,则实数a =________. 19.已知:p x R ∃∈,10x me +≤,:q x R ∀∈,2210x mx -+>,若p q ∨为假命题,则实数m 的取值范围是__________.20.已知命题q :2,10.x R x mx ∀∈++>是真命题,则实数m 的取值范围为__________三、解答题21.设命题:p 实数x 满足22430x ax a -+<,其中0a >,命题:q 实数x 满足2260280x x x x ⎧--≤⎨+->⎩. (1)若2a =且p q ∧为真,求实数x 的取值范围; (2)若p ⌝是q 的必要不充分条件,求实数a 的取值范围. 22.已知原命题是“若260x x --≤则2280x x --≤”.(1)试写出原命题的逆命题,否命题,逆否命题,并判断所写命题的真假;(2)若“()(2)0x a x -+≤”是“260x x --≤”的必要不充分条件,求实数a 的取值范围. 23.设集合{|33},{|13}A x x B x a x a =-≤≤=-≤≤+. (1)若1a =,求,A B A B ;(2)若AB B =,求实数a 的取值范围.24.设集合{}22240A x x x =+-≥,集合1,11B y y x x x ⎧⎫==+>-⎨⎬+⎩⎭,集合1C x ax a ⎧⎛⎫=-⎨ ⎪⎝⎭⎩()}60x +≤.(1)求AB ;(2)若C A ⊆,求实数a 的取值范围.25.关于x 的不等式1x a -<的解集为A ,关于x 的不等式2320x x -+≤的解集为B ,若x A ∈是x B ∈的必要不充分条件,求实数a 的取值范围.26.设集合{|1}S x a x a =≤≤+,{|(1)(2)0}T x x x =+-<,且命题:p x S ∈,:q x T ∈,若命题q ⌝是p 的必要且不充分条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B解析:B 【分析】分析()0π,sin tan x x x ∀∈≠,即得A 错误;利用充要条件的定义判断B 正确;利用复合命题的定义判断C 错误;通过特殊值验证D 错误即可. 【详解】 选项A 中,,2x ππ⎛⎫∈⎪⎝⎭时,sin 0,tan 0x x ><,即sin tan x x ≠;2x π=时,sin 1x =,tan x 无意义;0,2x π⎛⎫∈ ⎪⎝⎭时,设()sin tan sin sin cos x h x x x x x =-=-,则()32211cos cos 0cos cos xh x x x x-'=-=>,故()tan sin h x x x =-在0,2π⎛⎫ ⎪⎝⎭上单调递增, 故()()tan sin 00h x x x h =->=,即sin tan x x <;综上可知,()0π,sin tan x x x ∀∈≠,,故A 错误;选项B 中,ABC 中,若sin sin cos cos A B A B +=+,则sin cos cos sin A A B B -=-,44A B ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,即sin sin 44A B ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,又33,,,444444A B ππππππ⎛⎫⎛⎫-∈--∈- ⎪ ⎪⎝⎭⎝⎭,故44A B ππ-=-或44A B πππ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,所以2A B π+=或A B π-=,ABC 中A B π-≠,故2A B π+=,即2C π=;反过来,若2C π=,则2A B π+=,结合诱导公式可知,sin sin cos 2A B B π⎛⎫=-=⎪⎝⎭, sin sin cos 2B A A π⎛⎫=-= ⎪⎝⎭,所以sin sin cos cos A B A B +=+;综上,sin sin cos cos A B A B +=+是2C π=的充要条件,故B 正确;选项C 中,依题意,命题p ⌝是“甲没有降落在指定范围”, q ⌝是“乙没有降落在指定范围”,故复合命题()()p q ⌝∨⌝ 是“至少有一位学员没有降落在指定范围”,故C 错误; 选项D 中,存在2πθ=时,函数()sin 2cos 22f x x x π⎛⎫=+= ⎪⎝⎭,满足()()f x f x -=,即()f x 是偶函数,故D 错误. 故选:B. 【点睛】方法点睛:(1)证明或判断全称命题为真命题时,要证明对于,()x I p x ∀∈成立;证明或判断它是假命题时,只需要找到一个反例,说明其不成立即可.(2)证明或判断特称命题为真命题时,只需要找到一个情况,说明其成立即可;证明或判断它是假命题时,要证明对于,()x I p x ∀∈⌝成立.2.B解析:B 【分析】由()2200022110x x x -+=-+≥,可判断A ;由对数函数的定义域和对数函数的单调性得充分性不一定成立,必要性成立,可判断B ;运用作差法,判断其差的符号可判断C ;根据全称命题的否定是特称命题可判断D. 【详解】由()2200022110x x x -+=-+≥,得A 为真命题;由“b a <”不能推出“log 1a b <”,所以充分性不一定成立,由“log 1a b <”得“b a <”,所以必要性成立,故B 不正确;由0a b <<,则110b aa b ab --=>,∴11a b>,故C 正确; 根据全称命题的否定是特称命题知D 正确. 故选:B. 【点睛】本题考查判断命题的真假,对数函数的定义域,单调性,全称命题与特称命题的关系,属于中档题.3.B解析:B 【分析】结合题意,按照集合中的元素个数分类,即可得解. 【详解】由题意,符合要求的情况分为以下几类:(1)当集合A 只有一个元素时,集合B 中有四个元素,1A ∉且4B ∉, 故{4}A =,{1,2,3,5}B =,共计1种;(2)当集合A 有两个元素时,集合B 中有三个元素,2A ∉且3B ∉, 故可能结果为:①{1,3}A =,{2,4,5}B =;②{3,4}A =,{}1,2,5B =; ③{}3,5A =,{1,2,4}B =,共计3种;(3)当集合A 有三个元素时,集合B 中有两个元素,3A ∉且2∉B , 故可能结果为:①{2,4,5}A =,3{}1,B;②{}1,2,5A =,{3,4}B =;③{1,2,4}A =,{}3,5B =,共计3种;(4)当集合A 中有4个元素时,集合B 中有1个元素,4A ∉且1B ∉, 故{1,2,3,5}A =,{4}B =,共计1种. 所以有序集合对(),A B 的个数为13318+++=. 故选:B. 【点睛】本题考查了根据集合的运算结果及集合中元素的性质确定集合,考查了运算求解能力,属于中档题.4.B解析:B 【分析】通过举反例得到“1xy ≤”推不出“224x y +≤”;再由“224x y +≤”⇒“1xy ≤”.能求出结果. 【详解】 解:实数0x >,0y >,∴当3x =,14y =时,13422224x y +=+>, ∴“1xy ≤”推不出“224x y +≤”;反之,实数0x >,0y >,由基本不等式可得22x y +≥由不等式的基本性质得224x y ≤+≤,整理得24x y +≤,2x y ∴+≤,由基本不等式得212x y xy +⎛⎫≤≤ ⎪⎝⎭,即“224x y+≤”⇒“1xy ≤”.∴实数0x >,0y >,则“1xy ≤”是“224x y +≤”的必要不充分条件.故选:B . 【点睛】本题考查充分条件、必要条件、充要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,是中等题.5.B解析:B 【分析】分类讨论a 的正负,利用两根与系数的关系、判别式,进而求解判断即可. 【详解】(1)当0a =时,方程变为210x +=,有一负根12x =-,满足题意;(2)当0a <时,440∆=->a ,方程的两根满足1210x x a=<,此时有且仅有一个负根,满足题意;(3)当0a >时,由方程的根与系数关系可得2010aa⎧-<⎪⎪⎨⎪>⎪⎩,∴方程若有根,则两根都为负根,而方程有根的条件440a ∆=-≥,01a ∴<≤.综上可得,1a ≤.因此,“2a ≤”是“方程2210ax x ++=至少有一个负根”的必要不充分条件. 故选:B. 【点睛】本题考查必要不充分条件的判断,考查二次方程根的分布问题,考查分类讨论思想的应用,属于中等题.6.C解析:C 【分析】根据逆否命题的概念,可判定A 是正确的;由方程2320x x -+=,解得1x =或2x =,可判定B 是正确的;根据正弦定理,可判定C 不正确;根据存在性命题与全称命题的关系,可判定D 是正确的. 【详解】A 中,根据逆否命题的概念,可得命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠”,所以A 是正确的;B 中,由方程2320x x -+=,解得1x =或2x =,所以“1x =”是“2320x x -+=”的充分不必要条件,所以B 是正确的;C 中,在ABC 中,由sin sin A B >,根据正弦定理可得a b >,所以A B >,所以命题“在ABC 中,若A B >,则sin sin A B >”的逆命题为真命题,所以C 不正确;D 中,根据存在性命题与全称命题的关系,可得命题p :存在x ∈R ,使得210x x +-<,则p ⌝:任意x ∈R ,则210x x +-≥,所以D 是正确的.故选:C. 【点睛】本题主要考查了命题的真假判定,四种命题的关系,充分条件与必要条件的判定,以及全称命题与存在性命题的关系等知识点的应用,属于基础题.7.A解析:A 【分析】根据充分条件、必要条件的定义,结合双曲线的方程即可判定. 【详解】因为当3k >时,30k ->,30k +>,方程22133x y k k -=-+表示双曲线;当方程22133x y k k -=-+表示双曲线时,(3)(3)0k k -+>,即3k >或3k <-,不能推出3k >,所以“3k >”是“方程22133x y k k -=-+表示双曲线”的充分不必要条件,故选:A 【点睛】本题主要考查了充分条件、必要条件,双曲线的标准方程,属于中档题.8.B解析:B 【分析】结合直线和圆相切的等价条件,利用充分条件和必要条件的定义进行判断即可. 【详解】若直线2y kx =+与圆221x y +=相切,则圆心(0,0)到直线20kx y -+=的距离1d ==,即214k +=,23k ∴=,即k =∴q 推不出p ,而p 而以推出q ,q ∴是p 的必要不充分条件.故选:B . 【点睛】本题主要考查充分条件和必要条件的判断,利用直线与圆相切的等价条件是解决本题的关键,属于基础题.9.A解析:A 【分析】对选项逐个分析,对于A 项,根据特称命题的否定是全称命题,得到其正确;对于B 项,根据充分必要条件的定义判断正误;对于C 项根据向量垂直的条件得到其错误,对于D 项,从空间直线平面的关系可判断正误. 【详解】对于A ,命题p :0x R ∃∈,01x e <,则命题p ⌝:x R ∀∈,1x e ≥,A 正确;对于B ,当3x π=时, sin 2x =成立,所以“3x π=”是“sin x =”的充分条件,所以B 错误; 对于C ,a b >且两向量反向时 +=-a b a b 成立, a b ⊥不成立C 错误; 对于D ,若m n ⊥,m α⊥,βn//,则α,β的位置关系无法确定,故D 错误.故选:A. 【点睛】该题考查的是有关选择正确命题的问题,涉及到的知识点有含有一个量词的命题的否定,充分必要条件的判断,空间直线和平面的关系,属于简单问题.10.B解析:B 【分析】根据向量的运算性质结合充分条件和必要条件的判定,即可得出答案. 【详解】 当12a b =-时,1122a b b b b a +=-+==,推不出0b =当0b =时,0b =,则0a b a a +=+= 即“a a b =+”是“0b =”的必要不充分条件 故选:B 【点睛】本题主要考查了判断必要不充分条件,属于中档题.11.A解析:A 【分析】求出()f x ',由230a b -≤知()0f x '≥恒成立,即函数()f x 在R 上单调递增,只有一个零点,然后可举例说明在230a b ->,即()f x 有两个极值点时,()f x 也可能只有一个零点,由此可得结论. 【详解】因为32()f x x ax bx c =+++,2()32f x x ax b '=++,若230a b -≤, 则24120a b ∆=-≤,则()0f x '≥恒成立,所以()f x 在R 上单调递增. 当x →+∞时,()f x →+∞,当x →-∞时,()f x →-∞, 所以()f x 在R 上只有一个零点,即充分性成立. 令32a =,0b =,1c =-,则323()12f x x x =+-,2()333(1)f x x x x x '=+=+, 则()f x 在(,1)-∞-,(0,)+∞上单调递增,在(1,0)-上单调递减,又1(1)02f -=-<, 3(1)02f =>,则()f x 在R 上只有一个零点,但不满足“230a b -≤”,即必要性不成立, 所以“230a b -≤”是“()f x 在R 上只有一个零点”的充分不必要条件, 故选:A . 【点睛】本题考查充分条件、必要条件的判断、函数的零点的概念.注意区别A 是B 的充分不必要条件(A B ⇒且B A ⇒/)与A 的充分不必要条件是B (B A ⇒且A B ⇒/)两者的不同.12.C解析:C 【分析】由绝对值不等式的基本性质,集合充分必要条件的判定方法,即可求解. 【详解】由题意,a ,b R ∈,1a b +<,可得1a b a b +≤+<且1a b a b -≤+<,所以充分性是成立的; 反之11a b a b ⎧+<⎪⎨-<⎪⎩,可得1111a b a b -<+<⎧⎨-<-<⎩,即1a b +<,所以必要性是成立的,综上可得:a ,b R ∈,1a b +<是11a b a b ⎧+<⎪⎨-<⎪⎩成立的充要条件.故选:C . 【点睛】本题主要考查了绝对值不等式的基本性质,以及充分条件、必要条件的判定方法,其中解答中熟练应用绝对值不等式的性质是解答的关键,着重考查了推理与运算能力.二、填空题13.【分析】集合A 中所有元素被选取了次可得集合中所有3个元素的子集的元素和为即可得结果【详解】集合中所有元素被选取了次∴集合中所有3个元素的子集的元素和为故答案为【点睛】本题考查了集合的子集正整数平方和 解析:(2)(1)(1)(21)12n n n n n --++【分析】集合A 中所有元素被选取了21n C -次,可得集合{}22221,2,3,,A n =中所有3个元素的子集的元素和为()222122123n n C -+++⋯+即可得结果.【详解】 集合{}22221,2,3,,A n =中所有元素被选取了21n C -次,∴集合{}22221,2,3,,A n =中所有3个元素的子集的元素和为()()()()()2222211212112326n n n n n n C n ---+++++⋯+=⨯()()()()2112112n n n n n --++=,故答案为(2)(1)(1)(21)12n n n n n --++. 【点睛】 本题考查了集合的子集、正整数平方和计算公式,属于中档题.14.1或2【详解】解方程可得因为所以当m=1时满足题意;当即m=2时满足题意故m=1或2解析:1或2【详解】{|21}A x x x ==-=-或,解方程()210x m x m +++=可得1x x m =-=-或 因为U A B ,所以B A ⊆,当1m -=-即m =1时,满足题意;当2m -=-,即m =2时,满足题意,故m =1或2.15.充分不必要【分析】由等比数列的性质结合充分必要条件的判定方法得答案【详解】在等比数列中则由得即;反之由得即或当时等比数列中则是的充分不必要条件故答案为:充分不必要【点睛】本题主要考查等比数列的性质考 解析:充分不必要【分析】由等比数列的性质结合充分必要条件的判定方法得答案.【详解】在等比数列{}n a 中,10a >,则由12a a <,得11a a q <,即1q >,∴243115a a q a q a =<=;反之,由243115a a q a q a =<=,得21q >,即1q >或1q <-,当1q <-时,112a a q a >=.∴等比数列{}n a 中,10a >,则“12a a <”是“35a a <”的充分不必要条件.故答案为:充分不必要.【点睛】本题主要考查等比数列的性质,考查充分必要条件的判定方法,是基础题.16.【分析】由题意求得所再根据集合的交集的运算即可求解【详解】由题意知集合所以所以故答案为:【点睛】本题主要考查了集合的交集的概念与运算其中解答中正确求解集合是解答的关键着重考查了推理与运算能力属于基础题 解析:{}7,9,11【分析】由题意求得所(){}3,5,7,9,11f A =,(){}7,9,11,13,15f B =,再根据集合的交集的运算,即可求解.【详解】由题意,知()()21f n n n N *=+∈,集合{}{}1,2,3,4,5,3,4,5,6,7A B ==,所以()(){}{}3,5,7,9,11f A n f n A =∈=,()(){}{}7,9,11,13,15f B m f m B =∈=, 所以()(){}7,9,11f A f B ⋂=.故答案为:{}7,9,11.【点睛】本题主要考查了集合的交集的概念与运算,其中解答中正确求解集合,A B 是解答的关键,着重考查了推理与运算能力,属于基础题. 17.②【分析】①写出命题的否定即可判定正误;②由为假命题得到命题都是假命题由此可判断结论正确;③由时不成立反之成立由此可判断得到结论;④举例说明原命题是假命题得出它的逆否命题也为假命题【详解】对于①中命解析:②【分析】①写出命题“213x R x x ∃∈+>,”的否定,即可判定正误;②由p q ∨“”为假命题,得到命题,p q 都是假命题,由此可判断结论正确;③由2a >时,5a >不成立,反之成立,由此可判断得到结论;④举例说明原命题是假命题,得出它的逆否命题也为假命题.【详解】对于①中,命题“213x R x x ∃∈+>,”的否定为“213x R x x ∀∈+≤,”,所以不正确;对于②中,命题,p q 满足p q ∨“”为假命题,得到命题,p q 都是假命题,所以,p q ⌝⌝都是真命题,所以()()“”p q ⌝⌝∧为真命题,所以是正确的; 对于③中,当2a >时,则5a >不一定成立,当5a >时,则2a >成立,所以2a >是5a >成立的必要不充分条件,所以不正确;对于④中,“若0,xy =则0x =且0y =”是假命题,如3,0x y ==时,所以它的逆否命题也是假命题,所以是错误的;故真命题的序号是②.【点睛】本题主要考查了命题的否定,复合命题的真假判定,充分与必要条件的判断问题,同时考查了四种命题之间的关系的应用,试题有一定的综合性,属于中档试题,着重考查了推理与论证能力.18.0或1【分析】根据B ⊆A 讨论两种情况:①B=∅;②B≠∅分别求出a 的范围;【详解】∵B ⊆A 若B=∅则a=0;若B≠∅则因为若2∈B ∴2a ﹣2=0∴a=1若3∈B 则3a ﹣2=0∴a=∵a ∈Z ∴a≠∴a解析:0或1【分析】根据B ⊆A ,讨论两种情况:①B=∅;②B≠∅,分别求出a 的范围; 【详解】∵B ⊆A ,若B=∅,则a=0;若B≠∅,则因为若2∈B ,∴2a ﹣2=0,∴a=1,若3∈B ,则3a ﹣2=0,∴a=32,∵a ∈Z ,∴a≠32, ∴a=0或1,故答案为a=0或1.【点睛】此题主要考查集合关系中的参数的取值问题,此题是一道基础题,注意a 是整数. 19.【解析】由题设可得都为假命题因则恒成立是真命题即;又故是真命题即入故应填答案点睛:本题的解答过程体现了等价转化与化归的数学思想及命题真假判定与复合命题的真假的判定规律以此为依据建立不等式组使得问题获解 解析:[)1,+∞【解析】由题设可得,p q 都为假命题,因:p x R ∃∈,10x me +≤,则:p ⌝x R ∀∈,10x me +>恒成立是真命题,即100x m m e>-<⇒≥;又:q x R ∀∈,2210x mx -+>是假命题,故:q ⌝x R ∃∈,2210x mx -+≤是真命题,即,2440m -≥入11m m ≥≤-或,故0111m m m m ≥⎧⇒≥⎨≥≤-⎩或,应填答案[1,)+∞。
新人教版高中数学必修第一册第一单元《集合与常用逻辑用语》检测卷(答案解析)(4)
一、选择题1.已知ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,则“0,3B π⎛⎤∈ ⎥⎝⎦”是“2b ac =”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件2.以下四个命题中,真命题的是( )A .()0π,sin tan x x x ∃∈=,B .ABC 中,sin sin cos cos A B A B +=+是2C π=的充要条件C .在一次跳伞训练中,甲,乙两位同学各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示p q ∧ D .∀∈θR ,函数()()sin 2f x x θ=+都不是偶函数3.设a R ∈,则“1a =”是“直线1:20l ax y +=与直线()2140+++=:l x a y 平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.已知非空集合A ,B 满足以下两个条件: (i ){}1,2,3,4,5AB =,A B =∅;(ii )A 的元素个数不是A 中的元素,B 的元素个数不是B 中的元素, 则有序集合对(),A B 的个数为( ) A .7 B .8 C .9D .10 5.24x >成立的一个充分非必要条件是( )A .23x >B .2xC .2x ≥D .3x >6.已知等比数列{}n a 的前n 项和为n S ,则“10a >”是“20210S >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件7.已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“α⊥β”是“m ⊥β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 8.已知1:12p x ≥-,:||2q x a -<,若p 是q 的充分不必要条件,则实数a 的取值范围为( ) A .(,4]-∞B .[1,4]C .(1,4]D .(1,4)9.函数()31f x x ax =--在()1,1-上不单调的一个充分不必要条件是( )A .[]0,3a ∈B .()0,5a ∈C .()0,3a ∈D .()1,2a ∈10.已知函数()31f x x ax =--,则()f x 在()1,1-上不单调的一个充分不必要条件是( ) A .[]0,3a ∈B .()0,5a ∈C .()0,3a ∈D .()1,3a ∈11.设{}n a 是等差数列,且公差不为零,其前n 项和为n S .则“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件12.已知全集{1,2,3,4,5}U =,集合{1,2,4}A =,{1,3,5}B ,则()U C A B ( )A .{1}B .{3,5}C .{1,3,5}D .{2,3,4,5}二、填空题13.集合{}22221,2,3,,A n =中所有3个元素的子集的元素和为__________.14.不等式220mx mx --<对任意x ∈R 恒成立的充要条件是m ∈__________. 15.已知等比数列{}n a 中,10a >,则“12a a <”是“35a a <”的________条件.(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”)16.命题“∀x ∈[4π,3π],tan x ≤m ”是真命题,则实数m 的最小值为_____. 17.已知命题:44,:(2)(3)0p x a q x x -<-<-->,若p ⌝是q ⌝的充分不必要条件,求a 的取值范围________.18.已知集合{}2,M y y x x R ==∈,221,4y N y x x R ⎧⎫⎪⎪=+=∈⎨⎬⎪⎪⎩⎭,则MN =__________. 19.已知下列命题:①命题“213x R x x ∃∈+>,”的否定是“213x R x x ∀∈+<,”;②已知,p q 为两个命题,若p q ∨“”为假命题,则()()“”p q ⌝⌝∧为真命题;③“2a >”是“5a >”的充分不必要条件;④“若0,xy =则0x =且0y =”的逆否命题为真命题.其中 真命题的序号是__________.(写出所有满足题意的序号) 20.已知集合{}{}22,1,A B a==,若{}0,1,2AB =,则实数a =________.三、解答题21.在①()RB A ⊆,②()A B R =R ,③A B B =这三个条件中任选一个,补充在下面问题中.若问题中的实数a 存在,求a 的取值范围;若问题中的实数a 不存在,请说明理由.已知集合{}2540A x x x =-+≤,{}121B x a x a =+<<-,是否存在实数a ,使得________?22.已知幂函数2242()(1)m m f x m x -+=-⋅在(0,)+∞上单调递增,函数()2x g x k =-.(1)求m 的值;(2)当[1,2]x ∈-时,()f x 、()g x 的值域分别为A 、B ,设命题p :x A ∈,命题q :x B ∈,若命题p 是q 成立的必要条件,求实数k 的取值范围.23.已知集合{}13A x x =≤<,{}2,xB y y x A ==∈,{}6C x a x a =-<<. (1)求AB ;(2)若()C A B ⊆⋃,求实数a 的取值范围. 24.设全集U =R ,已知集合{|25},{|28},{|121}A x x B x x C x a x a =-≤≤=<<=+<<-.(1)求(),UA B A B ⋃⋂;(2)若AC C =,求a 的取值范围.25.已知集合A 是函数2lg 20()8y x x =+-的定义域,集合B 是不等式22210(0)x x a a -+-≥>的解集,:,:p x A q x B ∈∈.(1)若AB =∅,求a 的取值范围;(2)若p ⌝是q 的充分不必要条件,求a 的取值范围. 26.已知集合{}121A x a x a =-<<+,{}01B x x =<<.(1)若12a =,求A B ; (2)若A B =∅,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】分别从充分性和必要性入手进行分析即可得解. 【详解】充分性:若0,3B π⎛⎤∈ ⎥⎝⎦,则2221cos 122a c b B ac+-≤=<,即2222ac a c b ac ≤+-<,即222222a c ac b a c ac +-<≤+-,并不能得出2b ac =一定成立,故充分性不成立;必要性:若2b ac =,由余弦定理得:2221cos 222a c ac ac ac B ac ac +--=≥=,因为()0,B π∈,所以0,3B π⎛⎤∈ ⎥⎝⎦,故必要性成立, 综上,“0,3B π⎛⎤∈ ⎥⎝⎦”是“2b ac =”的必要不充分条件, 故选:C . 【点睛】方法点睛:判断充要条件的四种常用方法:定义法、传递性法、集合法、等价命题法.2.B解析:B 【分析】分析()0π,sin tan x x x ∀∈≠,即得A 错误;利用充要条件的定义判断B 正确;利用复合命题的定义判断C 错误;通过特殊值验证D 错误即可. 【详解】选项A 中,,2x ππ⎛⎫∈ ⎪⎝⎭时,sin 0,tan 0x x ><,即sin tan x x ≠;2x π=时,sin 1x =,tan x 无意义;0,2x π⎛⎫∈ ⎪⎝⎭时,设()sin tan sin sin cos x h x x x x x =-=-,则()32211cos cos 0cos cos xh x x x x-'=-=>,故()tan sin h x x x =-在0,2π⎛⎫ ⎪⎝⎭上单调递增, 故()()tan sin 00h x x x h =->=,即sin tan x x <;综上可知,()0π,sin tan x x x ∀∈≠,,故A 错误;选项B 中,ABC 中,若sin sin cos cos A B A B +=+,则sin cos cos sin A A B B -=-,44A B ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,即sin sin 44A B ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,又33,,,444444A B ππππππ⎛⎫⎛⎫-∈--∈- ⎪ ⎪⎝⎭⎝⎭,故44A B ππ-=-或44A B πππ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,所以2A B π+=或A B π-=,ABC 中A B π-≠,故2A B π+=,即2C π=;反过来,若2C π=,则2A B π+=,结合诱导公式可知,sin sin cos 2A B B π⎛⎫=-=⎪⎝⎭,sin sin cos 2B A A π⎛⎫=-= ⎪⎝⎭,所以sin sin cos cos A B A B +=+;综上,sin sin cos cos A B A B +=+是2C π=的充要条件,故B 正确;选项C 中,依题意,命题p ⌝是“甲没有降落在指定范围”, q ⌝是“乙没有降落在指定范围”,故复合命题()()p q ⌝∨⌝ 是“至少有一位学员没有降落在指定范围”,故C 错误; 选项D 中,存在2πθ=时,函数()sin 2cos 22f x x x π⎛⎫=+= ⎪⎝⎭,满足()()f x f x -=,即()f x 是偶函数,故D 错误. 故选:B. 【点睛】 方法点睛:(1)证明或判断全称命题为真命题时,要证明对于,()x I p x ∀∈成立;证明或判断它是假命题时,只需要找到一个反例,说明其不成立即可.(2)证明或判断特称命题为真命题时,只需要找到一个情况,说明其成立即可;证明或判断它是假命题时,要证明对于,()x I p x ∀∈⌝成立.3.A解析:A 【分析】计算直线平行等价于1a =或2a =-,根据范围大小关系得到答案. 【详解】直线1:20l ax y +=与直线()2140+++=:l x a y 平行,则()12a a +=,1a =或2a =-,验证均不重合,满足.故“1a =”是“直线1:20l ax y +=与直线()2140+++=:l x a y 平行”的充分不必要条件. 故选:A. 【点睛】本题考查了充分不必要条件,意在考查学生的计算能力和推断能力.4.B解析:B 【分析】结合题意,按照集合中的元素个数分类,即可得解. 【详解】由题意,符合要求的情况分为以下几类:(1)当集合A 只有一个元素时,集合B 中有四个元素,1A ∉且4B ∉, 故{4}A =,{1,2,3,5}B =,共计1种;(2)当集合A 有两个元素时,集合B 中有三个元素,2A ∉且3B ∉,故可能结果为:①{1,3}A =,{2,4,5}B =;②{3,4}A =,{}1,2,5B =; ③{}3,5A =,{1,2,4}B =,共计3种;(3)当集合A 有三个元素时,集合B 中有两个元素,3A ∉且2∉B , 故可能结果为:①{2,4,5}A =,3{}1,B;②{}1,2,5A =,{3,4}B =;③{1,2,4}A =,{}3,5B =,共计3种;(4)当集合A 中有4个元素时,集合B 中有1个元素,4A ∉且1B ∉, 故{1,2,3,5}A =,{4}B =,共计1种. 所以有序集合对(),A B 的个数为13318+++=. 故选:B. 【点睛】本题考查了根据集合的运算结果及集合中元素的性质确定集合,考查了运算求解能力,属于中档题.5.D解析:D 【分析】根据题意,找到24x >解集的一个真子集即可求解. 【详解】由24x >解得2x >或2x <-,所以24x >成立的一个充分非必要条件是(2)(2,)-∞-+∞的真子集,因为3+∞(,) (2)(2,)-∞-+∞,所以24x >成立的一个充分非必要条件是3x >, 故选:D 【点睛】本题主要考查了充分条件、必要条件,真子集的概念,属于中档题.6.C解析:C 【分析】结合等比数列的前n 项和公式,以及充分、必要条件的判断方法,判断出正确选项. 【详解】由于数列{}n a 是等比数列,所以2021111n q S a q -=⋅-,由于101nq q ->-,所以 2021111001nq S a a q-=⋅>⇔>-,所以“10a >”是“20210S >”的充要条件. 故选:C本小题主要考查等比数列前n 项和公式,考查充分、必要条件的判断,属于中档题.7.B解析:B 【解析】当α⊥β时,平面α内的直线m 不一定和平面β垂直,但当直线m 垂直于平面β时,根据面面垂直的判定定理,知两个平面一定垂直,故“α⊥β”是“m ⊥β”的必要不充分条件.8.C解析:C【分析】求出p ,q 的等价条件,根据充分条件和必要条件的定义即可得到结论. 【详解】由112x ≥-,即302x x -≤-,解得23x <≤, 由||2x a -<得22a x a -<<+,若p 是q 的充分不必要条件,则2223a a -≤⎧⎨+>⎩,解得14a <≤,实数a 的取值范围为(]1,4, 故选:C. 【点睛】本题主要考查充分条件和必要条件的应用,属于中档题.9.D解析:D 【分析】先求出()f x 在()1,1-上单调的范围,其补集即为不单调的范围,结合选项即可得到答案. 【详解】由已知,当()1,1x ∈-时,()[)23,3f x x a a a '=-∈--,当0a ≤时,()0f x '≥,当3a ≥时,()0f x '≤, 所以()f x 在()1,1-上单调,则0a ≤或3a ≥, 故()f x 在()1,1-上不单调时,a 的范围为()0,3,A 、B 是必要不充分条件,C 是充要条件,D 是充分不必要条件. 故选:D. 【点睛】本题主要考查利用导数研究函数的单调性,涉及到充分条件、必要条件的判断,考查学生的逻辑推理能力,数学运算能力,是一道中档题.10.D【分析】先求出()f x 在()1,1-上单调的范围,其补集即为不单调的范围,结合选项即可得到答案. 【详解】由已知,()23[,3)f x x a a a =-∈--‘,当0a ≤时,'()0f x ≥,当3a ≥时,'()0f x ≤,所以()f x 在()1,1-上单调,则0a ≤或3a ≥,故()f x 在()1,1-上不单调时,a 的范围为(0,3),A 、B 是必要不充分条件,C 是充要条件,D 是充分不必要条件.故选:D 【点睛】本题主要考查利用导数研究函数的单调性,涉及到充分条件、必要条件的判断,考查学生的逻辑推理能力,数学运算能力,是一道中档题.11.A解析:A 【分析】根据等差数列的前n 项和公式以及充分条件和必要条件的定义进行判断即可. 【详解】{}n a 是等差数列,且公差d 不为零,其前n 项和为n S ,充分性:1n n S S +>,则10n a +>对任意的n *∈N 恒成立,则20a >,0d ≠,若0d <,则数列{}n a 为单调递减数列,则必存在k *∈N ,使得当n k >时,10n a +<,则1n n S S +<,不合乎题意;若0d >,由20a >且数列{}n a 为单调递增数列,则对任意的n *∈N ,10n a +>,合乎题意.所以,“*n N ∀∈,1n n S S +>”⇒“{}n a 为递增数列”;必要性:设10n a n =-,当8n ≤时,190n a n +=-<,此时,1n n S S +<,但数列{}n a 是递增数列.所以,“*n N ∀∈,1n n S S +>”⇐/“{}n a 为递增数列”.因此,“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的充分而不必要条件. 故选:A. 【点睛】本题主要考查充分条件和必要条件的判断,结合等差数列的前n 项和公式是解决本题的关键,属于中等题.12.B解析:B根据补集的运算,求得{3,5}U C A =,再根据集合交集的运算,即可求得()U C A B ⋂. 【详解】由题意,全集{1,2,3,4,5}U =,集合{1,2,4}A =,可得{3,5}U C A =, 所以()U C A B {3,5}.故选:B . 【点睛】本题主要考查了集合的混合运算,其中解答中熟记集合运算的概念和计算方法是解答的关键,着重考查了计算能力,属于基础题.二、填空题13.【分析】集合A 中所有元素被选取了次可得集合中所有3个元素的子集的元素和为即可得结果【详解】集合中所有元素被选取了次∴集合中所有3个元素的子集的元素和为故答案为【点睛】本题考查了集合的子集正整数平方和 解析:(2)(1)(1)(21)12n n n n n --++【分析】集合A 中所有元素被选取了21n C -次,可得集合{}22221,2,3,,A n =中所有3个元素的子集的元素和为()222122123n n C -+++⋯+即可得结果.【详解】 集合{}22221,2,3,,A n =中所有元素被选取了21n C -次,∴集合{}22221,2,3,,A n =中所有3个元素的子集的元素和为()()()()()22222112121 12326n n n n n n Cn---+++++⋯+=⨯()()()()2112112n n n n n --++=, 故答案为(2)(1)(1)(21)12n n n n n --++.【点睛】本题考查了集合的子集、正整数平方和计算公式,属于中档题.14.【分析】先根据一元二次不等式恒成立得再根据充要条件概念即可得答案【详解】解:当时显然满足条件当时由一元二次不等式恒成立得:解得:综上所以不等式对任意恒成立的充要条件是故答案为:【点睛】本题考查充要条 解析:(]8,0-【分析】先根据一元二次不等式恒成立得(]8,0m ∈-,再根据充要条件概念即可得答案. 【详解】解:当0m =时,显然满足条件,当0m ≠时,由一元二次不等式恒成立得:2800m m m ⎧+<⎨<⎩,解得:80m -<<综上,(]8,0m ∈-,所以不等式220mx mx --<对任意x ∈R 恒成立的充要条件是(]8,0m ∈-, 故答案为:(]8,0- 【点睛】本题考查充要条件的求解,一元二次不等式恒成立问题,是基础题.15.充分不必要【分析】由等比数列的性质结合充分必要条件的判定方法得答案【详解】在等比数列中则由得即;反之由得即或当时等比数列中则是的充分不必要条件故答案为:充分不必要【点睛】本题主要考查等比数列的性质考解析:充分不必要 【分析】由等比数列的性质结合充分必要条件的判定方法得答案. 【详解】在等比数列{}n a 中,10a >,则由12a a <,得11a a q <,即1q >,∴243115a a q a q a =<=;反之,由243115a a q a q a =<=,得21q >,即1q >或1q <-,当1q <-时,112a a q a >=.∴等比数列{}n a 中,10a >,则“12a a <”是“35a a <”的充分不必要条件.故答案为:充分不必要. 【点睛】本题主要考查等比数列的性质,考查充分必要条件的判定方法,是基础题.16.【分析】将条件转化为时再利用在的单调性求出的最大值即可【详解】是真命题时在的单调递增时取得最大值为即的最小值为故答案为:【点睛】本题主要考查了转化思想将恒成立问题转化为最值问题再通过正切函数的单调性【分析】将条件“[4x π∀∈,]3π,tan x m ”转化为“[4x π∈,]3π时,(tan )max m x ”,再利用tan y x=在[4π,]3π的单调性求出tan x 的最大值即可. 【详解】“[4x π∀∈,]3π,tan x m ”是真命题,[4x π∴∈,]3π时,(tan )max m x ,tan y x =在[4π,]3π的单调递增,3x π∴=时,tan x ,3m∴,即m【点睛】本题主要考查了转化思想,将恒成立问题转化为最值问题,再通过正切函数的单调性求出函数的最值即可,属于中档题.17.【分析】是的充分不必要条件可转化为是的充分不必要条件再化简两命题对应的取值范围进一步判断即可【详解】是的充分不必要条件是的充分不必要条件命题中:命题中:由是的充分不必要条件可知应满足解得故答案为:【 解析:[1,6]-【分析】p ⌝是q ⌝的充分不必要条件可转化为q 是p 的充分不必要条件,再化简两命题对应x 的取值范围,进一步判断即可 【详解】“p ⌝是q ⌝的充分不必要条件”⇔q 是p 的充分不必要条件,命题p 中:44a x a -<<+,命题q 中:23x <<,由q 是p 的充分不必要条件可知,应满足4243a a -≤⎧⎨+≥⎩,解得[1,6]a ∈- 故答案为:[1,6]- 【点睛】本题考查由命题的充分不必要条件求解参数范围,属于中档题18.【分析】根据函数的值域以及椭圆的性质求得集合再根据集合的运算即可求解【详解】由题意集合所以【点睛】本题主要考查了集合的运算其中解答中根据函数的值域以及椭圆的性质求得集合是解答的关键着重考查了推理与运 解析:[]0,2【分析】根据函数的值域,以及椭圆的性质求得集合,M N ,再根据集合的运算,即可求解. 【详解】由题意,集合{}2,{|0}M y y x x R y y ==∈=≥,221,{|22}4y N y x x R y y ⎧⎫⎪⎪=+=∈=-≤≤⎨⎬⎪⎪⎩⎭,所以{|02}[0,2]M N y y =≤≤=.【点睛】本题主要考查了集合的运算,其中解答中根据函数的值域,以及椭圆的性质求得集合,M N 是解答的关键,着重考查了推理与运算能力,属于基础题.19.②【分析】①写出命题的否定即可判定正误;②由为假命题得到命题都是假命题由此可判断结论正确;③由时不成立反之成立由此可判断得到结论;④举例说明原命题是假命题得出它的逆否命题也为假命题【详解】对于①中命解析:② 【分析】①写出命题“213x R x x ∃∈+>,”的否定,即可判定正误;②由p q ∨“”为假命题,得到命题,p q 都是假命题,由此可判断结论正确;③由2a >时,5a >不成立,反之成立,由此可判断得到结论; ④举例说明原命题是假命题,得出它的逆否命题也为假命题. 【详解】对于①中,命题“213x R x x ∃∈+>,”的否定为“213x R x x ∀∈+≤,”,所以不正确;对于②中,命题,p q 满足p q ∨“”为假命题,得到命题,p q 都是假命题,所以,p q ⌝⌝都是真命题,所以()()“”p q ⌝⌝∧为真命题,所以是正确的;对于③中,当2a >时,则5a >不一定成立,当5a >时,则2a >成立,所以2a >是5a >成立的必要不充分条件,所以不正确;对于④中,“若0,xy =则0x =且0y =”是假命题,如3,0x y ==时,所以它的逆否命题也是假命题,所以是错误的; 故真命题的序号是②. 【点睛】本题主要考查了命题的否定,复合命题的真假判定,充分与必要条件的判断问题,同时考查了四种命题之间的关系的应用,试题有一定的综合性,属于中档试题,着重考查了推理与论证能力.20.0【解析】分析:根据集合的并集的含义有集合A 或B 必然含有元素0又由集合AB 可得从而求得结果详解:根据题意若则A 或B 必然含有元素0又由则有即故答案是0点睛:该题考查的是有关集合的运算问题利用两个集合的解析:0. 【解析】分析:根据集合的并集的含义,有集合A 或B 必然含有元素0,又由集合A,B 可得20a =,从而求得结果.详解:根据题意,若{}=0,1,2A B ⋃,则A 或B 必然含有元素0, 又由{}{}22,1,A B a==,则有20a=,即0a =,故答案是0.点睛:该题考查的是有关集合的运算问题,利用两个集合的并集中的元素来确定有关参数的取值问题,属于基础题目.三、解答题21.答案见解析. 【分析】 若选①:求出A R,分B =∅和B ≠∅两种情况,列出不等式组可得答案;若选②:由()A B R =R,得B ≠∅,列出不等式组可得答案;若选③:由A B B =可知B A ⊆,分B =∅和B ≠∅列出不等式组可得答案.【详解】集合{}{}254014A x x x x x =-+≤=≤≤. 若选①:{1RA x x =<或4}x >,由()RB A ⊆得,当B =∅时,121a a +≥-,解得2a ≤;当B ≠∅时,121211a a a +<-⎧⎨-≤⎩或12114a a a +<-⎧⎨+≥⎩,解得a ∈∅或3a ≥,所以实数a 的取值范围是[)3,+∞. 综上,存在实数a ,使得()RB A ⊆,且a 的取值范围为(][),23,-∞⋃+∞. 若选②:{1RA x x =<或4}x >,由()A B R =R,得B ≠∅,所以21411a a ->⎧⎨+<⎩,解得a ∈∅,所以不存在实数a ,使得()A B R =R.若选③: 由AB B =可知B A ⊆,当B =∅时,121a a +≥-,解得2a ≤;当B ≠∅时,12111214a a a a +<-⎧⎪+≥⎨⎪-≤⎩,解得522a <≤.综上,存在实数a ,使得AB B =,且a 的取值范围为5,2⎛⎤-∞ ⎥⎝⎦.【点睛】本题考查了集合的运算,解题关键点是对于()RB A ⊆和()A B R =R 中含有参数的集合要分情况进行讨论,要熟练掌握集合间的基本运算. 22.(1)0;(2)10,2⎡⎤⎢⎥⎣⎦.【分析】(1)解方程2(1)1m -=检验即得解;(2)求出[0,4]A =,1[,4]2B k k =--,解不等式组1244k k ⎧-≥⎪⎨⎪-≤⎩即得解.【详解】(1)依题意得:∵()y f x =为幂函数,∴2(1)1m -=,∴0m =或2m =,当2m =时,2()f x x -=在(0,)+∞上单调递减,舍去, 当0m =时,2()f x x =在(0,)+∞上单调递增,可取,所以0m =.(2)由(1)得2()f x x =,当[1,2]x ∈-时,()[0,4]f x ∈,即[0,4]A =,当[1,2]x ∈-时,1()[,4]2g x k k ∈--,即1[,4]2B k k =--,∵命题p 是q 成立的必要条件,∴B A ⊆,∴1244k k ⎧-≥⎪⎨⎪-≤⎩,∴102k ≤≤,∴k 的取值范围是1[0,]2. 【点睛】本题主要幂函数的定义和单调性,考查函数的值域的求法,考查指数函数的单调性和必要条件的判断,意在考查学生对这些知识的理解掌握水平. 23.(1)[)1,8;(2)(],5-∞. 【分析】(1)本题首先可根据x A ∈求出集合2,8B,然后并集的相关性质即可得出结果;(2)本题可分为C =∅、C ≠∅两种情况进行讨论,然后通过计算即可得出结果. 【详解】(1)因为集合{}13A x x =≤<,{}2,xB y y x A ==∈, 所以集合2,8B,1,8A B .(2)因为{}6C x a x a =-<<,()C A B ⊆⋃,所以若C =∅,则6a a ,解得3a ≤;若C ≠∅,则6186a a a a -≥⎧⎪≤⎨⎪-<⎩,解得35a <≤,综上所述,5a ≤,实数a 的取值范围是(],5-∞. 【点睛】本题考查集合的运算以及根据集合的包含关系求参数,在根据集合的包含关系求参数时,一定要注意讨论集合是空集这种情况,考查计算能力,是中档题. 24.(1)[2,8),[2,2]--;(2)23a <≤. 【分析】 (1)求出{|2UB x x =≤或8}x ,即得解;(2)对a 分2a ≤、2a >两种情况讨论,列不等式组得解. 【详解】(1)[2,8)A B ⋃=-;{|2UB x x =≤或8}x ,所以()[2,2]UA B ⋂=-.(2)当121a a +≥-即2a ≤时,C =∅,满足A C C =;当121a a +<-即2a >时,因为AC C =,所以C A ⊆,所以212,215a a a >⎧⎪+≥-∴⎨⎪-≤⎩23a <≤.【点睛】易错点睛:本题容易漏掉一种情况,即C =∅情况,出现错解.解答集合的关系运算的问题,千万不要忘记了,空集是任何集合的子集,是任何非空集合的真子集,否则容易出现错解.25.(1)9a ≥(2)03a <≤ 【解析】分析:(1)分别求函数2lg 20()8y x x =+-的定义域和不等式22210(0)x x a a -+-≥>的解集,从而确定集合A,B ,由A B φ⋂=,得到区间端点值之间的关系,解不等式组得到a 的取值范围;(2)求出p ⌝对应的x 的取值范围,由p ⌝是q 的充分不必要条件得到对应的集合之间的关系,由区间端点值的关系列不等式组求解a 的取值范围.详解:(1)由题意得{}{}|210,|11A x x B x x a x a =-<<=≥+≤-或.若A B ⋂=∅,则必须满足110120a a a +≥⎧⎪-≤-⎨⎪>⎩,解得9a ≥.∴a 的取值范围为9a ≥. (2)易得:102p x x ⌝≥≤-或. ∵p ⌝是q 的充分不必要条件,∴{}|102x x x ≥≤-或是{}|11B x x a x a =≥+≤-或的真子集,则101210a a a ≥+⎧⎪-≤-⎨⎪>⎩,解得03a <≤,∴a 的取值范围是03a <≤.点睛:该题所涉及的考点有交集及其运算,充分不必要条件,复合命题的真假,解题的关键是先确定集合中的元素,再者就是两集合交集为空集时对应参数的取值范围,可以借助于数轴来完成.26.(1){}01A B x x ⋂=<<;(2)[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦.【分析】(1)求出集合A ,利用交集的定义可求得集合A B ;(2)分A =∅和A ≠∅两种情况讨论,结合条件A B =∅可得出关于a 的不等式组,即可解得实数a 的取值范围. 【详解】 (1)当12a =时,122A x x ⎧⎫=-<<⎨⎬⎩⎭,{}01B x x =<<,因此,{}01A B x x ⋂=<<;(2)A B =∅.①当A =∅时,即121a a -≥+,2∴≤-a ;②当A ≠∅时,则12111a a a -<+⎧⎨-≥⎩或121210a a a -<+⎧⎨+≤⎩,解得122a -<≤-或2a ≥.综上所述,实数a 的取值范围是[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦.【点睛】本题考查交集的运算,同时也考查了利用交集运算结果求参数,考查运算求解能力,属于中等题.。
(人教版)西安市必修第一册第一单元《集合与常用逻辑用语》检测卷(答案解析)
一、选择题1.已知集合{}*N 0A x x y =∈=≥∣,若B A ⊆且集合B 中恰有2个元素,则满足条件的集合B 的个数为( ). A .1 B .3C .6D .10 2.“不等式20mx x m ++>在R 上恒成立”的一个必要不充分条件是( )A .12m >B .01m <<C .14m >D .1m 3.“21x >”是“2x >”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知集合{}2|40A x R x x =∈-<,{}|28x B x R =∈<,则AB =( ) A .()0,3 B .()3,4C .()0,4D .(),3-∞ 5.已知等比数列{}n a 的前n 项和为n S ,则“10a >”是“20210S >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x R x =∈-≤<,则()A B C ⋃⋂=A .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}7.设集合{}125S x x x =-++>,{}4T x x a =-≤,S T R ⋃=,则a 的取值范围为( )A .2a ≤-或1a ≥B .21a -≤≤C .21a -<<D .2a <-或1a > 8.已知集合{}1A x x =>-,{}2B x x =<,则A B =( ) A .()1,-+∞ B .(),2-∞ C .1,2D .R 9.定义:若平面点集A 中的任一个点00(,)x y ,总存在正实数r ,使得集合{(,)}x y r A <⊆,则称A 为一个开集.给出下列集合: ①22{(,)|1}x y x y +=;②{(,)|20}x y x y ++≥;③{(,)|6}x y x y +<;④22{(,)|0(1}x y x y <+<. 其中是开集的是( )A .①④B .②③C .②④D .③④10.已知集合{}{}2|13,|4,P x R x Q x R x =∈≤≤=∈≥ 则()R P Q ⋃= A .[2,3]B .( -2,3 ]C .[1,2)D .(,2][1,)-∞-⋃+∞11.设等比数列{}n a 中,10a >,公比为q ,则“1q >”是“{}n a 是递增数列”的( ). A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分又非必要条件 12.“一条直线l 与平面α内无数条直线异面”是“这条直线与平面α平行”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 二、填空题13.已知条件:21p x ⌝-<<,条件:q x a ⌝>,且q 是p 的充分不必要条件,则a 的取值范围是_________.14.命题“x R ∀∈,使得不等式210mx mx ++≥”是真命题,则m 的取值范围是________. 15.已知命题:44,:(2)(3)0p x a q x x -<-<-->,若p ⌝是q ⌝的充分不必要条件,求a 的取值范围________.16.方程2210ax x 至少有一个正实数根的充要条件是________;17.已知集合{}1A x x =>,{}22B x x x =<,则AB =__________. 18.设命题21:01x p x -<-,命题2:2110q x a x a a ,若p 是q 的充分不必要条件,则实数a 的取值范围是_____________. 19.非空集合*S N ⊆,且满足条件“x S ∈,则()10x S -∈”,则集合S 的所有元素之和的总和为______.20.对任意的x ∈R ,函数()327f x x ax ax =++不存在极值点的充要条件是__________. 三、解答题21.已知22:|27|3,:430p x q x mx m -<-+<,其中m >0.(1)若m =4且p ∧q 为真,求x 的取值范围;(2)若p 是q 的充分不必要条件,求实数m 的取值范围.22.在“①A B B =,②R B A ⊆,③A B =∅”这三个条件中任选一个,补充在下面横线上,求解下列问题.问题:已知集合{}24120A x x x =-++>,集合{5}B x m x m =<<+.(1)若2m =,求A B ,()R A B ;(2)若______,求m 的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.23.已知命题p :2320x x -+≤,命题q :()222100x x m m -+-≤> (1)若p 是q 的充分条件,求实数m 的取值范围;(2)若4m =,p q ∨为真命题,p q ∧为假命题,求实数x 的取值范围.24.已知集合{}30A x x a =->,{}260B x x x =-->.(Ⅰ)当3a =时,求A B ,A B ; (Ⅱ)若()R A B ⋂≠∅,求实数a 的取值范围.25.已知集合{}121A x a x a =-<<+,{}01B x x =<<. (1)若12a =,求A B ; (2)若A B =∅,求实数a 的取值范围. 26.已知命题}{:210p x x -<<,命题{:1q x x a ≤-或}1x a ≥+,若p ⌝是q 的充分不必要条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】将方程平方整理得()2224820y xy x x -+-=,再根据判别式得04x ≤≤,故1,2,3,4x =,再依次检验得{}2,3,4A =,最后根据集合关系即可得答案.【详解】解:根据题意将x 22x x =+继续平方整理得:()2224820y xy x x -+-=,故该方程有解.所以()222641620x x x ∆=--≥,即240x x -+≥,解得04x ≤≤,因为*N x ∈,故1,2,3,4x =,当1x =时,易得方程无解,当2x =时,240y y -=,有解,满足条件;当3x =时,242490y y -+=,方程有解,满足条件;当4x =时,28160y y -+=,方程有解,满足条件;故{}2,3,4A =,因为B A ⊆且集合B 中恰有2个元素,所以B 集合可以是{}2,3,{}2,4,{}3,4.故选:B.【点睛】本题考查集合的元素,集合关系,解题的关键在于将方程平方转化为()2224820y xy x x -+-=,再结合判别式得1,2,3,4x =,进而求出集合{}2,3,4A =.考查运算求解能力,化归转化能力,是中档题.2.C解析:C【分析】先计算已知条件的等价范围,再利用充分条件和必要条件的定义逐一判断即可.【详解】因为“不等式2+0mx x m +>在R 上恒成立”,所以当0m =时,原不等式为0x>在R 上不是恒成立的,所以0m ≠,所以“不等式2+0mx x m +>在R 上恒成立”,等价于2>0140m m ⎧⎨∆=-<⎩,解得12m >. A 选项是充要条件,不成立;B 选项中,12m >不可推导出01m <<,B 不成立; C 选项中,12m >可推导14m >,且14m >不可推导12m >,故14m >是12m >的必要不充分条件,正确;D 选项中,1m 可推导1>2m ,且1>2m 不可推导1m ,故>1m 是12m >的充分不必要条件,D 不正确.故选:C.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 3.B解析:B【分析】 设{}21A x x =>,{}2B x x =>,然后根据集合包含关系分析充分性和必要性.【详解】 设{}{211A x x x x =>=>或}1x <-,设{}2B x x =>,可得B A , 所以“21x >”是“2x >”的必要不充分条件.故选:B .【点睛】方法点睛:充分性和必要性的判断方法:1、定义法,2、命题法,3、传递法,4、集合法.4.A解析:A【分析】解不等式确定集合,A B 后再由交集定义计算.【详解】由题意{|04}A x x =<<,{|3}B x x =<,∴{|03}(0,3)AB x x =<<=. 故选:A .【点睛】本题考查求集合的交集运算,考查解一元二次不等式和指数不等式,属于基本题. 5.C解析:C【分析】结合等比数列的前n 项和公式,以及充分、必要条件的判断方法,判断出正确选项.【详解】由于数列{}n a 是等比数列,所以2021111n q S a q-=⋅-,由于101nq q ->-,所以 2021111001nq S a a q-=⋅>⇔>-, 所以“10a >”是“20210S >”的充要条件.故选:C【点睛】本小题主要考查等比数列前n 项和公式,考查充分、必要条件的判断,属于中档题. 6.C解析:C【解析】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果.详解:由并集的定义可得:{}1,0,1,2,3,4AB =-, 结合交集的定义可知:(){}1,0,1AB C =-. 本题选择C 选项.点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力. 7.B解析:B【解析】{|32},[4,=4]S x x x T a a =-=-或 ,所以432142a a a -≤-⎧⇒-≤≤⎨+≥⎩,选A. 点睛:形如|x -a |+|x -b |≥c (或≤c )型的不等式主要有三种解法:(1)分段讨论法,利用绝对值号内式子对应方程的根,将数轴分为(-∞,a ],(a ,b ],(b ,+∞)(此处设a <b )三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集;(2)几何法,利用|x -a |+|x -b |>c (c >0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体;(3)图象法:作出函数y 1=|x -a |+|x -b |和y 2=c 的图象,结合图象求解.8.C解析:C【分析】由集合的交集运算即可得出结果.【详解】{|12}=(1,2)=-<<-A B x x故选:C【点睛】本题考查了集合的交集运算,考查了计算能力,属于一般题目.9.D解析:D【分析】根据开集的定义逐个验证选项,即可得到答案.【详解】①:22{(,)|1}x y x y +=表示以原点为圆心,1为半径的圆,则在该圆上任意取点00(,)x y ,以任意正实数r 为半径的圆面,均不满足{(,)}x y r A <⊆故①不是开集;②{(,)|20}x y x y ++≥,在曲线20x y ++=任意取点00(,)x y ,以任意正实数r 为半径的圆面,均不满足{(,)}x y r A <⊆,故该集合不是开集; ③{(,)|6}x y x y +<平面点集A 中的任一点00(,)x y ,则该点到直线的距离为d ,取r d =,则满足{(,)|}x y r A ⊆,故该集合是开集;④22{(,)|0(1}x y x y <+<表示以点()0,3为圆心,1为半径除去圆心和圆周的圆面,在该平面点集A 中的任一点00(,)x y ,则该点到圆周上的点的最短距离为d ,取r d =,则满足{(,)}x y r A <⊆,故该集合是开集.故答案选D 项.【点睛】本题属于集合的新定义型问题,考查对新定义的理解并解决问题,属于中档题. 10.B解析:B【解析】有由题意可得:{}|22R C Q x x =-<< ,则()R P Q ⋃= ( -2,3 ] .本题选择B 选项.11.C解析:C【分析】根据等比数列的通项公式和单调性的判定方法,结合充分条件、必要条件的判定,即可求解.【详解】在等比数列{}n a 中,可得11n n a a q -=,若10,1a q >>,可得11111()(1)0n n n n n a a a q q a q q --+-=-=->,即1n n a a +>,所以数列{}n a 为递增数列,故充分性是成立的;反之:若等比数列{}n a 为递增数列,即111(1)0n n n a a a q q -+-=->,若10a >,则1(1)0n q q -->,可得1q >,故必要性是成立的,所以“1q >”是“{}n a 是递增数列”的充分必要条件.故选:C.【点睛】本题主要考查了充分条件、必要条件的判定,以及数列的单调性的判定方法及应用,其中解答中熟记数列的单调性的判定方法是解答的关键,着重考查推理与论证能力. 12.B解析:B【分析】根据异面直线的定义及直线与平面平行的定义即可判定.【详解】因为满足“一条直线l 与平面α内无数条直线异面”这样条件的直线可以和平面相交, 所以推不出“这条直线与平面α平行”,当直线满足与平面α平行时,可以推出这条直线与平面α内无数条直线异面,所以“一条直线l 与平面α内无数条直线异面”是“这条直线与平面α平行”的必要不充分条件,故选:B【点睛】本题主要考查了充分条件、必要条件,直线与平面的位置关系,属于中档题.二、填空题13.【分析】根据得出由是的充分不必要条件得出根据包含关系得出的范围【详解】由题设得或设或由得设因为是的充分不必要条件所以因此故答案为:【点睛】本题主要考查了由充分不必要条件求参数范围属于中档题 解析:(],2-∞-【分析】根据p ⌝,q ⌝得出,p q ,由q 是p 的充分不必要条件,得出Q P ,根据包含关系得出a 的范围.【详解】由题设:21p x ⌝-<<,得:1p x ≥或2x -≤,设{|1P x x =≥或}2x ≤-由:q x a ⌝>,得:q x a ,设{}|Q x x a =≤因为q 是p 的充分不必要条件,所以Q P ,因此2a ≤-.故答案为:(],2-∞-【点睛】本题主要考查了由充分不必要条件求参数范围,属于中档题.14.【分析】对分类讨论计算可得【详解】解:因为命题使得不等式是真命题当时恒成立满足条件;当时则解得综上可得即故答案为:【点睛】本题考查全称命题为真求参数的取值范围属于中档题解析:[]0,4【分析】对m 分类讨论,计算可得.【详解】解:因为命题“x R ∀∈,使得不等式210mx mx ++≥”是真命题当0m =时,10≥恒成立,满足条件;当0m ≠时,则2040m m m >⎧⎨-≤⎩解得04m <≤ 综上可得04m ≤≤即[]0,4m ∈故答案为:[]0,4【点睛】本题考查全称命题为真求参数的取值范围,属于中档题.15.【分析】是的充分不必要条件可转化为是的充分不必要条件再化简两命题对应的取值范围进一步判断即可【详解】是的充分不必要条件是的充分不必要条件命题中:命题中:由是的充分不必要条件可知应满足解得故答案为:【 解析:[1,6]-【分析】p ⌝是q ⌝的充分不必要条件可转化为q 是p 的充分不必要条件,再化简两命题对应x 的取值范围,进一步判断即可【详解】“p ⌝是q ⌝的充分不必要条件”⇔q 是p 的充分不必要条件,命题p 中:44a x a -<<+,命题q 中:23x <<,由q 是p 的充分不必要条件可知,应满足4243a a -≤⎧⎨+≥⎩,解得[1,6]a ∈- 故答案为:[1,6]-【点睛】本题考查由命题的充分不必要条件求解参数范围,属于中档题16.【分析】讨论和三种情况计算得到答案【详解】当时方程为满足条件当时方程恒有两个解且两根一正一负满足条件当时即此时两根均为正数满足条件综上所述:故答案为:【点睛】本题考查了充要条件分类讨论是一个常用的方 解析:[)1,a ∈-+∞【分析】讨论0a =,0a >和0a <三种情况,计算得到答案.【详解】当0a =时,方程为1210,2x x -==满足条件. 当0a >时,2210,440ax x a 方程恒有两个解,且1210x x a =-<,两根一正一负,满足条件当0a <时,2210,4401ax x a a ,即01a ,此时,1210x x a=->, 1220x x a +=->,两根均为正数,满足条件 综上所述:1a ≥-故答案为:[)1,a ∈-+∞【点睛】本题考查了充要条件,分类讨论是一个常用的方法,需要同学们熟练掌握.17.【解析】由得:则故答案为解析:()1,2【解析】 由{}22B x x x =<得:{}02B x x =<<,则()1,2A B ⋂=,故答案为()1,2. 18.【详解】试题分析:由题意得解得所以由解得即要使得是的充分不必要条件则解得所以实数的取值范围是考点:充分不必要条件的应用;不等式的求解【方法点晴】本题主要考查了充分条件和必要条件的判定与应用分式不等式 解析:10,2⎡⎤⎢⎥⎣⎦【详解】 试题分析:由题意得,21:01x p x -<-,解得112x <<,所以1:12p x <<,由2:2110q x a x a a ,解得1a x a ≤≤+,即1q a x a ≤≤+:,要使得p 是q 的充分不必要条件,则11{12a a +≥≤,解得102a ≤≤,所以实数a 的取值范围是10,2⎡⎤⎢⎥⎣⎦. 考点:充分不必要条件的应用;不等式的求解.【方法点晴】本题主要考查了充分条件和必要条件的判定与应用、分式不等式和一元二次不等式的求解等知识的应用,本题的解答中根据分式不等式的求解和一元二次不等式的求解,求解,p q 的解集,再由p 是q 的充分不必要条件,列出不等式组是解答的关键,着重考查了学生分析问题和解答问题的能力,属于中档试题.19.720【分析】欲求中所有元素和的总和需要知道中的元素和分别是多少;中的元素都可以通过题中已知条件:则求出【详解】解:依题意得为正整数集且及均为正整数即可可取的任意正整数1和9要么必须同时出现要么都不 解析:720.【分析】欲求S 中所有元素和的总和,需要知道S 中的元素和分别是多少;S 中的元素都可以通过题中已知条件:x S ∈,则(10)x S -∈求出.【详解】解:依题意得S 为正整数集,x S ∈,且10x S -∈ x 及10x -均为正整数即可 x 可取19→的任意正整数,1和9要么必须同时出现,要么都不出现;同理:2和8、3和7、4和6依此类推5……单独考虑,共5组.那么:只选1组是45,即(19)(28)545++++⋯⋯+=依此类推:选2组是180,选3组是270,选4组是180,选5组是45,共计4518027018045720++++=.故答案为:720.【点睛】首先要明确*N 所代表的数集,然后根据已知条件将所有的可能考虑全面即可,属于中档题.20.【分析】求出导数可得出从而可求解出实数的取值范围【详解】由于函数在上不存在极值点则即解得因此函数不存在极值点的充要条件是故答案为:【点睛】本题考查利用函数极值点求参数解题时理解函数的极值点与导数零点 解析:021a ≤≤【分析】求出导数()2327f x x ax a '=++,可得出0∆≤,从而可求解出实数a 的取值范围. 【详解】()327f x x ax ax =++,()2327f x x ax a '∴=++,由于函数()y f x =在R 上不存在极值点,则24840a a ∆=-≤,即2210a a -≤, 解得021a ≤≤.因此,函数()327f x x ax ax =++不存在极值点的充要条件是021a ≤≤. 故答案为:021a ≤≤.【点睛】本题考查利用函数极值点求参数,解题时理解函数的极值点与导数零点之间的关系,考查运算求解能力,属于中等题.三、解答题21.(1)45x <<(2)523m ≤≤ 【分析】(1)分别求解绝对值不等式和一元二次不等式,化简p 与q ,结合p q ∧为真,解不等式组,即可得出x 的取值范围;(2)由p 是q 的充分不必要条件,建立关于m 的不等式组,求解即可得出答案.【详解】(1)由|27|3x -<,解得25x <<由22430x mx m -+<以及0m >,解得3m x m <<当4m =时,q :412x << p q ∧为真,25412x x <<⎧∴⎨<<⎩,解得45x << (2):25,:3p x q m x m <<<<p 是q 的充分不必要条件2350m m m ≤⎧⎪∴≥⎨⎪>⎩,解得523m ≤≤ 当53m =时,5:53q x <<成立 当2m =时,:26q x <<成立 523m ∴≤≤ 【点睛】本题主要考查了根据复合命题的真假求参数的范围以及由充分不必要条件求参数的范围,属于中档题.22.(1){|26}AB x x =<<,()R A B {|2x x =≤-或2}x >;(2)选①,21m -≤≤;选②,7m ≤-或6m ≥;选③7m ≤-或6m ≥. 【分析】先解二次不等式可得A ,进而可得A R ,(1)再利用交集并集的定义直接求解即可;(2)若选①,由B A ⊆列不等式求解即可;若选②,由52m +≤-或6m ≥即可得解;若选③,由52m +≤-或6m ≥即可得解.【详解】 集合{}24120{|26}A x x x x x =-++>=-<<,{|2R A x x =≤-或6}x ≥ (1)若2m =,{27}B x x =<<,则{|26}A B x x =<<,()R A B {|2x x =≤-或2}x >.(2)若选①A B B =,则B A ⊆,所以562m m +≤⎧⎨≥-⎩,解得21m -≤≤; 若选②R B A ⊆,则52m +≤-或6m ≥,解得:7m ≤-或6m ≥;若选③AB =∅,则52m +≤-或6m ≥, 解得:7m ≤-或6m ≥.【点睛】本题主要考查了集合的交并补的运算及由集合的包含关系求参,属于基础题.23.(1)1m ≥;(2)[)(]3,12,5-⋃.【分析】(1)先解不等式,再根据充分条件得集合之间包含关系,最后解不等式得结果;(2)根据p q ∨为真命题,p q ∧为假命题,得,p q 一真一假,再分别求对应x 的取值范围.【详解】(1)p :232012x x x -+≤∴≤≤,q :()22210011x x m m m x m -+-≤>∴-≤≤+因为p 是q 的充分条件,所以11112m p q m m -≤⎧⊆∴∴≥⎨+≥⎩; (2)4m =时,q :35x -≤≤因为p q ∨为真命题,p q ∧为假命题,所以,p q 一真一假,1253x x x ≤≤⎧∴⎨><-⎩或或3521x x x -≤≤⎧⎨><⎩或 x ∴∈∅或31x -≤<或25x <≤实数x 的取值范围为[)(]3,12,5-⋃【点睛】本题考查根据充分条件求参数、根据复合命题真假求参数,考查基本分析求解能力,属中档题.24.(Ⅰ){}3A B x x ⋂=>,{|2A B x x ⋃=<-或1}x >;(Ⅱ)(),9-∞.【分析】(Ⅰ)解不等式求得集合,A B ,再由交并集的定义求解;(Ⅱ)求出A 与B R ,然后分析两集合有公共元素时的不等关系,可得a 的范围. 【详解】由30x a ->得3a x >,所以3a A x x ⎧⎫=>⎨⎬⎩⎭ 由260x x -->,得()()230x x +->,解得2x <-或3x >,所以{}2B x x =<-或3}x >.(Ⅰ)当3a =时,{}1A x x =>, 所以{}3A B x x ⋂=>,{|2A B x x ⋃=<-或1}x >(Ⅱ)因为{|2B x x =<-或3}x >, 所以{}23B x x =-≤≤R .又因为()R A B ⋂≠∅,所以33a <,解得9a <. 所以实数a 的取值范围是(),9-∞.【点睛】本题考查集合的表示、运算,考查集合间的关系,考查一元二次不等式的解法.属于基础题.25.(1){}01A B x x ⋂=<<;(2)[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦.【分析】(1)求出集合A ,利用交集的定义可求得集合A B ; (2)分A =∅和A ≠∅两种情况讨论,结合条件AB =∅可得出关于a 的不等式组,即可解得实数a 的取值范围.【详解】(1)当12a =时,122A x x ⎧⎫=-<<⎨⎬⎩⎭, {}01B x x =<<,因此,{}01A B x x ⋂=<<;(2)A B =∅.①当A =∅时,即121a a -≥+,2∴≤-a ;②当A ≠∅时,则12111a a a -<+⎧⎨-≥⎩或121210a a a -<+⎧⎨+≤⎩,解得122a -<≤-或2a ≥. 综上所述,实数a 的取值范围是[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦.【点睛】本题考查交集的运算,同时也考查了利用交集运算结果求参数,考查运算求解能力,属于中等题.26.03a <≤【分析】根据题意,求出p ⌝表示的集合,利用p ⌝是q 的充分不必要条件得到集合间的包含关系,进而得到关于a 的不等式组,解不等式即可.【详解】由题意知,:2p x ⌝≤-或10x ≥, 因为p ⌝是q 的充分不必要条件,所以{2x x ≤-或}10x ≥ {1x x a ≤-或}1x a ≥+, 所以121100311a a a a a -≥-⎧⎪+≤⇒<≤⎨⎪+>-⎩,所以实数a 的取值范围为03a <≤.【点睛】本题考查利用充分不必要条件和集合间的包含关系求参数的取值范围;考查逻辑推理能力和运算求解能力;根据题意,正确得出集合间的包含关系是求解本题的关键;属于中档题.。
(人教版)西安市必修第一册第一单元《集合与常用逻辑用语》检测(有答案解析)
一、选择题1.已知集合{}*N 0A x x y =∈=≥∣,若B A ⊆且集合B 中恰有2个元素,则满足条件的集合B 的个数为( ). A .1B .3C .6D .102.下列命题中:①命题“若1l :210ax y +-=与2l :0x y -=垂直,则2a =”的逆否命题;②命题“若1a ≠,则210a -≠”的否命题;③命题“存在0ω<,函数()sin y x ωϕ=+不存在最小正周期”的否定.其中真命题的个数为( )A .0个B .1个C .2个D .3个3.若a 、b 是两个单位向量,其夹角是θ,则“32ππθ<<”是“1a b ->”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.“不等式20mx x m ++>在R 上恒成立”的一个必要不充分条件是( ) A .12m >B .01m <<C .14m >D .1m5.下列命题中,不正确...的是( ) A .0x R ∃∈,200220x x -+≥B .设1a >,则“b a <”是“log 1a b <”的充要条件C .若0a b <<,则11a b> D .命题“[]1,3x ∀∈,2430x x -+≤”的否定为“[]01,3x ∃∈,200430x x -+>”6.已知全集U =R ,集合{|01},{1,0,1}A x R x B =∈<=-,则()UA B =( )A .{}1-B .{1}C .{1,0}-D .{0,1}7.已知定义在R 上的偶函数()y f x =在[)0,+∞上单调递减,则对于实数a ,b ,“a b >”是“()()f a f b <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件8.全集U =R ,集合04xA x x ⎧⎫=≤⎨⎬-⎩⎭,集合(){}2log 12B x x =->,图中阴影部分所表示的集合为( )A .(][],04,5-∞B .()(],04,5-∞C .()[],04,5-∞D .(](),45,-∞+∞9.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为( ) A .3 B .2C .1D .010.若命题“∃x 0∈R ,x +(a -1)x 0+1<0”是真命题,则实数a 的取值范围是( )A .(-1,3)B .[-1,3]C .(-∞,-1)∪(3,+∞)D .(-∞,-1]∪[3,+∞)11.以下有关命题的说法错误的是( )A .命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠”B .“1x =”是“2320x x -+=”的充分不必要条件C .命题“在ABC 中,若A B >,则sin sin A B >”的逆命题为假命题D .对于命题p :存在x ∈R ,使得210x x +-<,则p ⌝:任意x ∈R ,则210x x +-≥12.设{}n a 是等差数列,则“123a a a <<”是“数列{}n a 是递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件二、填空题13.已知集合(){},320,A a b a b a N =+-=∈,()(){}2,10,B a b k a a b a N =-+-=∈,若存在非零整数k ,满足A B ⋂≠∅,则k =______.14.对于任意非空集合A 、B ,定义{|,}A B a b a A b B +=+∈∈,若{}2,0,1S T ==-,则S T +=________(用列举法表示)15.已知集合{|(1,2)(0,1),}P a a m m R ==-+∈,{|(2,1)(1,1),}Q b b n n R ==+-∈,则P Q =_________.16.已知()()21f n n n N*=+∈,集合{}{}1,2,3,4,5,3,4,5,6,7A B ==,记()(){}()(){},f A n f n A f B m f m B =∈=∈, 则()()f A f B ⋂=_________.17.下列说法正确的是______①“若0xy =,则0x =或0y =”的否命题是真命题②命题“2,10x R x x ∃∈--<”的否定是“2,10x R x x ∀∈--≥” ③x R ∃∈,使得1x e x <-④“0a <”是“221x ay +=表示双曲线”的充要条件. 18.写出命题“,20x x R ∀∈>”的否定:______. 19.已知命题:①将一组数据中的每个数都变为原来的2倍,则方差也变为原来的2倍; ②命题“2,10x R x x ∃∈++<”的否定是“2,10x R x x ∀∈++<”; ③在ABC ∆中,若sin sin A B A B ><,则; ④在正三棱锥S ABC -内任取一点P ,使得12P ABC S ABC V V --<的概率是78; ⑤若对于任意的()2,430n N n a n a *∈+-++≥恒成立,则实数a 的取值范围是1,3⎡⎫+∞⎪⎢⎣⎭. 以上命题中正确的是__________(填写所有正确命题的序号). 20.下列有关命题的说法正确的是__________________.①命题“若x 2-3x +2=0,则x =1”的逆否命题为:若x ≠1,则x 2-3x +2≠0 ②x =1是x 2-3x +2=0的充分不必要条件 ③若p ∧q 为假命题,则p ,q 均为假命题④对于命题p :∃x ∈R ,使得x 2+x +1<0,则非p :∀x ∈R , 均有x 2+x +1≥0三、解答题21.已知{}220A x x x =--<,212168x B x -⎧⎫=≤≤⎨⎬⎩⎭. (1)求AB ;(2)若不等式20x ax b ++<的解集是AB ,求20ax x b +-<的解集.22.已知命题p :实数x 满足()225400x ax a a -+<>;命题q :实数x 满足2560x x -+<.(1)当1a =时,若P 和q 都为真,求x 的取值范围;(2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围.23.已知集合{}22520A x x x =-+≤,函数()()22log 22f x ax x =-+的定义域为B .(1)若13a =,求()R A B ; (2)若A B ⋂≠∅,求实数a 的取值范围.24.设集合{}|25A x x =-≤≤,{}|121B x m x m =+≤≤-. (1)若B A ⊆,求实数m 的取值范围;(2)当x ∈Z 时,求A 的非空真子集个数;(3)当x ∈R 时,不存在元素x 使x A ∈与x B ∈同时成立,求实数m 的取值范围. 25.已知命题}{:210p x x -<<,命题{:1q x x a ≤-或}1x a ≥+,若p ⌝是q 的充分不必要条件,求实数a 的取值范围. 26.已知集合121284x A x⎧⎫=≤≤⎨⎬⎩⎭,21log ,,328B y y x x ⎧⎫⎡⎤==∈⎨⎬⎢⎥⎣⎦⎩⎭. (1)若{}122C x m x m =+<≤-,()C A B ⊆⋂,求实数m 的取值范围;(2)若{}61D x x m =>+,且()AB D =∅,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】将方程平方整理得()2224820y xy x x -+-=,再根据判别式得04x ≤≤,故1,2,3,4x =,再依次检验得{}2,3,4A =,最后根据集合关系即可得答案.【详解】解:根据题意将x 22x x =+继续平方整理得:()2224820y xy x x -+-=,故该方程有解. 所以()222641620x x x ∆=--≥,即240x x -+≥,解得04x ≤≤, 因为*N x ∈,故1,2,3,4x =,当1x =时,易得方程无解,当2x =时,240y y -=,有解,满足条件; 当3x =时,242490y y -+=,方程有解,满足条件; 当4x =时,28160y y -+=,方程有解,满足条件; 故{}2,3,4A =,因为B A ⊆且集合B 中恰有2个元素, 所以B 集合可以是{}2,3,{}2,4,{}3,4. 故选:B. 【点睛】本题考查集合的元素,集合关系,解题的关键在于将方程平方转化为()2224820y xy x x -+-=,再结合判别式得1,2,3,4x =,进而求出集合{}2,3,4A =.考查运算求解能力,化归转化能力,是中档题.2.D解析:D 【分析】根据原命题和逆否命题同真假来判断①是真命题,根据定义写出命题的否命题和命题的否定,再判断②③的真假即可. 【详解】①中,若1l :210ax y +-=与2l :0x y -=垂直,则()1210a ⨯+⨯-=,则2a =.故该命题是真命题,其逆否命题也是真命题;②中,命题“若1a ≠,则210a -≠”的否命题是:“若1a =,则210a -=”,易见若1a =,则21a =,则210a -=,故“若1a =,则210a -=”是真命题;③中,命题“存在0ω<,函数()sin y x ωϕ=+不存在最小正周期”的否定是“对任意的0ω<,函数()sin y x ωϕ=+存在最小正周期”, 对任意的0ω<,函数()sin y x ωϕ=+存在最小正周期2T πω=,故命题“存在0ω<,函数()sin y x ωϕ=+不存在最小正周期”的否定是真命题.故①②③均为真命题. 故选:D. 【点睛】 思路点睛:一般互为逆否的两个命题判断真假时,可以选择容易的进行判断,则另一个就同真假.3.A解析:A 【分析】求出1a b ->时θ的范围,然后由充分必要条件的定义判断. 【详解】由题意222()222cos a b a b a a b b -=-=-⋅+=-1>,则1cos 2θ<,∴,3πθπ⎛⎤∈ ⎥⎝⎦, 因此32ππθ<<时,满足,3πθπ⎛⎤∈⎥⎝⎦,但,3πθπ⎛⎤∈ ⎥⎝⎦时不一定满足32ππθ<<.应为充分不必要条件. 故选:A . 【点睛】本题考查充分必要条件的判断,实际上可以根据充分必要条件与集合包含之间的关系判断.命题p 对应集合A ,命题q 对应的集合B ,则(1)p 是q 的充分条件⇔A B ⊆; (2)p 是q 的必要条件⇔A B ⊇;(3)p 是q 的充分必要条件⇔A B =;(4)p 是q 的既不充分又不必要条件⇔集合,A B 之间没有包含关系.4.C解析:C 【分析】先计算已知条件的等价范围,再利用充分条件和必要条件的定义逐一判断即可. 【详解】因为“不等式2+0mx x m +>在R 上恒成立”,所以当0m =时,原不等式为0x>在R 上不是恒成立的,所以0m ≠,所以“不等式2+0mx x m +>在R 上恒成立”,等价于2>0140m m ⎧⎨∆=-<⎩,解得12m >. A 选项是充要条件,不成立; B 选项中,12m >不可推导出01m <<,B 不成立; C 选项中,12m >可推导14m >,且14m >不可推导12m >,故14m >是12m >的必要不充分条件,正确;D 选项中,1m 可推导1>2m ,且1>2m 不可推导1m ,故>1m 是12m >的充分不必要条件,D 不正确. 故选:C. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.5.B解析:B 【分析】由()2200022110x x x -+=-+≥,可判断A ;由对数函数的定义域和对数函数的单调性得充分性不一定成立,必要性成立,可判断B ;运用作差法,判断其差的符号可判断C ;根据全称命题的否定是特称命题可判断D. 【详解】由()2200022110x x x -+=-+≥,得A 为真命题;由“b a <”不能推出“log 1a b <”,所以充分性不一定成立,由“log 1a b <”得“b a <”,所以必要性成立,故B 不正确;由0a b <<,则110b aa b ab --=>,∴11a b>,故C 正确; 根据全称命题的否定是特称命题知D 正确. 故选:B. 【点睛】本题考查判断命题的真假,对数函数的定义域,单调性,全称命题与特称命题的关系,属于中档题.6.C解析:C 【分析】根据补集的运算,求得{|0Ux A x =≤或1}x >,再结合交集的运算,即可求解.【详解】由题意,全集U =R ,集合{|01}A x R x =∈<≤, 可得{|0Ux A x =≤或1}x >,又由集合{1,0,1}B =-,所以(){1,0}UA B ⋂=-.故选:C. 【点睛】本题考查集合的补集与交集概念及运算,其中解答中熟记集合的交集、补集的概念和运算方法是解答的关键,着重考查了运算与求解能力.7.B解析:B 【分析】根据充分条件与必要条件的判断,看条件与结论之间能否互推,条件能推结论,充分性成立,结论能推条件,必要性成立,由此即可求解. 【详解】解:∵定义在R 上的偶函数()y f x =在[)0,+∞上单调递减,∴()y f x =在(),0-∞上单调递增,∴当(),0a ∈-∞,(),0b ∈-∞时,如1,2a b =-=-,满足a b > ,但()()>f a f b ,所以由“a b >”推不出“()()f a f b <”,反之,当a R ∈,b R ∈时,“()()f a f b <”⇒“a b >”⇒“a b >”, 故对于实数a ,b ,“a b >”是“()()f a f b <”的必要不充分条件, 故选:B . 【点睛】本题以函数的奇偶性为背景,考查充分条件与必要条件的判断,考查理解辨析能力,属于中档题.8.C解析:C 【分析】由图可得,阴影部分表示的集合为()U C A B ⋃.求出集合,,A B A B ⋃,即求()U C A B ⋃. 【详解】∵集合{}04A x x =≤<,{}5B x x =>,由Venn 图可知阴影部分对应的集合为()U C A B ⋃,又{04A B x x ⋃=≤<或}5x >,()()[],04,5U C A B ∴=-∞⋃.故选:C . 【点睛】本题考查集合的运算,属于基础题.9.B解析:B 【解析】试题分析:集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点⎝⎭,⎛ ⎝⎭,则A B 中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.10.C解析:C 【分析】根据二次函数的图象与性质,得到关于a 的不等式,即可求解. 【详解】由题意,2000,(1)10x R x a x ∃∈+-+<,则2(1)40a ∆=-->,解得3a >或1a <-, 所以实数a 的取值范围是(,1)(3,)-∞-+∞,故选C.【点睛】本题主要考查了存在性命题的真假判定及应用,其中熟记转化为二次函数,利用二次函数的图象与性质是解答的关键,着重考查了推理与计算能力.11.C解析:C 【分析】根据逆否命题的概念,可判定A 是正确的;由方程2320x x -+=,解得1x =或2x =,可判定B 是正确的;根据正弦定理,可判定C 不正确;根据存在性命题与全称命题的关系,可判定D 是正确的. 【详解】A 中,根据逆否命题的概念,可得命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠”,所以A 是正确的;B 中,由方程2320x x -+=,解得1x =或2x =,所以“1x =”是“2320x x -+=”的充分不必要条件,所以B 是正确的;C 中,在ABC 中,由sin sin A B >,根据正弦定理可得a b >,所以A B >,所以命题“在ABC 中,若A B >,则sin sin A B >”的逆命题为真命题,所以C 不正确;D 中,根据存在性命题与全称命题的关系,可得命题p :存在x ∈R ,使得210x x +-<,则p ⌝:任意x ∈R ,则210x x +-≥,所以D 是正确的.故选:C. 【点睛】本题主要考查了命题的真假判定,四种命题的关系,充分条件与必要条件的判定,以及全称命题与存在性命题的关系等知识点的应用,属于基础题.12.C解析:C 【分析】结合等差数列的单调性,根据充分条件、必要条件的判定方法,即可求解. 【详解】在{}n a 是等差数列,若123a a a <<,可得21320d a a a a =-=->, 所以数列{}n a 是递增数列,即充分性成立;若数列{}n a 是递增数列,则必有123a a a <<,即必要性成立, 所以“123a a a <<”是“数列{}n a 是递增数列”的充分必要条件. 故选:C. 【点睛】本题主要考查了充分条件、必要条件的判定,以及等差数列的单调性判定及应用,其中解答中熟记等差数列的性质是解答的关键,着重考查推理与论证能力.二、填空题13.【分析】首先根据条件得到有实数解从而得到又根据为非零整数所以再分别验证的值即可得到答案【详解】因为存在非零整数满足所以有实数解且整理得:有实数解且所以解得因为为非零整数所以当时解得或符合题意当时解得 解析:1-【分析】首先根据条件得到()2231b a b k a a =-⎧⎪⎨=-+⎪⎩k ≤≤,又根据k 为非零整数,所以1,1,2k =-,再分别验证k 的值即可得到答案. 【详解】因为存在非零整数,满足A B ⋂≠∅,所以()2231b ab k a a =-⎧⎪⎨=-+⎪⎩有实数解,且a N ∈. 整理得:()2320ka k a k +-+-=有实数解,且0k ≠,a N ∈.所以()()23420k k k ∆=---≥k ≤≤, 因为k 为非零整数,所以1,1,2k =-当1k =-时,2430a a -+=,解得1a =或3,符合题意. 当1k =时,2210a a +-=,解得a N ∉,舍去. 当2k =时,220a a +=,解得a N ∉,舍去. 综上1k =-. 故答案为:1- 【点睛】本题主要考查集合的交集运算,同时一元二次不等式的解法,属于中档题.14.【分析】根据集合的新定义分别求出两个集合中各取一个元素求和的所有可能情况【详解】由题:对于任意非空集合定义若各取一个元素形成有序数对所有可能情况为所有情况两个数之和构成的集合为:故答案为:【点睛】此 解析:{}4,2,1,0,1,2---【分析】根据集合的新定义,分别求出两个集合中各取一个元素求和的所有可能情况. 【详解】由题:对于任意非空集合A 、B ,定义{|,}A B a b a A b B +=+∈∈, 若{}2,0,1S T ==-,各取一个元素,a A b B ∈∈形成有序数对(),a b ,所有可能情况为()()()()()()()()()2,2,2,0,2,1,0,2,0,0,0,1,1,2,1,0,1,1------,所有情况两个数之和构成的集合为:{}4,2,1,0,1,2--- 故答案为:{}4,2,1,0,1,2--- 【点睛】此题考查集合的新定义问题,关键在于读懂定义,根据定义找出新集合中的元素即可得解. 15.【分析】根据向量的坐标运算可求得集合P 与集合Q 再结合交集的运算即可求解【详解】集合则集合则由集合的交集定义可知解方程组可得所以故答案为:【点睛】本题考查了向量的坐标运算集合交集的定义属于基础题解析:(){}1,2【分析】根据向量的坐标运算,可求得集合P 与集合Q,再结合交集的运算即可求解.【详解】集合{|(1,2)(0,1),}P a a m m R ==-+∈则(){}1,2P m =-+集合{|(2,1)(1,1),}Q b bn n R ==+-∈ 则(){}2,1Q n n =-+由集合的交集定义可知1221n m n =-⎧⎨-+=+⎩ 解方程组可得14n m =⎧⎨=⎩ 所以(){}1,2P Q ⋂=故答案为: (){}1,2【点睛】本题考查了向量的坐标运算,集合交集的定义,属于基础题.16.【分析】由题意求得所再根据集合的交集的运算即可求解【详解】由题意知集合所以所以故答案为:【点睛】本题主要考查了集合的交集的概念与运算其中解答中正确求解集合是解答的关键着重考查了推理与运算能力属于基础题 解析:{}7,9,11【分析】由题意求得所(){}3,5,7,9,11f A =,(){}7,9,11,13,15f B =,再根据集合的交集的运算,即可求解.【详解】由题意,知()()21f n n n N *=+∈,集合{}{}1,2,3,4,5,3,4,5,6,7A B ==,所以()(){}{}3,5,7,9,11f A n f n A =∈=,()(){}{}7,9,11,13,15f B m f m B =∈=, 所以()(){}7,9,11f A f B ⋂=.故答案为:{}7,9,11.【点睛】本题主要考查了集合的交集的概念与运算,其中解答中正确求解集合,A B 是解答的关键,着重考查了推理与运算能力,属于基础题.17.①②④【分析】分别判断每个选项的真假最后得到答案【详解】①若则或的否命题为:若则且正确②命题的否定是正确③使得设即恒成立错误④是表示双曲线的充要条件当是:表示双曲线当表示双曲线时:故是表示双曲线的充解析:①②④【分析】分别判断每个选项的真假,最后得到答案.【详解】①“若0xy =,则0x =或0y =”的否命题为:若0xy ≠,则0x ≠且0y ≠,正确 ②命题“2,10x R x x ∃∈--<”的否定是“2,10x R x x ∀∈--≥”,正确③x R ∃∈,使得1x e x <-.设min ()1'()1()(0)20x x f x e x f x e f x f =-+⇒=-⇒==>即1x e x >-恒成立,错误④“0a <”是“221x ay +=表示双曲线”的充要条件当0a <是:221x ay +=表示双曲线当221x ay +=表示双曲线时:0a <故“0a <”是“221x ay +=表示双曲线”的充要条件 故答案为①②④【点睛】本题考查了否命题,命题的否定,充要条件,综合性强,意在考查学生的综合应用能力. 18.【解析】因为命题的否定为所以命题的否定为解析:,20x x R ∃∈≤【解析】因为命题“p x ∀,”的否定为“p x ∃⌝,”,所以命题“,20x x R ∀∈>”的否定为,20x x R ∃∈≤19.③④⑤【解析】所以将一组数据中的每个数都变为原来的2倍则方差也变为原来的4倍;故①错误;命题的否定是故②错误;在中若则由正弦定理得故③正确;在正三棱锥内任取一点P 使得则在与底面平行的中截面上则中截面解析:③④⑤【解析】,所以将一组数据中的每个数都变为原来的2倍,则方差也变为原来的4倍;故①错误;命题“2,10x R x x ∃∈++<”的否定是“”,故②错误;在ABC ∆中,若,则,由正弦定理,得,故③正确;在正三棱锥S ABC -内任取一点P ,使得12P ABC S ABC V V --<,则,在与底面平行的中截面上,则中截面将正三棱锥的体积分成的两部分,所以所求概率是78,即④正确;⑤若对于任意的()2,430n N n a n a *∈+-++≥恒成立,则,即,令,显然在上为减函数,且,即,即实数a 的取值范围是1,3⎡⎫+∞⎪⎢⎣⎭,故⑤正确;所以选③④⑤.考点:命题的判定. 20.①②④【分析】对4个命题分别进行判断即可得出结论【详解】解:①命题若则的逆否命题是:若则正确;②若则成立即充分性成立;若则或此时不一定成立即必要性不成立故是的充分不必要条件正确;③若为假命题则至少有 解析:①②④【分析】对4个命题分别进行判断,即可得出结论.【详解】解:①命题“若2320x x -+=,则1x =”的逆否命题是:“若1x ≠,则2320x x -+≠”,正确;②若1x =,则2321320x x -+=-+=成立,即充分性成立;若2320x x -+=,则1x =或2x =,此时1x =不一定成立,即必要性不成立,故“1x =”是“2320x x -+=”的充分不必要条件,正确;③若p q ∧为假命题,则p 、q 至少有一个为假命题,不正确④对于命题:p x R ∃∈使得210x x ++<,则:p x R ⌝∀∈,均有210x x ++,正确. 故答案为:①②④【点睛】此题注重对基础知识的考查,特别是四种命题之间的真假关系,复合命题的真假关系,特称命题与全称命题的真假及否定,是学生易错点,属中档题.三、解答题21.(1)()1,2-;(2)()(),12,-∞-+∞.【分析】(1)先解出集合A 、B ,然后利用交集的定义可求出集合A B ;(2)由题意可知,1-、2是方程20x ax b ++=的两根,利用韦达定理可求出a 、b 的值,进而可求出二次不等式20ax x b +-<的解集.【详解】(1)由题意知{}{}22012A x x x x x =--<=-<<, 由212168x -≤≤,得324222x --≤≤,得324x -≤-≤,解得16x -≤≤,[]1,6B ∴=-. 因此,()1,2A B ⋂=-;(2)由题意可知,1-、2是方程20x ax b ++=的两根,由韦达定理得1212a b-+=-⎧⎨-⨯=⎩,解得12a b =-⎧⎨=-⎩, 不等式20ax x b +-<即为220x x -++<,即220x x -->,解得1x <-或2x >. 因此,不等式20ax x b +-<的解集为()(),12,-∞-⋃+∞.【点睛】本题考查交集的运算,同时也考查了二次不等式与指数不等式的求解,涉及一元二次不等式的解集与二次方程之间的关系,考查运算求解能力,属于中等题.22.(1)()2,3:(2)324a ≤≤. 【分析】(1)先化简命题,p q ,再求集合的交集得解;(2)先求出p ⌝和q ⌝,再解不等式组243a a ≤⎧⎨≥⎩,即得解. 【详解】(1)命题p :实数x 满足()225400x ax a a -+<>, 所以4a x a <<,设{}4A x a x a =<<,命题q :实数x 满足2560x x -+<,解得23x <<, 设{}23B x x =<<,1a =时,若p q ∧为真,则{}23A B x x ⋂=<<. 故x 的取值范围为()2,3;(2)(][):,4,p a a ⌝-∞⋃+∞,(][):,23,q ⌝-∞⋃+∞,若p ⌝是q ⌝的充分不必要条件,可得243a a ≤⎧⎨≥⎩,解得324a ≤≤,故实数a 的取值范围为324a ≤≤. 【点睛】 方法点睛:利用集合法分析判断充分必要条件,首先分清条件和结论;然后化简每一个命题,建立命题p q 、和集合A B 、的对应关系.:{|()p A x p x =成立},:{|()q B x q x =成立};最后利用下面的结论判断:(1)若A B ⊆,则p 是q 的充分条件,若A B ⊂,则p 是q 的充分非必要条件;(2)若B A ⊆,则p 是q 的必要条件,若B A ⊂,则p 是q 的必要非充分条件;(3)若A B ⊆且B A ⊆,即A B =时,则p 是q 的充要条件.23.(1)()R 32A B ⎡⎤⋂=⎣⎦;(2)()4,-+∞.【分析】 (1)利用一元二次不等式的解法化简集合A , 再由13a =,利用一元二次不等式的解法求得对数函数的定义域B ,然后利用集合的基本运算求解. (2)根据A B ⋂≠∅,则在1,22⎡⎤⎢⎥⎣⎦上至少存在一个x ,使不等式2220ax x -+>成立,即关于x 的不等式222a x x >-在1,22⎡⎤⎢⎥⎣⎦上有解,然后令222u x x =-,求得其最小值即可. 【详解】 (1){}212520,22A x x x ⎡⎤=-+≤=⎢⎥⎣⎦.当13a =时,212203x x -+>,解得3x >3x <所以((),33B =-∞⋃+∞,所以R 3B ⎡=⎣.所以()R 32A B ⎡⎤⋂=⎣⎦.(2)若A B ⋂≠∅,则说明在1,22⎡⎤⎢⎥⎣⎦上至少存在一个x 值,使不等式2220ax x -+>成立,即关于x 的不等式222a x x >-在1,22⎡⎤⎢⎥⎣⎦上有解. 又222u x x=-,则只需min a u >即可. 又2222111222y x x x ⎛⎫=-=--+ ⎪⎝⎭. 当1,22x ⎡∈⎤⎢⎥⎣⎦时,11,22x ⎡⎤∈⎢⎥⎣⎦,14,2u ⎡⎤∈-⎢⎥⎣⎦, 所以min 4u =-,所以4a >-,即a 的取值范围为()4,-+∞.【点睛】本题主要考查集合的基本运算及其应用以及一元二次不等式的解法和对数函数的定义域的求法,还考查了运算求解的能力,属于中档题.24.(1){}3|m m ≤(2)254 (3){}|24m m m <>或【分析】(1)对集合B 分空集和非空集两种情况讨论得解;(2)当x ∈Z 时,{}2,1,0,1,2,3,4,5A =--,再求A 的非空真子集个数;(3)分B =∅和B ≠∅两种情况讨论得解.【详解】(1)当121m m +>-,即2m <时,B =∅,满足B A ⊆.当121m m +≤-,即2m ≥时,要使B A ⊆成立,只需12,215,m m +≥-⎧⎨-≤⎩即23m ≤≤. 综上,当B A ⊆时,m 的取值范围是{}3|m m ≤.(2)当x ∈Z 时,{}2,1,0,1,2,3,4,5A =--,∴集合A 的非空真子集个数为822254-=.(3)∵x ∈R ,且{}|25A x x =-≤≤,{}|121B x m x m =+≤≤-,又不存在元素x 使x A ∈与x B ∈同时成立,∴当B =∅,即121m m +>-,得2m <时,符合题意;当B ≠∅,即121m m +≤-,得2m ≥时,2,15,m m ≥⎧⎨+>⎩或2,212,m m ≥⎧⎨-<-⎩解得4m >. 综上,所求m 的取值范围是{}|24m m m <>或.【点睛】本题主要考查集合的关系和真子集的个数的计算,考查集合的元素和集合的关系,意在考查学生对这些知识的理解掌握水平. 25.03a <≤【分析】根据题意,求出p ⌝表示的集合,利用p ⌝是q 的充分不必要条件得到集合间的包含关系,进而得到关于a 的不等式组,解不等式即可.【详解】由题意知,:2p x ⌝≤-或10x ≥,因为p ⌝是q 的充分不必要条件, 所以{2x x ≤-或}10x ≥ {1x x a ≤-或}1x a ≥+,所以121100311a a a a a -≥-⎧⎪+≤⇒<≤⎨⎪+>-⎩,所以实数a 的取值范围为03a <≤.【点睛】本题考查利用充分不必要条件和集合间的包含关系求参数的取值范围;考查逻辑推理能力和运算求解能力;根据题意,正确得出集合间的包含关系是求解本题的关键;属于中档题. 26.(1)7,2⎛⎤-∞ ⎥⎝⎦;(2)[)1,+∞ 【分析】结合指数函数和对数函数性质可分别求得集合A 和集合B ;(1)由交集定义得到A B ,分别在C =∅和C ≠∅两种情况下构造不等式求得结果; (2)由并集定义得到A B ,根据交集结果可构造不等式求得结果.【详解】 {}[]12128272,74x A x x x ⎧⎫=≤≤=-≤≤=-⎨⎬⎩⎭ {}[]21log ,,32353,58B y y x x y y ⎧⎫⎡⎤==∈=-≤≤=-⎨⎬⎢⎥⎣⎦⎩⎭ (1)[]2,5A B =-当C =∅时,122+≥-m m ,解得:3m ≤,满足()C A B ⊆⋂当C ≠∅时,12212225m m m m +<-⎧⎪+≥-⎨⎪-≤⎩,解得:732<≤m 综上所述:实数m 的取值范围为7,2⎛⎤-∞ ⎥⎝⎦(2)[]3,7A B =-()A B D =∅ 617m ∴+≥,解得:m 1≥∴实数m 的取值范围为[)1,+∞【点睛】本题考查根据集合包含关系、交集结果求解参数范围的问题,涉及到指数函数和对数函数性质的应用;易错点是在根据包含关系求参数范围时,忽略子集可能为空集的情况,造成范围求解错误.。
西安市必修第一册第一单元《集合与常用逻辑用语》测试(含答案解析)
一、选择题1.“21x >”是“2x >”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.设a R ∈,则“1a =”是“直线1:20l ax y +=与直线()2140+++=:l x a y 平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 3.设原命题:若2a b +≥,则,a b 中至少有一个不小于1,则原命题与其逆命题的真假状况是( )A .原命题与逆命题均为真命题B .原命题真,逆命题假C .原命题假,逆命题真D .原命题与逆命题均为真命题 4.设集合{}125S x x x =-++>,{}4T x x a =-≤,S T R ⋃=,则a 的取值范围为( )A .2a ≤-或1a ≥B .21a -≤≤C .21a -<<D .2a <-或1a > 5.设a ,b 都是不等于1的正数,则“log 3log 31a b >>”是“33a b <”的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件6.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为( )A .3B .2C .1D .07.已知集合21,01,2A =--{,,},{}|(1)(2)0B x x x =-+<,则AB =( ) A .{}1,0- B .{}0,1C .{}1,0,1-D .{}0,1,2 8.已知ξ服从正态分布()21,N σ,a ∈R ,则“P (ξ>a )=0.5”是“关于x 的二项式321()ax x +的展开式的常数项为3”的( ) A .充分不必要条件 B .必要不充分条件C .既不充分又不必要条件D .充要条件 9.设等比数列{}n a 中,10a >,公比为q ,则“1q >”是“{}n a 是递增数列”的( ). A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分又非必要条件 10.设a 、b 是实数,则“0a >,0b >”是“2b a a b +≥”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件11.已知函数32()(,,)f x x ax bx c a b c R =+++∈,则“230a b -≤”是“()f x 在R 上只有一个零点”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件12.设,(0,1)a b ∈,:P “a b <”,:q “log log a b a b b a <”,则p 是q 的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件二、填空题13.命题“∀x ∈[4π,3π],tan x ≤m ”是真命题,则实数m 的最小值为_____. 14.已知集合{|(1,2)(0,1),}P a a m m R ==-+∈,{|(2,1)(1,1),}Q b b n n R ==+-∈,则P Q =_________.15.已知1a ≤,集合{}2x a x a ≤≤-中有且仅有三个整数,则实数a 的取值范围为________. 16.定义全集U 的子集M 的特征函数()10M U x M f x x C M∈⎧=⎨∈⎩,对于两个集合,M N ,定义集合()(){}*1M N M N x f x f x =+=,已知集合{}{}2,4,6,8,10,1,2,4,8,16A B ==,并用S 表示有限集S 的元素个数,则对于任意有限集,**M M A M B +的最小值为________. 17.若集合{}{}2|560|20A x x x B x ax a Z =-+≤=-=∈,,,且B A ⊆,则实数a =_____.18.已知集合1,2,3,{}4,5,6X Y Z ⋃⋃=,若1,21,2,3,4,5}{},3{,X Y X Y X ⋂=⋃=∉,则集合X Y Z 、、所有可能的情况有_________种.19.已知函数1,()1,M x M f x x M∈⎧=⎨-∉⎩(M 为非空数集),对于两个集合,A B ,定义{}()?()1A B A B x f x f x ∆==-,已知{0,1,2,3}A =,{2,3,4,5}B =,则A B ∆=__________.20.设{}1,2,3,M n =,则M 的所有子集的最小元素之和为__________三、解答题21.已知集合{}{}|321,|53A x a x a B x x =-≤≤+=-≤≤,全集U =R .(1)当1a =时,求()U A B ;(2)若A B ⊆,求实数a 的取值范围.22.设命题:p 实数x 满足22430x ax a -+<,(0)a >,命题:q 实数x 满足(3)(2)0x x --≥.(1)若1a =,p q ∧为真命题,求x 的取值范围;(用区间表示)(2)若q 是p 的充分不必要条件,求实数a 的取值范围.(用区间表示)23.已知集合{}37A x x =≤<,{}210B x x =<<,{}5C x a x a =-<<. (1)求A B ,()R A B ⋂;(2)若()C A B ⊆⋃,求a 的取值范围.24.已知集合2102x a A x x a ⎧⎫--⎪⎪=<⎨⎬-⎪⎪⎩⎭,集合{}|32B x x =-<. (Ⅰ)当2a =时,求A B ;(Ⅱ)设p :x A ∈,q :x B ∈,若p 是q 的充分条件,求实数a 的取值范围. 25.设命题0:p x R ∃∈,2020x -=;命题:q 函数22sin y x =在,62ππ⎛⎫-⎪⎝⎭上先增后减. (1)判断p ,q 的真假,并说明理由;(2)判断p q ∨,p q ∧,()p q ∧⌝的真假.26.已知原命题是“若260x x --≤则2280x x --≤”.(1)试写出原命题的逆命题,否命题,逆否命题,并判断所写命题的真假;(2)若“()(2)0x a x -+≤”是“260x x --≤”的必要不充分条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】 设{}21A x x =>,{}2B x x =>,然后根据集合包含关系分析充分性和必要性.【详解】 设{}{211A x x x x =>=>或}1x <-,设{}2B x x =>,可得B A , 所以“21x >”是“2x >”的必要不充分条件.故选:B .【点睛】方法点睛:充分性和必要性的判断方法:1、定义法,2、命题法,3、传递法,4、集合法.2.A解析:A【分析】计算直线平行等价于1a =或2a =-,根据范围大小关系得到答案.【详解】直线1:20l ax y +=与直线()2140+++=:l x a y 平行,则()12a a +=,1a =或2a =-,验证均不重合,满足.故“1a =”是“直线1:20l ax y +=与直线()2140+++=:l x a y 平行”的充分不必要条件. 故选:A.【点睛】本题考查了充分不必要条件,意在考查学生的计算能力和推断能力.3.B解析:B【分析】写出原命题的逆否命题,判断其逆否命题为真,从而得到原命题也为真.【详解】原命题的逆否命题为:若,a b 中没有一个大于等于1,则2a b +<,等价于“若1,1a b <<,则2a b +<”,显然这个命题是对的,所以原命题正确;原命题的逆命题为:“若,a b 中至少有一个不小于1,则2a b +≥”,取5,5a b ==-则,a b 中至少有一个不小于1,但0a b +=,所以原命题的逆命题不正确.【点睛】至少有一个的否定为“0个”,“不小于”等价于“大于等于”,同时注意若原命题的真假性不好判断,而等价于判断其逆否命题.4.B解析:B【解析】{|32},[4,=4]S x x x T a a =-=-或 ,所以432142a a a -≤-⎧⇒-≤≤⎨+≥⎩ ,选A. 点睛:形如|x -a |+|x -b |≥c (或≤c )型的不等式主要有三种解法:(1)分段讨论法,利用绝对值号内式子对应方程的根,将数轴分为(-∞,a ],(a ,b ],(b ,+∞)(此处设a <b )三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集;(2)几何法,利用|x -a |+|x -b |>c (c >0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体;(3)图象法:作出函数y 1=|x -a |+|x -b |和y 2=c 的图象,结合图象求解.5.B解析:B【分析】由已知结合对数不等式的性质可得13a b <<<,得到33a b <;反之,由33a b <,不一定有log 3log 31a b >>成立,再由充分必要条件的判定得答案.【详解】解:a ,b 都是不等于1的正数,由log 3log 31a b >>,得13a b <<<,33a b ∴<;反之,由33a b <,得a b <,若01a <<,1b >,则log 30a <,故log 3log 31a b >>不成立.∴ “log 3log 31a b >>”是“33a b <”的充分不必要条件.故选:B .【点睛】本题考查指数不等式与对数不等式的性质,考查充分必要条件的判定方法,是基础题. 6.B解析:B【解析】试题分析:集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点22,⎛⎫ ⎪ ⎪⎝⎭,22,⎛⎫-- ⎪ ⎪⎝⎭,则A B 中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.7.A解析:A【详解】由已知得{}|21B x x =-<<,因为21,01,2A =--{,,},所以{}1,0A B ⋂=-,故选A .8.A解析:A【解析】试题分析:由,知1a =.因为二项式321()ax x+展开式的通项公式为31321()()r r r r T C ax x-+==3333r r r a C x --,令330r -=,得1r =,所以其常数项为212333a C a ==,解得1a =±,所以“”是“关于x 的二项式321()ax x +的展开式的常数项为3”的充分不必要条件,故选A .考点:1、正态分布;2、二项式定理;3、充分条件与必要条件.9.C解析:C【分析】根据等比数列的通项公式和单调性的判定方法,结合充分条件、必要条件的判定,即可求解.【详解】在等比数列{}n a 中,可得11n n a a q -=,若10,1a q >>,可得11111()(1)0n n n n n a a a q q a q q --+-=-=->,即1n n a a +>,所以数列{}n a 为递增数列,故充分性是成立的;反之:若等比数列{}n a 为递增数列,即111(1)0n n n a a a q q -+-=->,若10a >,则1(1)0n q q -->,可得1q >,故必要性是成立的,所以“1q >”是“{}n a 是递增数列”的充分必要条件.故选:C.【点睛】本题主要考查了充分条件、必要条件的判定,以及数列的单调性的判定方法及应用,其中解答中熟记数列的单调性的判定方法是解答的关键,着重考查推理与论证能力.10.A解析:A【分析】 由2b a a b+≥可推导出0ab >,再利用充分条件、必要条件的定义判断可得出结论. 【详解】 由2b a a b +≥可得()22222022a b b a a b ab a b ab ab-+-+-==≥, ()20a b -≥,则0ab >,则“0a >,0b >”⇒“0ab >”,但“0ab >”⇒“0a >,0b >”. 所以,“0a >,0b >”是“2b a a b +≥”的充分不必要条件. 故选:A.【点睛】本题考查充分不必要条件的判断,考查推理能力,属于中等题.11.A解析:A【分析】求出()f x ',由230a b -≤知()0f x '≥恒成立,即函数()f x 在R 上单调递增,只有一个零点,然后可举例说明在230a b ->,即()f x 有两个极值点时,()f x 也可能只有一个零点,由此可得结论.【详解】因为32()f x x ax bx c =+++,2()32f x x ax b '=++,若230a b -≤,则24120a b ∆=-≤,则()0f x '≥恒成立,所以()f x 在R 上单调递增.当x →+∞时,()f x →+∞,当x →-∞时,()f x →-∞,所以()f x 在R 上只有一个零点,即充分性成立. 令32a =,0b =,1c =-,则323()12f x x x =+-,2()333(1)f x x x x x '=+=+, 则()f x 在(,1)-∞-,(0,)+∞上单调递增,在(1,0)-上单调递减,又1(1)02f -=-<, 3(1)02f =>,则()f x 在R 上只有一个零点,但不满足“230a b -≤”,即必要性不成立, 所以“230a b -≤”是“()f x 在R 上只有一个零点”的充分不必要条件,故选:A .【点睛】本题考查充分条件、必要条件的判断、函数的零点的概念.注意区别A 是B 的充分不必要条件(A B ⇒且B A ⇒/)与A 的充分不必要条件是B (B A ⇒且A B ⇒/)两者的不同.12.C解析:C【分析】利用不等式的性质和充分必要条件的定义进行判断即可得到答案.【详解】充分性:01a b <<<⇒22lg lg 0(lg )(lg )a b a b <<⇒>. 所以22lg lg (lg )(lg )lg lg b a a b b a a b a b<⇒< 即:log log a b a b b a <,充分性满足.必要性:因为,(0,1)a b ∈,所以log 0a b >,log 0b a >.又因为log log a b a b b a <,所以log log a b b b a a <,即2(log )a b b a<. 当a b =时,11<,不等式不成立.当a b >时,01b a<<,log 1a b >,不等式2(log )a b b a <不成立当a b <时,1b a >,0log 1a b <<,不等式2(log )a b b a<成立. 必要性满足.综上:p 是q 的充要条件.故选:C【点睛】本题主要考查充要条件,同时考查了对数的比较大小,属于中档题.二、填空题13.【分析】将条件转化为时再利用在的单调性求出的最大值即可【详解】是真命题时在的单调递增时取得最大值为即的最小值为故答案为:【点睛】本题主要考查了转化思想将恒成立问题转化为最值问题再通过正切函数的单调性【分析】将条件“[4x π∀∈,]3π,tan x m ”转化为“[4x π∈,]3π时,(tan )max m x ”,再利用tan y x =在[4π,]3π的单调性求出tan x 的最大值即可. 【详解】“[4x π∀∈,]3π,tan x m ”是真命题, [4x π∴∈,]3π时,(tan )max m x , tan y x =在[4π,]3π的单调递增,3x π∴=时,tan x ,3m ∴,即m【点睛】本题主要考查了转化思想,将恒成立问题转化为最值问题,再通过正切函数的单调性求出函数的最值即可,属于中档题.14.【分析】根据向量的坐标运算可求得集合P 与集合Q 再结合交集的运算即可求解【详解】集合则集合则由集合的交集定义可知解方程组可得所以故答案为:【点睛】本题考查了向量的坐标运算集合交集的定义属于基础题解析:(){}1,2【分析】根据向量的坐标运算,可求得集合P 与集合Q,再结合交集的运算即可求解.【详解】集合{|(1,2)(0,1),}P a a m m R ==-+∈则(){}1,2P m =-+集合{|(2,1)(1,1),}Q b bn n R ==+-∈ 则(){}2,1Q n n =-+由集合的交集定义可知1221n m n =-⎧⎨-+=+⎩ 解方程组可得14n m =⎧⎨=⎩ 所以(){}1,2P Q ⋂=故答案为: (){}1,2【点睛】本题考查了向量的坐标运算,集合交集的定义,属于基础题.15.【分析】首先分析出集合里面必有元素1再讨论集合为三种情况讨论求的取值范围【详解】所以集合里的元素一定有1集合有3个元素当集合是时有集合是空集;当集合是时有解得:;当集合是时有集合是空集;综上:的取值 解析:(]1,0-【分析】首先分析出集合里面必有元素1,再讨论集合为{}1,2,3,{}0,1,2,{}1,0,1- 三种情况讨论,求a 的取值范围.【详解】1a ≤ ,21a ∴-≥ ,所以集合里的元素一定有1,集合有3个元素,当集合是{}1,2,3时,有01324a a <≤⎧⎨≤-<⎩ ,集合是空集; 当集合是{}0,1,2时,有10223a a -<≤⎧⎨≤-<⎩,解得:10a -<≤ ; 当集合是{}1,0,1-时,有21122a a -<≤-⎧⎨≤-<⎩ ,集合是空集; 综上:a 的取值范围是(]1,0-故答案为(]1,0-【点睛】本题考查根据集合的元素个数求参数的取值范围,意在考查分类,转化,和计算求解能力,属于中档题型.16.4【分析】通过新定义及集合的并集与补集的运算求解计算即得结论【详解】由M*N 的定义可知fM (x )+fN (x )=1则M*N ∈{x|x ∈M ∪N 且x ∉M∩N}即M*A ={x|x ∈M ∪A 且x ∉M∩A}M*B解析:4【分析】通过新定义及集合的并集与补集的运算求解计算即得结论.【详解】由M *N 的定义可知,f M (x )+f N (x )=1 ,则M *N ∈{x |x ∈M ∪N ,且x ∉ M ∩N } 即M *A ={x |x ∈M ∪A ,且x ∉M ∩A },M *B ={x |x ∈M ∪B ,且x ∉M ∩B }要使Card (M *A )+Card (M *B )的值最小,则2,4,8一定属于集合M ,且M 不能含有A ∪B 以外的元素,所以集合M 为{6,10,1,16}的子集与集合{2,4,8}的并集, 要使**M A M B +的值最小,M ={2,4,8}, 此时,**M A M B +的最小值为4,故答案为:4【点睛】本题考查对集合运算的理解以及新定义的应用,考查计算能力.注意解题方法的积累,属于中档题.17.或【分析】先解二次不等式可得再由讨论参数两种情况再结合求解即可【详解】解:解不等式得即①当时满足②当时又则解得又则综上可得或故答案为:或【点睛】本题考查了二次不等式的解法空集的定义及集合的包含关系重解析:0或1【分析】先解二次不等式可得{}|23A x x =≤≤,再由B A ⊆,讨论参数0a =,0a ≠两种情况,再结合a Z ∈求解即可.【详解】解:解不等式2560x x -+≤,得23x ≤≤,即{}|23A x x =≤≤,①当0a =时,B φ=,满足B A ⊆,②当0a ≠时,2B a ⎧⎫=⎨⎬⎩⎭,又B A ⊆,则223a ≤≤,解得213a ≤≤,又a Z ∈,则1a =, 综上可得0a =或1a =,故答案为:0或1.【点睛】本题考查了二次不等式的解法、空集的定义及集合的包含关系,重点考查了分类讨论的数学思想方法,属基础题.18.【分析】通过确定XYZ 的子集利用乘法公式即可得到答案【详解】根据题意可知由于可知Z 共有种可能而有4种可能故共有种可能所以答案为128【点睛】本题主要考查子集相关概念乘法分步原理意在考查学生的分析能力 解析:128【分析】通过确定X,Y ,Z 的子集,利用乘法公式即可得到答案. 【详解】根据题意,可知1,2,1,236{}{},{}Z X Y ⊆⊆⊆,,由于{6}Z ⊆,可知Z 共有 52=32种可能,而(){4},5X Y ⊆⋃有4种可能,故共有432=128⨯种可能,所以答案为128. 【点睛】本题主要考查子集相关概念,乘法分步原理,意在考查学生的分析能力,计算能力,难度较大.19.【解析】∵函数(为非空数集)对于两个集合定义∴故答案为 解析:{0,1,4,5}【解析】∵函数()1,1,M x Mf x x M∈⎧=⎨-∉⎩(M 为非空数集).对于两个集合,A B ,定义()(){}•1A B A B x f x f x ∆==-,{}0,1,2,3A =,{}2,3,4,5B =,∴{}0145A B ,,,=,故答案为{}0,1,4,5.20.【分析】先确定元素再确定该元素为最小时对应子集个数最后利用错位相减法求和【详解】若1为最小元素则对应子集个数为个;若2为最小元素则对应子集个数为个;…若n 为最小元素则对应子集个数为个;所以的所有子集 解析:122n n +--【分析】先确定元素,再确定该元素为最小时对应子集个数,最后利用错位相减法求和. 【详解】若1为最小元素,则对应子集个数为12n -个; 若2为最小元素,则对应子集个数为22n -个; …...若n 为最小元素,则对应子集个数为02个;所以M 的所有子集的最小元素之和为2301223222n n n n ---+⨯+⨯++⨯设1230222322n n n n S ---+⨯+=⨯++⨯ 1212232222n n n n S --+⨯+⨯++⨯=相减得231112(12)222222212n n n n n n n n n S ---+-++++-==-=--+-故答案为:122n n +-- 【点睛】本题考查错位相减法求和以及子集个数,考查综合分析求解能力,属中档题.三、解答题21.(1){}|52x x -≤<-;(2)4a 或21a -≤≤.【分析】(1)求出集合A 从而求UA ,再与集合B 取交集即可;(2)分A φ=和A φ≠两种情况讨论根据A B ⊆列出不等式(组)求a 的取值范围. 【详解】(1)依题意,当1a =时,{}|23A x x =-≤≤,则|2UA x x =<-{或3}x >,又{}|53B x x =-≤≤, 则()|2UA B x x =<-{或{}{}|53|3}52x x x x x -≤≤->=≤<-.(2)若A B ⊆,则有{}{}|321|53x a x a x x -≤≤+⊆-≤≤,于是有: 当A φ=时,A B ⊆显然成立,此时只需321a a ->+,即4a ;当A φ≠时,若A B ⊆,则35221313214a a a a a a a -≥-≥-⎧⎧⎪⎪+≤⇒≤⎨⎨⎪⎪-≤+≥-⎩⎩,所以:21a -≤≤ 综上所述,a 的取值范围为:4a 或21a -≤≤.【点睛】易错点点睛:在利用集合的包含关系求参数时注意以下两点:(1)已知两个集合之间的关系求参数时,要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解;(2)在解决两个数集关系问题时,避免出错的一个有效手段是合理运用数轴帮助分析与求解,另外,在解含有参数的不等式(或方程)时,要对参数进行讨论. 22.(1)[)2,3;(2)()1,2. 【分析】(1)若1a =,化简命题p ,p q ∧为真命题得,p q ,均为真命题,即1323x x <<⎧⎨≤≤⎩化简即可;(2)q 是p 的充分不必要条件,得233a a <⎧⎨>⎩,化简即可.【详解】由题意得,当p 为真命题时:当0a >时,3a x a <<; 当q 为真命题时:23x ≤≤. (1)若1a =,有:13p x <<, 则当p q ∧为真命题,有1323x x <<⎧⎨≤≤⎩,得23x ≤<.所以当1a =,p q ∧为真命题, x 的取值范围是[)2,3 (2)q 是p 的充分不必要条件,则233a a <⎧⎨>⎩, 得12a <<. q 是p 的充分不必要条件,实数a 的取值范围是()1,2【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 23.(1){}210x x <<,{|23x x <<或}710x ≤<;(2)(-∞,3].. 【分析】(1)直接利用集合并集、补集、交集的运算法则求解即可;(2)由题意分类讨论C φ=、C φ≠,根据包含关系列不等式,从而可求实数a 的取值范围. 【详解】(1)因为集合{}37A x x =≤<,{}210B x x =<< 所以{}210A B x x ⋃=<<, ∵{3RA x x =<或}7x ≥,∴(){|23RA B x x ⋂=<<或}710x ≤<;(2)由(1)知{}210A B x x ⋃=<<,①当C =∅时,满足()C A B ⊆⊂,此时5a a -≥,得52a ≤; ②当C ≠∅时,要()C A B ⊆⋃,则55210a a a a -<⎧⎪-≥⎨⎪≤⎩,解得532a <≤;由①②得,3a ≤,综上所述,所求实数a 的取值范围为(-∞,3]. 【点睛】本题考查了集合的化简与运算,同时考查利用包含关系求参数,考查了分类讨论思想的应用,属于中档题.24.(Ⅰ){|45}A B x x ⋂=<<;(Ⅱ)1,22⎡⎤⎢⎥⎣⎦【分析】(Ⅰ)当2a =时,求出集合A ,集合B ,由此能求出AB .(Ⅱ)设:p x A ∈,:q x B ∈,p 是q 的充分条件,从而A B ⊆,由此能求出实数a 的取值范围. 【详解】解:(Ⅰ)当2a =时,集合215|0{|0}{|45}24x a x A x x x x x a x ⎧⎫---=<=<=<<⎨⎬--⎩⎭, 集合{||3|2}{|15}B x x x x =-<=<<. {|45}AB x x ∴=<<.(Ⅱ)设:p x A ∈,:q x B ∈,p 是q 的充分条件,A B ∴⊆,当221a a <+时,1a ≠,集合221|0{|21}2x a A x x a x a x a ⎧⎫--=<=<<+⎨⎬-⎩⎭, 集合{||3|2}{|15}B x x x x =-<=<<.∴22115a a ⎧⎨+⎩,且1a ≠,解得122a .且1a ≠, 当1a =时,A =∅,成立.综上,实数a 的取值范围是1,22⎡⎤⎢⎥⎣⎦.【点睛】本题考查交集、实数的取值范围的求法,考查充分条件、交集、子集等基础知识,考查运算求解能力,属于中档题.25.(1)p 为真,q 为假,理由见解析;(2)p q ∨为真,p q ∧为假,()p q ∧⌝为真. 【分析】(1)由22x =有解知命题p 为真命题,22sin 1cos 2y x x ==-,在(,)62ππ-上先减后增.即命题q 为假命题;(2)由p 为真q 为假,结合复合命题的真假可得. 【详解】(1)易知0x R ∃=,故p 为真. ∵22sin 1cos2y x x ==-,且23x ππ⎛⎫∈-⎪⎝⎭,,∴1cos2y x =-在,62ππ⎛⎫- ⎪⎝⎭上先减后增,故q 为假. (2)∵p 真q 假,∴p q ∨为真,p q ∧为假,()p q ∧⌝为真. 【点睛】本题考查了三角函数的单调性及复合命题的真假,属中档题.26.(1)逆命题:“若2280x x --≤则260x x --≤”,假命题;否命题:“若260x x -->则2280x x -->”,假命题;逆否命题:“若2280x x -->则260x x -->”,真命题;(2)3a >【分析】(1)根据逆命题,否命题,逆否命题的定义,可得逆命题,否命题,逆否命题,求解对应不等式的范围,以及原命题,逆否命题同真假,逆命题否命题同真假,可得解; (2)若“()(2)0x a x -+≤”是“260x x --≤”的必要不充分条件,则不等260x x --≤的解23x -≤≤构成的集合为()(2)0x a x -+≤的解集的真子集.分2a =-,2a <-,2a >-三种情况讨论即得解.【详解】(1)根据逆命题,否命题,逆否命题的定义, 逆命题:“若2280x x --≤则260x x --≤”; 否命题:“若260x x -->则2280x x -->”; 逆否命题:“若2280x x -->则260x x -->”.260x x --≤即:23x -≤≤;2280x x --≤即:24x -≤≤可得:原命题“若260x x --≤则2280x x --≤”是真命题, 逆命题“若2280x x --≤则260x x --≤”是假命题,根据原命题,逆否命题同真假,逆命题否命题同真假,可得:逆否命题为真,否命题为假. (2)若“()(2)0x a x -+≤”是“260x x --≤”的必要不充分条件,则不等式260x x --≤的解23x -≤≤构成的集合为()(2)0x a x -+≤的解集的真子集.()(2)0x a x -+≤对应方程的根为12,2x a x ==-若2a =-,不等式的解为2x =-,不成立; 若2a <-,不等式的解为2a x ≤≤-,不成立;若2a >-,不等式的解为2x a -≤≤,若23x -≤≤构成的集合是2x a -≤≤构成的集合的真子集,则3a >.综上:实数a 的取值范围是3a >. 【点睛】本题考查了命题的四种形式以及充分必要条件,考查了学生综合分析,逻辑推理,转化划归,分类讨论的能力,属于中档题.。
新人教版高中数学必修第一册第一单元《集合与常用逻辑用语》检测卷(答案解析)
一、选择题1.已知ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,则“0,3B π⎛⎤∈ ⎥⎝⎦”是“2b ac =”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件2.下列命题中:①命题“若1l :210ax y +-=与2l :0x y -=垂直,则2a =”的逆否命题;②命题“若1a ≠,则210a -≠”的否命题;③命题“存在0ω<,函数()sin y x ωϕ=+不存在最小正周期”的否定.其中真命题的个数为( )A .0个B .1个C .2个D .3个3.已知{}n a 是等比数列,n S 为其前n 项和,那么“10a >”是“数列{}n S 为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.若命题P :1x ≠或2y ≠,命题Q :3x y +≠,则P 是Q 的( )条件 A .充分不必要B .必要不充分C .充要D .既不充分又不必有5.“2a >”是“函数()()xf x x a e =-在()0,∞+上有极值”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知等比数列{}n a 的前n 项和为n S ,则“10a >”是“20210S >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 7.已知a ∈R ,则“2a ≤”是“方程2210ax x ++=至少有一个负根”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.设向量(sin2,cos )a θθ=,(cos ,1)b θ=,则“//a b ”是“1tan 2θ=”成立的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.判断下列命题①命题“若14m ≥-,则方程20x x m +-=有实根”的逆命题为真命题;②命题“若21x =,则1x =.”的否命题为“若21x =,则1x ≠.”;③若命题“p q ∧”为假命题,则命题“p q ∨”是假命题;④命题“x R ∀∈,22x x ≥."的否定是“0x R ∃∈,0202x x <.” 中正确的序号是( )A .①③B .②③C .①④D .②④10.命题“对任意x ∈R ,都有20x ≥”的否定为 A .对任意x ∈R ,都有20x < B .不存在x ∈R ,都有20x < C .存在0x ∉R ,使得200x < D .存在0x ∈R ,使得200x < 11.“一条直线l 与平面α内无数条直线异面”是“这条直线与平面α平行”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件12.对于()11,2x ∀∈,()21,2x ∃∈,使得211212485211x x mx m x x -+-+=--,则实数m 的取值范围是( ) A .[]0,2 B .(],2-∞ C .()0,2D .(),2-∞二、填空题13.集合{}22221,2,3,,A n =中所有3个元素的子集的元素和为__________.14.已知集合U =R ,集合[]5,2A =-,()1,4B =,则下图中阴影部分所表示的集合为__________.15.命题“x R ∀∈,使得不等式210mx mx ++≥”是真命题,则m 的取值范围是________. 16.命题“数列的前n 项和()2*3n S n n n N=+∈”成立的充要条件是________.(填一组符合题意的充要条件即可,所填答案中不得含有字母n ) 17.已知集合1,2,3,{}4,5,6X Y Z ⋃⋃=,若1,21,2,3,4,5}{},3{,X Y X Y X ⋂=⋃=∉,则集合X Y Z 、、所有可能的情况有_________种.18.集合{}|20M x N x =∈-≤≤的子集个数为__________. 19.若集合{}1,3,A x =,{}21,B x =,且{}1,3,A B x ⋃=,则x =___________.20.己知全集U =R ,集合,,则___________三、解答题21.设数集A 由实数构成,且满足:若x A ∈(1x ≠且0x ≠),则11A x∈-. (1)若2A ∈,则A 中至少还有几个元素? (2)集合A 是否为双元素集合?请说明理由.(3)若A 中元素个数不超过8,所有元素的和为143,且A 中有一个元素的平方等于所有元素的积,求集合A .22.已知全集U =R ,非空集合2{|0}3x A x x -=<-,2{|()(2)0}B x x a x a =---<. (1)当12a =时,求()U A B ;(2)命题p :x A ∈,命题q :x B ∈,若q 是p 的必要条件,求实数a 的取值范围.23.已知集合2102x a A xx a ⎧⎫--⎪⎪=<⎨⎬-⎪⎪⎩⎭,集合{}|32B x x =-<. (Ⅰ)当2a =时,求A B ;(Ⅱ)设p :x A ∈,q :x B ∈,若p 是q 的充分条件,求实数a 的取值范围. 24.已知命题:342,:()(2)0p x q x a x a ->---<. (1)若1a =,p q ∧为真命题,求x 的取值范围;(2)若q 是p ⌝的必要不充分条件,求实数a 的取值范围.25.已知函数4321x x A x -+⎧⎫⎪⎪=>⎨⎬⎪⎪⎩⎭,{}321B x m x m =-≤≤+. (1)当2m =时,求A 和()RA B ⋂;(2)若x B ∈是x A ∈的充分不必要条件,求实数m 的取值范围.26.已知0a >,设p :实数x 满足22430x ax a -+<,q :实数x 满足()231x -<. (1)若1a =,且p q ∧为真,求实数x 的取值范围; (2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】分别从充分性和必要性入手进行分析即可得解. 【详解】充分性:若0,3B π⎛⎤∈ ⎥⎝⎦,则2221cos 122a c b B ac+-≤=<,即2222ac a c b ac ≤+-<,即222222a c ac b a c ac +-<≤+-,并不能得出2b ac =一定成立,故充分性不成立;必要性:若2b ac =,由余弦定理得:2221cos 222a c ac ac ac B ac ac +--=≥=,因为()0,B π∈,所以0,3B π⎛⎤∈ ⎥⎝⎦,故必要性成立, 综上,“0,3B π⎛⎤∈ ⎥⎝⎦”是“2b ac =”的必要不充分条件,故选:C . 【点睛】方法点睛:判断充要条件的四种常用方法:定义法、传递性法、集合法、等价命题法.2.D解析:D 【分析】根据原命题和逆否命题同真假来判断①是真命题,根据定义写出命题的否命题和命题的否定,再判断②③的真假即可. 【详解】①中,若1l :210ax y +-=与2l :0x y -=垂直,则()1210a ⨯+⨯-=,则2a =.故该命题是真命题,其逆否命题也是真命题;②中,命题“若1a ≠,则210a -≠”的否命题是:“若1a =,则210a -=”,易见若1a =,则21a =,则210a -=,故“若1a =,则210a -=”是真命题;③中,命题“存在0ω<,函数()sin y x ωϕ=+不存在最小正周期”的否定是“对任意的0ω<,函数()sin y x ωϕ=+存在最小正周期”, 对任意的0ω<,函数()sin y x ωϕ=+存在最小正周期2T πω=,故命题“存在0ω<,函数()sin y x ωϕ=+不存在最小正周期”的否定是真命题.故①②③均为真命题. 故选:D. 【点睛】 思路点睛:一般互为逆否的两个命题判断真假时,可以选择容易的进行判断,则另一个就同真假.3.B解析:B 【分析】分别从充分性和必要性入手进行分析即可得解. 【详解】设等比数列{}n a 的公比为q ,充分性:当10a >,0q <时,111n n nn S a S a q ++-==,无法判断其正负,显然数列{}n S 为不一定是递增数列,充分性不成立;必要性:当数列{}n S 为递增数列时,10n n n S S a --=>,可得10a >,必要性成立. 故“10a >”是“数列{}n S 为递增数列”的必要而不充分条件. 故选:B . 【点睛】方法点睛:证明或判断充分性和必要性的常用方法:①定义法,②等价法,③集合包含关系法.4.B解析:B 【分析】通过举反例,判断出P 成立推不出Q 成立,通过判断逆否命题的真假,判断出原命题的真假得到后者成立能推出前者成立,由充分条件、必要条件的定义得到结论. 【详解】当0x =,3y =时,Q 不成立,即P Q ⇒不成立,即充分性不成立; 判断必要性时,写出原命题:3x y +≠时,则1x ≠或2y ≠, 由于原命题不好判断,故转化为逆否命题进行判断,即原命题变为:若1x =且2y =,则有3x y +=,对于该命题,明显成立,所以,原命题也成立;即必要性成立;所以P 是Q 的必要而不充分条件, 故选:B 【点睛】关键点睛:判断一个命题是另一个命题的什么条件,一般先判断前者成立是否能推出后者成立,再判断后者成立能否推出前者成立;本题难点在于:利用逆否命题的真假性判断原命题的真假性,属于中档题.5.A解析:A 【分析】求出函数()()xf x x a e =-的极值点,利用该极值点在()0,∞+内求得实数a 取值范围,利用集合的包含关系可得出结论. 【详解】()()x f x x a e =-,则()()1x f x x a e '=-+,令()0f x '=,可得1x a =-.当1x a <-时,()0f x '<;当1x a >-时,()0f x '>. 所以,函数()y f x =在1x a =-处取得极小值.若函数()y f x =在()0,∞+上有极值,则10a ->,1a ∴>.因此,“2a >”是“函数()()xf x x a e =-在()0,∞+上有极值”的充分不必要条件.故选:A.本题考查充分不必要条件的判断,同时也考查了利用导数求函数的极值点,考查计算能力与推理能力,属于中等题.6.C解析:C 【分析】结合等比数列的前n 项和公式,以及充分、必要条件的判断方法,判断出正确选项. 【详解】由于数列{}n a 是等比数列,所以2021111n q S a q -=⋅-,由于101nq q ->-,所以 2021111001nq S a a q-=⋅>⇔>-,所以“10a >”是“20210S >”的充要条件. 故选:C 【点睛】本小题主要考查等比数列前n 项和公式,考查充分、必要条件的判断,属于中档题.7.B解析:B 【分析】分类讨论a 的正负,利用两根与系数的关系、判别式,进而求解判断即可. 【详解】(1)当0a =时,方程变为210x +=,有一负根12x =-,满足题意;(2)当0a <时,440∆=->a ,方程的两根满足1210x x a=<,此时有且仅有一个负根,满足题意;(3)当0a >时,由方程的根与系数关系可得2010aa⎧-<⎪⎪⎨⎪>⎪⎩,∴方程若有根,则两根都为负根,而方程有根的条件440a ∆=-≥,01a ∴<≤.综上可得,1a ≤.因此,“2a ≤”是“方程2210ax x ++=至少有一个负根”的必要不充分条件. 故选:B. 【点睛】本题考查必要不充分条件的判断,考查二次方程根的分布问题,考查分类讨论思想的应用,属于中等题.8.B【分析】先将//a b 等价化简为cos 0θ=或1tan 2θ=,再判断解题即可. 【详解】//a b ⇔(sin 2,cos )//(cos ,1)θθθ⇔2sin 2cos θθ=⇔cos 0θ=或1tan 2θ=,所以“//a b ”是“1tan 2θ=”成立的必要不充分条件. 故选:B. 【点睛】本题考查向量平行的坐标表示、判断p 是q 的什么条件、三角恒等变换化简,是中档题.9.C解析:C 【分析】①写出原命题的逆命题,并判断真假性. ②根据否命题的知识判断真假性.③根据含有逻辑联结词命题真假性来判断命题的真假性. ④根据全称命题的否定的知识判断真假性. 【详解】①原命题的逆命题为:若方程20x x m +-=有实根,则14m ≥-.当方程20x x m +-=有实根则11404m m ∆=+≥⇒≥-.所以逆命题为真命题.所以①正确. ②原命题的否命题为:若21x ≠,则1x ≠.所以②错误.③由于p q ∧为假命题,所以,p q 中至少有一个是假命题,可能是一真一假,所以p q ∨可能为真命题.所以③错误. ④原命题的否定是0x R ∃∈,0202x x <.所以④正确.综上所述,正确的序号为①④.故选:C 【点睛】本小题主要考查四种命题,考查含有逻辑连接词命题,考查全称命题的否定,属于中档题.10.D解析:D 【解析】命题“对任意x R ∈,都有20x ≥”的否定为:存在0x R ∈,使得200x <,选D.11.B解析:B 【分析】根据异面直线的定义及直线与平面平行的定义即可判定. 【详解】因为满足“一条直线l 与平面α内无数条直线异面”这样条件的直线可以和平面相交, 所以推不出“这条直线与平面α平行”,当直线满足与平面α平行时,可以推出这条直线与平面α内无数条直线异面, 所以“一条直线l 与平面α内无数条直线异面”是“这条直线与平面α平行”的必要不充分条件, 故选:B 【点睛】本题主要考查了充分条件、必要条件,直线与平面的位置关系,属于中档题.12.D解析:D 【分析】设(1,2)x ∈时,2485()1x x f x x -+=-的值域A ,2()1mx m g x x -+=-的值域B ,只要A B ⊆即可满足题意.【详解】设2485()1x x f x x -+=-((1,2)x ∈),24(1)11()4(1)11x f x x x x -+==-+--, 设1t x =-,则1()4f x y t t ==+,则(0,1)x ∈,由勾形函数性质知当102t <<时,y 递减,当112t <<时,y 递增, min 1144122y =⨯+=,[4,)y ∈+∞,即()f x 值域为[4,)+∞, 2()1mx m g x x -+=-((1,2)x ∈),设1x t -=,(0,1)t ∈,则2()g x y m t==+,(0,1)t ∈时,2y m t=+是减函数,(2,)y m ∈++∞,即()(2,)g x m ∈++∞, 对于()11,2x ∀∈,()21,2x ∃∈,使得211212485211x x mx m x x -+-+=--,则24m +<,2m <.故选:D . 【点睛】本题考查含有存在题词与全称题词的命题恒成立问题,解题关键是把问题转化为集合之间的包含关系.二、填空题13.【分析】集合A 中所有元素被选取了次可得集合中所有3个元素的子集的元素和为即可得结果【详解】集合中所有元素被选取了次∴集合中所有3个元素的子集的元素和为故答案为【点睛】本题考查了集合的子集正整数平方和 解析:(2)(1)(1)(21)12n n n n n --++【分析】集合A 中所有元素被选取了21n C -次,可得集合{}22221,2,3,,A n =中所有3个元素的子集的元素和为()222122123n n C -+++⋯+即可得结果.【详解】 集合{}22221,2,3,,A n =中所有元素被选取了21n C -次,∴集合{}22221,2,3,,A n =中所有3个元素的子集的元素和为()()()()()2222211212112326n n n n n n C n ---+++++⋯+=⨯()()()()2112112n n n n n --++=,故答案为(2)(1)(1)(21)12n n n n n --++.【点睛】本题考查了集合的子集、正整数平方和计算公式,属于中档题.14.【解析】因为所以或则图中阴影部分所表示的集合为应填答案 解析:[]5,1-【解析】因为[]5,2A =-,()1,4B =,所以{|1U C B x x =≤或4}x ≥,则图中阴影部分所表示的集合为(){|51}U C B A x x ⋂=-≤≤,应填答案[]5,1-.15.【分析】对分类讨论计算可得【详解】解:因为命题使得不等式是真命题当时恒成立满足条件;当时则解得综上可得即故答案为:【点睛】本题考查全称命题为真求参数的取值范围属于中档题 解析:[]0,4【分析】对m 分类讨论,计算可得. 【详解】解:因为命题“x R ∀∈,使得不等式210mx mx ++≥”是真命题 当0m =时,10≥恒成立,满足条件;当0m ≠时,则2040m m m >⎧⎨-≤⎩解得04m <≤综上可得04m ≤≤即[]0,4m ∈ 故答案为:[]0,4 【点睛】本题考查全称命题为真求参数的取值范围,属于中档题.16.数列为等差数列且【分析】根据题意设该数列为由数列的前项和公式分析可得数列为等差数列且反之验证可得成立综合即可得答案【详解】根据题意设该数列为若数列的前项和则当时当时当时符合故有数列为等差数列且反之当解析:数列为等差数列且14a =,6d =. 【分析】根据题意,设该数列为{}n a ,由数列的前n 项和公式分析可得数列为等差数列且14a =,6d =,反之验证可得23n S n n =+成立,综合即可得答案.【详解】根据题意,设该数列为{}n a ,若数列的前n 项和23n S n n =+,则当1n =时,114a S ==,当2n 时,162n n n a S S n -=-=-, 当1n =时,14a =符合62n a n =-, 故有数列为等差数列且14a =,6d =,反之当数列为等差数列且14a =,6d =时,62n a n =-,21()232n n a a S n n +⨯==+; 故数列的前n 项和23(*)n S n n n N =+∈”成立的充要条件是数列为等差数列且14a =,6d =,故答案为:数列为等差数列且14a =,6d =. 【点睛】本题考查充分必要条件的判定,关键是掌握充分必要条件的定义,属于基础题.17.【分析】通过确定XYZ 的子集利用乘法公式即可得到答案【详解】根据题意可知由于可知Z 共有种可能而有4种可能故共有种可能所以答案为128【点睛】本题主要考查子集相关概念乘法分步原理意在考查学生的分析能力 解析:128【分析】通过确定X,Y ,Z 的子集,利用乘法公式即可得到答案. 【详解】根据题意,可知1,2,1,236{}{},{}Z X Y ⊆⊆⊆,,由于{6}Z ⊆,可知Z 共有 52=32种可能,而(){4},5X Y ⊆⋃有4种可能,故共有432=128⨯种可能,所以答案为128.【点睛】本题主要考查子集相关概念,乘法分步原理,意在考查学生的分析能力,计算能力,难度较大.18.2【解析】因为集合所以集合子集有两个:空集与故答案为解析:2【解析】因为集合{}{}|200M x N x =∈-≤≤=,所以集合M 子集有两个:空集与{}0,故答案为2.19.0或【解析】由题意得解析:0或3±【解析】由题意得2223,1,3,103x x x x x x x 或或==≠≠≠⇒=±20.【解析】试题分析:本题首先求出集合AB 再求它们的运算这两个集合都是不等式的解集故解得因此考点:集合的运算 解析:【解析】试题分析:本题首先求出集合A ,B ,再求它们的运算,这两个集合都是不等式的解集,故解得{|31}A x x x =-或,{|02}B x x =<≤,因此()(0,1]U A B ⋂=.考点:集合的运算. 三、解答题21.(1)A 中至少还有两个元素;(2)不是双元素集合,答案见解析;(3)112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭. 【分析】(1)由x A ∈(1x ≠且0x ≠),则11A x ∈-,结合2A ∈可计算得出集合A 中的元素;(2)由x A ∈,逐项可推导出11A x ∈-,1x A x -∈,结合集合元素满足互异性可得出结论;(3)由(2)A 中有三个元素为x 、11x -、1x x -(1x ≠且0x ≠),设A 中还有一个元素m ,可得出11A m ∈-,1m A m-∈,由已知条件列方程求出x 、m 的值,即可求得集合A 中的所有元素.【详解】(1)2A ∈,1112A ∴=-∈-. 1A -∈,()11112A ∴=∈--. 12A ∈,12112A ∴=∈-. A ∴中至少还有两个元素为1-,12; (2)不是双元素集合.理由如下:x A ∈,11A x ∴∈-,11111x A x x-=∈--, 由于1x ≠且0x ≠,22131024x x x ⎛⎫-+=-+> ⎪⎝⎭,则210x x -+≠, 则()11x x -≠,可得11x x≠-,由221x x x -+≠-,即()21x x -≠-,可得111x x x-≠-, 故集合A 中至少有3个元素,所以,集合A 不是双元素集合.(3)由(2)知A 中有三个元素为x 、11x -、1x x -(1x ≠且0x ≠), 且1111x x x x-⋅⋅=--, 设A 中有一个元素为m ,则11A m ∈-,1m A m -∈,且1111m m m m -⋅⋅=--, 所以,1111,,,,,11x m A x m x x m m --⎧⎫=⎨⎬--⎩⎭,且集合A 中所有元素之积为1. 由于A 中有一个元素的平方等于所有元素的积, 设2111x ⎛⎫= ⎪-⎝⎭或211x x -⎛⎫= ⎪⎝⎭,解得0x =(舍去)或2x =或12x =. 此时,2A ∈,1A -∈,12A ∈, 由题意得1111421213m m m m -+-+++=-,整理得3261960m m m -++=, 即()()()621320m m m -+-=,解得12m =-或3或23,所以,112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭. 【点睛】 关键点点睛:本题考查集合中元素相关的问题,解题时要结合题中集合A 满足的定义推导出其它的元素,以及结合已知条件列方程求解,同时注意集合中元素满足互异性. 22.(1)934xx ⎧⎫≤<⎨⎬⎩⎭;(2)(,1][1,2]-∞-⋃. 【分析】(1)先解分式不等式和二次不等式得集合,A B ,再求补集和交集即可;(2)先判断22a a +>得2{|2}B x a x a =<<+,再根据必要条件得到集合的包含关系,列不等式求解即可.【详解】(1)∵12a =时,2{|0}{|23}3x A x x x x -=<=<<-, 1119{|()(2)0}{|}2424B x x x x x =---<=<<, 全集U =R ,∴1{|2UC B x x =≤或9}4x ≥.∴9(){|3}4U C B A x x ⋂=≤<. (2)∵命题p :x A ∈,命题q :x B ∈,q 是p 的必要条件,∴A B ⊆. ∵221772()0244a a a +-=-+≥>,∴22a a +>, ∵23{|}A x x =<<,2{|2}B x a x a =<<+,∴2223a a ≤⎧⎨+≥⎩,解得1a ≤-或12a ≤≤,故实数a 的取值范围(,1][1,2]-∞-⋃. 【点睛】本题主要考查了集合的运算及求参问题,涉及必要条件的转化,属于基础题.23.(Ⅰ){|45}A B x x ⋂=<<;(Ⅱ)1,22⎡⎤⎢⎥⎣⎦【分析】(Ⅰ)当2a =时,求出集合A ,集合B ,由此能求出A B . (Ⅱ)设:p x A ∈,:q x B ∈,p 是q 的充分条件,从而A B ⊆,由此能求出实数a 的取值范围.【详解】解:(Ⅰ)当2a =时,集合215|0{|0}{|45}24x a x A x x x x x a x ⎧⎫---=<=<=<<⎨⎬--⎩⎭, 集合{||3|2}{|15}B x x x x =-<=<<.{|45}A B x x ∴=<<.(Ⅱ)设:p x A ∈,:q x B ∈,p 是q 的充分条件,A B ∴⊆,当221a a <+时,1a ≠,集合221|0{|21}2x a A x x a x a x a ⎧⎫--=<=<<+⎨⎬-⎩⎭, 集合{||3|2}{|15}B x x x x =-<=<<.∴22115a a ⎧⎨+⎩,且1a ≠,解得122a .且1a ≠, 当1a =时,A =∅,成立. 综上,实数a 的取值范围是1,22⎡⎤⎢⎥⎣⎦. 【点睛】本题考查交集、实数的取值范围的求法,考查充分条件、交集、子集等基础知识,考查运算求解能力,属于中档题.24.(1)()2,3;(2)20,3⎛⎫ ⎪⎝⎭.【分析】(1)首先根据题意分别解得p 真和q 真时x 的范围,再根据p q ∧为真命题解不等式组即可.(2)首先解出p ⌝和q ,再根据q 是p ⌝的必要不充分条件解不等式组即可. 【详解】(1)p 真:342x ->或342x -<-,即p 真:2x >或23x <. :(1)(3)0q x x --<,q 真:13x <<.因为p q ∧为真命题,所以p ,q 都为真命题. 所以22313x x x ⎧><⎪⎨⎪<<⎩或,解得23x <<.(2)由(1)知2:23p x ⌝≤≤,:2q a x a <<+. 因为q 是p ⌝的必要不充分条件, 所以2203322a a a ⎧<⎪⇒<<⎨⎪+>⎩,a 的取值范围是2(0,)3. 【点睛】本题第一问考查逻辑连接词,第二问考查充分不必要条件,属于中档题.25.(1)()()34-∞-+∞,,,[]1,4-;(2)2m <-或7m >.【分析】(1)由指数函数的单调性可得403x x ->+,解分式方程即可得集合A ,从而可求出()R A B ⋂. (2)由题意知BA ,分B =∅和B ≠∅两种情况进行讨论,从而可求出实数m 的取值范围. 【详解】(1)∵4321x x -+>,∴40322x x -+>,∴403x x ->+,解得3x <-或4x >, ∴()(),34,A =-∞-⋃+∞,又2m =,[]1,5B =-,[]3,4R A =- ∴()[]1,4R A B ⋂=-.(2)∵x B ∈是x A ∈的充分不必要条件,∴BA , (1)当B =∅时,则321m m ->+,即4m <-.(2)当B ≠∅时,32134m m m -≤+⎧⎨->⎩或321213m m m -≤+⎧⎨+<-⎩∴7m >或42m -≤<- 综上所述,2m <-或7m >.【点睛】结论点睛:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 26.(1) 23x <<;(2) 4,23⎡⎤⎢⎥⎣⎦. 【解析】试题分析:(1)p 为真时实数x 的取值范围是13x <<,q 为真时实数x 的取值范围是,然后求交集即可;(2)p ⌝是q ⌝的充分不必要条件即即q 是p 的充分不必要条件,易得:2a ≤且43a ≤.试题(1)由22430x ax a -+<得()()30x a x a --<当1a =时,13x <<,即p 为真时实数x 的取值范围是13x <<.由()231x -<,得24x <<,即q 为真时实数x 的取值范围是24x << 因为p q ∧为真,所以p 真且q 真,所以实数x 的取值范围是23x <<.(2)由22430x ax a -+<得()()30x a x a --<,所以,p 为真时实数x 的取值范围是3a x a <<.因为 p ⌝是q ⌝的充分不必要条件,即q 是p 的充分不必要条件所以2a ≤且43a ≤所以实数a 的取值范围为:4,23⎡⎤⎢⎥⎣⎦.。
西安市高新第一中学必修一第一单元《集合》测试(含答案解析)
一、选择题1.设集合}{2230A x x x =+->,集合}{2210,0,B x x ax a =--≤>若A B 中恰含有一个整数 ,则实数a 的取值范围是( ) A .34,43⎡⎫⎪⎢⎣⎭ B .30,4⎛⎫ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .()1,+∞2.若{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20192019a b +的值为( ) A .0B .1-C .1D .1或1-3.下图中的阴影部分,可用集合符号表示为( )A .()()U U A B ⋂ B .()()U UA BC .()UA BD .()UA B ⋂4.若{}|28A x Z x =∈≤<,{}5|log 1B x R x =∈<,则R A C B ⋂的元素个数为( ) A .0B .1C .2D .35.设集合{,}A a b =,{}220,,B a b =-,若A B ⊆,则⋅=a b ( )A .-1B .1C .-1或1D .06.对于非空集合A ,B ,定义运算:{},A B x x A B x A B ⊕=∈⋃∉⋂且,已知{}M x a x b =<<,{}N x c x d =<<,其中a 、b 、c 、d 满足a b c d +=+,0ab cd <<,则M N ⊕=( )A .()(),,a d b c B .()(),,c a b d C .(][),,a c d b D .()(),,c a d b7.已知集合{}1,2,3,4,5,6U =,集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅.若{}3,4=UAB ,则满足条件的集合A 的个数为( )A .7个B .8个C .15个D .16个8.已知}{|21M x x =-<<,3|0x N x x ⎧-⎫=≤⎨⎬⎭⎩,则M N ⋂=( ) A .()0,1 B .[)0,1C .(]1,3D .[]0,39.在整数Z 集中,规定被5除所得余数为k 的所有整数组成“一类”,记为[]k ,即[]{}|5,k x x n n Z k ==+∈,0,1,2,3,4k =,给出如下四个结论:①[]20183∈;②[]20183-∈;③[][][][][]01234Z =;④“整数a ,b 属于同‘一类’”的充要条件是“[]0a b -∈”;其中正确结论的个数是( )A .1B .2C .3D .410.若x A ∈,则1A x ∈,就称A 是和美集合,集合111,0,,,1,323M ⎧⎫⎨=⎩-⎬⎭的所有非空子集中是和美集合的个数为( ) A .4B .5C .6D .711.从含有3个元素的集合{},,a b c 的所有子集中任取一个,所取得子集是含有2个元素的集合的概率( ) A .310B .112C .4564D .3812.已知R 为实数集,集合{|lg(3)}A x y x ==+,{|2}B x x =≥,则()R C A B ⋃=( ) A .{|3}x x >-B .{3}x x |<-C .{|3}x x ≤-D .{|23}x x ≤<二、填空题13.集合{(,)|||,}A x y y a x x R ==∈,{(,)|,}B x y y x a x R ==+∈,已知集合A B中有且仅有一个元素,则常数a 的取值范围是________14.已知非空集合{}|121A x m x m =+≤≤-,集合{}2|1030B x x x =+-≥,若A B =Φ,则实数m 的取值范围为__________15.若集合{}2210,A x ax x a R =++=∈至多有一个元素,则a 的取值范围是___________.16.若{}|224xA x ≤≤,1|1xB x a x -⎧⎫=<⎨⎬+⎩⎭,若A B =∅,则实数a 的取值范围为_________;17.已知集合2{1,9,},{1,}A x B x ==,若A B A ⋃=,则x 的值为_________. 18.设全集{|35}Ux x =-≤≤,集合1{|||1},{|0}2A x xB x x =≤=>+,则()UC A B ⋂=_____________.19.对于集合M ,定义函数1()1M x Mf x x M ∈⎧=⎨-∉⎩,对于两个集合M 、N ,定义集合{|()()1}M N M N x f x f x *=⋅=-,用()Card M 表示有限集合M 所含元素的个数,若{1,2,4,8}A =,{2,4,6,8,10}B =,则能使()()Card X A Card X B *+*取最小值的集合X 的个数为________.20.设A 、B 是非空集合,定义:{|A B x x AB ⊗=∈且}x A B ∉,已知{|2}2xA x x =<+,{|3}B x x =>-,则A B ⊗=_________ 三、解答题21.设集合{}{}222280,430A x x x B x x ax a =+-<=-+= (1)若x A ∈是x B ∈的必要条件,求实数a 的取值范围;(2)是否存在实数a ,使A B ϕ⋂≠成立?若存在,求出实数a 的取值范围;若不存在,请说明理由.22.已知集合{}2320A x x x =-+=,{}210B x x ax a =-+-=,{}222(1)50C x x m x m =+++-=.(1)若A B A ⋃=,求实数a 的值;(2)若AC C =,求实数m 的取值范围.23.已知集合A ={x |12x -≤≤},B ={x |123m x m +≤≤+} (1)当m =1时,求AB ;(2)若B A ⊆,求实数m 的取值范围24.已知集合{}2230A x x x =--≤,{}22210B x x mx m =-+-≤. (1)若332A B x x ⎧⎫⋃=-≤≤⎨⎬⎩⎭,求实数m 的值; (2)x A ∈是x B ∈的________条件,若实数m 的值存在,求出m 的取值范围;若不存在,说明理由.(请在①充分不必要,②必要不充分,③充要;中任选一个,补充到空白处) 25.已知{}240A x x x =+=,(){}222110B x x a x a =+++-=,若B A ⊆,求a 的取值范围.26.已知集合{}25A x x =-≤≤,集合{}121B x p x p =+≤≤-,若A B B =,求实数p 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先化简集合A ,再根据函数y =f (x )=x 2﹣2ax ﹣1的零点分布,结合A ∩B 恰有一个整数求解. 【详解】A ={x |x <﹣3或x >1},函数y =f (x )=x 2﹣2ax ﹣1的对称轴为x =a >0, 而f (﹣3)=6a +8>0,f (﹣1)=2a >0,f (0)<0,故其中较小的零点为(-1,0)之间,另一个零点大于1,f (1)<0, 要使A ∩B 恰有一个整数, 即这个整数解为2, ∴f (2)≤0且f (3)>0, 即44109610a a --≤⎧⎨-->⎩,解得:3443a a ⎧≥⎪⎪⎨⎪<⎪⎩, 即34≤a <43, 则a 的取值范围为34,43⎡⎫⎪⎢⎣⎭. 故答案为:A. 【点睛】本题主要考查集合的交集运算的应用以及二次函数的零点分布问题,还考查了转化求解问题的能力,属于中档题.2.B解析:B 【分析】根据集合相等以及集合元素的互异性可得出关于a 、b 的方程组,解出这两个未知数的值,由此可求得20192019a b +的值. 【详解】b a 有意义,则0a ≠,又{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,0b a ∴=,可得0b =,所以,{}{}21,,00,,a a a =,21a ∴=,由集合中元素的互异性可得1a ≠,所以,1a =-, 因此,()2019201920192019101a b +=-+=-.故选:B. 【点睛】本题考查利用集合相等求参数,同时不要忽略了集合中元素互异性的限制,考查计算能力,属于中等题.3.C【分析】图中阴影部分是集合A 与集合B 的补集的交集. 【详解】图中阴影部分是集合A 与集合B 的补集的交集,所以图中阴影部分,可以用()UA B 表示. 【点睛】本题考查了用韦恩图表示集合间的关系,考查了学生概念理解,数形结合的能力,属于基础题.4.D解析:D 【分析】化简集合A 、B ,根据补集与交集的定义写出RA B ,即可得出结论.【详解】集合{|28}{2A x Z x =∈<=,3,4,5,6,7},51{||log |1}{|5}5B x R x x R x =∈<=∈<<,1{|5R B x R x ∴=∈或5}x , {5RAB ∴=,6,7}.∴其中元素个数为3个.故选:D . 【点睛】本题考查了集合的化简与运算问题,是基础题.5.A解析:A 【分析】由集合的包含关系得,a b 的方程组,求解即可 【详解】A B ⊆,由集合元素互异性得0,0,a b a b ≠≠≠ 则22a a b b ⎧=⎨=-⎩ 或22b a a b ⎧=⎨=-⎩解得11a b =⎧⎨=-⎩或11b a =⎧⎨=-⎩故选: A 【点睛】本题考查集合的包含关系,考查元素的互异性,是基础题6.C【分析】先判断0a c d b <<<<,再计算(,),(,)M N a b M N c d ⋃=⋂=,得到答案. 【详解】根据a b c d +=+,0ab cd <<得到:0a c d b <<<<{}M x a x b =<<,{}N x c x d =<<故(,),(,)M N a b M N c d ⋃=⋂=(][),,M N a c d b ⊕=故选:C 【点睛】本题考查了集合的新定义问题,确定0a c d b <<<<是解题的关键.7.C解析:C 【分析】由题意知3、4B ∉,则集合A 的个数等于{}1,2,5,6非空子集的个数,然后利用公式计算出集合{}1,2,5,6非空子集的个数,即可得出结果. 【详解】由题意知3、4B ∉,且集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅, 则AB 为集合{}1,2,5,6的非空子集,因此,满足条件的集合A 的个数为42115-=.故选C. 【点睛】本题考查集合个数的计算,一般利用列举法将符合条件的集合列举出来,也可以转化为集合子集个数来进行计算,考查化归与转化思想的应用,属于中等题.8.A解析:A 【分析】根据分式不等式的解法,求得{}03N x x =<≤,再结合集合的交集的运算,即可求解. 【详解】由题意,集合{}3|003x N x x x x ⎧-⎫=≤=<≤⎨⎬⎭⎩, 又由}{|21M x x =-<<,所以{}()010,1M N x x ⋂=<<=. 故选:A. 【点睛】本题主要考查了集合交集的概念及运算,以及分式不等式的求解,其中解答中正确求解集合N 是解答的关键,着重考查运算与求解能力.9.C解析:C 【分析】根据“一类”的定义分别进行判断即可. 【详解】 ①201854033÷=⋯,2018[3]∴∈,故①正确;②20185(404)2-=⨯-+,2018[3]-∉,故②错误; ③因为整数集中的数被5除的数可以且只可以分成五类,故[0][1][2][3][4]Z =⋃⋃⋃⋃,故③正确;④整数a ,b 属于同 “一类”, ∴整数a ,b 被5除的余数相同,从而-a b 被5除的余数为0,反之也成立,故“整数a ,b 属于同一“类”的充要条件是“[0]a b -∈”.故④正确. 正确的结论为①③④3个. 故选:C . 【点睛】本题主要考查新定义的应用,利用定义正确理解“一类”的定义是解决本题的关键,是中档题.10.D解析:D 【分析】写出集合111,0,,,1,323M ⎧⎫⎨=⎩-⎬⎭的非空子集,根据和美集合的定义验证即可. 【详解】先考虑含一个元素的子集,并且其倒数是其本身,有{}{}1,1,- 再考虑 含有两个元素的和美集合,有{}11,1,,33⎧⎫-⎨⎬⎩⎭, 含有三个元素的子集且为和美集合的是111,,3,1,,3,33⎧⎫⎧⎫-⎨⎬⎨⎬⎩⎭⎩⎭含有四个元素的子集且为和美集合的是11,1,,33⎧⎫-⎨⎬⎩⎭. 【点睛】本题主要考查了集合的子集,考查了创设新情景下解决问题的能力,属于中档题.11.D解析:D 【分析】含有3个元素的集合{},,a b c 共有子集个数328=,含有2个元素的子集有3个,根据古典概型即可计算.因为含有3个元素的集合{},,a b c 共有子集个数328=,含有2个元素的子集有3个, 所以38P =,故选D. 【点睛】本题主要考查了集合子集的概念,古典概型,属于中档题.12.C解析:C 【分析】化简集合,根据集合的并集补集运算即可. 【详解】因为{|lg(3)}{|3}A x y x x x ==+=>-, 所以AB {|3}x x =>-,()R C A B ⋃={|3}x x ≤-,故选C.【点睛】本题主要考查了集合的并集、补集运算,属于中档题.二、填空题13.【分析】若中有且仅有一个元素则方程有且仅有一个解进而求解即可【详解】由题因为中有且仅有一个元素则方程有且仅有一个解当时则当时则由已知得或或或解得故答案为:【点睛】本题考查由交集结果求参数范围考查分类 解析:[1,1]-【分析】 若AB 中有且仅有一个元素,则方程a x x a =+有且仅有一个解,进而求解即可【详解】 由题,因为AB 中有且仅有一个元素,则方程a x x a =+有且仅有一个解,当0x ≥时,ax x a =+,则1a x a =-, 当0x <时,ax x a -=+,则1a x a =-+, 由已知得0101a a a a ⎧≥⎪⎪-⎨⎪-≥⎪+⎩或0101aa a a ⎧<⎪⎪-⎨⎪-<⎪+⎩或101a a a =⎧⎪⎨-<⎪+⎩或011a a a ⎧≥⎪-⎨⎪=-⎩, 解得11a -≤≤, 故答案为:[]1,1-本题考查由交集结果求参数范围,考查分类讨论思想和转化思想14.或【分析】化简集合对集合是否为空集分类讨论若满足题意若根据条件确定集合的端点位置即可求解【详解】由得若满足题意;若可得或解得或;综上:或故答案为:或【点睛】本题考查集合间的运算不要遗漏空集情况属于中解析:4m >或2m < 【分析】化简集合B ,对集合A 是否为空集分类讨论,若A =∅满足题意,若A =∅,根据条件确定集合A 的端点位置,即可求解. 【详解】由21030x x +-≥得25,[2,5]x B -≤≤∴=-, 若,121,2A m m m =∅+>-<,满足题意; 若,A AB ≠∅=∅,可得12115m m m +≤-⎧⎨+>⎩或121212m m m +≤-⎧⎨-<-⎩,解得4m >或m ∈∅; 综上:4m >或2m <. 故答案为:4m >或2m < 【点睛】本题考查集合间的运算,不要遗漏空集情况,属于中档题.15.或【分析】根据讨论方程解的情况即得结果【详解】时满足题意;时要满足题意需综上的取值范围是或故答案为:或【点睛】本题考查根据集合元素个数求参数考查基本分析求解能力属中档题解析:{0a a =或}1a ≥ 【分析】根据a 讨论2210ax x ++=方程解的情况,即得结果 【详解】0a =时,21212102ax x x x ++=+=∴=-,12A ⎧⎫=-⎨⎬⎩⎭满足题意;0a ≠时,要满足题意,需4401a a ∆=-≤∴≥综上a 的取值范围是{0a a =或}1a ≥ 故答案为:{0a a =或}1a ≥ 【点睛】本题考查根据集合元素个数求参数,考查基本分析求解能力,属中档题.16.【分析】计算集合等价于在上恒成立计算的最小值得到答案【详解】等价于在上恒成立即设易知函数在单调递减故故答案为:【点睛】本题考查了集合的关系求参数将等价于在上恒成立是解题的关键解析:13a ≤-【分析】计算集合{}12A x x =≤≤,AB =∅等价于在[]1,2上11xa x -≥+恒成立,计算 21()1x f x -++=的最小值得到答案. 【详解】{}{}|22412x A x x x =≤≤=≤≤,11x B x a x ⎧⎫-=<⎨⎬+⎩⎭A B =∅,等价于在[]1,2上11x a x -≥+恒成立,即122111x x x a --+=-+++≤ 设21()1x f x -++= 易知函数在[]1,2单调递减,min 1()(2)3f x f ==-,故13a ≤- 故答案为:13a ≤- 【点睛】本题考查了集合的关系求参数,将A B =∅等价于在[]1,2上11xa x -≥+恒成立是解题的关键.17.或0【分析】由题意利用集合的包含关系和集合运算的互异性即可确定x 的值【详解】由可知B ⊆A 则或解得:或或当时满足题意;当时满足题意;当时满足题意;当时不满足集合元素的互异性舍去综上可得:x 的值为或0故解析:3,3-或0 【分析】由题意利用集合的包含关系和集合运算的互异性即可确定x 的值. 【详解】由A B A ⋃=可知B ⊆A ,则29x =或2x x =, 解得:3x =±或0x =或1x =,当3x =时,{}{}1,9,3,1,9A B ==,满足题意; 当3x =-时,{}{}1,9,3,1,9A B =-=,满足题意; 当0x =时,{}{}1,9,0,1,0A B ==,满足题意; 当1x =时,不满足集合元素的互异性,舍去. 综上可得:x 的值为3,3-或0. 故答案为:3,3-或0. 【点睛】本题主要考查并集的定义,集合中元素的互异性,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.18.【分析】解绝对值不等式求得集合然后求得其补集解分式不等式求得集合由此求得【详解】由解得所以由解得所以故填:【点睛】本小题主要考查集合交集和补集的概念和运算考查绝对值不等式和分式不等式的解法属于基础题 解析:(2,1)(1,5]--【分析】解绝对值不等式求得集合A ,然后求得其补集.解分式不等式求得集合B ,由此求得()U C A B ⋂.【详解】 由1x ≤解得11x -≤≤,所以[)(]3,11,5U C A =--⋃.由102x >+解得2x >-,所以()U C A B ⋂(2,1)(1,5]=--.故填:(2,1)(1,5]--.【点睛】本小题主要考查集合交集和补集的概念和运算,考查绝对值不等式和分式不等式的解法,属于基础题. 19.【分析】通过定义可以用集合中的补集来解释再根据取最小值时所满足的条件最后可以求出集合的个数【详解】因为所以有要想最小只需最大且最小要使最小则有所以集合是集合和集合子集的并集因此集合的个数为个故答案为 解析:8【分析】通过定义可以用集合中的补集来解释,再根据()()Card X A Card X B *+*取最小值时所满足的条件,最后可以求出集合X 的个数.【详解】因为{|()()1}M N M N x f x f x *=⋅=-,所以有()M N M N C M N *=⋂,要想()Card X A *最小,只需()Card X A ⋂最大,且()Card X A ⋃最小,要使()()Card X A Card X B *+*最小, 则有A B X A B ⋂⊆⊆⋃,{}{}1,2,4,6,8,10,2,4,8A B A B ⋃=⋂=,所以集合X 是集合{}2,4,8和集合{}1,6,10子集的并集,因此集合X 的个数为328=个.故答案为:8【点睛】本题考查了新定义题,考查了集合与集合之间的关系,考查了数学阅读能力.20.【分析】先计算集合A 再根据定义得到答案【详解】或且或故答案为:【点睛】本题考查了集合的新定义问题意在考查学生的理解能力和解决问题的能力解析:(,4)(3,2]-∞---【分析】先计算集合A ,再根据定义得到答案.【详解】{{|2}42x A x x x x =<=<-+或2}x >-,{|3}B x x =>- {|A B x x A B ⊗=∈且{}4x A B x x ∉⋂=<-或}32x -<≤-故答案为:(,4)(3,2]-∞---【点睛】本题考查了集合的新定义问题,意在考查学生的理解能力和解决问题的能力. 三、解答题21.(1)4233a -<<;(2)存在,42a -<<. 【分析】(1)x A ∈是x B ∈的必要条件可转化为B A ⊆,建立不等式求解即可;(2)假设A B ⋂≠∅,建立不等关系,有解则存在,无解则不存在.【详解】 {}42A x x =-<<,()(){}30B x x a x a =--=(1)由已知得:B A ⊆ 42432a a -<<⎧∴⎨-<<⎩ 4233a ⇒-<<, 即实数a 的取值范围4233a -<<, (2)假设存在a 满足条件, 则42a -<<或432a -<<,42a ∴-<<即存在42a -<<使A B ⋂≠∅.【点睛】本题主要考查了根据集合的包含关系求参数的取值范围,考查了必要条件,属于中档题. 22.(1)2a =或3;(2)(,3]-∞-.【分析】(1)先求解出方程2320x x -+=的根,则集合A 可知,再求解出210x ax a -+-=的根,则可确定出集合B ,根据A B A ⋃=得到B A ⊆,从而可求解出1a -的可取值,则a 的值可求;(2)根据A C C =得到C A ⊆,分别考虑当C 为空集、单元素集、双元素集的情况,由此确定出a 的取值.【详解】(1)由2320x x -+=得1x =或2,所以{1,2}A =,由210x ax a -+-=得1x =或1a -,所以1,1B a B ∈-∈,因为A B A ⋃=,所以B A ⊆,所以11a -=或2,所以2a =或3;(2)因为A C C =,所以C A ⊆,当C =∅的时,()224(1)450m m ∆=+--<,解得3m <-,当{}1C =时,()2224(1)45012(1)50m mm m ⎧∆=+--=⎪⎨+++-=⎪⎩,无解, 当{}2C =时,()()()2224145044150m m m m ⎧∆=+--=⎪⎨+++-=⎪⎩,解得3m =-, 当{}1,2C =时,2122(1)125m m +=-+⎧⎨⋅=-⎩,无解, 综上,实数m 的取值范围是(,3]-∞-.【点睛】结论点睛:根据集合的交、并集运算结果判断集合间的关系:(1)若A B A ⋃=,则有B A ⊆;(2)若A B A =,则有A B ⊆.23.(1){}2;(2)1,2⎛⎤-∞ ⎥⎝⎦. 【分析】(1)根据集合的交集运算求解即可;(2)讨论集合B 是否为空集,根据包含关系列出不等式,即可得出实数m 的取值范围.【详解】(1)当m =1时,B ={x |2≤x ≤5},因此A B ={2} (2)A B ⇔B A ⊆,则①当B =∅时,即123m m +>+,即2m <-,符合题意②当B ≠∅时,要满足B A ⊆,则12311232m m m m +≤+⎧⎪+≥-⎨⎪+≤⎩2212m m m ⎧⎪≥-⎪⇒≥-⎨⎪⎪≤-⎩122m ⇒-≤≤- 综上所述,当B A ⊆时,实数m 的取值范围时1(,2)2,2⎡⎤-∞-⋃-⎢⎥⎣⎦=1,2⎛⎤-∞ ⎥⎝⎦ 【点睛】本题考查交集的运算,同时也考查了利用集合的包含关系求参数,解题的关键就是对含参集合分空集和非空集合两种情况讨论,考查分类讨论思想的应用,属于中档题. 24.(1)12-;(2)答案见解析. 【分析】(1)首先求出集合A 、B ,再根据并集的结果得到方程,解得即可;(2)若选①,则A B ,若选②,B A ,若选③,A B =,得到不等式组,解得即可;【详解】解:(1)对()()2:23013013A x x x x x --≤⇒+-≤⇒-≤≤ 即{}13A x x =-≤≤对()()22:210110B x mx m x m x m -+-≤⇔--⋅-+≤⎡⎤⎡⎤⎣⎦⎣⎦ 11m x m ⇒-≤≤+,即{}11B x m x m =-≤≤+332A B x x ⎧⎫⋃=-≤≤⎨⎬⎩⎭,则312m -=-,即12m =- 经检验满足题意.(2)选①,1131m A B m -≤-⎧⇒⎨≤+⎩,此时m 必无解.即不存在实数m ,使得题意成立 选②,110213m B A m m -≤-⎧⇒⇒≤≤⎨+≤⎩选③,1113m A B m -=-⎧=⇒⇒⎨+=⎩此时m 无解,即不存在实数m ,使得题意成立; 【点睛】本题考查一元二次不等式的解法,并集的结果求参数的值,以及集合的包含关系求参数的取值范围,属于中档题.25.{1a a =或}1a ≤-【分析】求出集合A ,对集合B 中的元素个数进行分类讨论,结合B A ⊆可得出实数a 所满足的等式或不等式,进而可求得实数a 的取值范围.【详解】 {}{}2404,0A x x x =+==-,(){}222110B x x a x a =+++-=,对于方程()222110x a x a +++-=,()()()22414181a a a ∆=+--=+,且B A ⊆. ①当B =∅时,∆<0,可得1a <-,合乎题意;②当集合B 中只有一个元素时,0∆=,可得1a =-,此时{}{}200B x x A ===⊆,合乎题意;③当集合B 中有两个元素时,B A =,则()221410a a ⎧+=⎨-=⎩,解得1a =.综上所述,实数a 的取值范围是{1a a =或}1a ≤-.【点睛】本题考查利用集合的包含关系求参数,考查分类讨论思想的应用,考查计算能力,属于中等题. 26.3p ≤【分析】根据题意,由集合的性质,可得若满足A B B =,则B A ⊆,进而分:①121p p +>-,②121p p +=-,③121p p +<-,三种情况讨论,讨论时,先求出p 的取值范围,进而可得B ,讨论集合B 与A 的关系可得这种情况下p 的取值范围,对三种情况下求得的p 的范围求并集可得答案.【详解】解:根据题意,若AB B =,则B A ⊆; 分情况讨论:①当121p p +>-时,即2p <时,B =∅,此时B A ⊆,则A B B =,则2p <时,符合题意;②当121p p +=-时,即2p =时,{}{}333B x x =≤≤=,此时B A ⊆,则A B B =, 则2p =时,符合题意;③当121p p +<-时,即2p >时,{}121B x p x p =+≤≤-, 若B A ⊆,则有21512p p -≤⎧⎨+≥-⎩,解可得33p -≤≤, 又由2p >,则当23p <≤时,符合题意;综上所述,满足AB B =成立的p 的取值范围为3p ≤. 【点睛】本题考查根据集合的包含关系求参数的取值范围,易错点为遗漏B =∅的情况,考查了分类讨论的思想,属于中档题.。
西安高新一中沣东中学选修1-1第一章《常用逻辑用语》检测题(答案解析)
一、选择题1.已知命题:(0,)p x ∀∈+∞,lg x x >,则p 的否定是( )A .000(0,),lg x x x ∃∈+∞≤B .(0,),lg x x x ∀∈+∞≤C .000(0,),lg x x x ∃∈+∞>D .(0,),lg x x x ∀∈+∞<2.已知条件p :12x +>,条件q :x a >,且p ⌝是q ⌝的充分不必要条件,则a 的取值范围是( ) A .](,1-∞B .](,3-∞-C .[)1,-+∞D .[)1,+∞3.命题:p “11,22xx N *⎛⎫∀∈≤ ⎪⎝⎭”的否定为( ) A .11,22xx N *⎛⎫∀∈> ⎪⎝⎭ B .11,22xx N *⎛⎫∀∉> ⎪⎝⎭ C .0011,22xx N *⎛⎫∃∉> ⎪⎝⎭D .0011,22xx N *⎛⎫∃∈> ⎪⎝⎭4.已知命题:p “x R ∀∈,10x ->”,则p ⌝为( ) A .x R ∃∈,10x -≤ B .x R ∀∈,10x -< C .x R ∃∈,10x -<D .x R ∀∈,10x -≤5.“a b >”是“||||a a b b >”的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分又不必要条件 D .充要条件6.已知函数y =f (x )的定义域为A ,则“x A ∀∈,都有f (x )≥4”是“函数y =f (x )最小值为4”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 7.下列说法正确的个数为( )①命题“若3,x <则2x <”的逆命题为真命题;②命题“若2x ≠且5y ≠,则10xy ≠”的否命题为真命题; ③存在0x R ∈,使得00x <; ④若正数a 、b 满足1a b +=,则41493a b +≥恒成立. A .1B .2C .3D .48.“关于x 的不等式2340x mx -+≥的解集为R ”的一个必要不充分条件是( ) A .4433m -≤≤ B .423m -<≤C .4433m -<≤ D .403m -≤<9.命题“21,1x x ∀>>”的否定是( ) A .21,1x x ∀>≤B .21,1x x ∀≤≤C .21,1x x ∃≤≤D .21,1x x ∃>≤10.已知实数x 、y ,则“1x y +≤”是“11x y ⎧≤⎪⎨≤⎪⎩.”的( )条件 A .充要 B .充分不必要 C .必要不充分 D .既不充分也不必要11.若“,33x ππ⎡⎤∃∈-⎢⎥⎣⎦,tan x m <”是假命题,则实数m 的最大值为( )A B .C D .12.“函数2()(33)m f x m m x =-+是幂函数”是“函数22()2g x mx m x m =-+值域为[)0,+∞”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件二、填空题13.已知命题p :x ∃∈R ,210mx +≤;命题q :x ∀∈R ,2104x mx -+>,若“p q ∨”假命题,则实数的取值范围是______________. 14.命题“,sin 3x x π∀∈>R ”的否定是________. 15.命题:p x R ∃∈,10x +>的否定形式p ⌝为____.16.若“x R ∃∈,220x x a --=”是假命题,则实数a 的取值范围为______.17.设集合0,{03}1x A x B x x x ⎧⎫=<=<<⎨⎬-⎩⎭,那么“m A ∈”是“m B ∈”的_______条件.(在“充分不必要”“必要不充分”“充要”“既不充分也不必要”中选一个)18.已知ABC △中,AC BC ,ABC △的面积为2,若线段BA 的延长线上存在点D ,使4BDC π∠=,则CD =__________.19.条件:25p x -<<,条件2:0x q x a+<-,若p 是q 的充分不必要条件,则实数a 的取值范围是______________.20.能够说明“存在两个不相等的正数a 、b ,使得a b ab -=是真命题”的一组有序数对(),a b 为______.三、解答题21.已知命题2:30p x mx -+≥对x R ∀∈恒成立,命题:q 方程22126x ym m+=--表示的曲线为焦点在x 轴上的椭圆,且p q ∨为真命题,求m 的取值范围.22.已知命题:,p x R ∀∈240++≤mx x m . (1)若p 为真命题,求实数m 的取值范围;(2)命题[]:2,8q x ∃∈,使得2log 1m x ≥,当p q ⌝∧⌝为假命题且q ⌝为真命题时,求实数m 的取值范围.23.已知集合{}3A x x a =<+,501x B x x ⎧⎫-=>⎨⎬+⎩⎭.(1)若2a =-,求()RAB ;(2)若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围.24.已知集合{}()(){}2|680,|30A x x x B x x a x a =-+<=--<.(1)若x A ∈是x B ∈的充分条件,求a 的取值范围. (2)若AB =∅,求a 的取值范围.25.已知0a >,命题1:2p a m -<人,命题:q 椭圆2221xy a+=的离心率e 满足3e ⎫∈⎪⎪⎝⎭. (1)若q 是真命题,求实数a 取值范围;(2)若p 是q 的充分条件,且p 不是q 的必要条件,求实数m 的值. 26.已知集合3{}3|A x a x a =-≤≤+,{|0B x x =≤或4}x ≥. (1)当2a =时,求AB ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】直接根据全称命题的否定写出结论. 【详解】命题:(0,)p x ∀∈+∞,lg x x >为全称命题,故p 的否定是:000(0,),lg x x x ∃∈+∞≤. 故选:A【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题.2.D解析:D 【分析】根据充分不必要条件的定义及集合包含的关系求解. 【详解】123x x +>⇔<-或1x >,p ⌝是q ⌝的充分不必要条件,则q 是p 的充分不必要条件,所以1a ≥, 故选:D .【点睛】命题p 对应集合A ,命题q 对应的集合B ,则 (1)p 是q 的充分条件⇔A B ⊆; (2)p 是q 的必要条件⇔A B ⊇; (3)p 是q 的充分必要条件⇔A B =;(4)p 是q 的既不充分又不必要条件⇔集合,A B 之间没有包含关系.3.D解析:D 【分析】根据全称命题的否定是特称命题即可得正确选项. 【详解】命题:p “11,22x x N *⎛⎫∀∈≤ ⎪⎝⎭”的否定为0011,22xx N *⎛⎫∃∈> ⎪⎝⎭,故选:D.4.A解析:A 【分析】对全称量词的否定用特称量词,直接写出p ⌝ 【详解】∵:p “x R ∀∈,10x ->”, ∴p ⌝:x R ∃∈,10x -≤ 故选:A 【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题.5.D解析:D 【分析】构造函数()||f x x x =,知函数在R 上单调递增,利用增函数的定义可知||||a a a b b b ⇔>>,再利用充分必要的定义可得答案.【详解】令()||f x x x =,则22,0(),0x x f x x x ⎧≥=⎨-<⎩,作出函数()f x 的图像,由图可知,()f x 在R 上为单调递增函数,利用单调增函数定义可知,()()a b f a f b >⇔>即||||a a a b b b ⇔>>,故“a b >”是“||||a a b b >”的充要条件. 故选:D. 【点睛】关键点点睛:本题考查充分必要性的定义,解题的关键是构造函数()||f x x x =,并研究函数的单调性,利用单调性定义解题,考查学生的转化能力与数形结合思想,属于中档题.6.B解析:B 【分析】根据充分必要条件,函数最值可判断必要性,利用特殊函数形式,可判断充分性,即可得解. 【详解】若“()f x 在A 上的最小值为4”则“x A ∀∈,()4f x ≥”成立,即必要性成立; 函数()254f x x =+≥恒成立,但()f x 在A 上的最小值不是4,即充分性不成立,“x A ∀∈,()4f x ≥”是“()f x 在A 上的最小值为4”的必要不充分条件. 故选:B.7.B解析:B直接写出原命题的逆命题判断①;利用否命题的真假判断②;绝对值的几何意义判断③;基本不等式求解最值判断④. 【详解】①命题“若3x <,则2x <”的逆命题为“若2x <,则3x <”显然逆命题是真命题; 所以①正确②命题“若2x ≠且5y ≠,则10x y ⋅≠”的否命题为 “若2x =或5y =,则10x y ⋅=”是假命题;所以②不正确;③存在0x R ∈,使得00x <;不满足绝对值的几何意义,所以③不正确; ④若正数a 、b 满足1a b +=,()4144131342519999939b a a b a b a b ⎛⎫++=+++≥+=+= ⎪⎝⎭, 当且仅当35=b ,25a =时成立,则41254993a b +≥>恒成立.所以④正确. 故选:B .8.B解析:B 【分析】求出“关于x 的不等式2340x mx -+≥的解集为R ”成立时实数m 的取值范围,再结合必要不充分条件的定义可得出结论. 【详解】由关于x 的不等式2340x mx -+≥的解集为R , 可得()23440m ∆=--⨯≤,解得4433m -≤≤,所以m 的取值范围是4433m -≤≤. 根据必要不充分条件的概念可知B 项正确. 故选:B.9.D解析:D 【分析】根据命题的否定的定义写出命题的否定. 【详解】命题“21,1x x ∀>>”的否定是21,1x x ∃>≤. 故选:D .10.B解析:B 【分析】根据充分必要条件的定义判断.若1x y +≤,则1x ≤且1y ≤,否则1x y +≤不成立,是充分的,若1x ≤且1y ≤,1x y +≤不一定成立,如1x y ==,满足已知,但1x y +>,因此不必要.∴就是充分不必要条件, 故选:B .11.B解析:B 【分析】将存在性命题进行否定,得全称命题为真,从而由tan tan()3x π≥-=m ≤【详解】 若“,33x ππ⎡⎤∃∈-⎢⎥⎣⎦,tan x m <”是假命题, 则“,33ππ⎡⎤∀∈-⎢⎥⎣⎦x ,tan x m ≥”是真命题,因为,33ππ⎡⎤∀∈-⎢⎥⎣⎦x ,tan tan()3x π≥-=m ≤故选:B.12.B解析:B 【分析】先已知条件计算参数m 的取值,再根据包含关系判断充分条件和必要条件即可. 【详解】“函数2()(33)m f x m m x =-+是幂函数”等价于:2331m m -+=,即2320m m -+=,故1m =或2m =,即取值集合为{}1,2A =;“函数22()2g x mx m x m =-+值域为[)0,+∞”等价于:()2223()2g x mx m x m m x m m m =-+=-+-中,0m >且30m m -=,即()()110m m m +-=,故1m =,即取值集合为{}1B =.故B 是A 的真子集,“1m =或2m =”是“1m =”的必要不充分条件,即“函数2()(33)m f x m m x =-+是幂函数”是“函数22()2g x mx m x m =-+值域为[)0,+∞”的必要不充分条件. 故选:B. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)p 是q 的必要不充分条件,等价于q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件,等价于p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,等价于p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件,等价于q 对应集合与p 对应集合互不包含.二、填空题13.【分析】命题:分和利用判别式法求得命题:利用判别式法求得然后根据假命题则均为假命题求解【详解】命题:当时不成立;当时解得命题:解得若假命题则均为假命题所以且或解得所以实数的取值范围是故答案为: 解析:1m ≥【分析】命题p :分0m =和0m ≠,利用判别式法求得0m <.命题q :利用判别式法求得11m -<<,然后根据“p q ∨”假命题,则p ,q 均为假命题求解.【详解】命题p :x ∃∈R ,210mx +≤, 当0m =时,不成立;当0m ≠时,040m m <⎧⎨∆=-≤⎩, 解得0m <.命题q :x ∀∈R ,2104x mx -+>, 210m ∆=-<,解得11m -<<, 若“p q ∨”假命题, 则p ,q 均为假命题所以0m ≥,且1m ≥或1m ≤- 解得1m ≥所以实数的取值范围是1m ≥, 故答案为:1m ≥14.【分析】利用含有一个量词的命题的否定的定义求解【详解】因为命题是全称量词命题所以其否定是存在量词命题即为:故答案为: 解析:,sin 3x x π∃∈≤R【分析】利用含有一个量词的命题的否定的定义求解. 【详解】因为命题“,sin 3x x π∀∈>R ”是全称量词命题, 所以其否定是存在量词命题,即为:,sin 3x x π∃∈≤R ,故答案为:,sin 3x x π∃∈≤R15.【分析】根据特称命题的否定是全称命题即可得出答案【详解】命题的否定形式为:故答案为:解析:,10x R x ∀∈+≤. 【分析】根据特称命题的否定是全称命题即可得出答案. 【详解】命题:p x R ∃∈,10x +>的否定形式p ⌝为: ,10x R x ∀∈+≤, 故答案为:,10x R x ∀∈+≤16.【分析】写出命题的否定根据的否定为真命题由即可求出的范围【详解】若是假命题则其否定若是真命题所以解得故实数a 的取值范围为故答案为:【点睛】本题主要考查命题的否定及根据命题的真假求参数值属于基础题 解析:(,1)-∞-【分析】写出命题p 的否定,根据p 的否定为真命题,由∆<0即可求出a 的范围. 【详解】若“x R ∃∈,220x x a --=”是假命题,则其否定若“x R ∀∈,220x x a --≠”是真命题,所以2(2)41()440a a ∆=--⨯⨯-=+<,解得1a <-,故实数a 的取值范围为(,1)-∞-. 故答案为:(,1)-∞-. 【点睛】本题主要考查命题的否定及根据命题的真假求参数值,属于基础题.17.充分不必要【分析】先化简集合A 再利用集合法判断即可【详解】因为所以AB 所以是的充分不必要条件故答案为:充分不必要【点睛】本题主要考查集合法判断逻辑条件以及分式不等式的解法属于基础题解析:充分不必要 【分析】先化简集合A ,再利用集合法判断即可. 【详解】 因为{}001,{03}1x A xx x B x x x ⎧⎫=<=<<=<<⎨⎬-⎩⎭,所以A B ,所以“m A ∈”是“m B ∈”的充分不必要条件, 故答案为:充分不必要 【点睛】本题主要考查集合法判断逻辑条件以及分式不等式的解法,属于基础题.18.【解析】的面积为或若可得与三角形内角和定理矛盾在中由余弦定理可得:在中由正弦定理可得:故答案为【方法点睛】以三角形为载体三角恒等变换为手段正弦定理余弦定理为工具对三角函数及解三角形进行考查是近几年高 解析:3【解析】2,6,AC BC ABC =∆的面积为311··sin 26sin 22AC BC ACB ACB =∠=∠,1sin ,26ACB ACB π∴∠=∴∠=或56π,若5,64ACB BDC BAC ππ∠=∠=<∠,可得546BAC ACB πππ∠+∠>+>,与三角形内角和定理矛盾,6ACB π∴∠=,∴在ABC ∆中,由余弦定理可得:2232?·cos 2622622AB AC BC AC BC ACB +-∠=+-⨯⨯⨯=6B π∴∠=,∴在BCD ∆中,由正弦定理可得:16·sin 23sin 2BC BCD BDC===∠,故答3【方法点睛】以三角形为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.19.【详解】解:是的充分而不必要条件等价于的解为或故答案为:解析:5a>【详解】解:p是q的充分而不必要条件,p q∴⇒,2xx a+<-等价于(2)()0x x a+-<,(2)()0x x a+-=的解为2x=-,或x a=,5a∴>,故答案为:(5,)+∞.20.答案不唯一【分析】由得出由得出然后取一对特殊值即可【详解】由得出由得取则所以满足题中条件的一组有序实数对可以是故答案为答案不唯一【点睛】本题考查存在量词与特称命题主要考查学生的运算能力和转化能力属于解析:11,2⎛⎫⎪⎝⎭答案不唯一【分析】由a b ab-=得出1bab=-,由0a>,0b>,得出01b<<,然后取一对特殊值即可.【详解】由a b ab-=得出1bab=-,由01bab=>-,0b>,得01b<<,取12b=,则1a=,所以满足题中条件的一组有序实数对可以是11,2⎛⎫⎪⎝⎭.故答案为11,2⎛⎫⎪⎝⎭答案不唯一.【点睛】本题考查存在量词与特称命题,主要考查学生的运算能力和转化能力,属于中等题.三、解答题21.[(4,6)-【分析】分别求出命题,p q为真时m的范围,然后求并集求得结论.【详解】若p为真命题,则2120m∆=-≤,即m-≤若q为真命题,则206026mmm m->⎧⎪->⎨⎪->-⎩,得46m<<由于p q ∨为真命题,则m -≤46m <<∴m的取值范围为[(4,6)-.故答案为:[(4,6)-.【点睛】 方法点睛:本题考查由命题的真假求参数,考查复合命题的真假判断.掌握复合命题的真值表是解题关键.复合命题的真值表:22.(1)14m ≤-;(2)14m ≤-. 【分析】(1)由题得0m <且21160∆=-≤m ,解不等式即得m 的取值范围;(2)先转化为[]2,8x ∃∈,21log m x ≥,再求21log x的最小值得m 的范围, 因为p q ⌝∧⌝为假命题且q ⌝为真命题,所以p 真q 假, 从而得到关于m 的不等式组, 解不等式组即得解.【详解】(1)∵2,40x R mx x m ∀∈++≤,0m ∴<且21160∆=-≤m ,解得14m ≤- p ∴为真命题时,14m ≤-. (2)[2,8]∃∈x ,21log m x ≥,又[2,8]x ∈时,211[,1]log 3x ∈,13m ∴≥ ∵p q ⌝∧⌝为假命题且q ⌝为真命题∴当p 真q 假,有1413m m ⎧≤-⎪⎪⎨⎪<⎪⎩解得14m ≤- 【点晴】方法点晴:复合命题真假判定的口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.23.(1){}11x x -<≤;(2)(],4-∞-.【分析】(1)先求出集合A ,B 和B R ,再利用交集运算即得结果; (2)先根据充分不必要条件得到集合A ,B 的包含关系,再列关系计算即可. 【详解】(1)∵{|1B x x =<-或}5x >,∴{}15R B x x =-≤≤, 当2a =-时,{}1A x x =<,因此,{}11R A B x x =-≤<;(2)∵x A ∈是x B ∈的充分不必要条件,∴A B ⊆,且A B ≠,又{}3A x x a =<+,{|1B x x =<-或}5x >.∴31a +≤-,解得4a ≤-.因此,实数a 的取值范围是(],4-∞-. 24.(1)4,23⎡⎤⎢⎥⎣⎦;(2)[)2,4,3⎛⎤-∞+∞ ⎥⎝⎦.【分析】 求解二次不等式化简集合A .(1)对a 分类求解集合B ,然后把x A ∈是x B ∈的充分条件转化为含有a 的不等式组,即可求解a 的范围;(2)由A B =∅,借助于集合A ,B 的端点值间的关系列不等式求解a 的范围.【详解】A ={x |x 2-6x +8<0}={x |2<x <4},B ={x |(x -a )(x -3a )<0}.(1)当a =0时,B =∅,不合题意.当a >0时,B ={x |a <x <3a },要满足题意,则234a a ≤⎧⎨≥⎩,解得43≤a ≤2. 当a <0时,B ={x |3a <x <a },要满足题意,则3234a a ≤⎧⎨≥⎩,无解. 综上,a 的取值范围为4,23⎡⎤⎢⎥⎣⎦. (2)要满足A ∩B =∅,当a >0时,B ={x |a <x <3a }则a ≥4或3a ≤2,即0<a ≤23或a ≥4. 当a <0时,B ={x |3a <x <a },则a ≤2或a ≥43,即a <0.当a =0时,B =∅,A ∩B =∅.综上,a 的取值范围为[)2,4,3⎛⎤-∞+∞ ⎥⎝⎦. 【点睛】根据充要条件求解参数的范围时,可把充分条件、必要条件或充要条件转化为集合间的关系,由此得到不等式(组)后再求范围.解题时要注意,在利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.25.(1)()11,2,332a ⎛⎫∈⋃ ⎪⎝⎭;(2)52m =. 【分析】(1)当1a >时,根据离心率e满足e ∈,即可求解实数a 取值范围;(2)由p 是q 的充分条件,且p 不是q 的必要条件,得出不等式组,即可求解实数m 的值.【详解】(1)当1a >时,∵2221381,49e e a =-<<,∴211194a <<,∴1132a <<, 综上所述()11,2,332a ⎛⎫∈⋃ ⎪⎝⎭(2)∵12a m -<,∴1122m a m -<<+,则题意可知 1123{1122m m -≥+≤或122{132m m -≥+≤,解得m φ∈或52m =,经检验,52m =满足题意, 综上52m =. 26.(1){|45}A B x x ⋂=≤≤;(2)01a <<.【分析】(1)由2a =,得到{|15}A x x =≤≤,再利用交集的运算求解.(2)根据{|0B x x =≤或4}x ≥,得到{|04}R B x x =<<,然后根据“x A ∈”是“R x B ∈”的充分不必要条件,由A 是R B 的真子集,且A ≠∅求解. 【详解】(1)∵当2a =时,{|15}A x x =≤≤,{|0B x x =≤或4}x ≥,∴{|45}A B x x ⋂=≤≤;(2)∵{|0B x x =≤或4}x ≥,∴{|04}R B x x =<<,因为“x A ∈”是“R x B ∈”的充分不必要条件, 所以A 是R B 的真子集,且A ≠∅, 又{|33}(0)A x a x a a =-≤≤+>, ∴30,34,a a ->⎧⎨+<⎩, ∴01a <<.【点睛】本题主要考查集合的基本运算以及逻辑条件的应用,属于基础题.。
最新人教版高中数学必修第一册第一单元《集合与常用逻辑用语》检测(含答案解析)(2)
一、选择题1.已知ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,则“0,3B π⎛⎤∈ ⎥⎝⎦”是“2b ac =”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件2.已知命题2:2,:2320p x q x x <--<,则p 是q 的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件3.“不等式20mx x m ++>在R 上恒成立”的一个必要不充分条件是( ) A .12m >B .01m <<C .14m >D .1m4.已知命题p :x R ∀∈,2230ax x ++>是真命题,那么实数a 的取值范围是( ) A .13a < B .103a <≤ C .13a >D .13a ≤5.已知命题2:11xp x <-,命题:()(3)0q x a x -->,若p 是q 的充分不必要条件,则实数a 的取值范围是( ) A .(,1]-∞B .[1,3]C .[1,)+∞D .[3,)+∞ 6.若命题P :1x ≠或2y ≠,命题Q :3x y +≠,则P 是Q 的( )条件 A .充分不必要B .必要不充分C .充要D .既不充分又不必有7.“2a >”是“函数()()xf x x a e =-在()0,∞+上有极值”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件8.下列命题中,不正确...的是( ) A .0x R ∃∈,200220x x -+≥B .设1a >,则“b a <”是“log 1a b <”的充要条件C .若0a b <<,则11a b> D .命题“[]1,3x ∀∈,2430x x -+≤”的否定为“[]01,3x ∃∈,200430x x -+>”9.已知实数0x >,0y >,则“1xy ≤”是“224x y +≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件10.命题“ax 2-2ax + 3 > 0恒成立”是假命题, 则实数a 的取值范围是( ) A .a < 0或a ≥3 B .a ≤0或a ≥3 C .a < 0或a >3 D .0<a <311.“1x >”是“12log (2)0x +<”的 ( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件12.已知p :02x ≤≤,q :2230x x --≥,则p 是q ⌝的( ) A .既不充分也不必要条件 B .必要不充分条件 C .充分不必要条件 D .充分必要条件二、填空题13.下列命题为真命题的序号是__________. ①“若1sin ,2α≠则6πα≠”是真命题.②“若22,am bm <则a b <”的逆命题是真命题.③,a b ∈R ,“221a b +≥”是“1a b +≥”的充分不必要条件. ④“1a =”是“直线0x ay -=与直线+0x ay =互相垂直”的充要条件. 14.命题“数列的前n 项和()2*3n S n n n N=+∈”成立的充要条件是________.(填一组符合题意的充要条件即可,所填答案中不得含有字母n ) 15.已知集合{}3A x x =≤,{}2B x x =<,则RAB =__________.16.已知1a ≤,集合{}2x a x a ≤≤-中有且仅有三个整数,则实数a 的取值范围为________.17.已知集合1,2,3,{}4,5,6X Y Z ⋃⋃=,若1,21,2,3,4,5}{},3{,X Y X Y X ⋂=⋃=∉,则集合X Y Z 、、所有可能的情况有_________种.18.已知集合{}{}221,4xA xB x x==,则A B =__________.19.写出命题“,20x x R ∀∈>”的否定:______. 20.已知命题,则为_______.三、解答题21.已知非空集合S 的元素都是整数,且满足:对于任意给定的x ,y ∈S (x 、y 可以相同),有x +y ∈S 且x -y ∈S .(1)集合S 能否为有限集,若能,求出所有有限集,若不能,请说明理由; (2)证明:若3∈S 且5∈S ,则S =Z .22.设集合U 为全体实数集,{ 2 5}M x x x =|≤-≥或,121{|}N x a x a =+≤≤-.(1)若3a =,求U MC N ;(2)若N M ⊆,求实数a 的取值范围.23.设集合{|33},{|13}A x x B x a x a =-≤≤=-≤≤+. (1)若1a =,求,A B A B ;(2)若AB B =,求实数a 的取值范围.24.关于x 的不等式1x a -<的解集为A ,关于x 的不等式2320x x -+≤的解集为B ,若x A ∈是x B ∈的必要不充分条件,求实数a 的取值范围. 25.已知条件{}2:230,p x A x x x x R ∈=--≤∈,条件{}22:240,q x B x x mx m x R ∈=-+-≤∈.(1)若[]0,3AB =,求实数m 的值;(2)若p ⌝是q 的必要条件,求实数m 的取值范围.26.(1)已知直线:3420l x y+=-,求与直线l 平行且到直线l 距离为2的直线方程;(2)若关于x 的不等式2(1)0x a x a -++<的解集是[0,1)的子集,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】分别从充分性和必要性入手进行分析即可得解. 【详解】充分性:若0,3B π⎛⎤∈ ⎥⎝⎦,则2221cos 122a c b B ac+-≤=<,即2222ac a c b ac ≤+-<,即222222a c ac b a c ac +-<≤+-,并不能得出2b ac =一定成立,故充分性不成立;必要性:若2b ac =,由余弦定理得:2221cos 222a c ac ac ac B ac ac +--=≥=,因为()0,B π∈,所以0,3B π⎛⎤∈ ⎥⎝⎦,故必要性成立,综上,“0,3B π⎛⎤∈ ⎥⎝⎦”是“2b ac =”的必要不充分条件, 故选:C . 【点睛】方法点睛:判断充要条件的四种常用方法:定义法、传递性法、集合法、等价命题法.2.C解析:C 【分析】求出q 成立的x 的范围,然后根据集合包含关系判断. 【详解】2:2320q x x --<,(21)(2)0x x +-<,122x -<<,由于1,22⎛⎫- ⎪⎝⎭是(,2)-∞的真子集,因此应是必要不充分条件. 故选:C .【点睛】命题p 对应集合A ,命题q 对应的集合B ,则 (1)p 是q 的充分条件⇔A B ⊆; (2)p 是q 的必要条件⇔A B ⊇;(3)p 是q 的充分必要条件⇔A B =;(4)p 是q 的既不充分又不必要条件⇔集合,A B 之间没有包含关系.3.C解析:C 【分析】先计算已知条件的等价范围,再利用充分条件和必要条件的定义逐一判断即可. 【详解】因为“不等式2+0mx x m +>在R 上恒成立”,所以当0m =时,原不等式为0x>在R 上不是恒成立的,所以0m ≠,所以“不等式2+0mx x m +>在R 上恒成立”,等价于2>0140m m ⎧⎨∆=-<⎩,解得12m >. A 选项是充要条件,不成立; B 选项中,12m >不可推导出01m <<,B 不成立; C 选项中,12m >可推导14m >,且14m >不可推导12m >,故14m >是12m >的必要不充分条件,正确;D 选项中,1m 可推导1>2m ,且1>2m 不可推导1m ,故>1m 是12m >的充分不必要条件,D 不正确. 故选:C. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.4.C解析:C 【分析】由题意可得2230ax x ++>对于x ∈R 恒成立,讨论0a =和0a ≠即可求解. 【详解】若命题p :x R ∀∈,2230ax x ++>是真命题, 则2230ax x ++>对于x ∈R 恒成立, 当0a =时,230x +>可得:32x >-不满足对于x ∈R 恒成立,所以0a =不符合题意;当0a ≠时,需满足04430a a >⎧⎨∆=-⨯<⎩解得13a >,所以实数a 的取值范围是13a >, 故选:C 【点睛】关键点点睛:对于2230ax x ++>对于x ∈R 恒成立,需讨论0a =和0a ≠,当0a ≠时,结合二次函数图象即可得等价条件.5.C解析:C 【分析】化简命题q ,分类讨论a 解不等式()(3)0x a x -->,根据p 是q 的充分不必要条件列式可解得结果. 【详解】因为211xx <-,所以2101x x x -+<-,所以(1)(1)0x x -+<,所以11x -<<, 当3a <时,由()(3)0x a x -->得x a <或3x >,因为p 是q 的充分不必要条件,所以1a ≥,所以13a ≤<, 当3a =时,由()(3)0x a x -->得3x ≠,满足题意, 当3a >时,由()(3)0x a x -->得3x <或x a >,满足题意, 综上所述:1a ≥. 故选:C 【点睛】关键点点睛:本题考查由充分不必要条件求参数的取值范围,一般可根据如下规则求解:(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.6.B解析:B 【分析】通过举反例,判断出P 成立推不出Q 成立,通过判断逆否命题的真假,判断出原命题的真假得到后者成立能推出前者成立,由充分条件、必要条件的定义得到结论. 【详解】当0x =,3y =时,Q 不成立,即P Q ⇒不成立,即充分性不成立; 判断必要性时,写出原命题:3x y +≠时,则1x ≠或2y ≠, 由于原命题不好判断,故转化为逆否命题进行判断,即原命题变为:若1x =且2y =,则有3x y +=,对于该命题,明显成立,所以,原命题也成立;即必要性成立;所以P 是Q 的必要而不充分条件, 故选:B 【点睛】关键点睛:判断一个命题是另一个命题的什么条件,一般先判断前者成立是否能推出后者成立,再判断后者成立能否推出前者成立;本题难点在于:利用逆否命题的真假性判断原命题的真假性,属于中档题.7.A解析:A 【分析】求出函数()()xf x x a e =-的极值点,利用该极值点在()0,∞+内求得实数a 取值范围,利用集合的包含关系可得出结论. 【详解】()()x f x x a e =-,则()()1x f x x a e '=-+,令()0f x '=,可得1x a =-.当1x a <-时,()0f x '<;当1x a >-时,()0f x '>. 所以,函数()y f x =在1x a =-处取得极小值.若函数()y f x =在()0,∞+上有极值,则10a ->,1a ∴>.因此,“2a >”是“函数()()xf x x a e =-在()0,∞+上有极值”的充分不必要条件.故选:A. 【点睛】本题考查充分不必要条件的判断,同时也考查了利用导数求函数的极值点,考查计算能力与推理能力,属于中等题.8.B解析:B 【分析】由()2200022110x x x -+=-+≥,可判断A ;由对数函数的定义域和对数函数的单调性得充分性不一定成立,必要性成立,可判断B ;运用作差法,判断其差的符号可判断C ;根据全称命题的否定是特称命题可判断D. 【详解】由()2200022110x x x -+=-+≥,得A 为真命题;由“b a <”不能推出“log 1a b <”,所以充分性不一定成立,由“log 1a b <”得“b a <”,所以必要性成立,故B 不正确;由0a b <<,则110b aa b ab --=>,∴11a b>,故C 正确; 根据全称命题的否定是特称命题知D 正确. 故选:B. 【点睛】本题考查判断命题的真假,对数函数的定义域,单调性,全称命题与特称命题的关系,属于中档题.9.B解析:B 【分析】通过举反例得到“1xy ≤”推不出“224x y +≤”;再由“224x y +≤”⇒“1xy ≤”.能求出结果. 【详解】 解:实数0x >,0y >,∴当3x =,14y =时,13422224x y +=+>, ∴“1xy ≤”推不出“224x y +≤”;反之,实数0x >,0y >,由基本不等式可得22x y +≥由不等式的基本性质得224x y ≤+≤,整理得24x y +≤,2x y ∴+≤,由基本不等式得212x y xy +⎛⎫≤≤ ⎪⎝⎭,即“224x y+≤”⇒“1xy ≤”.∴实数0x >,0y >,则“1xy ≤”是“224x y +≤”的必要不充分条件.故选:B . 【点睛】本题考查充分条件、必要条件、充要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,是中等题.10.A解析:A 【分析】根据题意得出命题“x R ∃∈,2230ax ax -+≤”是真命题,然后对a 分情况讨论,根据题意得出关于a 的不等式,即可得出实数a 的取值范围. 【详解】命题“2230ax ax -+>恒成立”是假命题,即命题“x R ∃∈,2230ax ax -+≤”是真命题. 当0a =时,2230ax ax -+≤不成立; 当0a <时,合乎题意;当0a >时,则24120a a ∆=-≥,解得3a ≥. 综上所述,实数a 的取值范围是0a <或3a ≥. 故选:A. 【点睛】本题考查由全称命题的真假求参数,考查计算能力,属于中等题.11.B解析:B 【详解】 试题分析:12log (2)0x +<211x x ⇒+>⇒>-,故正确答案是充分不必要条件,故选B.考点:充分必要条件.12.C解析:C 【分析】设[0,2]M =,2{|230}N x x x =--<,根据集合之间的包含关系,即可求解.【详解】因为q :2230x x --≥, 所以q ⌝:2230x x --<,设[0,2]M =,2{|230}N x x x =--<,则(1,3)N =-, 所以M N ,所以p 是q ⌝的充分不必要条件, 故选:C 【点睛】本题主要考查了充分条件、必要条件,集合的真子集,考查了推理能力,属于中档题.二、填空题13.①③【分析】对于①判断其逆否命题的真假;对于②写出其逆命题再判断真假;对于③利用单位圆判定;对于④根据充要条件的定义以及两直线垂直的条件可判断;【详解】对于①若则的逆否命题为若则显然为真即原命题为真解析:①③ 【分析】对于①判断其逆否命题的真假;对于②写出其逆命题再判断真假;对于③利用单位圆判定;对于④根据充要条件的定义以及两直线垂直的条件可判断; 【详解】对于①,若1sin ,2α≠则6πα≠的逆否命题为若6πα=,则1sin 2α=,显然为真,即原命题为真,故①正确;对于②,若22,am bm <则a b <的逆命题为若a b <,则22am bm <,当0m =时显然为假,即②错误;对于③,如图在单位圆221x y +=上或圆外任取一点(),P a b ,满足“221a b +≥”,根据三角形两边之和大于第三边,一定有“1a b +≥”,在单位圆内任取一点(),M a b ,满足“1a b +≥”,但不满足,“221a b +≥”,即“221a b +≥”是“1a b +≥”的充分不必要条件,故③正确;对于④“直线0x ay -=与直线+0x ay =互相垂直”210a ⇔-=,即1a =±, 故“实数1a =”是“直线0x ay -=与直线+0x ay =互相垂直”的充分不必要条件, 故④为假命题; 故答案为:①③. 【点睛】本题以命题的真假判断与应用为载体,考查了四种命题,充要条件,不等式的性质和两条直线的位置关系等,属于中档题.14.数列为等差数列且【分析】根据题意设该数列为由数列的前项和公式分析可得数列为等差数列且反之验证可得成立综合即可得答案【详解】根据题意设该数列为若数列的前项和则当时当时当时符合故有数列为等差数列且反之当解析:数列为等差数列且14a =,6d =. 【分析】根据题意,设该数列为{}n a ,由数列的前n 项和公式分析可得数列为等差数列且14a =,6d =,反之验证可得23n S n n =+成立,综合即可得答案.【详解】根据题意,设该数列为{}n a ,若数列的前n 项和23n S n n =+,则当1n =时,114a S ==,当2n 时,162n n n a S S n -=-=-,当1n =时,14a =符合62n a n =-, 故有数列为等差数列且14a =,6d =,反之当数列为等差数列且14a =,6d =时,62n a n =-,21()232n n a a S n n +⨯==+; 故数列的前n 项和23(*)n S n n n N =+∈”成立的充要条件是数列为等差数列且14a =,6d =,故答案为:数列为等差数列且14a =,6d =. 【点睛】本题考查充分必要条件的判定,关键是掌握充分必要条件的定义,属于基础题.15.【分析】根据集合的交集补集运算即可求解【详解】因为所以因此故答案为【点睛】本题主要考查了集合的补集交集运算属于中档题 解析:[]2,3【分析】根据集合的交集补集运算即可求解. 【详解】因为{}2B x x =<, 所以RB ={}2x x ≥因此RAB ={}{}32=[2,3]x x x x ≤⋂≥.故答案为[]2,3 【点睛】本题主要考查了集合的补集,交集运算,属于中档题.16.【分析】首先分析出集合里面必有元素1再讨论集合为三种情况讨论求的取值范围【详解】所以集合里的元素一定有1集合有3个元素当集合是时有集合是空集;当集合是时有解得:;当集合是时有集合是空集;综上:的取值 解析:(]1,0-【分析】首先分析出集合里面必有元素1,再讨论集合为{}1,2,3,{}0,1,2,{}1,0,1- 三种情况讨论,求a 的取值范围. 【详解】1a ≤ ,21a ∴-≥ ,所以集合里的元素一定有1, 集合有3个元素,当集合是{}1,2,3时,有01324a a <≤⎧⎨≤-<⎩ ,集合是空集;当集合是{}0,1,2时,有10223a a -<≤⎧⎨≤-<⎩,解得:10a -<≤ ; 当集合是{}1,0,1-时,有21122a a -<≤-⎧⎨≤-<⎩,集合是空集; 综上:a 的取值范围是(]1,0-故答案为(]1,0-【点睛】本题考查根据集合的元素个数求参数的取值范围,意在考查分类,转化,和计算求解能力,属于中档题型.17.【分析】通过确定XYZ 的子集利用乘法公式即可得到答案【详解】根据题意可知由于可知Z 共有种可能而有4种可能故共有种可能所以答案为128【点睛】本题主要考查子集相关概念乘法分步原理意在考查学生的分析能力 解析:128【分析】通过确定X,Y ,Z 的子集,利用乘法公式即可得到答案.【详解】根据题意,可知1,2,1,236{}{},{}Z X Y ⊆⊆⊆,,由于{6}Z ⊆,可知Z 共有 52=32种可能,而(){4},5X Y ⊆⋃有4种可能,故共有432=128⨯种可能,所以答案为128.【点睛】本题主要考查子集相关概念,乘法分步原理,意在考查学生的分析能力,计算能力,难度较大.18.【解析】集合两者取交集为故答案为:解析:()2,+∞【解析】 集合{}21x A x ={}0x x =,{}24B x x=()(),22,=-∞-⋃+∞ 两者取交集为()2,+∞.故答案为:()2,+∞。
西安市高新第一中学必修第一册第一单元《集合与常用逻辑用语》测试(含答案解析)
一、选择题1.已知命题p :x R ∀∈,2230ax x ++>是真命题,那么实数a 的取值范围是( ) A .13a < B .103a <≤ C .13a >D .13a ≤2.已知全集U =R ,集合M ={x |x 2+x ﹣2≤0},集合N ={y |y },则(C U M )∪N 等于( ) A .{x |x <﹣2或x ≥0} B .{x |x >1} C .{x |x <﹣1或1<x ≤3} D .R3.已知直线,m n 和平面α,n ⊂α,则“//m n ”是“//m α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.24x >成立的一个充分非必要条件是( )A .23x >B .2xC .2x ≥D .3x >5.定义:若平面点集A 中的任一个点00(,)x y ,总存在正实数r ,使得集合{(,)}x y r A <⊆,则称A 为一个开集.给出下列集合:①22{(,)|1}x y x y +=;②{(,)|20}x y x y ++≥;③{(,)|6}x y x y +<;④22{(,)|0(1}x y x y <+<. 其中是开集的是( ) A .①④B .②③C .②④D .③④6.已知a ∈R ,则“2a ≤”是“方程2210ax x ++=至少有一个负根”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知命题2:230p x x +->;命题:q x a >,且q ⌝的一个充分不必要条件是p ⌝,则a 的取值范围是( )A .(],1-∞B .[)1,+∞C .[)1,-+∞D .(],3-∞8.已知集合{}{}2|13,|4,P x R x Q x R x =∈≤≤=∈≥ 则()R P Q ⋃=A .[2,3]B .( -2,3 ]C .[1,2)D .(,2][1,)-∞-⋃+∞9.非零向量,a b 满足4,2b a ==且a 与b 夹角为θ,则“23b a -=”是“3πθ=”的( )A .必要而不充分条件B .充分而不必要条件C .充分必要条件D .既不充分也不必要条件10.下列命题错误的是( )A .命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠ ,则2320x x -+≠”B .若p q ∧为假命题,则,p q 均为假命题C .对于命题p :x ∃∈R ,使得210x x ++<,则p ⌝:x ∀∈R ,均有210x x ++≥D .“2x >”是“2320x x -+>”的充分不必要条件 11.设,a b 是向量,“a a b =+”是“0b =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件12.以下四个命题中错误..的是( ) A .若样本1x 、2x 、、5x 的平均数是2,方差是2,则数据12x 、22x 、、52x 的平均数是4,方差是4B .ln 0x <是1x <的充分不必要条件C .样本频率分布直方图中的小矩形的面积就是对应组的频率D .抛掷一颗质地均匀的骰子,事件“向上点数不大于3”和事件“向上点数不小于4”是对立事件二、填空题13.已知命题:“∃x ∈{ x |1≤x ≤2},使x 2+2x +a ≥0”为真命题,则实数a 的取值范围是______.14.已知2:(1)0p x a x a -++≤,:13q x ≤≤,若p 是q 的必要不充分条件,则实数a 的取值范围是______.15.已知集合{}3A x x =≤,{}2B x x =<,则RAB =__________.16.下列有关命题的说法正确的是___(请填写所有正确的命题序号). ①命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”; ②命题“若x y =,则sin sin x y =”的逆否命题为真命题; ③条件2:p x x ≥-,条件:q x x =,则p 是q 的充分不必要条件;④已知0x >时,()()10x f x '-<,若ABC ∆是锐角三角形,则()()sin cos f A f B >.17.已知命题“0x ∃∈[1,2], 200210x ax -+>”是真命题,则实数a 的取值范围为______.18.若命题:“2000,10x R ax ax ∃∈-->”为假命题,则实数a 的取值范围是__________.19.已知()2:9p x a -<,()3:log 21q x +<.若p ⌝是q ⌝的充分不必要条件,则a 的取值范围是________.20.设命题p :431x -≤,命题q :()()22110x a x a a -+++≤,若q 是p 的必要不充分条件,则实数a 的取值范围是______三、解答题21.在①()RB A ⊆,②()A B R =R ,③A B B =这三个条件中任选一个,补充在下面问题中.若问题中的实数a 存在,求a 的取值范围;若问题中的实数a 不存在,请说明理由.已知集合{}2540A x x x =-+≤,{}121B x a x a =+<<-,是否存在实数a ,使得________?22.已知命题:p x R ∀∈,()()221140a x a x -+-+>,:q x R ∃∈,()22110x a x -++<(1)若“2321t a t --≤≤-”是p 成立的充分条件,求实数t 的取值范围; (2)若p q ∧为假,p q ∨为真,求实数a .23.已知集合2102x a A xx a ⎧⎫--⎪⎪=<⎨⎬-⎪⎪⎩⎭,集合{}|32B x x =-<. (Ⅰ)当2a =时,求A B ;(Ⅱ)设p :x A ∈,q :x B ∈,若p 是q 的充分条件,求实数a 的取值范围. 24.已知集合{}{}222|340,|240A x x x B x x mx m =--≤=-+-≤. (1)若[]1,4A B ⋂=,求实数m 的值; (2)若R A C B ⊆,求实数m 的取值范围.25.设非空集合{}{}{}2|2,|23,,|,A x x a B y y x x A C y y x x A =-≤≤==+∈==∈,全集U =R . (1)若1a =,求()RC B ;(2)若B C B ⋃=,求a 的取值范围.26.已知原命题是“若260x x --≤则2280x x --≤”.(1)试写出原命题的逆命题,否命题,逆否命题,并判断所写命题的真假;(2)若“()(2)0x a x -+≤”是“260x x --≤”的必要不充分条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意可得2230ax x ++>对于x ∈R 恒成立,讨论0a =和0a ≠即可求解. 【详解】若命题p :x R ∀∈,2230ax x ++>是真命题,则2230ax x ++>对于x ∈R 恒成立, 当0a =时,230x +>可得:32x >-不满足对于x ∈R 恒成立,所以0a =不符合题意;当0a ≠时,需满足04430a a >⎧⎨∆=-⨯<⎩解得13a >,所以实数a 的取值范围是13a >, 故选:C 【点睛】关键点点睛:对于2230ax x ++>对于x ∈R 恒成立,需讨论0a =和0a ≠,当0a ≠时,结合二次函数图象即可得等价条件.2.A解析:A 【分析】解出不等式x 2+x ﹣2≤0的解集,求出补集,根据集合的运算法则求解. 【详解】解不等式x 2+x ﹣2≤0得:-2≤x ≤1,C U M=()(),21,-∞-+∞,N ={y |y =3x -}[)0,=+∞, (C U M )∪N={x |x <﹣2或x ≥0}. 故选:A 【点睛】此题考查集合的基本运算,关键在于准确求解二次不等式,根据集合的运算法则求解.3.D解析:D 【分析】从充分性和必要性两方面分别分析判断得解. 【详解】直线,m n 和平面α,n ⊂α,若//m n ,当m α⊂时,//m α显然不成立,故充分性不成立;当//m α时,如图所示,显然//m n 不成立,故必要性也不成立.所以“//m n ”是“//m α”的既不充分又不必要条件.故选:D 【点睛】方法点睛:判定充要条件常用的方法有三种:(1)定义法:直接利用充分必要条件的定义分析判断得解; (2)集合法:利用集合的包含关系分析判断得解; (3)转化法:转化成逆否命题分析判断得解.4.D解析:D 【分析】根据题意,找到24x >解集的一个真子集即可求解. 【详解】由24x >解得2x >或2x <-,所以24x >成立的一个充分非必要条件是(2)(2,)-∞-+∞的真子集,因为3+∞(,) (2)(2,)-∞-+∞,所以24x >成立的一个充分非必要条件是3x >, 故选:D 【点睛】本题主要考查了充分条件、必要条件,真子集的概念,属于中档题.5.D解析:D 【分析】根据开集的定义逐个验证选项,即可得到答案. 【详解】①:22{(,)|1}x y x y +=表示以原点为圆心,1为半径的圆, 则在该圆上任意取点00(,)x y ,以任意正实数r 为半径的圆面,均不满足{(,)}x y r A <⊆故①不是开集;②{(,)|20}x y x y ++≥,在曲线20x y ++=任意取点00(,)x y ,以任意正实数r 为半径的圆面,均不满足{(,)}x y r A <⊆,故该集合不是开集; ③{(,)|6}x y x y +<平面点集A 中的任一点00(,)x y ,则该点到直线的距离为d ,取r d =,则满足{(,)|}x y r A ⊆,故该集合是开集;④22{(,)|0(1}x y x y <+<表示以点()0,3为圆心,1为半径除去圆心和圆周的圆面,在该平面点集A 中的任一点00(,)x y ,则该点到圆周上的点的最短距离为d ,取r d =,则满足{(,)}x y r A <⊆,故该集合是开集.故答案选D 项. 【点睛】本题属于集合的新定义型问题,考查对新定义的理解并解决问题,属于中档题.6.B解析:B 【分析】分类讨论a 的正负,利用两根与系数的关系、判别式,进而求解判断即可. 【详解】(1)当0a =时,方程变为210x +=,有一负根12x =-,满足题意;(2)当0a <时,440∆=->a ,方程的两根满足1210x x a=<,此时有且仅有一个负根,满足题意;(3)当0a >时,由方程的根与系数关系可得2010aa⎧-<⎪⎪⎨⎪>⎪⎩,∴方程若有根,则两根都为负根,而方程有根的条件440a ∆=-≥,01a ∴<≤.综上可得,1a ≤.因此,“2a ≤”是“方程2210ax x ++=至少有一个负根”的必要不充分条件. 故选:B. 【点睛】本题考查必要不充分条件的判断,考查二次方程根的分布问题,考查分类讨论思想的应用,属于中等题.7.B解析:B 【分析】解一元二次不等式化简命题p ,再利用集合间的基本关系,求得参数a 的取值范围. 【详解】由2:230p x x +->,知3x <-或1x >, 则p ⌝为31x -≤≤,q ⌝为x a ≤,p ⌝是q ⌝的充分不必要条件,∴1{|}3x x ≤≤-{|}x x a ≤∴1a ≥.故选:B. 【点睛】本题考查利用命题的充分不必要条件求参数的取值范围,考查转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将充分不必要条件转化为真子集的关系.8.B解析:B 【解析】有由题意可得:{}|22R C Q x x =-<< , 则()RP Q ⋃= ( -2,3 ] .本题选择B 选项.9.C解析:C 【分析】由题意,若23b a -=,根据向量的数量积和模的计算公式,可得1cos 2θ=,得到3πθ=,;反之也可求得23b a -=,即可得到答案.【详解】由题意,非零向量,a b 满足4,2b a ==且a 与b 夹角为θ, 若23b a -=,即2222()2164242cos 12b a b a b a a b θ-=-=+-⋅=+-⨯⨯=,解得1cos 2θ=,又因为[]0,θπ∈,可得3πθ=,即充分性是成立的;若3πθ=,由2222()2164242cos123b a b a b a a b π-=-=+-⋅=+-⨯⨯=,可得23b a -=,即必要性是成立的,所以“23b a -=”是“3πθ=”的充分必要条件.故选:C. 【点睛】本题主要考查了充分条件、必要条件的判定,其中解答中熟记向量的数量积的运算,以及向量的模的运算公式是解答的关键,着重考查了推理与运算能力.10.B解析:B 【分析】由原命题与逆否命题的关系即可判断A ;由复合命题的真值表即可判断B ; 由特称命题的否定是全称命题即可判断C ;根据充分必要条件的定义即可判断D ;. 【详解】A .命题:“若p 则q ”的逆否命题为:“若¬q 则¬p ”,故A 正确;B .若p ∧q 为假命题,则p ,q 中至少有一个为假命题,故B 错.C .由含有一个量词的命题的否定形式得,命题p :∃x ∈R ,使得x 2+x +1<0,则¬p 为:∀x ∈R ,均有x 2+x +1≥0,故C 正确;D .由x 2﹣3x +2>0解得,x >2或x <1,故x >2可推出x 2﹣3x +2>0,但x 2﹣3x +2>0推不出x >2,故“x >2”是“x 2﹣3x +2>0”的充分不必要条件,即D 正确 故选B . 【点睛】本题考查简易逻辑的基础知识:四种命题及关系,充分必要条件的定义,复合命题的真假和含有一个量词的命题的否定,这里要区别否命题的形式,本题是一道基础题.11.B解析:B 【分析】根据向量的运算性质结合充分条件和必要条件的判定,即可得出答案. 【详解】 当12a b =-时,1122a b b b b a +=-+==,推不出0b =当0b =时,0b =,则0a b a a +=+= 即“a a b =+”是“0b =”的必要不充分条件 故选:B 【点睛】本题主要考查了判断必要不充分条件,属于中档题.12.A解析:A 【分析】利用平均数和方差公式可判断A 选项的正误;解不等式ln 0x <,利用集合的包含关系可判断B 选项的正误;根据频率直方图的概念可判断C 选项的正误;根据对立事件的概念可判断D 选项的正误.综合可得出结论. 【详解】对于A 选项,样本1x 、2x 、、5x 的平均数为1234525x x x x x x ++++==,方差为()()()()()222221234522222225x x x x x s ⎡⎤-+-+-+-+-⎣⎦==, 数据12x 、22x 、、52x 的平均数是1234522222245x x x x x x x ++++'===,方差为()()()()()2222212345224242424245x x x x x s ⎡⎤-+-+-+-+-⎣⎦'=()()()()()2222212345242222244285x x x x x s ⎡⎤-+-+-+-+-⎣⎦===⨯=,A 选项错误;对于B 选项,解不等式ln 0x <,得01x <<,{}01x x << {}1x x <,所以,ln 0x <是1x <的充分不必要条件,B 选项正确;对于C 选项,由频率分布直方图的概念可知,样本频率分布直方图中的小矩形的面积就是对应组的频率,C 选项正确;对于D 选项,抛掷一颗质地均匀的骰子,事件“向上点数不大于3”即为:向上的点数为1或2或3,事件“向上点数不小于4”即为:向上的点数为4或5或6, 这两个事件互为对立事件,D 选项正确. 故选:A. 【点睛】本题考查命题正误的判断,涉及平均数、方差的计算、充分不必要条件的判断、频率直方图和对立事件概念的理解,考查推理能力,属于中等题.二、填空题13.a≥-8【分析】等价于∃x ∈{x|1≤x≤2}求出函数在的最小值即得解【详解】由题得∃x ∈{x|1≤x≤2}x2+2x +a≥0所以∃x ∈{x|1≤x≤2}因为函数在的最小值为此时所以故答案为:【点睛解析:a ≥-8【分析】等价于∃x ∈{ x |1≤x ≤2},2(1)1a x ≥-++,求出函数2(1)1y x =-++在[1,2]的最小值即得解. 【详解】由题得∃x ∈{ x |1≤x ≤2},x 2+2x +a ≥0,所以∃x ∈{ x |1≤x ≤2},222(1)1a x x x ≥--=-++,因为函数2(1)1y x =-++在[1,2]的最小值为8-,此时2x =. 所以8a ≥-. 故答案为:8a ≥- 【点睛】本题主要考查特称命题,考查一元二次不等式的能成立问题的求解,意在考查学生对这些知识的理解掌握水平.14.【分析】根据充分条件和必要条件的定义转化为对应关系进行求解即可【详解】x2﹣(a+1)x+a≤0即(x ﹣1)(x ﹣a )≤0p 是q 的必要不充分条件当a =1时由(x ﹣1)(x ﹣1)≤0得x =1此时不满足解析:(3,)+∞【分析】根据充分条件和必要条件的定义转化为对应关系进行求解即可. 【详解】x 2﹣(a +1)x +a ≤0即(x ﹣1)(x ﹣a )≤0, p 是q 的必要不充分条件,当a =1时,由(x ﹣1)(x ﹣1)≤0得x =1,此时不满足条件, 当a <1时,由(x ﹣1)(x ﹣a )≤0得a ≤x ≤1,此时不满足条件. 当a >1时,由(x ﹣1)(x ﹣a )≤0得1≤x ≤a , 若p 是q 的必要不充分条件,则a >3, 即实数a 的取值范围是(3,+∞), 故答案为(3,+∞) 【点睛】本题主要考查充分条件和必要条件的应用,根据定义转化为不等式的包含关系是解决本题的关键.15.【分析】根据集合的交集补集运算即可求解【详解】因为所以因此故答案为【点睛】本题主要考查了集合的补集交集运算属于中档题 解析:[]2,3【分析】根据集合的交集补集运算即可求解. 【详解】因为{}2B x x =<, 所以RB ={}2x x ≥因此RAB ={}{}32=[2,3]x x x x ≤⋂≥.故答案为[]2,3 【点睛】本题主要考查了集合的补集,交集运算,属于中档题.16.②④【分析】根据否命题与原命题的关系可判断命题①的真假;判断出原命题的真假可判断出其逆否命题的真假从而判断出命题②的真假;解出不等式以及根据集合的包含关系得出命题③的真假;根据得出函数在上的单调性由解析:②④ 【分析】根据否命题与原命题的关系可判断命题①的真假;判断出原命题的真假可判断出其逆否命题的真假,从而判断出命题②的真假;解出不等式2x x ≥-以及x x =,根据集合的包含关系得出命题③的真假;根据()()10x f x '-<得出函数()y f x =在()0,1上的单调性,由ABC ∆是锐角三角形,得出sin cos A B >,结合函数()y f x =的单调性判断命题④的真假.【详解】对于①,命题“若21x =,则1x =”的否命题是:“若21x ≠,则1x ≠”,故错误;对于②,命题“若x y =,则sin sin x y =”是真命题,则它的逆否命题也是真命题,故正确;对于③,条件2:p x x ≥- ,即为1x ≤-或0x ≥;条件:q x x =,即为0x ≥;则q 是p 的充分不必要条件,故错误;对于④,0x >时,()()10x f x '-<,当01x <<时,()0f x '>,则()f x 在()0,1上是增函数;当ABC ∆是锐角三角形,2A B π+>,即2A B π>-, 所以sin sin cos 2A B B π⎛⎫>-=⎪⎝⎭,则()()sin cos f A f B >,故正确. 故答案为②④.【点睛】本题考查命题真假的判断,涉及四种命题、充分必要条件的判断以及函数单调性的应用,解题时应根据这些基础知识进行判断,考查推理能力,属于中等题. 17.【分析】由题意可得2a <x0在12的最大值运用对勾函数的单调性可得最大值即可得到所求a 的范围【详解】命题∃x0∈12x02﹣2ax0+1>0是真命题即有2a <x0在12的最大值由x0在12递增可得x 解析:5,4⎛⎫-∞ ⎪⎝⎭ 【分析】由题意可得2a <x 001x +在[1,2]的最大值,运用对勾函数的单调性可得最大值,即可得到所求a 的范围.【详解】命题“∃x 0∈[1,2],x 02﹣2ax 0+1>0”是真命题,即有2a <x 001x +在[1,2]的最大值, 由x 001x +在[1,2]递增,可得x 0=2取得最大值52, 则2a 52<,可得a 54<,则实数a 的取值范围为(﹣∞,54).故答案为(﹣∞,54). 【点睛】 本题考查存在性命题的真假问题解法,注意运用分离参数法,运用对勾函数的单调性,考查运算能力,属于中档题.18.【解析】由题意得解析:[]4,0-【解析】由题意得2004040a a a a a <⎧=∴-≤≤⎨∆=+≤⎩或19.【分析】解不等式和由题意可得是的必要不充分条件转化为两集合的包含关系由此可求得实数的取值范围【详解】因为是的充分不必要条件所以是的必要不充分条件解不等式得解不等式解得所以即因此实数的取值范围是故答解析:[]2,1-【分析】解不等式()29x a -<和()3log 21x +<,由题意可得p 是q 的必要不充分条件,转化为两集合的包含关系,由此可求得实数a 的取值范围.【详解】因为p ⌝是q ⌝的充分不必要条件,所以p 是q 的必要不充分条件,解不等式()29x a -<,得33a x a -<<+,解不等式()3log 21x +<,解得21x -<<. :33p a x a -<<+,:21q x -<<,{}33x a x a ∴-<<+ {}21x x -<<,所以3231a a -≤-⎧⎨+≥⎩,即21a -≤≤. 因此,实数a 的取值范围是[]2,1-.故答案为:[]2,1-.【点睛】本题考查利用充分不必要条件求参数,解答的关键就是转化为集合的包含关系来处理,考查分析问题和解决问题的能力,属于中等题. 20.【分析】求出两个命题的等价命题即x 的取值范围得到两命题pq 分别对应的的集合AB 由q 是p 的必要不充分条件得进而可求实数a 的取值范围【详解】因为所以所以命题p 对应的集合为解不等式可得命题q 对应的集合为因解析:10,2⎡⎤⎢⎥⎣⎦【分析】求出两个命题的等价命题,即x 的取值范围,得到两命题p ,q 分别对应的的集合A ,B ,由q 是p 的必要不充分条件,得A B ≠⊂,进而可求实数a 的取值范围。
西安市必修第一册第一单元《集合与常用逻辑用语》检测(含答案解析)
一、选择题1.“2a >”是“函数()()xf x x a e =-在()0,∞+上有极值”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.设原命题:若2a b +≥,则,a b 中至少有一个不小于1,则原命题与其逆命题的真假状况是( )A .原命题与逆命题均为真命题B .原命题真,逆命题假C .原命题假,逆命题真D .原命题与逆命题均为真命题3.设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x R x =∈-≤<,则()A B C ⋃⋂=A .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}4."tan 1"α=是""4πα=的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件5.“1x >”是“12log (2)0x +<”的 ( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件6.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为( ) A .3B .2C .1D .07.已知命题2:230p x x +->;命题:q x a >,且q ⌝的一个充分不必要条件是p ⌝,则a 的取值范围是( )A .(],1-∞B .[)1,+∞C .[)1,-+∞D .(],3-∞8.下列命题错误的是( )A .命题“若2430x x -+=,则3x =”的逆否命题为“若3x ≠,则2430x x -+≠”B .命题“x R ∀∈,220x x -+>”的否定是“0x R ∃∈,20020x x -+<”C .若“p 且q ”为真命题,则p ,q 均为真命题D .“1x >-”是“2430x x ++>”的充分不必要条件9.“3k >”是“方程22133x y k k -=-+表示双曲线”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件10.“3,a =23b =”是双曲线22221(0,0)x y a b a b -=->>的离心率为72( )A .充要条件B .必要不充分条件C .即不充分也不必要条件D .充分不必要条件11.已知命题2:21,:560p x m q x x -<++<,且p 是q 的必要不充分条件,则实数m 的取值范围为( ) A .12m >B .12m ≥C .1mD .m 1≥第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案12.设,(0,1)a b ∈,:P “a b <”,:q “log log a b a b b a <”,则p 是q 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件二、填空题13.已知2:(1)0p x a x a -++≤,:13q x ≤≤,若p 是q 的必要不充分条件,则实数a 的取值范围是______.14.已知等比数列{}n a 中,10a >,则“12a a <”是“35a a <”的________条件.(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”) 15.集合{}|20M x N x =∈-≤≤的子集个数为__________. 16.已知集合{}1A x x =>,{}22B x x x =<,则AB =__________.17.下列命题中,正确的是___________.(写出所有正确命题的编号) ①在中,是的充要条件;②函数的最大值是;③若命题“,使得”是假命题,则; ④若函数,则函数在区间内必有零点. 18.函数,若恒成立的充分条件是,则实数的取值范围是 .19.某学校举办运动会时,高一(1)班共有26名学生参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时游泳比赛和球类比赛的有3人,没有人同时参加三项比赛,则同时参加球类比赛和田径比赛的学生有__人.参考答案20.已知函数2,1()1,1x ax x f x ax x ⎧-+≤=⎨->⎩,若1212,,x x R x x ∃∈≠,使得12()()f x f x =成立,则实数a 的取值范围是___________. 三、解答题21.解关于x 的不等式ax 2-2(a +1)x +4>0. 22.已知{}2680A x x x =-+≤,201B x x ⎧⎫=≥⎨⎬-⎩⎭,{}260C x x mx =-+<,且“x AB ∈”是“xC ∈”的充分不必要条件.(1)求AB ;(2)求实数m 的取值范围.23.已知集合A 是函数2lg 20()8y x x =+-的定义域,集合B 是不等式22210(0)x x a a -+-≥>的解集,:,:p x A q x B ∈∈.(1)若AB =∅,求a 的取值范围;(2)若p ⌝是q 的充分不必要条件,求a 的取值范围.24.已知命题:p 实数t 满足22540t at a -+<,:q 实数t 满足曲线22126x yt t+=--为双曲线.(1)若1a =,且p ⌝为假,求实数t 的取值范围;(2)若0a >,且q 是p 的充分不必要条件,求实数a 的取值范围.25.已知命题:P 实数x 满足2280x x --≤,命题:q 实数x 满足2(0)x m m -≤> (1)当m=3时,若“p 且q”为真,求实数x 的取值范围;(2)若“非p”是“非q”的必要不充分条件,求实数m 的取值范围. 26.已知()1f x x a x =-++.(1)若不等式()21f x x <++的解集是区间3,2的子区间,求实数a 的取值范围;(2)若对任意的x ∈R ,不等式()21>+f x a 恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】求出函数()()xf x x a e =-的极值点,利用该极值点在()0,∞+内求得实数a 取值范围,利用集合的包含关系可得出结论. 【详解】()()x f x x a e =-,则()()1x f x x a e '=-+,令()0f x '=,可得1x a =-.当1x a <-时,()0f x '<;当1x a >-时,()0f x '>. 所以,函数()y f x =在1x a =-处取得极小值.若函数()y f x =在()0,∞+上有极值,则10a ->,1a ∴>.因此,“2a >”是“函数()()xf x x a e =-在()0,∞+上有极值”的充分不必要条件.故选:A. 【点睛】本题考查充分不必要条件的判断,同时也考查了利用导数求函数的极值点,考查计算能力与推理能力,属于中等题.2.B解析:B 【分析】写出原命题的逆否命题,判断其逆否命题为真,从而得到原命题也为真. 【详解】原命题的逆否命题为:若,a b 中没有一个大于等于1,则2a b +<,等价于“若1,1a b <<,则2a b +<”,显然这个命题是对的,所以原命题正确; 原命题的逆命题为:“若,a b 中至少有一个不小于1,则2a b +≥”,取5,5a b ==-则,a b 中至少有一个不小于1,但0a b +=,所以原命题的逆命题不正确. 【点睛】至少有一个的否定为“0个”,“不小于”等价于“大于等于”,同时注意若原命题的真假性不好判断,而等价于判断其逆否命题.3.C解析:C 【解析】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果. 详解:由并集的定义可得:{}1,0,1,2,3,4A B =-,结合交集的定义可知:(){}1,0,1A B C =-.本题选择C 选项.点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.4.B解析:B 【解析】由"tan 1"α=,得,而""4πα=得"tan 1"α=,所以"tan 1"α=是""4πα=的必要非充分条件. 故选B5.B解析:B 【详解】 试题分析:12log (2)0x +<211x x ⇒+>⇒>-,故正确答案是充分不必要条件,故选B.考点:充分必要条件.6.B解析:B 【解析】试题分析:集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点22⎝⎭,22⎛ ⎝⎭,则A B 中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.7.B解析:B 【分析】解一元二次不等式化简命题p ,再利用集合间的基本关系,求得参数a 的取值范围. 【详解】由2:230p x x +->,知3x <-或1x >, 则p ⌝为31x -≤≤,q ⌝为x a ≤,p ⌝是q ⌝的充分不必要条件,∴1{|}3x x ≤≤-{|}x x a ≤∴1a ≥.故选:B. 【点睛】本题考查利用命题的充分不必要条件求参数的取值范围,考查转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将充分不必要条件转化为真子集的关系.8.B解析:B 【分析】根据逆否命题的概念,准确改写,可判定A 正确的;根据全称命题与存在性命题的关系,可判定B 不正确;根据复合命题的真假判定方法,可判定C 是正确的;根据充要条件的判定方法,可判定D 正确. 【详解】对于A 中,根据逆否命题的概念,可得命题“若2430x x -+=,则3x =”的逆否命题为“若3x ≠,则2430x x -+≠”,所以A 正确的;对于B 中,根据全称命题与存在性命题的关系,可得命题“x R ∀∈,220x x -+>”的否定是“0x R ∃∈,20020x x -+≤”,所以B 不正确;对于C 中,根据复合命题的真假判定方法,若“p 且q ”为真命题,则p ,q 均为真命题,所以C 是正确的;对于D 中,不等式2430x x ++>,解得3x <-或1x >-,所以“1x >-”是“2430x x ++>”的充分不必要条件,所以D 正确. 综上可得,命题错误为选项B. 故选:B. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中涉及到四种命题的改写,全称命题与存在性命题的关系,以及复合命题的真假判定和充分条件、必要条件的判定等知识的综合应用,属于基础题.9.A解析:A 【分析】根据充分条件、必要条件的定义,结合双曲线的方程即可判定. 【详解】因为当3k >时,30k ->,30k +>,方程22133x y k k -=-+表示双曲线;当方程22133x y k k -=-+表示双曲线时,(3)(3)0k k -+>,即3k >或3k <-,不能推出3k >,所以“3k >”是“方程22133x y k k -=-+表示双曲线”的充分不必要条件,故选:A 【点睛】本题主要考查了充分条件、必要条件,双曲线的标准方程,属于中档题.10.D解析:D 【分析】将双曲线22221(0,0)x y a b a b -=->>标准化为22221(0,0)y x a b b a -=>>,由于离心率为2可得2234a b =,在根据充分、必要条件的判定方法,即可得到结论.【详解】将双曲线22221(0,0)x y a b a b -=->>标准化22221(0,0)y x a b b a -=>>则根据离心率的定义可知本题中应有2222a b c e b c +===,则可解得2234a b =,因为3,a =b =可以推出2234a b =;反之2234a b =成立不能得出3,a =b =. 故选:D . 【点睛】本题考查双曲的离心率公式,考查充分不必要条件的判断,双曲线方程的标准化后离心率公式的正确使用是解答本题的关键,难度一般.11.D解析:D 【分析】求出命题q 不等式的解为23x <<,p 是q 的必要不充分条件,得q 是p 的子集,建立不等式求解. 【详解】 解:命题2:21,:560p x m q x x -<++<,即: 23x <<,p 是q 的必要不充分条件,(2,3)(,21,)m ∴⊆-∞+,213m ∴+≥,解得m 1≥.实数m 的取值范围为m 1≥.故选:D . 【点睛】本题考查根据充分、必要条件求参数范围,其思路方法:(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时, 一定要注意区间端点值的检验.12.C解析:C 【分析】利用不等式的性质和充分必要条件的定义进行判断即可得到答案. 【详解】充分性:01a b <<<⇒22lg lg 0(lg )(lg )a b a b <<⇒>.所以22lg lg (lg )(lg )lg lg b aa b b a ab a b<⇒< 即:log log a b a b b a <,充分性满足.必要性:因为,(0,1)a b ∈,所以log 0a b >,log 0b a >. 又因为log log a b a b b a <,所以log log a b b ba a <,即2(log )ab b a<. 当a b =时,11<,不等式不成立. 当a b >时,01b a<<,log 1a b >,不等式2(log )a bb a <不成立当a b <时,1b a >,0log 1a b <<,不等式2(log )a bb a<成立. 必要性满足.综上:p 是q 的充要条件. 故选:C 【点睛】本题主要考查充要条件,同时考查了对数的比较大小,属于中档题.二、填空题13.【分析】根据充分条件和必要条件的定义转化为对应关系进行求解即可【详解】x2﹣(a+1)x+a≤0即(x ﹣1)(x ﹣a )≤0p 是q 的必要不充分条件当a =1时由(x ﹣1)(x ﹣1)≤0得x =1此时不满足 解析:(3,)+∞【分析】根据充分条件和必要条件的定义转化为对应关系进行求解即可. 【详解】x 2﹣(a +1)x +a ≤0即(x ﹣1)(x ﹣a )≤0, p 是q 的必要不充分条件,当a =1时,由(x ﹣1)(x ﹣1)≤0得x =1,此时不满足条件, 当a <1时,由(x ﹣1)(x ﹣a )≤0得a ≤x ≤1,此时不满足条件. 当a >1时,由(x ﹣1)(x ﹣a )≤0得1≤x ≤a , 若p 是q 的必要不充分条件,则a >3, 即实数a 的取值范围是(3,+∞), 故答案为(3,+∞) 【点睛】本题主要考查充分条件和必要条件的应用,根据定义转化为不等式的包含关系是解决本题的关键.14.充分不必要【分析】由等比数列的性质结合充分必要条件的判定方法得答案【详解】在等比数列中则由得即;反之由得即或当时等比数列中则是的充分不必要条件故答案为:充分不必要【点睛】本题主要考查等比数列的性质考解析:充分不必要 【分析】由等比数列的性质结合充分必要条件的判定方法得答案. 【详解】在等比数列{}n a 中,10a >,则由12a a <,得11a a q <,即1q >,∴243115a a q a q a =<=;反之,由243115a a q a q a =<=,得21q >,即1q >或1q <-,当1q <-时,112a a q a >=.∴等比数列{}n a 中,10a >,则“12a a <”是“35a a <”的充分不必要条件.故答案为:充分不必要. 【点睛】本题主要考查等比数列的性质,考查充分必要条件的判定方法,是基础题.15.2【解析】因为集合所以集合子集有两个:空集与故答案为解析:2 【解析】因为集合{}{}|200M x N x =∈-≤≤=,所以集合M 子集有两个:空集与{}0,故答案为2.16.【解析】由得:则故答案为 解析:()1,2【解析】由{}22B x x x =<得:{}02B x x =<<,则()1,2A B ⋂=,故答案为()1,2.17.①③④【分析】根据正弦定理及三角形的性质可判断(1);利用均值不等式可判断(2);利用假命题求参数的范围可判断(3);利用零点存在性定理可判断(4)【详解】解:对于(1)sinA >sinB ⇔2Rsi 解析:①③④ 【分析】根据正弦定理,及三角形的性质,可判断(1);利用均值不等式,可判断(2);利用假命题求参数的范围,可判断(3);利用零点存在性定理,可判断(4). 【详解】解:对于(1),sin A >sin B ⇔2R sin A >2R sin B ⇔a >b ⇔A >B (其中R 为△ABC 外接圆半径),故(1)正确;对于(2),x 21x +=--(1﹣x 21x+-)+1≤﹣1=﹣+1,当且仅当x =12)错误;对于(3),若命题“x R ∃∈,使得()2310ax a x +-+≤”是假命题⇔命题:“∀x ∈R ,使得ax 2+(a ﹣3)x +1>0”恒成立. ∵a =0时,不符合题意, ∴2(3)40a a a ⎧⎨=--<⎩>∴1a 9<<,故(3)正确; 对于(4),∵()12a f a b c =++=-,∴3a +2b +2c =0,∴32c a b =--. 又f (0)=c ,f (2)=4a +2b +c , ∴f (2)=a ﹣c .(i )当c >0时,有f (0)>0,又∵a >0,∴()102af =-<,故函数f (x )在区间(0,1)内有一个零点,故在区间(0,2)内至少有一个零点.(ii )当c ≤0时,f (1)<0,f (0)=c ≤0,f (2)=a ﹣c >0,∴函数f (x )在区间(1,2)内有一零点,故(4)正确. 故正确答案为:①③④ 【点睛】本题考查的知识点是命题的真假判断与应用,熟练掌握正弦定理,均值不等式,二次函数的,图象和性质,函数零点存在定理,是解答的关键.18.1<<4【详解】试题分析:根据充分条件的定义将条件转化为不等式恒成立即当时恒成立即恒成立;然后利用二次函数的性质易求其最值为要使得需要满足化简求解得1<<4考点:必要条件充分条件与充要条件的判断解析:1<a <4 【详解】试题分析:根据充分条件的定义将条件转化为不等式恒成立,即当时,恒成立,即恒成立;然后利用二次函数的性质易求其最值为,要使得,需要满足,化简求解得1<a <4.考点:必要条件、充分条件与充要条件的判断.19.5【解析】【分析】根据15人参加游泳比赛有8人参加田径比赛同时参加游泳和田径的有3人同时参加游泳和球类比赛的有3人可以求得只参加游泳比赛的人数;再结合总人数即可求得同时参加田径和球类比赛的人数【详解解析:5 【解析】 【分析】根据15人参加游泳比赛,有8人参加田径比赛,同时参加游泳和田径的有3人,同时参加游泳和球类比赛的有3人,可以求得只参加游泳比赛的人数;再结合总人数即可求得同时参加田径和球类比赛的人数.【详解】解:有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,这三项累加时,比全班人数多算了三部分,即同时参加游泳比赛和田径比赛的、同时参加游泳比赛和球类比赛的和同时参加田径比赛和球类比赛的重复算了两次所以15+8+14﹣3﹣3﹣26=5,就是同时参加田径比赛和球类比赛的人数,所以同时参加田径比赛和球类比赛的有5人.故答案为5.【点睛】本题主要考查集合之间的元素关系,注意每两种比赛的公共部分,属于中档题. 20.【分析】若使得成立只要保证在R 上不单调即可【详解】函数的对称轴为当即时在上不是单调函数则在R 上也不是单调函数满足题意;当即时分段函数为R 上的单调增函数不满足题意故答案为:【点睛】本题以命题的形式考查 解析:(,2)-∞【分析】若1212,,x x R x x ∃∈≠,使得12()()f x f x =成立,只要保证()f x 在R 上不单调即可.【详解】函数2y x ax =-+的对称轴为=2a x , 当12a <即2a <时,2y x ax =-+在(),1-∞上不是单调函数, 则()f x 在R 上也不是单调函数,满足题意; 当12a >即2a >时,分段函数为R 上的单调增函数,不满足题意. 故答案为:(,2)-∞【点睛】本题以命题的形式考查了分段函数单调性,考查了转化的思想,属于中档题.三、解答题21.答案见解析.【分析】二次项含参,先对a 分0,0,0a a a =><三类讨论,当0a =时,直接代入化简得到解集;当0a >时,不等式可化为(ax -2)(x -2)>0,其对方程两个根为2,2a,需比较两根大小,再分01a <<,1a =,1a >三类求出解集;当0a <时,原不等式可化为(-ax +2)(x -2)<0,直接判断两根大小,得到解集,最后综合,求得答案.【详解】解:(1)当a =0时,原不等式可化为-2x +4>0,解得x <2,所以原不等式的解集为{x |x <2}.(2)当a >0时,原不等式可化为(ax -2)(x -2)>0,对应方程的两个根为x 1=2a ,x 2=2. ①当0<a <1时,2a >2,所以原不等式的解集为2{|x x a >或2}x <; ②当a =1时,2a =2,所以原不等式的解集为{x |x ≠2}; ③当a >1时,2a <2,所以原不等式的解集为2{|x x a<或2}x >. (3)当a <0时,原不等式可化为(-ax +2)(x -2)<0,对应方程的两个根为x 1=2a ,x 2=2, 则2a <2,所以原不等式的解集为2{|2}x x a<<. 综上,a <0时,原不等式的解集为2{|2}x x a<<; a =0时,原不等式的解集为{x |x <2}; 0<a ≤1时,原不等式的解集为2{|x x a>或2}x <; 当a >1时,原不等式的解集为2{|x x a <或2}x >. 【点睛】本题考查了含参一元二次不等式的解法,对二次项系数分类讨论,在需要时对两根大小分类讨论,属于中档题.22.(1)[]2,4A B ⋂=;(2)11,2⎛⎫+∞⎪⎝⎭. 【分析】(1)解出集合A 、B ,利用交集的定义可求得集合A B ; (2)根据题意可得知A B C ,可知,不等式260x mx -+<在区间[]2,4上恒成立,可得出关于实数m 的不等式组,即可解得实数m 的取值范围.【详解】(1){}[]26802,4A x x x =-+≤=,()201,1B x x ⎧⎫=≥=+∞⎨⎬-⎩⎭,[]2,4A B ∴=; (2)因为“x AB ∈”是“xC ∈”的充分不必要条件,A B ∴ C , 设()26f x x mx =-+,由题意可知,不等式()0f x <在区间[]2,4上恒成立,则()()2102042240f m f m ⎧=-<⎪⎨=-<⎪⎩,解得112m >. 因此,实数m 的取值范围是11,2⎛⎫+∞ ⎪⎝⎭. 【点睛】本题考查交集的计算,同时也考查了利用充分不必要条件求参数,考查了二次不等式在区间上恒成立问题的求解,考查计算能力,属于中等题.23.(1)9a ≥(2)03a <≤【解析】分析:(1)分别求函数2lg 20()8y x x =+-的定义域和不等式22210(0)x x a a -+-≥>的解集,从而确定集合A,B ,由A B φ⋂=,得到区间端点值之间的关系,解不等式组得到a 的取值范围;(2)求出p ⌝对应的x 的取值范围,由p ⌝是q 的充分不必要条件得到对应的集合之间的关系,由区间端点值的关系列不等式组求解a 的取值范围.详解:(1)由题意得{}{}|210,|11A x x B x x a x a =-<<=≥+≤-或. 若A B ⋂=∅,则必须满足110120a a a +≥⎧⎪-≤-⎨⎪>⎩,解得9a ≥.∴a 的取值范围为9a ≥.(2)易得:102p x x ⌝≥≤-或.∵p ⌝是q 的充分不必要条件,∴{}|102x x x ≥≤-或是{}|11B x x a x a =≥+≤-或的真子集,则101210a a a ≥+⎧⎪-≤-⎨⎪>⎩,解得03a <≤,∴a 的取值范围是03a <≤.点睛:该题所涉及的考点有交集及其运算,充分不必要条件,复合命题的真假,解题的关键是先确定集合中的元素,再者就是两集合交集为空集时对应参数的取值范围,可以借助于数轴来完成.24.(1)()1,4;(2)322a ≤≤ . 【分析】(1)可知p 为真,解出不等式即可;(2)由题可知命题p 等价于{}|4A t a t a =<<,命题q 等价于{}|26B t t =<<,由q 是p 的充分不必要条件可得集合B 是集合A 的真子集,由此列出不等式即可求解.【详解】解:(1)p ⌝为假,∴p 为真,21,540a t t =∴-+<, 解得()1,4t ∈;(2):p 由22540t at a -+<得()(4)0t a t a --<:q 由实数t 满足曲线22126x y t t+=--为双曲线.得(2)(6)0t t --<解之26t << 由0a >且()(4)0t a t a --<得,4a t a <<设{}|4A t a t a =<<,{}|26B t t =<<,因为q 是p 的充分不必要条件,所以集合B 是集合A 的真子集,故有0246a a a >⎧⎪≤⎨⎪≥⎩,得322a ≤≤. 【点睛】本题考查利用集合的关系判断命题的充分不必要条件,其中涉及一元二次不等式和对双曲线方程的理解,属于基础题.25.(1)[1,4]-(2)4m ≥【详解】试题分析:(1)先转化,q ,由且q 为真,得真q 真,解出x (2)由p ⌝是q ⌝的必要不充分条件 得是q 的充分不必要条件,根据数轴列出不等式解出m 试题 解:(1)若真:24x -≤≤;当3m =时,若q 真:15x -≤≤ ∵且q 为真 ∴24{15x x -≤≤-≤≤ ∴实数x 的取值范围为:[1,4]- (2)∵p ⌝是q ⌝的必要不充分条件 ∴是q 的充分不必要条件 ∵若q 真:22m x m -≤≤+∴22{42m m-≤-≤+且等号不同时取得 (不写“且等号不同时取得”,写检验也可) ∴4m ≥.考点:复合命题,充要条件,解不等式26.(1)[]1,0-(2)(),0-∞【分析】(1)首先求出不等式的解集,再根据集合的包含关系求出参数的取值范围;(2)根据绝对值的三角不等式可得()1111f x x a x a x x a x x a =-++=-++≥-++=+,故对任意的x ∈R ,()21>+f x a 恒成立可转化为121a a +>+, 分类讨论计算可得;【详解】解:(1)因为()1f x x a x =-++,且()21f x x <++,2x a ∴-< ,22a x a ∴-+<<+,由题意知,()[]2,23,2a a -+⊆-,所以2322a a -≥-⎧⎨+≤⎩, 解得10a -≤≤,所以实数a 的取值范围是[]1,0-.(2)()1111f x x a x a x x a x x a =-++=-++≥-++=+, 当且仅当()()10a x x -+≥时,等号成立,所以()f x 的最小值为1a +.故对任意的x ∈R ,()21>+f x a 恒成立可转化为121a a +>+, 所以10121a a a +≥⎧⎨+>+⎩或10121a a a +<⎧⎨-->+⎩,解得0a <. 所以实数a 的取值范围是(),0-∞.【点睛】本题考查绝对值不等式的解法,集合的包含关系及绝对值三角不等式的应用,属于中档题.。
西安高新逸翠园学校必修第一册第一单元《集合与常用逻辑用语》测试卷(答案解析)
一、选择题1.已知{}n a 是等比数列,n S 为其前n 项和,那么“10a >”是“数列{}n S 为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.已知实数0x >,0y >,则“1xy ≤”是“224x y +≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 3.命题“ax 2-2ax + 3 > 0恒成立”是假命题, 则实数a 的取值范围是( ) A .a < 0或a ≥3B .a ≤0或a ≥3C .a < 0或a >3D .0<a <34.已知全集U =R ,集合{|01},{1,0,1}A x R x B =∈<=-,则()UA B =( )A .{}1-B .{1}C .{1,0}-D .{0,1}5.已知集合{}2|40A x R x x =∈-<,{}|28xB x R =∈<,则A B =( )A .()0,3B .()3,4C .()0,4D .(),3-∞6.设,a b 为非零向量,则“a b a b +=+”是“a 与b 共线”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件7.全集U =R ,集合04xA x x ⎧⎫=≤⎨⎬-⎩⎭,集合(){}2log 12B x x =->,图中阴影部分所表示的集合为( )A .(][],04,5-∞B .()(],04,5-∞C .()[],04,5-∞D .(](),45,-∞+∞8.设向量(sin2,cos )a θθ=,(cos ,1)b θ=,则“//a b ”是“1tan 2θ=”成立的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.下列命题错误的是( )A .命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠ ,则2320x x -+≠”B .若p q ∧为假命题,则,p q 均为假命题C .对于命题p :x ∃∈R ,使得210x x ++<,则p ⌝:x ∀∈R ,均有210x x ++≥D .“2x >”是“2320x x -+>”的充分不必要条件 10.在下列三个结论中,正确的有( ) ①x 2>4是x 3<-8的必要不充分条件;②在ABC 中,AB 2+AC 2=BC 2是ABC 为直角三角形的充要条件; ③若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 不全为0”的充要条件. A .①② B .②③ C .①③D .①②③11.对于()11,2x ∀∈,()21,2x ∃∈,使得211212485211x x mx m x x -+-+=--,则实数m 的取值范围是( ) A .[]0,2 B .(],2-∞ C .()0,2D .(),2-∞12.已知全集{1,2,3,4,5}U =,集合{1,2,4}A =,{1,3,5}B ,则()U C A B ( )A .{1}B .{3,5}C .{1,3,5}D .{2,3,4,5}二、填空题13.对于任意非空集合A 、B ,定义{|,}A B a b a A b B +=+∈∈,若{}2,0,1S T ==-,则S T +=________(用列举法表示)14.已知集合{}2,M y y x x R ==∈,221,4y N y x x R ⎧⎫⎪⎪=+=∈⎨⎬⎪⎪⎩⎭,则M N =__________.15.已知集合{}{}22160,430,A x x B x x x =-<=-+>则AUB =____________. 16.命题“000,1x x R ex ∃∈>+”的否定是______________________.17.已知m R ∈,则“02m <<”是“方程22212x y m m +=-表示焦点在x 轴上的椭圆”的______ 条件(从“充分不必要”,“必要不充分”,“充要”,“既不充分又不必要”中选择一个).18.已知()2:9p x a -<,()3:log 21q x +<.若p ⌝是q ⌝的充分不必要条件,则a 的取值范围是________.19.若命题“[]01,1x ∃∈-,033x a ≤”为真命题,则实数a 的取值范围为______.20.非空集合*S N ⊆,且满足条件“x S ∈,则()10x S -∈”,则集合S 的所有元素之和的总和为______.三、解答题21.已知集合{}2|3100M x x x =--≤,{}|121N x a x a =+≤≤+.(1)若2a =,求()()RRM N ;(2)若M N M ⋃=,求实数a 的取值范围.22.已知全集U={x ∈N|1≤x≤6},集合A={x |x 2-6x +8=0},集合B={3,4,5,6}. (1)求A∩B ,A ∪B ;(2)写出集合(∁U A )∩B 的所有子集.23.已知命题:p 实数t 满足22540t at a -+<,:q 实数t 满足曲线22126x yt t+=--为双曲线.(1)若1a =,且p ⌝为假,求实数t 的取值范围;(2)若0a >,且q 是p 的充分不必要条件,求实数a 的取值范围.24.已知命题:P 实数x 满足2280x x --≤,命题:q 实数x 满足2(0)x m m -≤> (1)当m=3时,若“p 且q”为真,求实数x 的取值范围;(2)若“非p”是“非q”的必要不充分条件,求实数m 的取值范围. 25.集合(){}21|,A x y y xmx ==-+-,(){},3,03|B x y y x x ==-≤≤.(Ⅰ)当4m =时,求A B ;(Ⅱ)若A B ⋂≠∅,求实数m 的取值范围.26.已知命题}{:210p x x -<<,命题{:1q x x a ≤-或}1x a ≥+,若p ⌝是q 的充分不必要条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分别从充分性和必要性入手进行分析即可得解. 【详解】设等比数列{}n a 的公比为q ,充分性:当10a >,0q <时,111n n nn S a S a q ++-==,无法判断其正负,显然数列{}n S 为不一定是递增数列,充分性不成立;必要性:当数列{}n S 为递增数列时,10n n n S S a --=>,可得10a >,必要性成立. 故“10a >”是“数列{}n S 为递增数列”的必要而不充分条件. 故选:B . 【点睛】方法点睛:证明或判断充分性和必要性的常用方法:①定义法,②等价法,③集合包含关系法.2.B解析:B 【分析】通过举反例得到“1xy ≤”推不出“224x y +≤”;再由“224x y +≤”⇒“1xy ≤”.能求出结果. 【详解】 解:实数0x >,0y >,∴当3x =,14y =时,13422224x y +=+>, ∴“1xy ≤”推不出“224x y +≤”;反之,实数0x >,0y >,由基本不等式可得22x y +≥由不等式的基本性质得224x y ≤+≤,整理得24x y +≤,2x y ∴+≤,由基本不等式得212x y xy +⎛⎫≤≤ ⎪⎝⎭,即“224x y+≤”⇒“1xy ≤”.∴实数0x >,0y >,则“1xy ≤”是“224x y +≤”的必要不充分条件.故选:B . 【点睛】本题考查充分条件、必要条件、充要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,是中等题.3.A解析:A 【分析】根据题意得出命题“x R ∃∈,2230ax ax -+≤”是真命题,然后对a 分情况讨论,根据题意得出关于a 的不等式,即可得出实数a 的取值范围. 【详解】命题“2230ax ax -+>恒成立”是假命题,即命题“x R ∃∈,2230ax ax -+≤”是真命题. 当0a =时,2230ax ax -+≤不成立; 当0a <时,合乎题意;当0a >时,则24120a a ∆=-≥,解得3a ≥. 综上所述,实数a 的取值范围是0a <或3a ≥. 故选:A. 【点睛】本题考查由全称命题的真假求参数,考查计算能力,属于中等题.4.C解析:C 【分析】根据补集的运算,求得{|0Ux A x =≤或1}x >,再结合交集的运算,即可求解.【详解】由题意,全集U =R ,集合{|01}A x R x =∈<≤, 可得{|0Ux A x =≤或1}x >,又由集合{1,0,1}B =-,所以(){1,0}UA B ⋂=-.故选:C. 【点睛】本题考查集合的补集与交集概念及运算,其中解答中熟记集合的交集、补集的概念和运算方法是解答的关键,着重考查了运算与求解能力.5.A解析:A 【分析】解不等式确定集合,A B 后再由交集定义计算. 【详解】由题意{|04}A x x =<<,{|3}B x x =<,∴{|03}(0,3)A B x x =<<=.故选:A . 【点睛】本题考查求集合的交集运算,考查解一元二次不等式和指数不等式,属于基本题.6.A解析:A 【分析】根据向量共线的性质依次判断充分性和必要性得到答案. 【详解】若a b a b +=+,则a 与b 共线,且方向相同,充分性; 当a 与b 共线,方向相反时,a b a b ≠++,故不必要. 故选:A . 【点睛】本题考查了向量共线,充分不必要条件,意在考查学生的推断能力.7.C解析:C 【分析】由图可得,阴影部分表示的集合为()U C A B ⋃.求出集合,,A B A B ⋃,即求()U C A B ⋃. 【详解】∵集合{}04A x x =≤<,{}5B x x =>,由Venn 图可知阴影部分对应的集合为()U C A B ⋃,又{04A B x x ⋃=≤<或}5x >,()()[],04,5U C A B ∴=-∞⋃.故选:C . 【点睛】本题考查集合的运算,属于基础题.8.B解析:B 【分析】先将//a b 等价化简为cos 0θ=或1tan 2θ=,再判断解题即可. 【详解】//a b ⇔(sin 2,cos )//(cos ,1)θθθ⇔2sin 2cos θθ=⇔cos 0θ=或1tan 2θ=,所以“//a b ”是“1tan 2θ=”成立的必要不充分条件. 故选:B. 【点睛】本题考查向量平行的坐标表示、判断p 是q 的什么条件、三角恒等变换化简,是中档题.9.B解析:B 【分析】由原命题与逆否命题的关系即可判断A ;由复合命题的真值表即可判断B ; 由特称命题的否定是全称命题即可判断C ;根据充分必要条件的定义即可判断D ;. 【详解】A .命题:“若p 则q ”的逆否命题为:“若¬q 则¬p ”,故A 正确;B .若p ∧q 为假命题,则p ,q 中至少有一个为假命题,故B 错.C .由含有一个量词的命题的否定形式得,命题p :∃x ∈R ,使得x 2+x +1<0,则¬p 为:∀x ∈R ,均有x 2+x +1≥0,故C 正确;D .由x 2﹣3x +2>0解得,x >2或x <1,故x >2可推出x 2﹣3x +2>0,但x 2﹣3x +2>0推不出x >2,故“x >2”是“x 2﹣3x +2>0”的充分不必要条件,即D 正确 故选B . 【点睛】本题考查简易逻辑的基础知识:四种命题及关系,充分必要条件的定义,复合命题的真假和含有一个量词的命题的否定,这里要区别否命题的形式,本题是一道基础题.10.C解析:C 【分析】①,证明x 2>4是x 3<-8的必要不充分条件.所以该命题正确;②,在ABC 中,AB 2+AC 2=BC 2是ABC 为直角三角形的充分不必要条件,所以该命题错误;③,证明“a 2+b 2≠0”是“a ,b 不全为0”的充要条件,所以该命题正确. 【详解】①,x 2>4即2x >或2x <-,x 3<-8即2x <-,因为2x >或2x <-成立时,2x <-不一定成立,所以x 2>4是x 3<-8的不充分条件;因为2x <-成立时,2x >或2x <-一定成立,所以x 2>4是x 3<-8的必要条件.即x 2>4是x 3<-8的必要不充分条件.所以该命题正确. ②, AB 2+BC 2=AC 2成立时,ABC 为直角三角形一定成立;当ABC 为直角三角形成立时,AB 2+BC 2=AC 2不一定成立,所以在ABC 中,AB 2+AC 2=BC 2是ABC 为直角三角形的充分不必要条件,所以该命题错误.③,即判断“0,0a b ==”是“a 2+b 2=0”的什么条件,由于a 2+b 2=0即0,0a b ==,所以“0,0a b ==”是“a 2+b 2=0”的充要条件,所以“a 2+b 2≠0”是“a ,b 不全为0”的充要条件,所以该命题正确. 故选:C. 【点睛】本题主要考查充分必要条件的判定,考查逆否命题和原命题的等价性,意在考查学生对这些知识的理解掌握水平.11.D解析:D 【分析】设(1,2)x ∈时,2485()1x x f x x -+=-的值域A ,2()1mx m g x x -+=-的值域B ,只要A B ⊆即可满足题意.【详解】设2485()1x x f x x -+=-((1,2)x ∈),24(1)11()4(1)11x f x x x x -+==-+--, 设1t x =-,则1()4f x y t t ==+,则(0,1)x ∈,由勾形函数性质知当102t <<时,y 递减,当112t <<时,y 递增, min 1144122y =⨯+=,[4,)y ∈+∞,即()f x 值域为[4,)+∞, 2()1mx m g x x -+=-((1,2)x ∈),设1x t -=,(0,1)t ∈,则2()g x y m t==+,(0,1)t ∈时,2y m t=+是减函数,(2,)y m ∈++∞,即()(2,)g x m ∈++∞, 对于()11,2x ∀∈,()21,2x ∃∈,使得211212485211x x mx m x x -+-+=--,则24m +<,2m <.故选:D . 【点睛】本题考查含有存在题词与全称题词的命题恒成立问题,解题关键是把问题转化为集合之间的包含关系.12.B解析:B 【分析】根据补集的运算,求得{3,5}U C A =,再根据集合交集的运算,即可求得()U C A B ⋂. 【详解】由题意,全集{1,2,3,4,5}U =,集合{1,2,4}A =,可得{3,5}U C A =, 所以()U C A B {3,5}.故选:B . 【点睛】本题主要考查了集合的混合运算,其中解答中熟记集合运算的概念和计算方法是解答的关键,着重考查了计算能力,属于基础题.二、填空题13.【分析】根据集合的新定义分别求出两个集合中各取一个元素求和的所有可能情况【详解】由题:对于任意非空集合定义若各取一个元素形成有序数对所有可能情况为所有情况两个数之和构成的集合为:故答案为:【点睛】此 解析:{}4,2,1,0,1,2---【分析】根据集合的新定义,分别求出两个集合中各取一个元素求和的所有可能情况. 【详解】由题:对于任意非空集合A 、B ,定义{|,}A B a b a A b B +=+∈∈, 若{}2,0,1S T ==-,各取一个元素,a A b B ∈∈形成有序数对(),a b ,所有可能情况为()()()()()()()()()2,2,2,0,2,1,0,2,0,0,0,1,1,2,1,0,1,1------,所有情况两个数之和构成的集合为:{}4,2,1,0,1,2--- 故答案为:{}4,2,1,0,1,2--- 【点睛】此题考查集合的新定义问题,关键在于读懂定义,根据定义找出新集合中的元素即可得解.14.【分析】根据函数的值域以及椭圆的性质求得集合再根据集合的运算即可求解【详解】由题意集合所以【点睛】本题主要考查了集合的运算其中解答中根据函数的值域以及椭圆的性质求得集合是解答的关键着重考查了推理与运解析:[]0,2【分析】根据函数的值域,以及椭圆的性质求得集合,M N ,再根据集合的运算,即可求解. 【详解】由题意,集合{}2,{|0}M y y x x R y y ==∈=≥,221,{|22}4y N y x x R y y ⎧⎫⎪⎪=+=∈=-≤≤⎨⎬⎪⎪⎩⎭,所以{|02}[0,2]M N y y =≤≤=.【点睛】本题主要考查了集合的运算,其中解答中根据函数的值域,以及椭圆的性质求得集合,M N 是解答的关键,着重考查了推理与运算能力,属于基础题.15.R 【解析】分析:根据一元二次不等式的解法先将化简再由并集的运算求详解:因为或故答案为点睛:本题考查并集及其运算一元二次不等式的解法正确化简集合是关键研究集合问题一定要抓住元素看元素应满足的属性研究两解析:R 【解析】分析:根据一元二次不等式的解法先将,A B 化简,再由并集的运算求A B .详解: 因为{}{}2|160|44A x x x x =-<=-<<,{}{2430|1B x x x x x =-+=<或}3x >,A B R ∴⋃=,故答案为R .点睛:本题考查并集及其运算,一元二次不等式的解法,正确化简集合,A B 是关键. 研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A 或属于集合B 的元素的集合.16.【解析】因为命题的否定是所以命题的否定是 解析:,1x x R e x ∀∈≤+【解析】因为命题“,p x ∃”的否定是“,p x ∀⌝” 所以命题“000,1x x R ex ∃∈>+”的否定是,1x x R e x ∀∈≤+17.必要不充分【解析】因为方程表示焦点在轴上的椭圆所以因此是方程表示焦点在轴上的椭圆的必要不充分条件点睛:充分必要条件的三种判断方法定义法:直接判断若则若则的真假并注意和图示相结合例如⇒为真则是的充分条解析:必要不充分 【解析】因为方程22212x y m m +=-表示焦点在x 轴上的椭圆,所以22022m m m >->∴<<因此“02m <<”是“方程22212x y m m +=-表示焦点在x 轴上的椭圆”的必要不充分条件点睛:充分、必要条件的三种判断方法.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.18.【分析】解不等式和由题意可得是的必要不充分条件转化为两集合的包含关系由此可求得实数的取值范围【详解】因为是的充分不必要条件所以是的必要不充分条件解不等式得解不等式解得所以即因此实数的取值范围是故答解析:[]2,1-【分析】解不等式()29x a -<和()3log 21x +<,由题意可得p 是q 的必要不充分条件,转化为两集合的包含关系,由此可求得实数a 的取值范围. 【详解】因为p ⌝是q ⌝的充分不必要条件,所以p 是q 的必要不充分条件,解不等式()29x a -<,得33a x a -<<+,解不等式()3log 21x +<,解得21x -<<.:33p a x a -<<+,:21q x -<<,{}33x a x a ∴-<<+ {}21x x -<<,所以3231a a -≤-⎧⎨+≥⎩,即21a -≤≤.因此,实数a 的取值范围是[]2,1-. 故答案为:[]2,1-. 【点睛】本题考查利用充分不必要条件求参数,解答的关键就是转化为集合的包含关系来处理,考查分析问题和解决问题的能力,属于中等题.19.【分析】由题意结合指数函数的单调性可得的最大值可得的范围【详解】命题为真命题可得的最大值由可得故答案为:【点睛】本题考查不等式能成立问题考查转化与化归思想属于中等题型 解析:(],1-∞【分析】由题意结合指数函数的单调性,可得0a x ≤的最大值,可得a 的范围.【详解】命题“[]01,1x ∃∈-,033x a ≤”为真命题,可得0a x ≤的最大值,由[]01,1x ∈-,可得1a ≤,故答案为:(],1-∞【点睛】本题考查不等式能成立问题,考查转化与化归思想,属于中等题型 20.720【分析】欲求中所有元素和的总和需要知道中的元素和分别是多少;中的元素都可以通过题中已知条件:则求出【详解】解:依题意得为正整数集且及均为正整数即可可取的任意正整数1和9要么必须同时出现要么都不 解析:720.【分析】欲求S 中所有元素和的总和,需要知道S 中的元素和分别是多少;S 中的元素都可以通过题中已知条件:x S ∈,则(10)x S -∈求出.【详解】解:依题意得S 为正整数集,x S ∈,且10x S -∈ x 及10x -均为正整数即可 x 可取19→的任意正整数,1和9要么必须同时出现,要么都不出现;同理:2和8、3和7、4和6依此类推5……单独考虑,共5组.那么:只选1组是45,即(19)(28)545++++⋯⋯+=依此类推:选2组是180,选3组是270,选4组是180,选5组是45,共计4518027018045720++++=.故答案为:720.【点睛】首先要明确*N 所代表的数集,然后根据已知条件将所有的可能考虑全面即可,属于中档题.三、解答题21.(1){|2x x <-或5}x >;(2)(],2-∞.【分析】先化简集合M ,(1)2a =时,求N ,再求()()R R M N ;(2)把M N M ⋃=转化为N M ⊆,建立不等式组,解得a 的取值范围.【详解】(1)2a =时,{}{}|25,|35M x x N x x =-≤≤=≤≤,{|2R M x x =<-或5}x >,{|3R N x x =<或5}x >,()(){|2R R M N x x ∴=<-或5}x >.(2),M N M N M =∴⊆①若N =∅,则121a a +>+,解得0a <,符合题意;②若N ≠∅,则12121512a a a a +≤+⎧⎪+≤⎨⎪+≥-⎩,解得02a ≤≤.综合可得实数a 的取值范围是(],2-∞.【点睛】集合的交、并、补运算:(1)离散型的数集用韦恩图;(2) 连续型的数集用数轴.22.(1){}2,3,4,5,6;(2)见解析.【分析】化简集合U 和A ,(1)根据交集和并集的概念得到A∩B 与A ∪B ;(2)根据集合的交集补集的概念求出(∁U A )∩B ,再写出它的所有子集.【详解】全集U={x ∈N|1≤x≤6}={1,2,3,4,5,6},集合A={x|x 2-6x+8=0}={x|x=2或x=4}={2,4},集合B={3,4,5,6};(1)A∩B={4},A ∪B={2,3,4,5,6};(2)∁U A={1,3,5,6},∴(∁U A )∩B={3,5,6},它的所有子集是∅,{3},{5},{6},{3,5},{3,6},{5,6},{3,5,6}共8个.【点睛】本题考查了集合的化简与运算问题,是基础题目.23.(1)()1,4;(2)322a ≤≤ .【分析】(1)可知p 为真,解出不等式即可;(2)由题可知命题p 等价于{}|4A t a t a =<<,命题q 等价于{}|26B t t =<<,由q 是p 的充分不必要条件可得集合B 是集合A 的真子集,由此列出不等式即可求解.【详解】解:(1)p ⌝为假,∴p 为真,21,540a t t =∴-+<, 解得()1,4t ∈;(2):p 由22540t at a -+<得()(4)0t a t a --<:q 由实数t 满足曲线22126x y t t+=--为双曲线.得(2)(6)0t t --<解之26t << 由0a >且()(4)0t a t a --<得,4a t a <<设{}|4A t a t a =<<,{}|26B t t =<<,因为q 是p 的充分不必要条件,所以集合B 是集合A 的真子集,故有0246a a a >⎧⎪≤⎨⎪≥⎩,得322a ≤≤. 【点睛】本题考查利用集合的关系判断命题的充分不必要条件,其中涉及一元二次不等式和对双曲线方程的理解,属于基础题.24.(1)[1,4]-(2)4m ≥【详解】试题分析:(1)先转化,q ,由且q 为真,得真q 真,解出x (2)由p ⌝是q ⌝的必要不充分条件 得是q 的充分不必要条件,根据数轴列出不等式解出m 试题解:(1)若真:24x -≤≤;当3m =时,若q 真:15x -≤≤ ∵且q 为真 ∴24{15x x -≤≤-≤≤ ∴实数x 的取值范围为:[1,4]-(2)∵p ⌝是q ⌝的必要不充分条件 ∴是q 的充分不必要条件 ∵若q 真:22m x m -≤≤+∴22{42m m-≤-≤+且等号不同时取得 (不写“且等号不同时取得”,写检验也可) ∴4m ≥.考点:复合命题,充要条件,解不等式25.(Ⅰ){(1,2)}AB =;(Ⅱ)[3,)m ∈+∞.【分析】(Ⅰ)联立曲线与直线的方程求出交点,结果写成点集的形式;(Ⅱ)A B ⋂≠∅转化为当[0,3]x ∈时方程213x mx x -+-=-有解,当0x =时,方程不成立;当 (0,3]x ∈时,41m x x +=+,由对勾函数的单调性求出函数4()f x x x=+在(0,3]上的值域即可求得m 的取值范围.【详解】 (Ⅰ)24113203y x x x y x y x ⎧=-+-=⎧⎪=-⇒⎨⎨=⎩⎪≤≤⎩,所以{(1,2)}A B =; (Ⅱ)A B ⋂≠∅等价于当[0,3]x ∈时方程213x mx x -+-=-有解,即2(1)40x m x -++=在[0,3]x ∈上有解, 当0x =时,方程不成立,所以0不是方程的解;当 (0,3]x ∈时,41m x x +=+①, 因为函数4()f x x x=+在(0,2]上单调递减,(2,3]上单调递增,(2)224f =+=, 所以()[4,)f x ∈+∞,①式有解,则143m m +≥⇒≥.综上所述:[3,)m ∈+∞.【点睛】本题考查集合的交集运算,根据集合交集的结果求参数,属于基础题.26.03a <≤【分析】根据题意,求出p ⌝表示的集合,利用p ⌝是q 的充分不必要条件得到集合间的包含关系,进而得到关于a 的不等式组,解不等式即可.【详解】由题意知,:2p x ⌝≤-或10x ≥,因为p ⌝是q 的充分不必要条件, 所以{2x x ≤-或}10x ≥ {1x x a ≤-或}1x a ≥+, 所以121100311a a a a a -≥-⎧⎪+≤⇒<≤⎨⎪+>-⎩,所以实数a 的取值范围为03a <≤.【点睛】本题考查利用充分不必要条件和集合间的包含关系求参数的取值范围;考查逻辑推理能力和运算求解能力;根据题意,正确得出集合间的包含关系是求解本题的关键;属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.以下四个命题中,真命题的是( )A .()0π,sin tan x x x ∃∈=,B .ABC 中,sin sin cos cos A B A B +=+是2C π=的充要条件C .在一次跳伞训练中,甲,乙两位同学各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示p q ∧ D .∀∈θR ,函数()()sin 2f x x θ=+都不是偶函数 2.已知:250p x ->,2:20q x x -->,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件3.24x >成立的一个充分非必要条件是( )A .23x >B .2xC .2x ≥D .3x >4.已知定义在R 上的偶函数()y f x =在[)0,+∞上单调递减,则对于实数a ,b ,“a b >”是“()()f a f b <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.已知集合{}220A x x x =-->,则A =RA .{}12x x -<< B .{}12x x -≤≤ C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥6."tan 1"α=是""4πα=的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件7.已知下列命题:①“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”;②已知,p q 为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题; ③“2019a >”是“2020a >”的充分不必要条件; ④“若0xy =,则0x =且0y =”的逆否命题为真命题. 其中真命题的序号为( ) A .③④B .①②C .①③D .②④8.已知a ∈R ,则“2a ≤”是“方程2210ax x ++=至少有一个负根”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 9.“一条直线l 与平面α内无数条直线异面”是“这条直线与平面α平行”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件10.“8m =”是“椭圆2214x y m +=的离心率为22”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件11.对于()11,2x ∀∈,()21,2x ∃∈,使得211212485211x x mx m x x -+-+=--,则实数m 的取值范围是( ) A .[]0,2 B .(],2-∞ C .()0,2D .(),2-∞12.命题“∀a ,b >0,a +1b≥2和b +1a ≥2至少有一个成立”的否定为( )A .∀a ,b >0,a +1b<2和b +1a <2至少有一个成立B .∀a ,b >0,a +1b≥2和b +1a ≥2都不成立C .∃a ,b >0,a +1b<2和b +1a <2至少有一个成立D .∃a ,b >0,a +1b≥2和b +1a ≥2都不成立二、填空题13.命题“2000,2390x R x ax ∃∈-+<”为假命题,则实数a 的取值范围是 .14.已知集合U =R ,集合[]5,2A =-,()1,4B =,则下图中阴影部分所表示的集合为__________.15.已知:条件p :120x-≥和q :()()22110x a x a a -+++<,若p ⌝是q ⌝的必要不充分条件,则实数a 的取值范围是______.16.下列有关命题的说法正确的是___(请填写所有正确的命题序号).①命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”; ②命题“若x y =,则sin sin x y =”的逆否命题为真命题; ③条件2:p x x ≥-,条件:q x x =,则p 是q 的充分不必要条件;④已知0x >时,()()10x f x '-<,若ABC ∆是锐角三角形,则()()sin cos f A f B >. 17.己知全集U =R ,集合,,则___________18.已知{|12},[0,4]M x m x m N =-≤≤=,且M N M ⋂=,则实数m 的取值范围_____________;19.某学校举办运动会时,高一(1)班共有26名学生参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时游泳比赛和球类比赛的有3人,没有人同时参加三项比赛,则同时参加球类比赛和田径比赛的学生有__人.参考答案 20.设{}1,2,3,M n =,则M 的所有子集的最小元素之和为__________三、解答题21.已知集合{}{}|321,|53A x a x a B x x =-≤≤+=-≤≤,全集U =R . (1)当1a =时,求()UA B ;(2)若A B ⊆,求实数a 的取值范围.22.已知集合{}2540P xx x =-+≤∣,{}11S x m x m =-≤≤+∣. (1)用区间表示集合P ;(2)是否存在实数m ,使得x P ∈是x S ∈的______条件.若存在实数m ,求出m 的取值范围:若不存在,请说明理由.请从如下三个条件选择一个条件补充到上面的横线上: ①充分不必要;②必要不充分;③充要.23.已知集合{}13A x x =<<,集合{}21B x m x m =<<-. (1)当1m =-时,求A B ;(2)若A B ⊆,求实数m 的取值范围;(3)若AB =∅,求实数m 的取值范围.24.已知函数()()()322-f x x x =-+A ,()()()lg 12(1)g x x a a x a ⎡⎤=---<⎣⎦的定义域为B .(1)求A .(2)记2222222040/2/22300B A AB v v a m s m s S --===-⨯ :q x B ∈,若p 是q 的必要不充分条件,求实数a 的取值范围.25.已知集合{}2650A x x x =+->,集合()(){}110B x x a x a =-+-->,其中0a >.(1)若2a =,求()RAB ;(2)设:p x A ∈,:q x B ∈.若p ⌝是q 的充分不必要条件,求a 的取值范围. 26.设全集U =R ,集合{}12A x x =-≤≤,{}40B x x p =+<. (1)若2p =,求A B ;(2)若UB A ⊆,求实数p 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分析()0π,sin tan x x x ∀∈≠,即得A 错误;利用充要条件的定义判断B 正确;利用复合命题的定义判断C 错误;通过特殊值验证D 错误即可. 【详解】 选项A 中,,2x ππ⎛⎫∈⎪⎝⎭时,sin 0,tan 0x x ><,即sin tan x x ≠;2x π=时,sin 1x =,tan x 无意义;0,2x π⎛⎫∈ ⎪⎝⎭时,设()sin tan sin sin cos x h x x x x x =-=-,则()32211cos cos 0cos cos xh x x x x-'=-=>,故()tan sin h x x x =-在0,2π⎛⎫ ⎪⎝⎭上单调递增, 故()()tan sin 00h x x x h =->=,即sin tan x x <;综上可知,()0π,sin tan x x x ∀∈≠,,故A 错误;选项B 中,ABC 中,若sin sin cos cos A B A B +=+,则sin cos cos sin A A B B -=-,44A B ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,即sin sin 44A B ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,又33,,,444444A B ππππππ⎛⎫⎛⎫-∈--∈- ⎪ ⎪⎝⎭⎝⎭,故44A B ππ-=-或44A B πππ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,所以2A B π+=或A B π-=,ABC 中A B π-≠,故2A B π+=,即2C π=;反过来,若2C π=,则2A B π+=,结合诱导公式可知,sin sin cos 2A B B π⎛⎫=-=⎪⎝⎭, sin sin cos 2B A A π⎛⎫=-= ⎪⎝⎭,所以sin sin cos cos A B A B +=+;综上,sin sin cos cos A B A B +=+是2C π=的充要条件,故B 正确;选项C 中,依题意,命题p ⌝是“甲没有降落在指定范围”, q ⌝是“乙没有降落在指定范围”,故复合命题()()p q ⌝∨⌝ 是“至少有一位学员没有降落在指定范围”,故C 错误; 选项D 中,存在2πθ=时,函数()sin 2cos 22f x x x π⎛⎫=+= ⎪⎝⎭,满足()()f x f x -=,即()f x 是偶函数,故D 错误. 故选:B. 【点睛】 方法点睛:(1)证明或判断全称命题为真命题时,要证明对于,()x I p x ∀∈成立;证明或判断它是假命题时,只需要找到一个反例,说明其不成立即可.(2)证明或判断特称命题为真命题时,只需要找到一个情况,说明其成立即可;证明或判断它是假命题时,要证明对于,()x I p x ∀∈⌝成立.2.A解析:A 【分析】先求出,p q 对应的不等式的解,再利用集合包含关系,进而可选出答案. 【详解】由题意,5:2502p x x ->⇒>,设5|2A x x ⎧⎫=>⎨⎬⎩⎭2:20q x x -->,解得:2x >或1x <-,设{|2B x x =>或}1x <-显然A 是B 的真子集,所以p 是q 的充分不必要条件. 故选:A. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.3.D解析:D 【分析】根据题意,找到24x >解集的一个真子集即可求解. 【详解】由24x >解得2x >或2x <-,所以24x >成立的一个充分非必要条件是(2)(2,)-∞-+∞的真子集,因为3+∞(,) (2)(2,)-∞-+∞,所以24x >成立的一个充分非必要条件是3x >, 故选:D 【点睛】本题主要考查了充分条件、必要条件,真子集的概念,属于中档题.4.B解析:B 【分析】根据充分条件与必要条件的判断,看条件与结论之间能否互推,条件能推结论,充分性成立,结论能推条件,必要性成立,由此即可求解. 【详解】解:∵定义在R 上的偶函数()y f x =在[)0,+∞上单调递减,∴()y f x =在(),0-∞上单调递增,∴当(),0a ∈-∞,(),0b ∈-∞时,如1,2a b =-=-,满足a b > ,但()()>f a f b ,所以由“a b >”推不出“()()f a f b <”,反之,当a R ∈,b R ∈时,“()()f a f b <”⇒“a b >”⇒“a b >”, 故对于实数a ,b ,“a b >”是“()()f a f b <”的必要不充分条件, 故选:B . 【点睛】本题以函数的奇偶性为背景,考查充分条件与必要条件的判断,考查理解辨析能力,属于中档题.5.B解析:B 【解析】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果. 详解:解不等式220x x -->得12x x <->或, 所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.6.B解析:B 【解析】 由"tan 1"α=,得,而""4πα=得"tan 1"α=,所以"tan 1"α=是""4πα=的必要非充分条件. 故选B7.B解析:B 【分析】由命题的否定,复合命题的真假,充分必要条件,四种命题的关系对每个命题进行判断. 【详解】“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”,正确;已知为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题,正确; “2019a >”是“2020a >”的必要不充分条件,错误;“若0xy =,则0x =且0y =”是假命题,则它的逆否命题为假命题,错误. 故选:B . 【点睛】本题考查命题真假判断,掌握四种命题的关系,复合命题的真假判断,充分必要条件等概念是解题基础.8.B解析:B 【分析】分类讨论a 的正负,利用两根与系数的关系、判别式,进而求解判断即可. 【详解】(1)当0a =时,方程变为210x +=,有一负根12x =-,满足题意;(2)当0a <时,440∆=->a ,方程的两根满足1210x x a=<,此时有且仅有一个负根,满足题意;(3)当0a >时,由方程的根与系数关系可得2010aa⎧-<⎪⎪⎨⎪>⎪⎩,∴方程若有根,则两根都为负根,而方程有根的条件440a ∆=-≥,01a ∴<≤.综上可得,1a ≤.因此,“2a ≤”是“方程2210ax x ++=至少有一个负根”的必要不充分条件. 故选:B.本题考查必要不充分条件的判断,考查二次方程根的分布问题,考查分类讨论思想的应用,属于中等题.9.B解析:B 【分析】根据异面直线的定义及直线与平面平行的定义即可判定. 【详解】因为满足“一条直线l 与平面α内无数条直线异面”这样条件的直线可以和平面相交, 所以推不出“这条直线与平面α平行”,当直线满足与平面α平行时,可以推出这条直线与平面α内无数条直线异面, 所以“一条直线l 与平面α内无数条直线异面”是“这条直线与平面α平行”的必要不充分条件, 故选:B 【点睛】本题主要考查了充分条件、必要条件,直线与平面的位置关系,属于中档题.10.A解析:A 【分析】椭圆2214x y m +=,可得:4m >2=04m <<时,2=,解得m 即可判断出结论. 【详解】椭圆2214x y m +=离心率为2,可得:4m >2=,8m ∴=;04m <<=,2m ∴=总之8m =或2.∴“8m =”是“椭圆2214x y m +=离心率为2”的充分不必要条件. 故选:A . 【点睛】本题考查了椭圆的标准方程及其性质、充分不必要条件的判定方法,考查了推理能力与计算能力,属于基础题.11.D解析:D设(1,2)x ∈时,2485()1x x f x x -+=-的值域A ,2()1mx m g x x -+=-的值域B ,只要A B ⊆即可满足题意.【详解】设2485()1x x f x x -+=-((1,2)x ∈),24(1)11()4(1)11x f x x x x -+==-+--, 设1t x =-,则1()4f x y t t ==+,则(0,1)x ∈,由勾形函数性质知当102t <<时,y 递减,当112t <<时,y 递增, min 1144122y =⨯+=,[4,)y ∈+∞,即()f x 值域为[4,)+∞, 2()1mx m g x x -+=-((1,2)x ∈),设1x t -=,(0,1)t ∈,则2()g x y m t==+,(0,1)t ∈时,2y m t=+是减函数,(2,)y m ∈++∞,即()(2,)g x m ∈++∞, 对于()11,2x ∀∈,()21,2x ∃∈,使得211212485211x x mx m x x -+-+=--,则24m +<,2m <.故选:D . 【点睛】本题考查含有存在题词与全称题词的命题恒成立问题,解题关键是把问题转化为集合之间的包含关系.12.D解析:D 【分析】将“全称量词”改“存在量词”,“至少有一个成立”改为“都不成立”即可得到. 【详解】 “∀a ,b >0,a +1b≥2和b +1a ≥2至少有一个成立”的否定为:∃a ,b >0,a +1b≥2和b +1a ≥2都不成立.故选:D 【点睛】本题考查了全称命题的否定,属于基础题.二、填空题13.【解析】试题分析:由题意可得命题:为真命题所以解得考点:命题的真假解析:a -≤≤【解析】试题分析:由题意可得命题:x R ∀∈,22390x ax -+≥为真命题. 所以()234290a ∆=--⨯⨯≤,解得a -≤≤ 考点:命题的真假.14.【解析】因为所以或则图中阴影部分所表示的集合为应填答案 解析:[]5,1-【解析】因为[]5,2A =-,()1,4B =,所以{|1U C B x x =≤或4}x ≥,则图中阴影部分所表示的集合为(){|51}U C B A x x ⋂=-≤≤,应填答案[]5,1-.15.【分析】根据是的必要不充分条件得到计算得到答案【详解】即;即是的必要不充分条件故得到解得故答案为:【点睛】本题考查了根据必要不充分条件求参数意在考查学生的推断能力 解析:102-<≤a【分析】根据p ⌝是q ⌝的必要不充分条件,得到{}1012x x x a x a ≠⎧⎫<≤⊂<<+⎨⎬⎩⎭,计算得到答案. 【详解】120x-≥,即102x <≤;()()22110x a x a a -+++<,即1a x a <<+.p ⌝是q ⌝的必要不充分条件,故{}1012x x x a x a ≠⎧⎫<≤⊂<<+⎨⎬⎩⎭,得到0112a a ≤⎧⎪⎨+>⎪⎩,解得102-<≤a . 故答案为:102-<≤a .【点睛】本题考查了根据必要不充分条件求参数,意在考查学生的推断能力.16.②④【分析】根据否命题与原命题的关系可判断命题①的真假;判断出原命题的真假可判断出其逆否命题的真假从而判断出命题②的真假;解出不等式以及根据集合的包含关系得出命题③的真假;根据得出函数在上的单调性由解析:②④ 【分析】根据否命题与原命题的关系可判断命题①的真假;判断出原命题的真假可判断出其逆否命题的真假,从而判断出命题②的真假;解出不等式2x x ≥-以及x x =,根据集合的包含关系得出命题③的真假;根据()()10x f x '-<得出函数()y f x =在()0,1上的单调性,由ABC ∆是锐角三角形,得出sin cos A B >,结合函数()y f x =的单调性判断命题④的真假.【详解】对于①,命题“若21x =,则1x =”的否命题是:“若21x ≠,则1x ≠”,故错误;对于②,命题“若x y =,则sin sin x y =”是真命题,则它的逆否命题也是真命题,故正确;对于③,条件2:p x x ≥- ,即为1x ≤-或0x ≥;条件:q x x =,即为0x ≥;则q 是p的充分不必要条件,故错误;对于④,0x >时,()()10x f x '-<,当01x <<时,()0f x '>,则()f x 在()0,1上是增函数;当ABC ∆是锐角三角形,2A B π+>,即2A B π>-, 所以sin sin cos 2A B B π⎛⎫>-=⎪⎝⎭,则()()sin cos f A f B >,故正确. 故答案为②④.【点睛】本题考查命题真假的判断,涉及四种命题、充分必要条件的判断以及函数单调性的应用,解题时应根据这些基础知识进行判断,考查推理能力,属于中等题. 17.【解析】试题分析:本题首先求出集合AB 再求它们的运算这两个集合都是不等式的解集故解得因此考点:集合的运算解析:【解析】试题分析:本题首先求出集合A ,B ,再求它们的运算,这两个集合都是不等式的解集,故解得{|31}A x x x =-或,{|02}B x x =<≤,因此()(0,1]U A B ⋂=.考点:集合的运算. 18.【分析】先根据条件确定集合包含关系再分类讨论得结果【详解】当时满足条件此时当时综上实数m 的取值范围为【点睛】本题考查集合包含关系考查基本分析求解能力属基础题解析:()[],11,2-∞-⋃【分析】先根据条件确定集合包含关系,再分类讨论得结果.【详解】M N M M N ⋂=∴⊂当M φ=时,满足条件,此时12,1m m m -><-当M φ≠时, 10,2412m m m -≥≤∴≤≤综上,实数m 的取值范围为(,1)[1,2]-∞-⋃【点睛】本题考查集合包含关系,考查基本分析求解能力,属基础题.19.5【解析】【分析】根据15人参加游泳比赛有8人参加田径比赛同时参加游泳和田径的有3人同时参加游泳和球类比赛的有3人可以求得只参加游泳比赛的人数;再结合总人数即可求得同时参加田径和球类比赛的人数【详解 解析:5【解析】【分析】根据15人参加游泳比赛,有8人参加田径比赛,同时参加游泳和田径的有3人,同时参加游泳和球类比赛的有3人,可以求得只参加游泳比赛的人数;再结合总人数即可求得同时参加田径和球类比赛的人数.【详解】解:有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,这三项累加时,比全班人数多算了三部分,即同时参加游泳比赛和田径比赛的、同时参加游泳比赛和球类比赛的和同时参加田径比赛和球类比赛的重复算了两次所以15+8+14﹣3﹣3﹣26=5,就是同时参加田径比赛和球类比赛的人数,所以同时参加田径比赛和球类比赛的有5人.故答案为5.【点睛】本题主要考查集合之间的元素关系,注意每两种比赛的公共部分,属于中档题. 20.【分析】先确定元素再确定该元素为最小时对应子集个数最后利用错位相减法求和【详解】若1为最小元素则对应子集个数为个;若2为最小元素则对应子集个数为个;…若n 为最小元素则对应子集个数为个;所以的所有子集 解析:122n n +--【分析】先确定元素,再确定该元素为最小时对应子集个数,最后利用错位相减法求和.【详解】若1为最小元素,则对应子集个数为12n -个;若2为最小元素,则对应子集个数为22n -个;…...若n 为最小元素,则对应子集个数为02个;所以M 的所有子集的最小元素之和为2301223222n n n n ---+⨯+⨯++⨯ 设1230222322n n n n S ---+⨯+=⨯++⨯1212232222n n n n S --+⨯+⨯++⨯= 相减得231112(12)222222212n n n n n n n n n S ---+-++++-==-=--+- 故答案为:122n n +--【点睛】本题考查错位相减法求和以及子集个数,考查综合分析求解能力,属中档题.三、解答题21.(1){}|52x x -≤<-;(2)4a或21a -≤≤. 【分析】(1)求出集合A 从而求U A ,再与集合B 取交集即可;(2)分A φ=和A φ≠两种情况讨论根据A B ⊆列出不等式(组)求a 的取值范围.【详解】(1)依题意,当1a =时,{}|23A x x =-≤≤,则|2U A x x =<-{或3}x >, 又{}|53B x x =-≤≤,则()|2U A B x x =<-{或{}{}|53|3}52x x x x x -≤≤->=≤<-.(2)若A B ⊆,则有{}{}|321|53x a x a x x -≤≤+⊆-≤≤,于是有: 当A φ=时,A B ⊆显然成立,此时只需321a a ->+,即4a; 当A φ≠时,若A B ⊆,则35221313214a a a a a a a -≥-≥-⎧⎧⎪⎪+≤⇒≤⎨⎨⎪⎪-≤+≥-⎩⎩,所以:21a -≤≤综上所述,a 的取值范围为:4a或21a -≤≤.【点睛】易错点点睛:在利用集合的包含关系求参数时注意以下两点:(1)已知两个集合之间的关系求参数时,要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解;(2)在解决两个数集关系问题时,避免出错的一个有效手段是合理运用数轴帮助分析与求解,另外,在解含有参数的不等式(或方程)时,要对参数进行讨论.22.(1)[]1,4;(2)答案见解析.【分析】(1)解不等式后可得集合P .(2)根据条件关系可得对应集合的包含关系,从而可得参数的取值范围.【详解】(1)因为254x x -+即()()140x x --≤,所以14x ≤≤,{}[]2|1,4045P x x x ≤==-+.(2)若选择①,即x P ∈是x S ∈的充分不必要条件,则11m m -≤+且11,14m m -≤⎧⎨+≥⎩(两个等号不同时成立), 解得3m ≥,故实数m 的取值范围是[3,)+∞.若选择②,即x P ∈是x S ∈的必要不充分条件.当S =∅时,11m m ->+,解得0m <.当S ≠∅时,11m m -≤+且11,14,m m -≥⎧⎨+≤⎩(两个等号不同时成立), 解得0m =.综上,实数m 的取值范围是(],0-∞.若选择③,即x P ∈是x S ∈的充要条件,则P S =,即11,14,m m -=⎧⎨+=⎩此方程组无解, 则不存在实数m ,使x P ∈是x S ∈的充要条件.【点睛】方法点睛:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 23.(1){}23A B x x ⋃=-<<;(2)(],2-∞-;(3)[)0,+∞.【分析】(1)求出集合B ,利用并集的定义可求得集合A B ; (2)利用A B ⊆可得出关于实数m 的不等式组,由此可解得实数m 的取值范围; (3)分B =∅和B ≠∅两种情况讨论,结合AB =∅可得出关于实数m 的不等式组,可求得实数m 的取值范围.【详解】(1)当1m =-时,{}22B x x =-<<,则{}23A B x x ⋃=-<<; (2)由A B ⊆知122113m m m m ->⎧⎪≤⎨⎪-≥⎩,解得2m ≤-,即m 的取值范围是(],2-∞-;(3)由AB =∅得 ①若21m m ,即13m ≥时,B =∅符合题意;②若21m m ,即13m <时,需1311m m ⎧<⎪⎨⎪-≤⎩或1323m m ⎧<⎪⎨⎪≥⎩. 得103m ≤<或m ∈∅,即103m ≤<. 综上知0m ≥,即实数的取值范围为[)0,+∞.【点睛】易错点睛:在求解本题第(3)问时,容易忽略B =∅的情况,从而导致求解错误. 24.(1) {|11}A x x x =≥≤-或 (2)][1,2,12⎛⎫-∞-⋃ ⎪⎝⎭【分析】(1)根据二次根式有意义条件,可解不等式得定义域A.(2)根据对数函数真数大于0,解不等式得集合B.根据p 是q 的的必要不充分条件,即可得关于a 的不等式,进而求得a 的取值范围.【详解】(1)要使()f x 有意义,则()()3x 22x 0-+-≥化简整理得()()x 1x 10+-≥解得x 1x 1≥≤-或 ∴ A {x |x 1x 1}=≥≤-或(2)要使()g x 有意义,则()()x a 12a x ]0--->即()()x a 1x 2a ]0---<又a 1<a 12a ∴+>B {x |2a x a 1}∴=<<+ p 是q 的必要不充分条件B ∴是A 的真子集2a 1a 11∴≥+≤-或 解得1a 1a 22≤<≤-或 a ∴的取值范围为][1,2,12⎛⎫-∞-⋃ ⎪⎝⎭. 【点睛】本题考查了函数定义域的求法,充分必要条件的应用,根据集合的关系求参数的取值范围,属于基础题.25.(1){}13x x -<≤;(2)(0,2].【分析】分别求解一元二次不等式化简A 与B .(1)把2a =代入集合B ,再由交、并、补集的混合运算得答案;(2)由p ⌝是q 的充分不必要条件,得R A B ,进一步转化为两集合端点值间的关系列不等式组求解.【详解】 2{|650}{|16}A x x x x x =+->=-<<,{|(1)(1)0}{|1B x x a x a x x a =-+-->=<-或1}x a >+.(1)若2a =,则{|1B x x =<-或3}x >,{|13}R B x x =-,(){|16}{|13}{|13}R A B x x x x x x ∴⋂=-<<⋂-=-<;(2)若p ⌝是q 的充分不必要条件,A R 1{|x x =≤-或6}x ≥则R A B .∴01116a a a >⎧⎪--⎨⎪+⎩且不等式组中两等号不同时成立,解得02a <.a ∴的取值范围是(0,2].【点睛】本题考查交、并、补集的混合运算以及利用包含关系求参数,考查充分条件与必要条件的判定方法,考查数学转化思想方法,是中档题.26.(1)112A B x x ⎧⎫⋂=-≤<-⎨⎬⎩⎭(2)4p ≥ 【分析】(1)根据交集的概念和运算,求得A B . (2)根据U B A ⊆列不等式,解不等式求得实数p 的取值范围. 【详解】(1)∵2p =, ∴12B x x ⎧⎫=<-⎨⎬⎩⎭, ∴112A B x x ⎧⎫⋂=-≤<-⎨⎬⎩⎭.(2)∵4p B x x ⎧⎫=<-⎨⎬⎩⎭,{1U A x x =<-或}2x >, 又∵U B A ⊆, ∴144p p -≤-⇒≥. 【点睛】本小题主要考查交集、补集的概念和运算,考查根据包含关系求参数的取值范围,属于中档题.。