行程问题应用题解析

合集下载

小学数学中的行程问题公式及解析

小学数学中的行程问题公式及解析

小学数学中的行程问题公式及解析一、基本行程问题行程问题的三个基本量是距离、速度和时间,按所行方向的不同可分为三种:(1)相遇问题:(2)相离问题;(3)追及问题。

行程问题的主要数量关系是:距离=速度x时间。

它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和*时间。

(3)同向而行:速度慢的在前,快的在后。

追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。

追及距离=速度差x时间。

解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关有助于迅速地找到解题思路。

(一)相遇问题行程问题是研究相向运动中的速度、时间和路程三者之间关系的问题,(涉及两个或两个物体运动的问题)指两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题相遇问题。

数量关系:路程÷速度和=相遇时间路程÷相遇时间=速度和速度和x相遇时间=路程温馨提示:(1)在处理相遇问题时,一定要注意公式的使用时二者发生关系那一时刻所处的状态;(2)在行程问题里所用的时间都是时间段,而不是时间点(非常重要);(3)无论是在哪类行程问题里,只要是相遇,就与速度和有关。

(2)解题秘诀:(3)(1)必须弄清物体运动的具体情况,运动方向(相向),出发地点(两地),出发时间(同时、先后),运动路径(封闭、不封闭),运动结果(相遇)等。

(4)(2)要充分运用图示、列表等方法,正确反映出数量之间的关系,帮助我们理解题意,迅速的找到解题思路。

(二)追及问题追及问题也是行程问题中的一种情况。

这类应用题的特点是:①两个物体同时同一方向运动;②出发的地点不同(或从同一地点不同时出发,向同一方向运动);迫及路程=路程差=两个物体之间相距的路程迫及速度=速度差=快的速度-慢的速度慢的物体追上快的物体的所用的时间为追及时间③慢者在前,快者在后,因而快者离慢者越来越近,最后终于可以追上。

行程问题(火车过桥问题)三道典型例题(附解题思路及答案)

行程问题(火车过桥问题)三道典型例题(附解题思路及答案)

行程问题(火车过桥问题)三道典型例题(附解题思路及答案)我们在研究一般行程问题时,都不考虑运动物体的长度,但是当研究火车过桥过隧道问题时,有一火车的长度太长,所以不能忽略不计。

火车过桥问题主要有以下几个类型:1、最简单的过桥问题,火车过桥。

例:一列长120米的火车,通过长400米的桥,火车的速度是10米/秒,求火车通过桥需多长时间?解题思路:火车行的路程是一个车长+桥长,然后利用公式时间=路程÷速度即可求出通过桥的时间。

答案:(120+400)÷10=52(秒)答:火车通过桥需要52秒。

2、两列火车错车问题。

例(1):两列火车相向而行,甲火车的速度是20米/秒,乙火车的速度是25米/秒,当两车错车时,甲车一乘客,看到乙车火车头从她的窗前经过,到乙车车尾离开他的窗户,共用时8秒,求乙车的长度。

解题思路:这类问题类似于相遇问题,路程是乙车车长,然后利用公式路程=速度和x时间算出乙车车长。

答案:(20+25)x8=360(米)答:乙车长360米。

例(2):两列火车相向而行,甲火车的速度是20米/秒,乙火车的速度是25米/秒,已知甲车长250米,乙车长200米,从两车车头到两车车尾离开,需要多少时间?解题思路:这类问题类似于相遇问题,路程是两车车长,然后利用公式时间=路程÷速度和算出错时间。

答案:(200+250)÷(25+20)=10(秒)答:需要10秒。

3、两列火车超车问题。

例:两列火车同向而行,甲火车的速度是20米/秒,乙火车的速度是25米/秒,已知甲车长250米,乙车长200米,从乙车车头追上甲车车尾到乙车车尾离开甲车头需多少时间?解题思路;此类问题相当于追及问题。

追及路程是两车的车长和,然后利用追及问题公式追及时间=追及路程÷速度差求出时间。

答案: (250+200)十(25-20)=90(秒)答:需要90秒。

小学数学10种经典行程问题解法总结

小学数学10种经典行程问题解法总结

小学数学10种经典行程问题解法总结行程问题是小学数学应用题中的基本问题,它包含了简单的相遇及追及问题、多人相遇追及问题、多次相遇追及问题、流水行船问题、环形跑道问题、钟面行程问题、火车过桥问题、猎狗追兔问题等,但万变不离其宗。

行程问题是物体匀速运动的应用题。

不论是同向运动还是相向运动,最后反映出来的基本关系式都可以归纳为:路程=速度×时间。

要想解答行程问题,首先要弄清物体的具体运动情况,可以在纸上画出相应的运动轨迹,更方便观察思考。

以下是总结的10种经典行程问题的相关解法。

一、简单相遇及追及问题相遇问题:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)甲速或乙速=总路程÷相遇时间-乙速或甲速追及问题:距离差=速度差×追及时间追及时间=距离差÷速度差速度差=距离差÷追及时间速度差=快速-慢速相离问题:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间二、流水行船问题(1)船速+水速=顺水速度(2)船速-水速=逆水速度(3) (顺水速度+逆水速度)÷2=船速(4) (顺水速度-逆水速度)÷2=水速两船在水流中的相遇问题与在静水中及两车在陆地上的相遇问题一样,与水速没有关系因为:甲船顺水速度+乙船逆水速度=(甲船速+水速) + (乙船速-水速)=甲船速+乙船速如果两只船在水流中同向运动,一只船追上另一只船的时间,也与水速无关因为:甲船顺水/逆水速度-乙船顺水/逆水速度=(甲船速+/-水速)-(乙船速+/-水速)=甲船速-乙船速三、环形跑道问题从同一地点出发(1)如果是相向而行,则每走一图相遇一次(2)如果是同向而行,则每追上一图相過一次四、多人相遇追及问题基本公式:路程和=速度和×相遇时间路程差=速度差×追及时间例题:有甲、乙、丙三人,甲每分钟走80米,乙每分钟走60米,丙每分钟走40米,现在甲从东端,乙、丙两人从西端同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇。

初中奥数行程问题应用题答案解析

初中奥数行程问题应用题答案解析

初中奥数行程问题应用题答案解析【题目1】有甲乙丙三车各以一定的速度从A到B,乙比丙晚出发10分钟,出发后40分钟追上丙,甲比乙又晚出发10分钟,出发后60分钟追上丙,问,甲出发后多少分钟能够追上乙?【解答】乙丙的速度比是(10+40):40=5:4,甲丙的速度比是(20+60):60=4:3。

所以甲乙的速度比是4/3:5/4=16:15,甲比乙晚出发10分钟,能够得出甲用了15×10=150分钟追上乙。

【题目2】正方形ABCD是一条环形公路,已知汽车在AB上的时速为90千米,在BC上的时速是120千米,在CD上的时速是60千米,在DA上的时速是80千米。

已知从CD上的一点P同时反向各发一辆汽车,他们将在A、B的中点上相遇。

那么如果从PC中点M点同时反向各发一辆汽车,他们将在A、B上的一点N相遇。

求AN占AB的几分之几?【解答】设每边720千米,AB、BC、CD和DA分别需要8,6,12,9小时,D→P需要(12-9+6)÷2=4.5小时,P→D→A需要13.5小时,这时相距8+6-13.5=0.5小时的路程,A→N就需要0.5÷2=1/4小时,所以AN:AB=1/4÷8=1/32【题目3】甲乙二人在400米的跑道上实行两次竞赛,第一次乙先跑到25米后,甲开始追乙,到终点比乙提前7.5秒,第二次乙先跑18秒后,甲追乙,当乙到终点时,甲距终点40米,求在400米内,甲乙速度各多少?【解答】第一次甲行全程的时间乙行了全程的1-25÷400=15/16少7.5秒。

第二次甲行全程的1-40÷400=9/10的时间乙就行了全程的15/16×9/10=27/32少7.5×9/10=27/4秒。

乙行完全程需要(18-27/4)÷(1-27/32)=72秒。

乙每秒行400÷72=50/9米。

甲每秒行(400-40)÷(72-18)=20/3米【题目4】甲乙两人分别从AB两地同时出发,在AB之间往返跑步,甲每秒跑3米,乙每秒跑7米。

六年级数学路程问题应用题试题答案及解析

六年级数学路程问题应用题试题答案及解析

六年级数学路程问题应用题试题答案及解析1.(3分)一辆货车从甲地开往乙地,平均每小时行55千米.当这辆货车行了全程的20%时,如果再行79.2千米,那么已行的路程与全程的比正好是3:5.这辆货车从甲地到乙地要行多少时间?【答案】3.6小时.【解析】当这辆货车行了全程的20%时,如果再行79.2千米,那么已行的路程与全程的比正好是3:5,也就是已行的路程是全程的,79.2千米占全程的﹣20%,用除法得出甲乙两地的路程,再除以货车的速度即可得这辆货车从甲地到乙地要行的时间.解:79.2÷(﹣20%)=79.2÷40%=198(千米),198÷55=3.6(小时),答:这辆货车从甲地到乙地要行3.6小时.点评:本题考查了简单的行程问题﹣比的应用.得出79.2千米占全程的﹣20%.2.(5分)快、慢两车同时从相距480千米的两地相向而行,3小时后还相距全程的﹣,照这样的速度,两车还要经过几小时才能相遇?【答案】6小时【解析】3小时后还相距全程的,即两车三小时共行了全程的1﹣,根据分数除法的意义,两车共行全程即相遇需要3÷(1﹣)小时,所以照这样的速度,两车还要经过3÷(1﹣)﹣3小时才能相遇.解:3÷(1﹣)﹣3=3﹣3=9﹣3=6(小时)答:两车还需要6小时相遇.点评:完成本题根据分数除法的意义求出共需多少时间较简便,不需要计算具体速度.3.有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?【答案】经过分钟,时针与分针第一次重合;经过时针与分针第二次重合。

【解析】在lO点时,时针所在位置为刻度10,分针所在位置为刻度12;当两针重合时,分针必须追上50个小刻度,设分针速度为“l”,有时针速度为“”,于是需要时间:。

所以,再过分钟,时针与分针将第一次重合.第二次重合时显然为12点整,所以再经过分钟,时针与分针第二次重合。

五年级奥数行程问题应用题及答案

五年级奥数行程问题应用题及答案

行程问题奥数题及答案1甲,乙两站相距300千米,每30千米设一路标,早上8点开始,每5分钟从甲站发一辆客车开往乙站,车速为60千米每小时,早上9点30分从乙站开出一辆小汽车往甲站,车速每小时100千米,已知小汽车第一次在某两相邻路标之间(不包括路标处)遇见迎面开来的10辆客车,问:从出发到现在为止,小汽车遇见了多少辆客车?行程答案:小汽车出发遇到第一辆客车是在(300-60×1.5)÷(100+60)=21/16小时,小汽车每行一段需要30÷100=3/10小时,此时在(21/16)÷(3/10)=4又3/8段的地方相遇。

遇到第一辆客车后,每隔5÷(100+60)=5/160小时遇到一辆客车,当在端点遇到客车时,每断路只能再遇到9辆车[(3/10)÷(5/160)=9.6],因此过路标少于3/10-9×(5/160)=3/160小时遇到客车时,才能满足条件。

当小汽车行完5段,就刚好在路标处遇到第7辆,因此这段只能遇到9辆,下一次刚好能遇到10辆,所以共遇到了7+9+10=26辆。

行程问题奥数题及答案2A城每隔30分钟有直达班车开往B镇,速度为每小时60千米;小王骑车从A城去B 镇,速度为每小时20千米。

当小王出发30分钟时,正好有一趟班车(这是第一趟)追上并超过了他;当小王到达B镇时,第三趟班车恰好与他同时到达。

A、B间路程为多少千米?行程答案:由于班车速度是小王速度的3倍,所以当第一趟班车追上并超过小王的`那一刻,由于小王已出发30分钟,所以第一趟班车已出发30÷3=10分钟;再过50分钟,第三趟班车出发,此时小王已走了30+50=80分钟,从此刻开始第三趟班车与小王同向而行,这是一个追及问题。

由于班车速度是小王速度的3倍,所以第三趟班车走完全程的时间内小王走了全程的三分之一,所以小王80分钟走了全程的三分之二,AB间路程为:20×80/60÷2/3=40千米。

行程问题应用题50道配套习题及详解

行程问题应用题50道配套习题及详解

50道行程配套习题及详解1.甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。

2.甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷()=36分钟,所以路程=36×(60+75)=4860米。

3.A,B两地相距540千米。

甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。

设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。

那么两车第三次相遇为止,乙车共走了多少千米解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。

所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。

第二次相遇,乙正好走了1份到B地,又返回走了1份。

这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。

4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。

如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。

行程问题应用题及答案

行程问题应用题及答案

行程问题应用题及答案行程问题应用题及答案 11、羊跑5步的时间马跑3步,马跑4步的距离羊跑7步,现在羊已跑出30米,马开始追它。

问:羊再跑多远,马可以追上它?2、甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?3、在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?4、慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?5、在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?6、一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)7、猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。

8、 AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?9、甲乙两车同时从AB两地相对开出。

第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。

第二次相遇时离B地的距离是AB全程的1/5。

已知甲车在第一次相遇时行了120千米。

AB两地相距多少千米?10、一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。

小学数学应用题综合训练(行程问题大全含解析)

小学数学应用题综合训练(行程问题大全含解析)

行程问题篇及答案1.小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?解答:爸爸骑车和小明步行的速度比是(1-3/10):(1/2-3/10)=7:2,骑车和步行的时间比就是2:7,所以小明步行3/10需要5÷(7-2)×7=7分钟,所以,小明步行完全程需要7÷3/10=70/3分钟。

2. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.解答:乙车比甲车多行11-7+4=8分钟。

说明乙车行完全程需要8÷(1-80%)=40分钟,甲车行完全程需要40×80%=32分钟,当乙车行到B地并停留完毕需要40÷2+7=27分钟。

甲车在乙车出发后32÷2+11=27分钟到达B地。

即在B地甲车追上乙车。

3. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?解法一:甲车和乙车的速度比是15:10=3:2,相遇时甲车和乙车的路程比也是3:2,所以,两城相距12÷(3-2)×(3+2)=60千米解法二:甲车工效是1/10,乙车工效是1/15,两车相遇要1÷(1/10+1/15)=6小时,相遇时甲车比乙多清扫12千米,则多清扫全程的6/10-6/15=1/5,东西两城相距12÷(1/5)=60千米4. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.解答:大轿车行完全程比小轿车多17-5+4=16分钟,所以大轿车行完全程需要的时间是16÷(1-80%)=80分钟,小轿车行完全程需要80×80%=64分钟。

五年级知识点:行程问题例题专练,附解析

五年级知识点:行程问题例题专练,附解析

五年级知识点:行程问题例题专练,附解析行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程,等等。

每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t),三个关系:1. 简单行程:路程= 速度×时间2. 相遇问题:路程和= 速度和×时间3. 追击问题:路程差= 速度差×时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。

如“多人行程问题”,实际最常见的是“三人行程”有这样一道应用题:“一辆汽车从A地开往B地,每小时行48千米,行了5小时到达B地。

A、B两地相距多少千米?”我相信,同学们都能很快地列式解答,即48×5=24O(千米),从而求得A、B两地相距24O千米。

但遇到较复杂的行程问题,往往会觉得无从下手。

其实,只要是行程问题,不管怎么复杂,都可以根据“路程=速度×时间”这一基本数量关系来解答。

下面我们一起来解答几道题目。

例:两辆汽车同时从A、B两地相向开出,甲车每小时行48千米,乙车每小时行50千米,5小时相遇。

求A、B两地间的距离。

分析:求两地间的路程,就是两车原来相隔路程,也就是求两车在5小时里所走路程的和。

根据“路程=速度×时间”,可以先算出每小时两车一共行多少千米,再与相遇时间相乘,就可求得两地相距多少千米。

(48+50)×5=490(千米)答:A、B两地间相距是490千米。

现在我们就以这道题为基础来进行改编练习。

1.把原题的“5小时相遇”这一条件改为“5小时后还相距15千米”,问题不变。

我们可以按原题进行分析,所不同的是:这里两车没有相遇,还相距15千米。

这样,两地间的路程就不仅仅是两车5小时里所走的路程和了,还必须加上没有走的15千米。

可这样列式解答。

(48+50)×5+15=490+15=505(千米)答:A、B两地间相距505千米。

行程问题应用题

行程问题应用题

行程问题应用题随着人们的生活水平和旅游需求的提高,越来越多的人选择出行。

然而,在安排旅行行程时,我们常常遇到一些问题,比如时间不够、景点选择困难等。

本文将介绍一些行程问题的应用题,帮助大家更好地安排旅行行程。

1. 行程问题的背景介绍近年来,人们对旅游的需求不断增加,想要体验不同的文化、观赏美丽的风景等。

然而,由于时间和金钱的限制,我们需要合理安排旅程,以便在有限的时间内尽可能地享受旅行。

2. 行程问题的挑战行程问题的挑战在于如何在有限的时间内实现最大化的利益。

例如,当我们计划参观某个城市时,如何选择合适的景点、合理分配时间成为了一个关键问题。

此外,还需考虑交通方式、住宿安排等。

3. 行程问题的解决方法a. 制定目标:首先,我们需要明确旅行的目的和需求,是想了解当地的文化、品尝当地美食还是享受自然风光。

根据不同的目标,我们可以选择不同的行程安排。

b. 查找信息:在确定目标后,我们可以通过网络、旅行书籍等渠道查找相关的景点信息,并进行筛选和比较。

了解景点的特色、开放时间等,可以帮助我们做出更明智的决策。

c. 灵活安排时间:在确定了景点后,我们需要灵活地安排每个景点的游览时间。

一些景点可能需要更多的时间,而一些只需较短时间即可游览。

我们可以事先了解每个景点的游览时间,然后根据实际情况进行调整。

d. 合理选择交通工具:在不同景点之间的交通也是一个需要考虑的问题。

我们可以根据距离、花费和便利性等因素,选择合适的交通工具,如公共汽车、地铁、出租车等。

e. 合理安排住宿:在选择住宿时,我们需要考虑到旅游地附近的交通便利性、价格和舒适程度等因素。

事先预订酒店或民宿可以避免临时奔波和资源浪费。

4. 行程问题的案例分析假设我们要去某个国家旅游,旅程为5天,希望能够参观该国的著名景点并品味当地风情。

a. 第一天:抵达目的地后,可以选择适当休息,安排行程的第一站可以是当地的历史景点或博物馆。

b. 第二天:可以选择前往该国的著名山脉或湖泊,欣赏自然风光,并参加当地的户外活动,如徒步或划船等。

七年级数学上册应用题行程问题详细解析

七年级数学上册应用题行程问题详细解析

七年级数学上册应用题行程问题详细解析行程问题是反映物体匀速运动的应用题,有"相向运动"(相遇问题)、"同向运动"(追及问题)和"相背运动"(相离问题)三种情况。

但它们反映出来的数量关系是相同的,都可以归纳为:速度×时间=路程。

【典型例题1】:甲、乙两车同时从相距960千米的两地相对而行,甲车每小时行90千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。

乙车每小时行多少千米?【思路分析】:途中因汽车故障甲车停了1小时,5小时后两车相遇,则甲车实际行了5-1=4小时,行驶的路程为:90×4=360千米.已知全程为960千米,根据路程÷时间=速度可知乙的速度为:(960-360)÷5.综合算式为:[960-90×(5-1)]÷5。

解答::[960-90×(5-1)]÷5=[960-360]÷5=600÷5=120(千米);答:乙车每小时行120千米.【方法总结】:解决此类问题首先要弄清楚数量关系:乙车行驶的路程=两地的距离-甲车行驶的路程;还要明白由于故障,甲车停了1小时,实际上甲车少行驶了1小时,也就是说两车行驶的时间是不相等的,这是解决问题的关键;可以先根据“路程=速度×时间”计算出甲车行驶的路程,再根据“乙车行驶的路程=两地的距离-甲车行驶的路程”计算出乙车行驶的路程,最后利用“速度=路程÷实际”就可以计算出乙车的速度。

【典型例题2】:甲、乙两车分别从A、B两地同时开出,相向而行,经过6小时,甲车行了全程的75%,乙车超过中点16千米。

已知甲车比乙车每小时多行4千米。

求A、B两地相距多少千米?【思路分析】:甲车行了全程的75%,乙车超过中点16千米,即乙车行了全程的50%加上16千米,而6小时内,甲比乙多行6×4=24(千米),根据上述分析,全程的75%减去全程的50%,就等于(16+24)千米,或者:全程的50%加上16千米,再加上24千米,等于全程的75%。

行程问题的应用题及答案

行程问题的应用题及答案

行程问题的应用题及答案在数学中,行程问题是一类常见的应用题,其涉及到计算一个人或物品从一个地点到另一个地点的路程或距离。

行程问题可以采用各种不同的形式和条件,包括时间、速度、交通工具、地理条件等,通过解答行程问题,我们可以应用数学知识解决实际生活中的交通规划、旅游路线、工作行程等问题。

本文将介绍行程问题的应用题,并给出详细的解答。

1. 张三乘坐高铁从A城市出发,要前往B城市,全程为600公里,高铁的平均速度为300公里/小时。

假设张三在上车前30分钟到达高铁站,而下车后还需要步行20分钟才能到达目的地,问张三一共需要多长时间到达B城市?解答:根据题意可得,张三在高铁上的行驶时间为600公里 / 300公里/小时 = 2小时。

上车前到达高铁站的时间为30分钟 = 0.5小时。

下车后步行到目的地的时间为20分钟 = 0.33小时。

因此,张三一共需要的时间为2小时 + 0.5小时 + 0.33小时 = 2.83小时,即2小时50分钟。

2. 小明打算从自家出发前往旅游景点C,全程为250公里。

他可以选择乘坐汽车以每小时50公里的速度,或者骑自行车以每小时15公里的速度,问小明选择哪种方式能够更快到达?解答:小明选择乘坐汽车的行车速度为50公里/小时,行程为250公里,所需时间为250公里 / 50公里/小时 = 5小时。

小明选择骑自行车的行车速度为15公里/小时,行程为250公里,所需时间为250公里 / 15公里/小时≈ 16.67小时≈ 16小时40分钟。

因此,小明选择乘坐汽车能够更快地到达旅游景点C。

3. 某旅行团计划乘坐大巴车从A城市出发,途径B、C、D三个城市,然后返回A城市。

已知A到B的距离为300公里,B到C的距离为150公里,C到D的距离为200公里,D到A的距离为250公里。

大巴车的平均速度为60公里/小时。

请问整个行程需要多长时间?解答:首先计算每一段的行驶时间:A到B的时间为300公里 / 60公里/小时 = 5小时。

行程问题的应用题及答案

行程问题的应用题及答案

行程问题的应用题及答案1、龟兔进行10000米赛跑,兔子的速度是乌龟的速度的5倍。

当它们从起点一起出发后,乌龟不停地跑,兔子跑到某一地点开始睡觉,兔子醒来时乌龟已经领先它5000米;兔子奋起直追,但乌龟到达终点时,兔子仍落后100米。

那么兔子睡觉期间,乌龟跑了多少米?分析:兔子跑了10000-100=9900米,这段时间里乌龟跑了9900*1/5=1980米,兔子睡觉时乌龟跑了10000-1980=8020米答:兔子睡觉期间乌龟跑了8020米。

2、小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。

小明上学走两条路所用的时间一样多。

已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?分析:解法1:设路程为180,则上坡和下坡均是90。

设走平路的速度是2,则下坡速度是3。

走下坡用时间90/3=30,走平路一共用时间180/2=90,所以走上坡时间是90-30=60 走与上坡同样距离的平路时用时间90/2=45 因为速度与时间成反比,所以上坡速度是下坡速度的45/60=0.75倍。

解法2:因为距离和时间都相同,所以平均速度也相同,又因为上坡和下坡路各一半也相同,设距离是1份,时间是1份,则下坡时间=0.5/1.5=1/3,上坡时间=1-1/3=2/3,上坡速度=(1/2)/(2/3)=3/4=0.75解法3:因为距离和时间都相同,所以:1/2*路程/上坡速度+1/2*路程/1.5=路程/1,得:上坡速度=0.75答:上坡的速度是平路的0.75倍。

3、一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米。

那么甲、乙两地之间的距离是多少千米?分析:解法1,第二小时比第一小时多走6千米,说明逆水走1小时还差6/2=3千米没到乙地。

顺水走1小时比逆水多走8千米,说明逆水走3千米与顺水走8-3=5千米时间相同,这段时间里的路程差是5-3=2千米,等于1小时路程差的1/4,所以顺水速度是每小时5*4=20千米(或者说逆水速度是3*4=12千米)。

小升初分班训练专题4 行程、工程等应用题(解析版)

小升初分班训练专题4 行程、工程等应用题(解析版)

专题4 行程、工程等应用题①行程问题1. 甲、乙、丙三人每分分别行60米、50米和40米,甲从B 地、乙和丙从A 地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A ,B 两地的距离。

【答案】16500甲遇到乙后15分钟,甲遇到了丙,所以遇到乙的时候,甲和丙之间的距离为:(60+40)×15=1500(米),而乙丙之间拉开这么大的距离一共要1500÷(50-40)=150(分),即从出发到甲与乙相遇一共经过了150分钟,所以A 、B 之间的距离为:(60+50)×150=16500(米).2. 有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇。

那么,东、西两村之间的距离是多少米? 【答案】37800甲、丙6分钟相遇的路程:()1007561050+⨯=(米); 甲、乙相遇的时间为:()10508075210÷-=(分钟); 东、西两村之间的距离为:()1008021037800+⨯=(米)。

3. 从花城到太阳城的公路长12公里.在该路的 2千米处有个铁道路口,是每关闭 3分钟又开放 3分钟的.还有在第 4千米及第 6 千米有交通灯,每亮 2分钟红灯后就亮 3分钟绿灯.小糊涂驾驶电动车从花城到太阳城,出发时道口刚刚关闭,而那两处交通灯也都刚刚切换成红灯.已知电动车速度是常数,小糊涂既不刹车也不加速,那么在不违反交通规则的情况下,他到达太阳城最快需要多少分钟? 【答案】24画出反映交通灯红绿情况的 s t-图,可得出小糊涂的行车图像不与实线相交情况下速度最大可以是 0.5 千米/分钟,此时恰好经过第 6千米的红绿灯由红转绿的点,所以他到达太阳城最快需要 24分钟。

4.A、B 两地相距950 米.甲、乙两人同时由A地出发往返锻炼半小时.甲步行,每分钟走40 米;乙跑步,每分钟行150 米.则甲、乙二人第几次迎面相遇时距 B 地最近?【答案】2半小时内,两人一共行走(40+150)× 30 ="5700" 米,相当于 6 个全程,两人每合走 2 个全程就会有一次相遇,所以两人共有 3 次相遇,而两人的速度比为40 :150=" 4" :15,所以相同时间内两人的行程比为 4 :15,那么第一次相遇甲走了全程的48215419⨯=+,距离 B地11/19个全程;第二次相遇甲走了16/19个全程,距离 B 地3/19个全程;第三次相遇甲走了24/19个全程,距离 B 地5/19个全程,所以甲、乙两人第二次迎面相遇时距离 B 地最近。

行程问题应用题解析

行程问题应用题解析

第十八讲:行程问题专题分析:行程问题是专门讲物体运动的速度、时间和路程的应用题。

行程问题的主要数量关系是:路程=速度×时间、路程和÷速度和=相遇时间、路程差÷速度差=相遇时间。

练习一:1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇。

东西两地相距多少千米?思路:两车在距中点32千米处相遇,意思是:两车行的路程相差64千米。

有了路程差和速度差就可以求出相遇时间了为8小时。

其他计算就容易了。

2、小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米?3、一辆汽车和一辆摩托车同时从甲乙两地相对开出,汽车每小时行40千克,摩托车每小时行65千米。

当摩托车行到两地中点处,与汽车相距75千米。

甲乙两地相距多少千米?4、小轿车每小时行60千米,比客车每小时多行5千米,两车同时从甲乙两地相向而行,在距中点20千米处相遇,求甲乙两地之间的路程。

练习二:1、快车和慢车同时从甲乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,。

慢车每小时行多少千米?思路:先计算快车3小时行120千米,再减去25千米就是路程的一半,这时快车与慢车还相距7千米,则慢车行了63千米。

因此慢车的速度为21千米/小时。

2、兄弟二人同时从学校和家中出发,相向而行。

哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。

弟弟每分钟行多少米?3、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?4、学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵。

如果这批树苗平均分给五(1)班的同学去植,平均每人植多少棵?练习三:1、甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行程问题应用题解析——追及问题主讲:杨卉清教学目标:(一) 知识技能:1.使学生进一步掌握列一元一次方程解应用题的方法和步骤;2.熟练掌握追及问题中的等量关系.(二)能力培养:培养学生观察能力,提高他们分析问题和解决实际问题的能力。

(三)情感态度与价值观培养学生勤于思考、乐于探究、敢于发表自己观点的学习习惯,从实际问题中体验数学的价值。

教学重点:找等量关系列一元一次方程,解决追及问题。

教学难点将实际问题转化为数学模型,并找出等量关系。

教学方法:探究式教学过程:一创设问题情景,引入新课:1.行程问题中有哪些基本量?它们间有什么关系?2.行程问题有哪些基本类型?二知识应用,拓展创新:对于追及问题,在直线运动中两者路程之差等于两者间的距离,而在圆周运动中,若同时同地同向出发,则二者路程之差等于圆的周长。

例:甲乙两人相距100米,甲在前每秒跑3米,乙在后每秒跑5米。

两人同时出发,同向而行,几秒后乙能追上甲?分析:在这个直线型追及问题中,两人速度不同,跑的路程也不同,后面的人要追上前面的人,就要比前面的人多跑100米,而两人跑步所用的时间是相同的。

所以有等量关系:乙走的路程-甲走的路程=100解:设x秒后乙能追上甲根据题意得 5x-3x=100x=50答:50秒后乙能追上甲变式1 甲、乙两名同学练习百米赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑1秒,那么甲经过几秒可以追上乙?分析:这个问题中,两人所跑路程是相同的,但由于乙先跑了1秒,所以就产生了路程差。

那么这个问题就和前面例题一样了。

解答由学生完成。

变式2 甲乙两人相距40千米,甲先出发1.5小时乙再出发,甲在后乙在前,二人同向而行,甲的速度是每小时8千米,乙的速度是每小时6千米,甲出发几小时后追上乙?分析:由于甲乙二人相距40千米,同向而行,甲先出发1.5小时(此时乙未出发),经过1.5小时后乙才出发和甲同向而行,后来甲追上了乙,所以有等量关系:甲走的路程-乙走的路程=两人原来的距离。

如果设甲出发x小时后追上乙,则乙运动的时间为(x-1.5)小时,所以甲走的路程为8x千米,乙走的路程为6(x-1.5)千米。

解答由学生完成。

变式3 甲乙两人在一条长400 米的环形跑道上跑步,甲的速度是每分钟跑360米,乙的速度是每分钟跑240米。

两人同时同地同向跑,几秒后两人第一次相遇?分析:本题属于环形跑道上的追及问题,两人同时同地同向而行,第一次相遇时,速度快者比速度慢者恰好多跑一圈,即等量关系为:甲走的路程-乙走的路程=400解答由学生完成。

三小结:1.列方程解应用题的关键在于恰当地设未知数,把实际问题转化为数学问题,并能找出实际问题中的等量关系,本节所讨论问题的等量关系是什么?2.列方程解应用题需要注意什么?四作业布置:(见补充题)附:板书设计:课题:行程问题应用题归类解析——追及问题例题:甲乙两人相距……变式1:……变式2:……变式3:………小结:第十八讲:行程问题专题分析:行程问题是专门讲物体运动的速度、时间和路程的应用题。

行程问题的主要数量关系是:路程=速度×时间、路程和÷速度和=相遇时间、路程差÷速度差=相遇时间。

练习一:1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇。

东西两地相距多少千米?思路:两车在距中点32千米处相遇,意思是:两车行的路程相差64千米。

有了路程差和速度差就可以求出相遇时间了为8小时。

其他计算就容易了。

2、小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米?3、一辆汽车和一辆摩托车同时从甲乙两地相对开出,汽车每小时行40千克,摩托车每小时行65千米。

当摩托车行到两地中点处,与汽车相距75千米。

甲乙两地相距多少千米?4、小轿车每小时行60千米,比客车每小时多行5千米,两车同时从甲乙两地相向而行,在距中点20千米处相遇,求甲乙两地之间的路程。

练习二:1、快车和慢车同时从甲乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,。

慢车每小时行多少千米?思路:先计算快车3小时行120千米,再减去25千米就是路程的一半,这时快车与慢车还相距7千米,则慢车行了63千米。

因此慢车的速度为21千米/小时。

2、兄弟二人同时从学校和家中出发,相向而行。

哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。

弟弟每分钟行多少米?3、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?4、学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵。

如果这批树苗平均分给五(1)班的同学去植,平均每人植多少棵?练习三:1、甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。

求东西两村相距多少千米?思路:先找到路程差,就可以求出相遇时间为5小时,则甲的速度就是15÷(5-4)=15(千米/小时)。

两村相距是15×4=60(千米)2、甲乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米。

甲到达B地后立即返回A地,在离B地3.2千米处相遇。

A、B两地之间相距多少千米?3、小平和小红同时从学校出发步行去小平家,小平每分钟比小红多走20米。

30分钟后小平到家,到家后立即沿原路返回,在离家350米处遇到小红。

小红每分钟走多少米?4、甲乙二人上午7时同时从A地去B地,甲每小时比乙快8千米。

上午11时到达B地后立即返回,在距离B地24千米处相遇。

求A、B两地相距多少千米?练习四:1、甲乙两队学生从相距18千米的两地同时出发,相向而行。

一个同学骑自行车以每小时14千米的速度,在两队之间不停地往返联络。

甲队每小时行5千米,乙队每小时行4千米。

两队相遇时,骑自行车的同学共行多少千米?思路:要求两队相遇时,骑自行车的同学共行多少千米?就要求他的速度和时间。

速度是已知的,时间就是两队的相遇时间。

只要先求出相遇时间就可以了。

2、两支队伍从相距55千米的两地相向而行。

通信员骑马以每小时16千米的速度在两支队伍之间不断往返联络。

已知一支队伍每小时行5千米,另一支队伍每小时行6千米,两队相遇时,通信员共行了多少千米?3、甲乙两人同时从两地出发,相向而行,距离是100千米。

甲每小时行6千米,乙每小时行4千米,甲带着一条狗,狗每小时行10千米。

这只狗同甲一道出发,碰到乙的时候,它就掉头朝着甲这边跑,碰到甲的时候,它又掉头朝着乙这边跑。

直到两人相遇时,这只狗一共跑了多少千米?4、两队同学同时从相距30千米的甲乙两地相向出发,一只鸽子以每小时20千米的速度在两队同学之间不断往返送信。

如果鸽子从同学们出发到相遇共飞行了30千米,而甲队同学比乙队同学每小时多走0.4千米,求两队同学的行走速度。

练习五:1、甲乙两车早上8时分别从A、B两地同时出发,到10时两车相距112.5千米。

两车继续行使到下午1时,两车相距还是112.5千米。

A、B两地之间相距多少千米?思路:从10时两车相距112.5千米。

两车继续行使到下午1时,两车相距还是112.5千米,说明在3小时内两车行驶225千米,则两车的速度和是75千米。

甲乙两车早上8时分别从A、B两地同时出发,到10时两车相距112.5千米。

2小时内两车就行驶150千米,因此两地相距262.5千米。

2、甲乙两车同时从A、B两地相向而行,3小时后,两车还相距120千米,又行了3小时,两车又相距120千米。

A、B两地相距多少千米?3、快慢两车早上6时同时从甲乙两地相向而行,中午12时两车还相距50千米,继续行驶到14时,两车又相距170千米。

甲乙两地相距多少千米?4、甲乙两车分别从A、B两地同时相向而行,8小时后相遇,相遇后两车继续行驶,3小时后两车又相距360千米。

求A、B两地之间的距离。

练习六:1、中巴车每小时行60千米,小轿车每小时行84千米,两车同时从相距60千米的两地同方向开出,且中巴车在前,求几小时后小轿车追上中巴车?思路:直接使用追击问题的计算公式即可:路程÷速度差=追击时间2、兄弟二人从100米的跑道的起点同时出发,沿同一方向跑步,弟弟在前,每分钟跑120米,哥哥在后,每分钟跑140米。

几分钟后哥哥追上弟弟?3、甲骑自行车从A地到B地,每小时行16千米,1小时后,乙也骑自行车从A地到B地,每小时行20千米,结果两人同时到达B 地。

A、B两地相距多少千米?4、甲乙两人以每分钟60米的速度同时、同地、同向步行出发。

走15分钟后甲返回原地取东西,而乙继续前进,甲取东西用去5分钟的时间,然后改骑自行车以每分钟360米的速度追乙。

甲骑车多少分钟才能追上乙?练习七:1、一辆汽车从甲地开往乙地,要行360千米,开始按计划以每小时45千米的速度行驶,途中因汽车出故障修车2小时。

因为要按时到达乙地,修好车后必须每小时多行30千米。

问:汽车是在离甲地多远处修车的?思路:途中修车用了2小时,汽车就少行了90千米,修车后为了按时到达,每小时多行了30千米,说明修车后汽车行了3小时,即修车后汽车行了225千米。

因此汽车是在离甲地135千米处修车的。

2、小王家离工厂3千米,他每天骑车以每分钟200米的速度上班,正好准时到达,有一天,他出发几分钟后,因遇熟人停车2分钟,为了准时到厂,后面的路必须每分钟多行100米,求小王是在离工厂多远处遇到熟人的?3、一辆汽车从甲地开往乙地,若每小时行36千米,8小时能到达。

这辆车以每小时36千米的速度行驶一段时间后,因排队加油用去了15分钟。

为了能在8小时内到达乙地,加油后每小时必须多行7.2千米。

加油站离乙地多少千米?4、汽车以每小时30千米的速度从甲地出发,6小时后能到达乙地,汽车出发后1小时原路返回甲地取东西,然后立即从甲地出发,为了能在原来的时间内到达乙地,汽车必须以每小时多少千米的速度从甲地驶向乙地?练习八:1、甲骑车、乙跑步,二人同时从一点出发沿着长4千米的环形公路同方向进行晨练,出发后10分钟,甲便从乙身后追上了乙,已知两人的速度和是每分钟行700米,求甲乙二人的速度各是多少?思路:根据甲骑车、乙跑步,二人同时从一点出发沿着长4千米的环形公路同方向进行晨练,出发后10分钟,甲便从乙身后追上了乙,可以计算两人的速度差是400米。

以后的计算就简单了。

2、爸爸和小明同时从同一地点出发,沿相同方向在环形跑道上跑步,爸爸每分钟跑150米,小明每分钟跑120米,如果跑道全长900米,问至少经过几分钟爸爸从小明身后追上小明?3、在300米长的环形跑道上,甲乙二人同时同地同向跑步,甲每秒跑5米,乙每秒跑4.4米。

相关文档
最新文档