卷积神经网络总结
深度学习中的卷积神经网络和递归神经网络
深度学习中的卷积神经网络和递归神经网络最近几年,随着人工智能技术快速发展,深度学习成为了热门话题。
在深度学习算法家族中,卷积神经网络(Convolutional Neural Network,CNN)和递归神经网络(Recurrent Neural Network,RNN)是最常用的两种神经网络。
本文主要探讨这两种神经网络的工作原理、优缺点以及应用场景。
一、卷积神经网络卷积神经网络是一种专门用于处理图像和语音等大型二维或多维数据的神经网络。
它的核心思想是卷积操作,通过反复的卷积、池化等操作,逐步提取出数据的特征,最终得到对数据的分类或识别结果。
卷积神经网络的工作原理可以简单地描述为:首先输入数据被送入卷积层,卷积层中有若干个卷积核,每个卷积核对输入数据做出一次卷积操作,产生一个特征图。
接着特征图会经过激活函数进行非线性处理。
经过卷积、池化、激活等若干层处理后,最终通过全连接层得到分类或识别结果。
卷积神经网络的优点主要体现在以下方面:1. 可以有效地提取出数据的局部特征,比如提取出一张图片中的边缘、纹理等特征。
2. 卷积神经网络的参数共享机制可以大幅度降低训练模型的复杂度,减小过拟合。
3. 卷积网络中的池化操作可以进一步简化特征图,减小计算量,同时也有防止过拟合的效果。
卷积神经网络的应用场景非常广泛,比如图像分类、目标检测、物体识别等。
二、递归神经网络递归神经网络是一种专门处理序列数据的神经网络,它具有记忆功能,能够处理任意长度的输入数据,并且在处理过程中可以保留之前的状态信息。
递归神经网络的工作原理可以简单地描述为:在处理输入序列的过程中,每个时刻输入一个数据点,同时还输入上一个时刻的状态,根据输入数据和状态计算出当前时刻的状态并输出一个结果。
新的状态又会被送入下一个时刻的计算中。
这种递归的计算方式使得递归神经网络具有很强的记忆性和时间序列处理能力。
递归神经网络的优点主要体现在以下方面:1. 递归神经网络比较适用于处理序列数据,比如语音、文本、股票价格等数据。
简述卷积神经网络(CNN)和循环神经网络(RNN)的原理及应用场景
简述卷积神经网络(CNN)和循环神经网络(RNN)的原理及应用场景卷积神经网络(CNN)和循环神经网络(RNN)是当前深度学习领域最为重要和广泛应用的两种神经网络模型。
它们分别在计算机视觉和自然语言处理等领域取得了巨大的成功。
本文将从原理和应用场景两个方面进行详细介绍。
一、卷积神经网络(CNN)的原理及应用场景卷积神经网络(CNN)是一种专门用于处理具有网格结构数据的深度学习模型。
它最初是为了解决计算机视觉中的图像分类问题而提出的,但现在已经广泛应用于图像识别、目标检测、语义分割等多个领域。
1.1 原理卷积神经网络(CNN)主要由卷积层、池化层和全连接层组成。
其中,卷积层是CNN最重要的组成部分,它通过一系列滤波器对输入数据进行特征提取。
滤波器通过与输入数据进行点乘操作,得到特征图(feature map),从而捕捉到输入数据中的局部特征。
池化层用于减小特征图的尺寸,并保留重要特征。
常见的池化操作有最大池化和平均池化。
最大池化选择每个区域中的最大值作为输出,平均池化则选择每个区域的平均值作为输出。
这样可以减小特征图的尺寸,减少参数数量,从而降低计算复杂度。
全连接层将特征图转换为一维向量,并通过一系列全连接层进行分类或回归等任务。
全连接层中的每个神经元都与上一层中所有神经元相连,这样可以充分利用上一层提取到的特征进行分类。
1.2 应用场景卷积神经网络(CNN)在计算机视觉领域有着广泛应用。
其中最典型的应用场景是图像分类和目标检测。
在图像分类任务中,CNN可以通过学习到的特征提取器将输入图像分为不同类别。
例如,在ImageNet数据集上进行分类任务时,CNN可以实现对1000个不同类别进行准确分类。
在目标检测任务中,CNN可以识别并定位输入图像中存在的多个目标。
通过在卷积网络之后加入额外的回归和分类层,可以实现对目标位置和类别进行同时预测。
此外,在语义分割、人脸识别、图像生成等领域,CNN也有着广泛的应用。
卷积神经网络研究综述
卷积神经网络研究综述一、引言卷积神经网络(Convolutional Neural Network,简称CNN)是深度学习领域中的一类重要算法,它在计算机视觉、自然语言处理等多个领域中都取得了显著的成果。
CNN的设计灵感来源于生物视觉神经系统的结构,尤其是视觉皮层的组织方式,它通过模拟视觉皮层的层级结构来实现对输入数据的层次化特征提取。
在引言部分,我们首先要介绍CNN的研究背景。
随着信息技术的飞速发展,大数据和人工智能逐渐成为研究的热点。
在这个过程中,如何有效地处理和分析海量的图像、视频等数据成为了一个亟待解决的问题。
传统的机器学习方法在处理这类数据时往往面临着特征提取困难、模型复杂度高等问题。
而CNN的出现,为解决这些问题提供了新的思路。
接着,我们要阐述CNN的研究意义。
CNN通过其独特的卷积操作和层次化结构,能够自动学习并提取输入数据中的特征,从而避免了繁琐的特征工程。
同时,CNN还具有良好的泛化能力和鲁棒性,能够处理各种复杂的数据类型和场景。
因此,CNN在计算机视觉、自然语言处理等领域中都得到了广泛的应用,并取得了显著的成果。
最后,我们要介绍本文的研究目的和结构安排。
本文旨在对CNN 的基本原理、发展历程和改进优化方法进行系统的综述,以便读者能够全面了解CNN的相关知识和技术。
为了达到这个目的,我们将按照CNN的基本原理、发展历程和改进优化方法的顺序进行论述,并在最后对全文进行总结和展望。
二、卷积神经网络基本原理卷积神经网络的基本原理主要包括卷积操作、池化操作和全连接操作。
这些操作共同构成了CNN的基本框架,并使其具有强大的特征学习和分类能力。
首先,卷积操作是CNN的核心操作之一。
它通过一个可学习的卷积核在输入数据上进行滑动窗口式的计算,从而提取出输入数据中的局部特征。
卷积操作具有两个重要的特点:局部连接和权值共享。
局部连接意味着每个神经元只与输入数据的一个局部区域相连,这大大降低了模型的复杂度;权值共享则意味着同一卷积层内的所有神经元共享同一组权值参数,这进一步减少了模型的参数数量并提高了计算效率。
卷积神经网络总结.doc
卷积神经网络总结1卷积神经网络卷积神经网络是深度学习的一种,已成为当前图像理解领域的研究热点它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。
这个优点在网络的输入是多维图像时表现得更为明显,图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程.卷积网络是为识别二维形状而特殊设计的一个多层感知器,这种网络结构对平移、比例缩放以及其他形式的变形具有一定不变性.在典型的CNN中,开始几层通常是卷积层和下采样层的交替,在靠近输出层的最后几层网络通常是全连接网络。
卷积神经网络的训练过程主要是学习卷积层的卷积核参数和层间连接权重等网络参数,预测过程主要是基于输入图像和网络参数计算类别标签。
卷积神经网络的关键是:网络结构(含卷积层、下采样层、全连接层等)和反向传播算法等。
在本节中,我们先介绍典型CNN的网络结构和反向传播算法,然后概述常用的其他CNN网络结构和方法。
神经网络参数的中文名称主要参考文献[18]卷积神经网络的结构和反向传播算法主要参考文献[17]。
1.1网络结构 1.1.1卷积层在卷积层,上一层的特征图(Featuremap)被一个可学习的卷积核进行卷积,然后通过一个激活函数(Activationfunction),就可以得到输出特征图.每个输出特征图可以组合卷积多个特征图的值[17]:其中,称为卷积层l的第j 个通道的净激活(Netactivation),它通过对前一层输出特征图进行卷积求和与偏置后得到的,是卷积层l的第j个通道的输出。
称为激活函数,通常可使用sigmoid和tanh等函数。
表示用于计算的输入特征图子集,是卷积核矩阵,是对卷积后特征图的偏置。
对于一个输出特征图,每个输入特征图对应的卷积核可能不同,“*”是卷积符号。
1.1.2下采样层下采样层将每个输入特征图通过下面的公式下采样输出特征图[17]:其中,称为下采样层l的第j通道的净激活,它由前一层输出特征图进行下采样加权、偏置后得到,是下采样层的权重系数,是下采样层的偏置项.符号表示下采样函数,它通过对输入特征图通过滑动窗口方法划分为多个不重叠的图像块,然后对每个图像块内的像素求和、求均值或最大值,于是输出图像在两个维度上都缩小了n倍。
卷积神经网络与循环神经网络
卷积神经网络与循环神经网络卷积神经网络(Convolutional Neural Network,CNN)和循环神经网络(Recurrent Neural Network,RNN)是目前深度学习领域最为流行的两种神经网络架构。
它们分别适用于不同的数据类型和任务,能够有效地处理图像、语音、文本等各种形式的数据。
一、卷积神经网络卷积神经网络是一种专门用于处理格状数据(如图像)的神经网络模型。
它的核心思想是利用卷积操作对输入数据进行特征提取,然后通过池化操作减小特征图的尺寸,最后将提取到的特征输入全连接层进行分类或回归。
卷积神经网络的结构主要包括卷积层、池化层和全连接层。
1.1卷积层卷积层是卷积神经网络的核心组件,它通过卷积操作对输入数据进行特征提取。
卷积操作是指使用一个滤波器(也称为卷积核)在输入数据上进行滑动计算,得到对应位置的输出。
滤波器的参数是在训练过程中通过反向传播算法学习得到的。
在图像处理中,卷积操作可以帮助提取图像中的边缘、纹理、角点等特征。
卷积层一般会使用多个不同的滤波器,从而提取多个不同的特征。
1.2池化层池化层是利用池化操作对卷积层的输出进行降采样,从而减小特征图的尺寸。
常见的池化操作有最大池化和平均池化。
最大池化是保留每个区域内的最大值作为输出,平均池化是计算每个区域内的平均值作为输出。
池化操作的目的是减少计算复杂度和减小过拟合。
1.3全连接层全连接层是卷积神经网络的最后一层,它将池化层的输出作为输入进行分类或回归。
全连接层的每个神经元都与上一层的所有神经元相连,输出一个标量值。
全连接层通常使用一种称为softmax的函数将输出转化为概率分布,再根据不同任务进行相应的损失函数计算和优化。
卷积神经网络通过共享权重和局部感知野的设计,大大减少了模型参数的数量,同时也能够保留输入数据的局部结构特征。
这使得卷积神经网络在图像识别、目标检测、语义分割等计算机视觉任务中取得了很大的成功。
二、循环神经网络循环神经网络是一种专门用于处理序列数据(如语音、文本)的神经网络模型。
神经网络中的卷积神经网络模型详解
神经网络中的卷积神经网络模型详解神经网络是一种模拟人脑神经元的数学模型,通过多层神经元的连接和传递信息来实现各种任务。
而卷积神经网络(Convolutional Neural Network,简称CNN)是一种在图像识别和处理领域中广泛应用的神经网络模型。
1. CNN的基本结构CNN的基本结构由输入层、卷积层、池化层和全连接层组成。
输入层接收原始图像数据,并将其转化为神经网络能够处理的形式。
卷积层是CNN的核心部分,通过卷积操作提取图像的特征。
池化层用于减少特征图的尺寸,提高计算效率。
全连接层将特征图映射到输出层,实现对图像的分类或回归。
2. 卷积操作卷积操作是CNN中最重要的操作之一。
它通过将图像与一组卷积核进行卷积运算,得到特征图。
卷积核是一个小的矩阵,通过滑动窗口的方式与图像进行逐元素相乘并求和,从而得到特征图中的每个像素值。
卷积操作的好处在于它能够保留图像的空间关系和局部特征。
通过不同的卷积核,CNN可以学习到不同的特征,例如边缘、纹理和形状等。
这使得CNN在图像识别任务中具有很强的表达能力。
3. 池化操作池化操作是CNN中的另一个重要操作。
它通过将特征图的某个区域进行统计汇总,得到一个更小的特征图。
常见的池化操作有最大池化和平均池化。
池化操作的目的是减少特征图的尺寸,提高计算效率,并且具有一定的平移不变性。
通过池化操作,CNN可以对图像的细节进行抽象,从而更好地捕捉到图像的整体特征。
4. 全连接层全连接层是CNN中的最后一层,它将特征图映射到输出层,实现对图像的分类或回归。
全连接层的每个神经元都与前一层的所有神经元相连接,通过学习权重参数来实现对不同类别的判别。
全连接层在CNN中起到了决策的作用,通过学习到的权重参数,可以将特征图的信息转化为对图像类别的预测。
5. CNN的训练过程CNN的训练过程主要包括前向传播和反向传播两个阶段。
在前向传播中,输入图像通过卷积层、池化层和全连接层的计算,得到输出结果。
卷积神经网络(CNN)学习笔记
CNN卷积神经网络卷积神经网络是人工神经网络的一种,已成为当前语音分析和图像识别领域的研究热点。
它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。
该优点在网络的输入是多维图像时表现的更为明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程。
卷积网络是为识别二维形状而特殊设计的一个多层感知器,这种网络结构对平移、比例缩放、倾斜或者共他形式的变形具有高度不变性。
CNNs是受早期的延时神经网络(TDNN)的影响。
延时神经网络通过在时间维度上共享权值降低学习复杂度,适用于语音和时间序列信号的处理。
CNNs是第一个真正成功训练多层网络结构的学习算法。
它利用空间关系减少需要学习的参数数目以提高一般前向BP算法的训练性能。
CNNs作为一个深度学习架构提出是为了最小化数据的预处理要求。
在CNN中,图像的一小部分(局部感受区域)作为层级结构的最低层的输入,信息再依次传输到不同的层,每层通过一个数字滤波器去获得观测数据的最显著的特征。
这个方法能够获取对平移、缩放和旋转不变的观测数据的显著特征,因为图像的局部感受区域允许神经元或者处理单元可以访问到最基础的特征,例如定向边缘或者角点。
2)卷积神经网络的网络结构图:卷积神经网络的概念示范:输入图像通过和三个可训练的滤波器和可加偏置进行卷积,滤波过程如图一,卷积后在C1层产生三个特征映射图,然后特征映射图中每组的四个像素再进行求和,加权值,加偏置,通过一个Sigmoid函数得到三个S2层的特征映射图。
这些映射图再进过滤波得到C3层。
这个层级结构再和S2一样产生S4。
最终,这些像素值被光栅化,并连接成一个向量输入到传统的神经网络,得到输出。
一般地,C层为特征提取层,每个神经元的输入与前一层的局部感受野相连,并提取该局部的特征,一旦该局部特征被提取后,它与其他特征间的位置关系也随之确定下来;S层是特征映射层,网络的每个计算层由多个特征映射组成,每个特征映射为一个平面,平面上所有神经元的权值相等。
深度学习技术中的卷积神经网络结构和特点解析
深度学习技术中的卷积神经网络结构和特点解析卷积神经网络(Convolutional Neural Network,CNN)是当今深度学习技术中最重要的模型之一。
它被广泛应用于计算机视觉、自然语言处理、语音识别等领域。
本文将解析卷积神经网络的结构和特点,帮助读者更好地理解和运用这一强大的深度学习工具。
一、卷积神经网络的结构卷积神经网络由多层神经网络组成,每一层由多个神经元组成。
其中,最重要的几层是卷积层(Convolutional Layer)、池化层(Pooling Layer)和全连接层(Fully Connected Layer)。
1. 卷积层:卷积层是卷积神经网络的核心层之一。
它通过使用一组可学习的滤波器(或称为卷积核)对输入数据进行卷积操作,并生成特征图(Feature Map)。
卷积操作通过在输入数据中滑动卷积核,并在每个位置上执行点乘运算,得到对应位置的特征。
卷积层的特点在于共享权重。
这意味着在同一层的不同位置使用的卷积核是相同的,因此卷积层的参数量大大减少,使得网络更加简化。
2. 池化层:池化层用于对卷积层的特征进行降维和抽象。
它通过固定大小的滑动窗口在特征图上进行采样,并将采样结果汇聚为一个值。
常见的池化方法有最大池化和平均池化。
池化层能够减少参数数量,降低过拟合的风险,同时也增强特征的不变性和鲁棒性,使得网络对于输入数据的微小变化具有更好的鲁棒性。
3. 全连接层:全连接层是卷积神经网络的最后一层,也是输出层。
它将前面的隐藏层与最终的分类器相连,将特征转化为概率或标签。
全连接层的每个神经元与前一层中的所有神经元都有连接关系。
全连接层的作用是将抽取到的特征与实际标签进行匹配,从而进行最终的分类判断。
二、卷积神经网络的特点1. 局部感知性:卷积神经网络通过卷积操作对输入数据进行特征提取,并利用池化操作定位和提取最显著的特征。
这种局部感知性使得网络对于局部信息具有更好的提取和理解能力。
神经网络与卷积神经网络(CNN)
神经网络与卷积神经网络(CNN)神经网络和卷积神经网络(Convolutional Neural Network, CNN)是两种常用的深度学习模型,被广泛应用于图像识别、语音识别、自然语言处理等领域。
本文将介绍神经网络和CNN的原理、应用以及优缺点。
一、神经网络神经网络是一种模拟人脑神经元间连接的计算模型,由输入层、隐藏层和输出层组成。
每个神经元接收上一层神经元传递的信息,并通过激活函数进行非线性变换,最终计算出输出结果。
通过不断调整神经元之间的连接权重,神经网络能够学习并逼近复杂的非线性函数。
神经网络的训练通常基于梯度下降算法,通过最小化损失函数,反向传播误差更新权重。
训练完成后,神经网络可以用于预测和分类任务。
神经网络的优点在于可以处理非线性关系,具有强大的逼近能力。
然而,它在图像处理任务上的表现并不理想,主要因为传统的神经网络无法充分利用图像的空间结构信息。
二、卷积神经网络(CNN)卷积神经网络是一种专门用于处理二维结构数据(如图像)的深度学习模型。
与传统神经网络不同的是,CNN引入了卷积层和池化层,通过局部感知和参数共享的方式提取图像的特征。
卷积层利用一组可学习的卷积核对输入数据进行卷积操作,提取出不同位置的特征。
卷积核的参数共享使得CNN对输入数据的平移不变性更强,可以减少模型的复杂性。
池化层则负责对卷积结果进行下采样,减小特征图的尺寸。
常用的池化操作有最大池化和平均池化,能够提取更具有鲁棒性的特征。
除了卷积层和池化层,CNN通常还包括全连接层和激活函数。
全连接层用于将特征图转化为分类结果,激活函数引入非线性变换。
CNN在图像处理任务上具有突出优势。
通过卷积和池化操作,CNN能够自动提取出图像的局部特征和整体形状,并且具有一定的平移不变性和尺度不变性。
三、神经网络与CNN的应用比较1. 图像识别:神经网络在图像识别上的表现相对较差,因为它不能有效利用图像的空间结构信息。
而CNN能够通过卷积和池化操作提取图像特征,具有更好的识别准确率。
卷积神经网络简介及基本概念解析
卷积神经网络简介及基本概念解析近年来,卷积神经网络(Convolutional Neural Network,CNN)在计算机视觉领域取得了巨大的成功。
它是一种深度学习模型,通过模仿人脑的视觉处理方式,能够自动从图像中提取特征,并进行分类、识别等任务。
本文将对卷积神经网络的基本概念进行解析。
一、卷积神经网络的基本结构卷积神经网络由多个层次组成,包括输入层、卷积层、池化层和全连接层。
其中,输入层接收原始图像数据,卷积层通过卷积操作提取图像的特征,池化层用于减少特征图的大小,全连接层则将特征映射到具体的类别。
二、卷积操作卷积操作是卷积神经网络的核心。
它通过滑动一个卷积核(也称为过滤器)在输入图像上进行计算,从而提取图像的特征。
卷积操作可以捕捉到图像的局部信息,并且具有平移不变性,即对于图像的不同位置,卷积操作得到的特征是相同的。
三、激活函数在卷积神经网络中,激活函数被用于引入非线性。
常用的激活函数包括ReLU函数和Sigmoid函数。
ReLU函数在输入大于0时输出输入值,否则输出0,能够有效地解决梯度消失问题;Sigmoid函数将输入值映射到0到1之间,用于二分类问题。
四、池化操作池化操作用于减少特征图的大小,从而减少计算量,同时保留重要的特征。
常用的池化操作有最大池化和平均池化。
最大池化选取特定区域内的最大值作为输出,能够保留图像中的边缘和纹理等重要特征;平均池化计算特定区域内的平均值作为输出,能够平滑图像。
五、全连接层全连接层将卷积层和池化层得到的特征映射到具体的类别。
它将特征图展开成一维向量,并通过权重矩阵与偏置向量进行线性变换,然后通过激活函数得到最终的输出。
六、损失函数损失函数用于衡量模型输出与真实标签之间的差异。
常用的损失函数有交叉熵损失函数和均方误差损失函数。
交叉熵损失函数适用于分类问题,能够衡量模型输出的概率与真实标签的差异;均方误差损失函数适用于回归问题,能够衡量模型输出与真实值之间的差异。
卷积神经网络CNN
卷积神经网络CNN一、引言卷积神经网络(Convolutional Neural Network, CNN)是一种常用的深度学习算法,特别适合于处理图像、语音、自然语言等多维度数据。
其重要特点是局部感知和参数共享,这使得它能够快速准确地识别图像特征,并在不同的任务和场景中取得良好的表现。
本文主要介绍卷积神经网络的基本结构、原理和应用。
二、卷积神经网络结构卷积神经网络的基本结构包括输入层、卷积层、池化层、全连接层和输出层等部分。
其中,输入层用来接收原始图像或数据,卷积层和池化层用来提取图像特征,全连接层用来进行分类和回归等任务,输出层则表示最终的输出结果。
下面详细介绍每个部分的作用和特点。
1. 输入层输入层是卷积神经网络的第一层,主要用来接收原始图像或数据。
通常情况下,输入层的数据是二维图像,即图像的宽度、高度和颜色通道。
例如,一张彩色图片的宽度和高度都是像素的数量,而颜色通道就是RGB三个通道。
2. 卷积层卷积层是卷积神经网络的核心层,负责提取图像特征。
它主要通过卷积运算的方式,对输入层的数据进行处理,产生新的特征图。
卷积操作的核心思想是权重共享,即同一个卷积核在不同的位置上进行卷积操作,得到的特征图是一样的,这样能够大大减少网络参数量,防止过拟合现象出现。
卷积操作的数学表达式如下:$$Y = W*X + b$$其中,$W$是卷积核,$X$是输入特征图,$b$是偏置项,$Y$是输出特征图。
在卷积操作中,卷积核的参数是需要学习的参数,它的大小通常为$K*K$($K$是卷积核的大小),步幅通常为$S$。
卷积操作的结果是一个二维数组,它被称为输出特征图。
在实际应用中,卷积核的大小和步幅需要根据不同的数据类型和任务而定。
3. 池化层池化层是卷积神经网络的一个可选层,主要用来减少特征图的大小和数量,从而提高网络性能。
它通常有两种类型:最大池化和平均池化。
最大池化是取一个特征图中的最大值作为输出,而平均池化是取一个特征图中的平均值作为输出。
卷积神经网络在计算机视觉中的应用
卷积神经网络在计算机视觉中的应用卷积神经网络(Convolutional Neural Networks, CNNs)是一种被广泛应用于计算机视觉领域的深度学习模型。
它的出现极大地促进了图像分类、目标检测、图像生成等任务的准确率和效率。
本文将围绕卷积神经网络在计算机视觉中的应用展开详细论述。
一、卷积神经网络简介卷积神经网络是一种受到生物视觉系统启发的神经网络模型,其通过输入层、卷积层、池化层、全连接层和输出层组成。
其中,卷积层通过卷积操作提取图像的特征,池化层用于降低特征的维度,全连接层负责分类任务。
这种层次化的结构使得卷积神经网络能够自动学习从低级到高级的抽象特征。
二、图像分类图像分类是计算机视觉中的一项重要任务,旨在将输入的图像分为不同的类别。
卷积神经网络通过学习图像的局部特征和空间结构,能够实现对不同类别的准确分类。
例如,在ImageNet数据集上,卷积神经网络已经取得了令人瞩目的成果。
三、目标检测目标检测是计算机视觉中的一项挑战性任务,旨在在图像中定位和识别出多个目标。
传统的目标检测方法需要手动设计特征,而卷积神经网络能够自动学习特征表示,从而提高检测准确率。
常用的目标检测算法,如R-CNN、Faster R-CNN、YOLO等,都是基于卷积神经网络的。
四、图像生成除了图像分类和目标检测,卷积神经网络还在图像生成任务中发挥了重要作用。
通过对输入图像进行逆向传播,卷积神经网络能够生成与训练数据类似的图像或者改变图像的一些特征。
这在图像风格迁移、图像修复和图像生成等应用中具有很大的应用潜力。
五、其他应用除了上述提到的应用,卷积神经网络还在计算机视觉中的许多其他任务中产生了重要影响,如图像语义分割、视频分析和人脸识别等。
这些任务都涉及到对图像和视频中的特定信息进行理解和提取,而卷积神经网络能够有效地完成这些任务。
六、挑战与展望尽管卷积神经网络在计算机视觉中的应用取得了巨大成功,但仍然存在一些挑战。
CNN(卷积神经网络)详解
CNN(卷积神经网络)详解卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,用于处理具有类似网格结构的数据。
这种网络结构在计算机视觉领域中应用非常广泛,包括图像识别、语音识别等领域。
CNN采用卷积层、池化层和全连接层等多种不同的层来提取特征。
一、卷积层卷积层是CNN的核心,也是最基本的层,它可以检测不同的特征,比如边缘、颜色和纹理等。
通常情况下,卷积层的输入是一个彩色或者灰度的图像,输出则是不同数量的“特征图”。
每个特征图对应一个特定的特征。
卷积层有一个非常重要的参数,叫做卷积核(Kernel),也就是滤波器。
卷积核是一个小的矩阵,它在输入数据的二维平面上滑动,将每个位置的像素值与卷积核的对应位置上的值相乘,然后将结果相加得到卷积层的输出。
通过不同的卷积核可以检测出不同的特征。
二、池化层池化层是CNN中的另一种重要层,它可以对卷积层的输出做降维处理,并且能够保留特征信息。
池化层通常是在卷积层之后加上的,其作用是将附近几个像素点合并成一个像素点。
这样做的好处是可以减小数据量,同时也可以使特征更加鲁棒。
池化层通常有两种类型,分别是最大池化和平均池化。
最大池化是从相邻的像素中寻找最大值,即将一个矩阵划分成多个小矩阵,然后寻找每个小矩阵中的最大值,最后将每个小矩阵中的最大值组成的矩阵作为输出。
平均池化则是简单地取相邻像素的平均值作为输出。
三、全连接层全连接层,也叫做密集连接层,是CNN中的最后一层,它将池化层输出的结果转化成一个一维的向量,并将其送入神经网络中进行分类或者回归预测。
全连接层通常使用softmax或者sigmoid等激活函数来输出分类结果。
四、CNN的应用CNN在计算机视觉领域有着广泛的应用,比如图像分类、物体检测、人脸识别、文字识别等。
其中最常见的应用就是图像分类,即将一张图片分为不同的目标类别。
通过卷积层和池化层不断地提取出图像的特征,然后送进全连接层对不同的类别进行分类。
卷积神经网络综述
卷积神经网络综述摘要:回顾了卷积神经网络的发展历程,介绍了卷积神经网络的基本运算单元。
在查阅大量资料基础上,重点介绍了有代表性的 AlexNet、VGGNet、GoogLeNet、ResNet等,对他们所用到的技术进行剖析,归纳、总结、分析其优缺点,并指出卷积神经网络未来的研究方向。
关键词:卷积神经网络;AlexNet;VGGNet;GoogLeNet;ResNet0 引言卷积神经网络(Convolutional Neural Networks,CNN)是一类包含卷积计算并且含有深层次结构的深度前馈神经网络,是深度学习的代表算法之一,21世纪后,随着深度学习理论的提出和数值计算设备的改进,卷积神经网络得到了快速发展。
较之于传统方法,卷积神经网络的优点在于可自动提取目标特征,发现样本集中特征规律,解决了手动提取特征效率低下、分类准确率低的不足,因此卷积神经网络被广泛应用于图像分类、目标识别、自然语言处理等领域,取得了瞩目的成就。
1卷积神经网络的发展历程卷积神经网络发展历史中的第一件里程碑事件发生在上世纪60年代左右的神经科学中,加拿大神经科学家David H. Hubel和Torsten Wisesel于1959年提出猫的初级视皮层中单个神经元的“感受野”概念,紧接着于1962年发现了猫的视觉中枢里存在感受野、双目视觉和其他功能结构,标志着神经网络结构首次在大脑视觉系统中被发现。
1980年前后,日本科学家福岛邦彦(Kunihiko Fukushima)在Hubel和Wiesel工作的基础上,模拟生物视觉系统并提出了一种层级化的多层人工神经网络,即“神经认知”(neurocognitron),以处理手写字符识别和其他模式识别任务。
Yann LeCuu等人在1998年提出基于梯度学习的卷积神经网络算法,并将其成功用于手写数字字符识别,在那时的技术条件下就能取得低于1%的错误率。
因此,LeNet这一卷积神经网络便在当时效力于全美几乎所有的邮政系统,用来识别手写邮政编码进而分拣邮件和包裹。
卷积神经网络(CNN,ConvNet)及其原理详解
卷积神经网络(CNN,ConvNet)及其原理详解卷积神经网络(CNN,有时被称为ConvNet)是很吸引人的。
在短时间内,它们变成了一种颠覆性的技术,打破了从文本、视频到语音等多个领域所有最先进的算法,远远超出了其最初在图像处理的应用范围。
CNN 由许多神经网络层组成。
卷积和池化这两种不同类型的层通常是交替的。
网络中每个滤波器的深度从左到右增加。
最后通常由一个或多个全连接的层组成:图1 卷积神经网络的一个例子Convnets 背后有三个关键动机:局部感受野、共享权重和池化。
让我们一起看一下。
局部感受野如果想保留图像中的空间信息,那么用像素矩阵表示每个图像是很方便的。
然后,编码局部结构的简单方法是将相邻输入神经元的子矩阵连接成属于下一层的单隐藏层神经元。
这个单隐藏层神经元代表一个局部感受野。
请注意,此操作名为“卷积”,此类网络也因此而得名。
当然,可以通过重叠的子矩阵来编码更多的信息。
例如,假设每个子矩阵的大小是5×5,并且将这些子矩阵应用到28×28 像素的MNIST 图像。
然后,就能够在下一隐藏层中生成23×23 的局部感受野。
事实上,在触及图像的边界之前,只需要滑动子矩阵23 个位置。
定义从一层到另一层的特征图。
当然,可以有多个独立从每个隐藏层学习的特征映射。
例如,可以从28×28 输入神经元开始处理MNIST 图像,然后(还是以5×5 的步幅)在下一个隐藏层中得到每个大小为23×23 的神经元的k 个特征图。
共享权重和偏置假设想要从原始像素表示中获得移除与输入图像中位置信息无关的相同特征的能力。
一个简单的直觉就是对隐藏层中的所有神经元使用相同的权重和偏置。
通过这种方式,每层将从图像中学习到独立于位置信息的潜在特征。
理解卷积的一个简单方法是考虑作用于矩阵的滑动窗函数。
在下面的例子中,给定输入矩阵I 和核K,得到卷积输出。
将3×3 核K(有时称为滤波器或特征检测器)与输入矩阵逐元素地相乘以得到输出卷积矩阵中的一个元素。
卷积神经网络(CNN)详解
卷积神经⽹络(CNN)详解⼀、卷积神经⽹络的基本概念卷积神经⽹络与普通神经⽹络的区别在于,卷积神经⽹络包含了⼀个由卷积层和⼦采样层(池化层)构成的特征抽取器。
在卷积神经⽹络的卷积层中,⼀个神经元只与部分邻层神经元连接。
在CNN的⼀个卷积层中,通常包含若⼲个特征图(featureMap),每个特征图由⼀些矩形排列的的神经元组成,同⼀特征图的神经元共享权值,这⾥共享的权值就是卷积核。
卷积核⼀般以随机⼩数矩阵的形式初始化,在⽹络的训练过程中卷积核将学习得到合理的权值。
共享权值(卷积核)带来的直接好处是减少⽹络各层之间的连接,同时⼜降低了过拟合的风险。
⼦采样也叫做池化(pooling),通常有均值⼦采样(mean pooling)和最⼤值⼦采样(max pooling)两种形式。
⼦采样可以看作⼀种特殊的卷积过程。
卷积和⼦采样⼤⼤简化了模型复杂度,减少了模型的参数。
⼆、卷积神经⽹络的基本原理2.1 神经⽹络⾸先介绍神经⽹络,神经⽹络的每个单元如下:其对应的公式如下:其中,该单元也可以被称作是Logistic回归模型。
当将多个单元组合起来并具有分层结构时,就形成了神经⽹络模型。
下图展⽰了⼀个具有⼀个隐含层的神经⽹络。
其对应的公式如下:⽐较类似的,可以拓展到有2,3,4,5,…个隐含层。
2.2 卷积神经⽹络⾸先,我们先获取⼀个感性认识,下图是⼀个卷积神经⽹络的实例:卷积神经⽹络通常包含以下⼏种层:卷积层(Convolutional layer),卷积神经⽹路中每层卷积层由若⼲卷积单元组成,每个卷积单元的参数都是通过反向传播算法优化得到的。
卷积运算的⽬的是提取输⼊的不同特征,第⼀层卷积层可能只能提取⼀些低级的特征如边缘、线条和⾓等层级,更多层的⽹络能从低级特征中迭代提取更复杂的特征。
线性整流层(Rectified Linear Units layer, ReLU layer),这⼀层神经的活性化函数(Activation function)使⽤线性整流(Rectified Linear Units,ReLU)f(x)=max(0,x)f(x)=max(0,x)。
人工智能实训课程学习总结使用Python实现卷积神经网络的学习心得
人工智能实训课程学习总结使用Python实现卷积神经网络的学习心得在人工智能领域,深度学习算法占据了重要的地位,而卷积神经网络(Convolutional Neural Network,简称CNN)被广泛应用于图像处理、语音识别等各个领域。
本文将总结我在人工智能实训课程中使用Python实现卷积神经网络的学习心得。
首先,学习Python编程语言是使用卷积神经网络的必备基础。
Python作为一种简洁、灵活的编程语言,具有丰富的第三方库和工具,适用于各种机器学习任务。
在学习过程中,我通过阅读Python的相关文档和教程,提高了自己的Python编程能力,掌握了基本的语法和常用的编程技巧。
其次,在实现卷积神经网络之前,我了解了卷积神经网络的原理和基本结构。
卷积神经网络由输入层、卷积层、池化层、全连接层和输出层等组成。
其中,卷积层和池化层的作用是通过对输入数据的卷积和下采样操作提取图像的特征信息,全连接层则用于将提取到的特征映射到输出。
了解卷积神经网络的结构和原理对于实现过程起到了指导作用。
然后,我利用Python的深度学习库Keras进行卷积神经网络的实现。
Keras是一个高级的神经网络API,提供了一种快速实现深度学习模型的方法。
在使用Keras之前,我安装了TensorFlow作为其后台引擎,这样可以更高效地运行深度学习模型。
Keras提供了丰富的API和函数,使得卷积神经网络的实现过程更加简洁和易于理解。
接着,在实现卷积神经网络时,我首先准备了合适的训练数据集。
对于图像分类任务,通常需要一个包含训练图像和对应标签的数据集。
通过准备好的数据集,我可以将其加载到模型中进行训练和测试。
在加载数据集时,我使用了Python的NumPy库进行矩阵运算和数据预处理,以保证数据的准确性和可用性。
然后,我根据卷积神经网络的结构,在Keras中实现了相应的模型。
通过定义模型的层次结构和参数设置,我可以构建一个完整的卷积神经网络模型。
深度学习知识:卷积神经网络与循环神经网络的比较
深度学习知识:卷积神经网络与循环神经网络的比较深度学习是人工智能领域的一个重要分支,它以神经网络为基础,致力于模拟人脑的学习和认知过程,以实现机器自主学习、自主认知和自主决策。
卷积神经网络(Convolutional Neural Network,CNN)和循环神经网络(Recurrent Neural Network,RNN)是深度学习中两个重要的网络模型,分别适用于不同的任务和场景。
本文将对它们进行比较,分析它们的特点、优势和劣势,以及在不同领域中的应用。
一、卷积神经网络卷积神经网络是一种专门用于处理具有类似网格结构的数据的神经网络,如图像、视频和声音。
与传统的全连接神经网络相比,卷积神经网络具有很强的局部感知能力和参数共享机制,使其在处理图像等大规模数据时表现出色。
卷积神经网络的核心思想是通过卷积运算和池化操作来逐步提取输入数据的特征,从而实现对输入数据的高效抽象和识别。
1.卷积运算卷积运算是卷积神经网络的核心操作,它通过卷积核对输入数据进行卷积计算,从而提取输入数据的特征。
卷积操作可以有效捕获输入数据的空间关系和局部模式,使得卷积神经网络在处理图像等具有空间结构的数据时表现出色。
2.参数共享在卷积神经网络中,卷积核的参数是共享的,即不同位置的相同特征都使用相同的卷积核进行提取。
这种参数共享机制大大减少了网络参数的数量,降低了网络的复杂度,提高了网络的泛化能力。
3.池化操作池化操作是卷积神经网络中的另一个重要操作,它通过对输入数据进行下采样,从而减少数据的维度和参数数量,同时保持数据的特征不变性。
池化操作能够有效减少网络对输入数据的敏感度,提高网络的稳定性和鲁棒性。
卷积神经网络广泛应用于图像识别、目标检测、语义分割等领域,已取得了许多重要的成果,如ImageNet图像识别挑战赛的冠军就是基于卷积神经网络的模型。
二、循环神经网络循环神经网络是一种专门用于处理序列数据的神经网络,如文本、语音和时间序列数据。
深度学习知识:卷积神经网络与循环神经网络的比较
深度学习知识:卷积神经网络与循环神经网络的比较在深度学习领域,卷积神经网络(Convolutional Neural Network,CNN)和循环神经网络(Recurrent Neural Network,RNN)是两种常用的神经网络模型,它们分别适用于不同的问题领域和具有不同的特点。
本文将对CNN和RNN进行比较,从结构、应用领域、训练方式、优缺点等方面进行分析,以帮助读者深入了解这两种神经网络模型。
1.结构比较卷积神经网络是一种专门用于处理网格数据(如图像、语音)的神经网络结构。
它由卷积层、池化层和全连接层组成。
卷积层可以有效地捕捉输入数据的局部特征,而池化层可以减少参数数量并提高模型的鲁棒性,全连接层则用于生成最终的输出。
CNN的结构使得它在图像识别、物体检测、图像分割等领域有很好的表现。
循环神经网络是一种专门用于处理时序数据(如文本、语音)的神经网络结构。
它通过不断迭代自身的隐藏状态来处理输入数据的时序信息。
RNN有多种变种,如基本的RNN、长短期记忆网络(LongShort-Term Memory,LSTM)、门控循环单元(Gated Recurrent Unit,GRU)等。
这些变种在处理长距离依赖、解决梯度消失等问题上有所不同。
RNN在语言建模、机器翻译、语音识别等领域有广泛的应用。
2.应用领域比较CNN主要用于处理图像相关的问题。
它在图像分类、目标检测、语义分割等任务上表现出色。
例如,在ImageNet图像识别挑战赛中,多个深度学习模型基于CNN在图像分类方面取得了最好的成绩。
CNN通过卷积操作可以很好地捕捉图像的空间特征,而通过池化层可以降低特征的尺寸和复杂度,加速模型的训练和推理过程。
RNN主要用于处理文本、语音等时序数据。
它在语言建模、机器翻译、自然语言处理等领域有广泛应用。
RNN通过不断迭代自身的隐藏状态可以很好地捕捉时序数据中的依赖关系,而LSTM和GRU等变种可以更好地处理长距离依赖和梯度消失等问题。
简述卷积神经网络(CNN)和循环神经网络(RNN)的原理及应用场景
简述卷积神经网络(CNN)和循环神经网络(RNN)的原理及应用场景卷积神经网络(CNN)和循环神经网络(RNN)是当前深度学习领域中最热门的两个神经网络架构。
本论文将从两个方面分别介绍CNN和RNN的原理及应用场景。
一、卷积神经网络(CNN)1. 原理卷积神经网络是一种使用卷积操作的深度神经网络,其网络结构主要由卷积层、池化层和全连接层构成。
其中,卷积层和池化层主要用于提取图像的特征信息,而全连接层则用于进行分类或回归等任务。
具体而言,卷积层利用卷积核对输入数据进行卷积计算,以提取输入数据中的关键信息。
池化层则用于缩小特征图的空间大小,减少模型参数数量,提高模型的泛化能力。
全连接层将卷积层和池化层的输出进行flatten操作后,再进行全连接计算,以得出最终的分类或回归结果。
2. 应用场景卷积神经网络在图像识别、目标检测、人脸识别、自然语言处理等领域有着广泛的应用。
其中,图像识别是其主要应用场景之一。
例如,利用卷积神经网络可以对图像进行分类、分割、检测等任务。
此外,卷积神经网络还可以用于文本特征提取、语音识别等任务。
二、循环神经网络(RNN)1. 原理循环神经网络是一种具有记忆功能的神经网络,其主要特点是能够处理序列数据。
循环神经网络通过循环连接将上一时刻的输出作为本时刻的输入,以便学习上下文信息。
其网络结构主要由输入层、隐藏层和输出层构成。
其中,隐藏层包含循环单元,用于存储前面输入的信息。
具体而言,循环神经网络通过隐藏层单元的记忆功能,能够将上下文信息融合到当前的计算中,从而在序列数据的预测和生成任务上取得优异的效果。
2. 应用场景循环神经网络主要应用于序列任务,如文本生成、语音识别、机器翻译、时间序列预测等。
例如,在机器翻译中,可以将源语言序列作为输入序列,目标语言序列作为输出序列,利用循环神经网络进行学习和预测,从而实现机器翻译的自动化。
结论本论文从原理和应用场景两个方面介绍了卷积神经网络和循环神经网络。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 卷积神经网络卷积神经网络是深度学习的一种,已成为当前图像理解领域的研究热点它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。
这个优点在网络的输入是多维图像时表现得更为明显, 图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程. 卷积网络是为识别二维形状而特殊设计的一个多层感知器,这种网络结构对平移、比例缩放以及其他形式的变形具有一定不变性. 在典型的CNN 中,开始几层通常是卷积层和下采样层的交替, 在靠近输出层的最后几层网络通常是全连接网络。
卷积神经网络的训练过程主要是学习卷积层的卷积核参数和层间连接权重等网络参数, 预测过程主要是基于输入图像和网络参数计算类别标签。
卷积神经网络的关键是:网络结构(含卷积层、下采样层、全连接层等) 和反向传播算法等。
在本节中, 我们先介绍典型CNN 的网络结构和反向传播算法, 然后概述常用的其他CNN 网络结构和方法。
神经网络参数的中文名称主要参考文献[18] 卷积神经网络的结构和反向传播算法主要参考文献[17] 。
网络结构卷积层在卷积层, 上一层的特征图(Feature map) 被一个可学习的卷积核进行卷积, 然后通过一个激活函数(Activation function), 就可以得到输出特征图. 每个输出特征图可以组合卷积多个特征图的值[17] :()llj j x f u =1j ll l l j j ij j i M u x k b -∈=*+∑ 其中, l j u 称为卷积层l 的第j 个通道的净激活(Netactivation), 它通过对前一层输出特征图1l j x -进行卷积求和与偏置后得到的, lj x 是卷积层l 的第j 个通道的输出。
()f 称为激活函数, 通常可使用sigmoid 和tanh 等函数。
j M 表示用于计算l j u 的输入特征图子集, l ij k 是卷积核矩阵, l j b 是对卷积后特征图的偏置。
对于一个输出特征图l j x ,每个输入特征图1l j x -对应的卷积核l ij k 可能不同,“*”是卷积符号。
;下采样层下采样层将每个输入特征图通过下面的公式下采样输出特征图[17]:()llj j x f u =1()llllj j j j u down x b β-=+其中, l j u 称为下采样层l 的第j 通道的净激活, 它由前一层输出特征图1l j x -进行下采样加权、偏置后得到, β是下采样层的权重系数, lj b 是下采样层的偏置项. 符号()down 表示下采样函数, 它通过对输入特征图1lj x -通过滑动窗口方法划分为多个不重叠的n n ⨯图像块, 然后对每个图像块内的像素求和、求均值或最大值, 于是输出图像在两个维度上都缩小了n 倍。
全连接层在全连接网络中, 将所有二维图像的特征图拼接为一维特征作为全连接网络的输入.全连接层l 的输出可通过对输入加权求和并通过激活函数的响应得到[17]:%()llj j x f u =1l l l l u w x b -=+其中, l u 称为全连接层l 的净激活, 它由前一层输出特征图1l x-进行加权和偏置后得到的。
l w 是全连接网络的权重系数, l b 是全连接层l 的偏置项。
反向传播算法神经网络有两类基本运算模式: 前向传播和学习. 前向传播是指输入信号通过前一节中一个或多个网络层之间传递信号, 然后在输出层得到输出的过程. 反向传播算法是神经网络有监督学习中的一种常用方法, 其目标是根据训练样本和期望输出来估计网络参数. 对于卷积神经网络而言, 主要优化卷积核参数k 、下采样层网络权重¯、全连接层网络权重w 和各层的偏置参数b 等. 反向传播算法的本质在于允许我们对每个网络层计算有效误差,并由此推导出一个网络参数的学习规则, 使得实际网络输出更加接近目标值[18]。
我们以平方误差损失函数的多分类问题为例介绍反向传播算法的思路. 考虑一个多分类问题的训练总误差, 定义为输出端的期望输出值和实际输出值的差的平方[17]:211(,,,)2N n n n E w k b t y β==-∑ 其中, n t 是第n 个样本的类别标签真值, n y 是第n 个样本通过前向传播网络预测输出的类别标签. 对于多分类问题, 输出类别标签常用一维向量表示, 即输入样本对应的类别标签维度为正数, 输出类别标签的其他维为0 或负数, 这取决于选择的激活函数类型, 当激活函数选为sigmoid, 输出标签为0, 当激活函数为tanh, 输出标签为-1。
>反向传播算法主要基于梯度下降方法, 网络参数首先被初始化为随机值, 然后通过梯度下降法向训练误差减小的方向调整. 接下来, 我们以多个“卷积层-采样层”连接多个全连接层的卷积神经网络为例介绍反向传播算法。
首先介绍网络第l 层的灵敏度(Sensitivity)[17,18]:l lE u δ∂=∂其中, l δ描述了总误差E 怎样随着净激活lu 而变化. 反向传播算法实际上通过所有网络层的灵敏度建立总误差对所有网络参数的偏导数, 从而得到使得训练误差减小的方向。
卷积层为计算卷积层l 的灵敏度, 需要用下一层下采样层l + 1 的灵敏度表示卷积层l 的灵敏度, 然后计算总误差E 对卷积层参数(卷积核参数k 、偏置参数b) 的偏导数.由于下采样层的灵敏度尺寸小于卷积层的灵敏度尺寸, 因此需要将下采样层l + 1 的灵敏度上采样到卷积层l 的灵敏度大小, 然后将第l 层净激活的激活函数偏导与从第l + 1 层的上采样得到的灵敏度逐项相乘. 分别由式(1) 和(2), 通过链式求导可得第l 层中第j 个通道的灵敏度[17]: 11[()()]j ll l l j j j l jE f u up u δβδ++∂'==∂ 其中, ()up 表示一个上采样操作, 符号± 表示每个元素相乘. 若下采样因子为n, 则()up 将每个像素在水平和垂直方向上复制n 次, 于是就可以从l + 1层的灵敏度上采样成卷积层l 的灵敏度大小. 函数()up 可以用Kronecker 乘积()1n n up x x ⨯=⊗来实现。
%然后, 使用灵敏度对卷积层l 中的参数计算偏导. 对于总误差E 对偏移量lj b 的偏导, 可以对卷积层l 的灵敏度中所有节点进行求和来计算:,,()j l u v l u vj E b δ∂=∂∑ 对于总误差关于卷积核参数的偏导, 由式(1),使用链式求导时需要用所有与该卷积核相乘的特征图元素来求偏导:1,,,()()j j llu v u v l u vij E p k δ-∂=∂∑ 其中, 1,()j l u v p -是在计算l j x 时, 与l ij k 逐元素相乘的1l j x -元素. 下采样层为计算下采样层l 的灵敏度, 需要用下一层卷积层l + 1 的灵敏度表示下采样层l 的灵敏度, 然后计算总误差E 对下采样参数权重系数β、偏置参数b 的偏导数.为计算我们需要下采样层l 的灵敏度, 我们必须找到当前层的灵敏度与下一层的灵敏度的对应点,这样才能对灵敏度δ进行递推. 另外, 需要乘以输入特征图与输出特征图之间的连接权值, 这个权值实际上就是卷积核的参数. 分别由式(1) 和(2), 通过链式求导可得第l 层第j 个通道的灵敏度[17]:—11()2(,180(),)j j l ll lj j f u conv rot k full δδ++'''=其中, 对卷积核旋转180 度使用卷积函数计算互相关(在Matlab 中, 可用conv2 函数实现), 对卷积边界进行补零处理.然后, 总误差对偏移量b 的偏导与前面卷积层的一样, 只要对灵敏度中所有元素的灵敏度求和即可:,,()j l u v l u vj E b δ∂=∂∑ 对于下采样权重β, 我们先定义下采样算子1()j ll j d down x -=, 然后可通过下面的公式计算总误差E 对β的偏导:,,()j j l l u v l u vj E d δβ∂=∂∑ 这里我们假定下采样层的下一层为卷积层, 如果下一层为全连接层, 也可以做类似的推导.全连接层l 的灵敏度可通过下式计算:#11()()l l T l l w f u δδ++'=输出层的神经元灵敏度可由下面的公式计算:()()L n n L y t f u δ'=-总误差对偏移项的偏导如下:ll l l l E E u b u bδ∂∂∂==∂∂∂ 接下来可以对每个神经元运用灵敏度进行权值更新. 对一个给定的全连接层l, 权值更新方向可用该层的输入1l x - 和灵敏度lδ 的内积来表示: 1()l l T l E x wδ-∂=∂ 网络参数更新过程…卷积层参数可用下式更新:l ij l ijE k k η∂∆=-∂ l lE b b η∂∆=-∂ 下采样层参数可用下式更新:l l E βηβ∂∆=-∂ l l E b bη∂∆=-∂ 全连接层参数可用下式更新: l l E w w η∂∆=-∂ 【其中, 对于每个网络参数都有一个特定的学习率η.若学习率太小, 则训练的速度慢; 若学习率太大, 则可导致系统发散. 在实际问题中, 如果总误差在学习过程中发散, 那么将学习率调小; 反之, 如果学习速度过慢, 那么将学习率调大.常用的其他网络结构和方法卷积层传统卷积神经网络的卷积层采用线性滤波器与非线性激活函数, 一种改进的方法在卷积层使用多层感知机模型作为微型神经网络, 通过在输入图像中滑动微型神经网络来得到特征图, 该方法能够增加神经网络的表示能力, 被称为Network in net-work [19]. 为了解决既能够保证网络的稀疏性, 又能够利用稠密矩阵的高性能计算, Szegedy 等[11] 提出Inception 网络. Inception 网络的一层含有一个池化操作和三类卷积操作: 1 *1、3 *3、5 * 5 卷积。
池化池化(Pooling) 是卷积神经网络中一个重要的操作, 它能够使特征减少, 同时保持特征的局部不变性. 常用的池化操作有: 空间金字塔池化(Spatial pyramid pooling, SPP)[10]、最大池化(Max pooling)、平均池化(Mean pooling)、随机池化(Stochastic pooling)[20] 等.激活函数~常用激活函数有: ReLU [8]、Leakly ReLU [21]、Parametric ReLU 、Randomized ReLU 、ELU 等.损失函数损失函数的选择在卷积神经网络中起重要作用, 代表性的损失函数有: 平方误差损失、互熵损失(Cross entropy loss)、Hinge 损失等.优化方法和技巧卷积神经网络常用的优化方法包含随机梯度下降方法(Stochastic gradient descent, SGD), 常用的技巧有权值初始化[8]、权值衰减(Weight decay)[18]、Batchnormalization[22] 等.卷积神经网络的优势卷积神经网络在下采样层可以保持一定局部平移不变形, 在卷积层通过感受野和权值共享减少了神经网络需要训练的参数的个数. 每个神经元只需要感受局部的图像区域, 在更高层将这些感受不同局部区域的神经元综合起来就可以得到全局的信息.因此, 可以减少网络连接的数目, 即减少神经网络需积神经网络以其权值共享的特殊结构在图像理解领域中有着独特的优越性, 通过权值共享降低了网络的复杂性.总之, 卷积神经网络相比于一般神经网络在图像理解中有其特殊的优点: 1) 网络结构能较好适应图像的结构; 2) 同时进行特征提取和分类, 使得特征提取有助于特征分类; 3) 权值共享可以减少网络的训练参数, 使得神经网络结构变得更简单、适应性更强.要训练的权值参数的个数. 由于同一特征通道上的神经元权值相同, 所以网络可以并行学习, 这也是卷积网络相对于神经元彼此相连网络的一大优势.。