专题复习五、求最短路径问题

合集下载

初中数学——最短路径问题常见题型及解题方法

初中数学——最短路径问题常见题型及解题方法

初中数学——最短路径问题常见题型及解题方法
两点在直线同侧的最短路径问题
给出一条直线,A、B两点在直线的同侧,要在直线上找到一个点,使这个点到A点和到B点的距离最短。

步骤:
①找到A(或B)关于直线的对称点P
②连接PB(PA)交直线于O,点O就是所要找的点
造桥选址问题
A、B在一条河的两岸,要在河上造一座桥MN,使A到B的路径AMNB最短。

步骤:
①作出河的宽度M′N′
②将M′N′平移,使M′向A点平移,N′向A′点平移,即AA′=M′N′
③连接A′B与河岸b交于N点
④过N点作直线a的垂线,垂足为M 。

则MN就是桥的位置.
涉及到两个动点的最短路径问题
给出一个正方形,已知两个定点和两个动点,
要在直线上找到这两个动点,使这四个点所围的四边形周长最小。

步骤:
①找到两个定点关于正方形的边的对称点,
②连接两个对称点,和正方形边的两边有两个交点。

③交点就是动点的位置
例题:
(2015,广西玉林、防城港)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是.
思路:。

中考专题复习——最短路径问题(有答案)

中考专题复习——最短路径问题(有答案)

B CD AL 中考专题复习——路径最短问题一、具体内容包括:蚂蚁沿正方体、长方体、圆柱、圆锥外侧面吃食问题; 线段(之和)最短问题;二、原理:两点之间,线段最短;垂线段最短。

(构建“对称模型”实现转化) 三、例题:例1、①如右图是一个棱长为4的正方体木块,一只蚂蚁要从木块的点A 沿木块侧面爬到点B 处,则它爬行的最短路径是 。

②如右图是一个长方体木块,已知AB=3,BC=4,CD=2,假设一只蚂蚁在点A 处,它要沿着木块侧面爬到点D 处,则蚂蚁爬行的最短路径是 。

例2、①如图,要在河边修建一个水泵站,分别向张村、李庄送水,水泵站修在河边什么地方可使所用的水管最短。

②如图,直线L 同侧有两点A 、B ,已知A 、B 到直线L 的垂直距离分别为1和3,两点的水平距离为3,要在直线L 上找一个点P ,使PA+PB 的和最小。

请在图中找出点P 的位置,并计算PA+PB 的最小值。

③要在河边修建一个水泵站,向张村、李庄铺设管道送水,若张村、李庄到河边的垂直距离分别为1Km 和3Km ,张村与李庄的水平距离为3Km ,则所用水管最短长度为 。

四、练习题(巩固提高)张村李庄ABCD 图(2)EBDACP图(3)D OP(一)1、如图是一个长方体木块,已知AB=5,BC=3,CD=4,假设一只蚂蚁在点A 处,它要沿着木块侧面爬到点D 处,则蚂蚁爬行的最短路径是 。

2、现要在如图所示的圆柱体侧面A 点与B 点之间缠一条金丝带(金丝带的宽度忽略不计),圆柱体高为6cm ,底面圆周长为16cm ,则所缠金丝带长度的最小值为 。

3、如图是一个圆柱体木块,一只蚂蚁要沿圆柱体的表面从A 点爬到点B 处吃到食物,知圆柱体的高为5 cm ,底面圆的周长为24cm ,则蚂蚁爬行的最短路径为 。

4、正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,DN +MN的最小值为 。

第4题 第5题 第6题 第7题5、在菱形ABCD 中,AB=2, ∠BAD=60°,点E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值为 。

八年级数学最短路径题型归纳

八年级数学最短路径题型归纳

八年级数学中的最短路径问题,通常涉及到几何图形中的点、线、面等元素,需要利用一些基本的几何知识和数学原理来求解。

以下是一些常见的最短路径题型及其解题方法:1.两点之间的最短距离:题型描述:在平面上给定两点A和B,求A到B的最短距离。

解题方法:直接连接A和B,线段AB的长度即为最短距离。

2.点到直线的最短距离:题型描述:在平面上给定一点P和一条直线l,求P到l的最短距离。

解题方法:作点P到直线l的垂线,垂足为Q,则PQ的长度即为最短距离。

3.直线到直线的最短距离:题型描述:在平面上给定两条直线l1和l2,求l1到l2的最短距离。

解题方法:如果l1和l2平行,则它们之间的距离即为最短距离;如果l1和l2不平行,则作l1到l2的垂线,垂足所在的线段即为最短4.点到圆的最短距离:题型描述:在平面上给定一点P和一个圆O,求P到圆O的最短距离。

解题方法:如果点P在圆O内,则最短距离为P到圆心的距离减去圆的半径;如果点P在圆O外,则最短距离为P到圆心的距离;如果点P在圆O上,则最短距离为0。

5.圆到圆的最短距离:题型描述:在平面上给定两个圆O1和O2,求O1到O2的最短距离。

解题方法:如果两圆外离,则它们之间的最短距离为两圆的半径之和;如果两圆外切,则它们之间的最短距离为两圆的半径之差;如果两圆相交或内切,则它们之间的最短距离为0;如果两圆内含,则它们之间的最短距离为两圆的半径之差减去两圆半径之和的绝对值。

6.多边形内的最短路径:题型描述:在一个多边形内给定两个点A和B,求A到B的最短解题方法:通常需要将多边形划分为多个三角形,然后利用三角形内的最短路径(即连接两点的线段)来求解。

7.立体几何中的最短路径:题型描述:在立体图形中给定两点A和B,求A到B的最短路径。

解题方法:通常需要将立体图形展开为平面图形,然后利用平面几何中的最短路径原理来求解。

在解决最短路径问题时,需要注意以下几点:准确理解题目要求,确定需要求的是哪两点之间的最短距离。

中考专题复习——最短路径问题

中考专题复习——最短路径问题

word专业资料-可复制编辑-欢迎下载A B C DABABL A BCDDO CP中考专题复习——路径最短问题一、具体内容包括:蚂蚁沿正方体、长方体、圆柱、圆锥外侧面吃食问题;线段(之和)最短问题;二、原理:两点之间,线段最短;垂线段最短。

(构建“对称模型”实现转化)三、例题:例1、①如右图是一个棱长为4的正方体木块,一只蚂蚁要从木块的点A沿木块侧面爬到点B处,则它爬行的最短路径是。

②如右图是一个长方体木块,已知AB=3,BC=4,CD=2,假设一只蚂蚁在点A处,它要沿着木块侧面爬到点D处,则蚂蚁爬行的最短路径是。

例2、①如图,要在河边修建一个水泵站,分别向张村、李庄送水,水泵站修在河边什么地方可使所用的水管最短。

②如图,直线L同侧有两点A、B,已知A、B到直线L的垂直距离分别为1和3,两点的水平距离为3,要在直线L上找一个点P,使PA+PB的和最小。

请在图中找出点P的位置,并计算PA+PB的最小值。

③要在河边修建一个水泵站,向张村、李庄铺设管道送水,若张村、李庄到河边的垂直距离分别为1Km和3Km,张村与李庄的水平距离为3Km,则所用水管最短长度为。

四、练习题(巩固提高)(一)1、如图是一个长方体木块,已知AB=5,BC=3,CD=4,假设一只蚂蚁在点A 处,它要沿着木块侧面爬到点D处,则蚂蚁爬行的最短路径是。

2、现要在如图所示的圆柱体侧面A点与B点之间缠一条金丝带(金丝带的宽度忽略不计),圆柱体高为6cm,底面圆周长为16cm,则所缠金丝带长度的最小值为。

3、如图是一个圆柱体木块,一只蚂蚁要沿圆柱体的表面从A点爬到点B处吃到食物,知圆柱体的高为5 cm,底面圆的周长为24cm,则蚂蚁爬行的最短路径为。

4、正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,DN第2题张村李庄张村李庄AABB第1题第3题图(2)EBDACP+MN 的最小值为 。

第4题 第5题 第6题 第7题 5、在菱形ABCD 中,AB=2, ∠BAD=60°,点E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值为 。

最短路径问题(经典)

最短路径问题(经典)

最短路径问题(珍藏版)
【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:
①确定起点的最短路径问题- 即已知起始结点,求最短路径的问题.
②确定终点的最短路径问题- 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.
③确定起点终点的最短路径问题- 即已知起点和终点,求两结点之间的最短路径.
④全局最短路径问题- 求图中所有的最短路径.
【问题原型】“将军饮马”,“造桥选址”,“费马点”.
【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.
【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.
【十二个基本问题】
全国初中数学资料群群号:101216960。

初中数学《最短路径问题》典型题型复习

初中数学《最短路径问题》典型题型复习

初中数学《最短路径问题》典型题型知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。

“饮马问题”,“造桥选址问题”。

考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。

解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。

一、两点在一条直线异侧例:已知:如图,A ,B 在直线L 的两侧,在L 上求一点P ,使得PA+PB 最小。

解:连接AB,线段AB 与直线L 的交点P ,就是所求。

(根据:两点之间线段最短.)二、 两点在一条直线同侧例:图所示,要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方,才能使从A 、B 到它的距离之和最短.解:只有A 、C 、B 在一直线上时,才能使AC +BC 最小.作点A 关于直线“街道”的对称点A ′,然后连接A ′B ,交“街道”于点C ,则点C 就是所求的点.三、一点在两相交直线内部例:已知:如图A 是锐角∠MON 内部任意一点,在∠MON 的两边OM ,ON 上各取一点B ,C ,组成三角形,使三角形周长最小.解:分别作点A 关于OM ,ON 的对称点A ′,A ″;连接A ′,A ″,分别交OM ,ON 于点B 、点C ,则点B 、点C 即为所求分析:当AB 、BC 和AC 三条边的长度恰好能够体现在一条直线上时,三角形的周长最小例:如图,A.B 两地在一条河的两岸,现要在河上建一座桥MN ,桥造在何处才能使从A 到B 的路径AMNB 最短?(假设河的两岸是平行的直线,桥要与河垂直)解:1.将点B 沿垂直与河岸的方向平移一个河宽到E , 2.连接AE 交河对岸与点M,则点M 为建桥的位置,MN 为所建的桥。

A· MNE证明:由平移的性质,得 BN ∥EM 且BN=EM, MN=CD, BD ∥CE, BD=CE, 所以A.B 两地的距:AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在CD 处,连接AC.CD.DB.CE, 则AB 两地的距离为:AC+CD+DB=AC+CD+CE=AC+CE+MN,在△ACE 中,∵AC+CE >AE, ∴AC+CE+MN >AE+MN,即AC+CD+DB >AM+MN+BN 所以桥的位置建在CD 处,AB 两地的路程最短。

初二数学最短路径问题知识归纳+练习

初二数学最短路径问题知识归纳+练习

初二数学最短路径问题【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题.②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径.④全局最短路径问题 - 求图中所有的最短路径.【问题原型】“将军饮马”,“造桥选址”,“费马点”.【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.在直线l 上求一点P ,使PB PA -的值最大.作直线AB ,与直线l 的交点即为P .三角形任意两边之差小于第三边.PB PA -≤AB .PB PA -的最大值=AB .【问题11】 作法图形 原理在直线l 上求一点P ,使PB PA -的值最大.作B 关于l 的对称点B '作直线A B ',与l 交点即为P .三角形任意两边之差小于第三边.PB PA -≤AB '. PB PA -最大值=AB '.【问题12】“费马点” 作法图形 原理△ABC 中每一内角都小于120°,在△ABC 内求一点P ,使P A +PB +PC 值最小.所求点为“费马点”,即满足∠APB =∠BPC =∠APC =120°.以AB 、AC 为边向外作等边△ABD 、△ACE ,连CD 、BE 相交于P ,点P 即为所求.两点之间线段最短. P A +PB +PC 最小值=CD .【精品练习】1.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( )A .3B .26C .3D 62.如图,在边长为2的菱形ABCD 中,∠ABC =60°,若将△ACD 绕点A 旋转,当AC ′、AD ′分别与BC 、CD 交于点E 、F ,则△CEF 的周长的最小值为( ) A .2B .32C .32+D .4lBAlPABl ABlBPAB'ABCPEDCBAADEPB C3.四边形ABCD 中,∠B =∠D =90°,∠C =70°,在BC 、CD 上分别找一点M 、N ,使△AMN 的周长最小时,∠AMN +∠ANM 的度数为( )A .120°B .130°C .110°D .140°4.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是 .5.如图,Rt △ABC 中,∠C =90°,∠B =30°,AB =6,点E 在AB 边上,点D 在BC 边上(不与点B 、C 重合), 且ED =AE ,则线段AE 的取值范围是 .6.如图,∠AOB =30°,点M 、N 分别在边OA 、OB 上,且OM =1,ON =3,点P 、Q 分别在边OB 、OA 上,则MP +PQ +QN 的最小值是_________.(注“勾股定理”:直角三角形中两直角边的平方和等于斜边的平方,即Rt △ABC 中,∠C =90°,则有222AB BC AC =+)7.如图,三角形△ABC 中,∠OAB =∠AOB =15°,点B 在x 轴的正半轴,坐标为B (36,0).OC 平分∠AOB ,点M 在OC 的延长线上,点N 为边OA 上的点,则MA +MN 的最小值是______. DEABCD MABMN8.已知A (2,4)、B (4,2).C 在y 轴上,D 在x 轴上,则四边形ABCD 的周长最小值为 ,此时 C 、D 两点的坐标分别为 .9.已知A (1,1)、B (4,2).(1)P 为x 轴上一动点,求PA +PB 的最小值和此时P 点的坐标;(2)P 为x 轴上一动点,求PB PA 的值最大时P 点的坐标;(3)CD 为x 轴上一条动线段,D 在C 点右边且CD =1,求当AC +CD +DB 的最小值和此时C 点的坐标;10.点C 为∠AOB 内一点.(1)在OA 求作点D ,OB 上求作点E ,使△CDE 的周长最小,请画出图形;(2)在(1)的条件下,若∠AOB =30°,OC =10,求△CDE 周长的最小值和此时∠DCE 的度数.图①12.荆州护城河在CC'处直角转弯,河宽相等,从A处到达B处,需经过两座桥DD'、EE',护城河及两桥都是东西、南北方向,桥与河岸垂直.如何确定两座桥的位置,可使A到B点路径最短?。

初中数学《最短路径问题》典型题型复习

初中数学《最短路径问题》典型题型复习

初中数学《最短路径问题》典型题型知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。

“饮马问题”,“造桥选址问题”。

考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。

解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。

一、两点在一条直线异侧例:已知:如图,A,B在直线L的两侧,在L上求一点卞P,使得最小。

二解:连接,线段与直线L的交点P,就是所求。

(根据:两点之间线段最短.)二、两点在一条直线同侧例:图所示,要在街道旁修建一个奶站,向居民区 A B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.KRI?< 4解:只有A C B在一直线上时,才能使最小.作点A关于直线“街道”的对称点A,然后连接A B,交“街道”于点C,则点C就是所求的点.三、一点在两相交直线内部例:已知:如图A是锐角/内部任意一点,在/的两边,上各取一点B, C,组成三角形,使三角形周长最小.o解:分别作点A关于,的对称点A , A〃;连接A , A〃,分别交,于点B、点C,则点B、点C即为所求分析:当、和三条边的长度恰好能够体现在一条直线上时,三角形的周长最小例:如图,两地在一条河的两岸,现要在河上建一座桥,桥造在何处才能使从A到B的路径最短?(假设河的两岸是平行的直线,桥要与河垂直)解:1•将点B沿垂直与河岸的方向平移一个河宽到E,2. 连接交河对岸与点M,则点M为建桥的位置,为所建的桥。

证明:由平移的性质,得 //且,,// ,, 所以两地的距,若桥的位置建在处,连接则两地的距离为:在△中,•••> , •••> ,即 >所以桥的位置建在处,两地的路程最短例:如图,A B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,?要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,?可使所修的渠道最短,试在图中确定该点作法:作点B 关于直线a 的对称点点C,连接交直线a 于点D,则点D 为建 抽水站的位置。

最短路径问题的求解

最短路径问题的求解

最短路径问题的求解
4、此时再以离原点最近的未展开的点B联接的所有点,处理后,再展开离原点最近未展开的D点, 处理后得到如下图的最终结果:
5、由上图可以得出结论:点C、B、D、E就是点A到它们的最短路径(注意:这些路径并不是经过了 所有点,而是只经过了其中的若干个点,而且到每一个点的那条路径不一定相同)。因而A到E的最 短距离就是13。至于它经过了哪几个点大家可在上述过程中加以记录即可。
最短路径问题的求解
三、等代价搜索法 等代价搜索法也是在宽度优先搜索的基础上进行了部分优化的一种算法,它与 启发式搜索的相似之处都是每次只展开某一个结点(不是展开所有结点),不同之 处在于:它不需要去另找专门的估价函数,而是以该结点到A点的距离作为估价值, 也就是说,等代价搜索法是启发式搜索的一种简化版本。它的大体思路是: 1、 从A点开始依次展开得到AB(7)、AC(3)、AD(10)、AE(15)四个新 结点,把第一层结点A标 把未展开过的AB、AC、AD、AE四个结点中距离最小的一个展开,即展开AC (3)结点,得到ACB(8)、ACD(16)、ACE(13)三个结点,并把结点AC标记为 已展开; 3、 再从未展开的所有结点中找出距离最小的一个展开,即展开AB(7)结点, 得到ABC(12)、ABD(20)、ABE(19)三个结点,并把结点AB标记为已展开; 4、 再次从未展开的所有结点中找出距离最小的一个展开,即展开ACB(8)结 点,……; 5、 每次展开所有未展开的结点中距离最小的那个结点,直到展开的新结点中 出现目标情况(结点含有5个字母)时,即得到了结果。
最短路径问题的求解
[问题分析] 对于一个含有n个顶点和e条边的图来说,从某一个顶点Vi到其余任一顶点Vj的最短路径,可 能是它们之间的边(Vi,Vj),也可能是经过k个中间顶点和k+1条边所形成的路径(1≤k≤n-2)。 下面给出解决这个问题的Dijkstra算法思想。 设图G用邻接矩阵的方式存储在GA中,GA[i,j]=maxint表示Vi,Vj是不关联的,否则为权值 (大于0的实数)。设集合S用来保存已求得最短路径的终点序号,初始时S=[Vi]表示只有源点, 以后每求出一个终点Vj,就把它加入到集合中并作为新考虑的中间顶点。设数组dist[1..n]用来 存储当前求得的最短路径,初始时Vi,Vj如果是关联的,则dist[j]等于权值,否则等于maxint, 以后随着新考虑的中间顶点越来越多,dist[j]可能越来越小。再设一个与dist对应的数组 path[1..n]用来存放当前最短路径的边,初始时为Vi到Vj的边,如果不存在边则为空。 执行时,先从S以外的顶点(即待求出最短路径的终点)所对应的dist数组元素中,找出其 值最小的元素(假设为dist[m]),该元素值就是从源点Vi到终点Vm的最短路径长度,对应的 path[m]中的顶点或边的序列即为最短路径。接着把Vm并入集合S中,然后以Vm作为新考虑的中 间顶点,对S以外的每个顶点Vj,比较dist[m]+GA[m,j]的dist[j]的大小,若前者小,表明加入 了新的中间顶点后可以得到更好的方案,即可求得更短的路径,则用它代替dist[j],同时把Vj 或边(Vm,Vj)并入到path[j]中。重复以上过程n-2次,即可在dist数组中得到从源点到其余 各终点的最段路径长度,对应的path数组中保存着相应的最段路径。 对于上图,采用Dijkstra算法找出C1到Ci之间的最短路径(2≤i≤6)的过程如下:

最短路径问题

最短路径问题

最短路径问题 姓名 类型一、一条直线外两个定点到直线上一动点距离之和最小的问题:1. 一条直线异侧两个定点到直线上一动点距离之和最小,确定动点的位置。

作法:连接两个定点,交直线于一点,交点即为所求。

例1、如图,在直线l 上求一点P ,使PA +PB 值最小.作法:连接AB ,交直线l 于点P ,点P 即为所求。

说明:∵连接A 、B 两点的线中,线段最短。

∴连接AB ,交直线l 于点P ,此时PA+PB 最小=AB2. 一条直线同侧两个定点到直线上一动点距离之和最小,确定动点的位置。

方法:利用轴对称变换将直线同侧两个定点转化为直线异侧两个定点,然后根据“两点之间线段最短”,用例1的方法确定动点的位置。

例2、 如图,在直线l 上求一点P ,使PA +PB 值最小. 作法:①作点A 关于直线l 的对称点A ’;②连接A ’B ,交直线l 于点P ,点P 即为所求。

说明:连接AP 、AA ’,∵点A 和点A ’关于直线l 对称, ∴直线l 是AA ’的垂直平分线,∴PA=PA ’,∵两点之间,线段最短。

∴此时PA+PB 最小=PA ’+PB=AB 。

类型二、一条直线外两个定点到直线上一动点距离之差最大的问题: 1.一条直线同侧两个定点到直线上一动点距离之差最大,确定动点的位置。

例3、在直线l 上求一点P ,使PB PA -的值最大.作法:连接AB ,并延长交直线l 于点P ,点P 即为所求。

证明:在直线l 上另取一点P ’,连接P ’A 和P ’B , ∵三角形的两边之差大于第三边, ∴AB B P A P <''-; 而连接AB ,并延长交直线l 于点P ,此时AB PB PA =-, AB PB PA =-∴最大此时 2.一条直线异侧两个定点到直线上一动点距离之差最大,确定动点的位置。

方法:利用轴对称变换将直线异侧两个定点转化为直线同侧两个定点,然后根据“三角形的两边之差大于第三边”,用例3的方法确定动点的位置。

最短路径问题梳理

最短路径问题梳理
常见路径最值模型梳捋
按照路径最值问题的构成或解答方式分组。
模型组一
1 两点一线异侧和最小值问题 问题:两定点A、B位于直线l异侧,在直线l上找一点P,使PA+PB值最 小. 问题解决:
结论:根据两点之间线段最短,PA+PB的最小值即为线段AB长.
模型组一
2. 两点一线同侧和最小值问题 问题:两定点A、B位于直线l同侧,在直线l上找一点P,使得PA+PB值 最小. 问题解决:
(分析:PQ为定值,只需AP+QB的值最小,可通 过平移,使P、Q“接头”,转化为基本模型)
解:将点A沿着平行于l的方向,向右移至A´, 使AA´=PQ=a,连接A´B交直线l于点Q,在l上截取
PQ=a(P在Q左边),则线段PQ即为所求,此 时
AP+PQ+QB的最小值为A´B+PQ,即A´B+a
ห้องสมุดไป่ตู้
模型组三
解:作点A关于OM的对称点A′,过点A′作AQ⊥ON 于 点Q,A′Q交OM于点P,此时AP+PQ最小;
理由:由轴对称的性质知AP=A′P, 要使AP+PQ最小, 只需A′P+PQ最小,从而 转化为拓展模型1
模型组二
3. “胡不归”问题 基本模型:两定一动,动点在定直线上
问题:点A为直线l上一定点,点B为直线外一定点, P为直线l上一动点,要使 AP+BP最小.
模型组四
2.异侧差最小值问题
问题:两定点A、B位于直线l异侧,在直线l上找一点P,使得|PA-
PB|的值最小. 问题解决:
A▪
B▪
结论:根据垂直平分线上的点到线段两端点的距 离相等,当PA=PB时,|PA-PB|=0.
模型组四总结:

初中数学_中考专题复习——最短路径问题教学设计学情分析教材分析课后反思

初中数学_中考专题复习——最短路径问题教学设计学情分析教材分析课后反思

中考专题复习教学目标知识与技能1.建立数学模型,能利用轴对称变换找对称点,并用两点之间线段最短的方法来求最短路径。

2.借助特殊四边形、一次函数、反比例函数以及二次函数的图像等这些基本图形,运用对称变换的方法,能清晰的抓住求最短路径问题的本质。

3.在探索最短路径的过程中,体会轴对称、“桥梁”作用,感悟转化思想,一题多解,一题多变的思想。

过程与方法经历探索最短路径过程,在操作、观察、分析过程中发展学生思维意识,培养学生的解题技能技巧。

情感态度与价值观体验数学活动来源于生活又服务于生活,体会异侧直接连,同侧找对称点,提高学生的学习兴趣。

重点利用轴对称数学知识,将最短路径问题转化为“两点之间线段最短”问题,增强解决实际问题的能力。

掌握解决问题的方法和技巧。

难点综合运用轴对称数学知识,将同侧的两定点通过轴对称变换转化到已侧,从而借助两点之间线段最短解决线段和(周长)最小值问题。

活动一:旧知回顾师生行为设计意图问题1 A,B是路边两个新建小区,要在路边增设一个公共汽车站C。

使两个小区到车站的路程最短,该公共汽车站应建在什么地方?问题2相传,古希腊亚历山大城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短?师生集体宣誓师:提出问题。

生:讨论交流,板书作图过程师:提出问题导入课题。

师:请思考问题1和问题2的相同点是解决的那类问题?不同点是什么?解决问题的方法和技巧是什么?1、活跃课堂气氛,使学生在轻松愉快的环境中学习。

2、复习两点之间线段最短,从而引出课题3、渗透转化思想,了解解题方法和解题技巧。

4、建立数学模型:将军饮马问题5、探究解题方法:异侧直接连,同侧找对称点6、发现解题技巧活动二:典题赏析类型一:四边形中的最短路径问题培养学生善于思考、善于观察的良好习惯例1 生:一生读题一生解答师:配合学生完成审题过程师:提出新问题若本题其它条件不变。

最短路径问题方法总结

最短路径问题方法总结

最短路径问题方法总结嘿,咱今儿就来说说这最短路径问题!你说这生活中啊,可不就到处都是找最短路径的事儿嘛。

就好比你要去一个地方,肯定想走最快最省力的路呀,这其实就是个最短路径问题呢。

先来说说在地图上找路吧,你得会看那些弯弯绕绕的线条,这就像在一个大迷宫里找出口。

有时候你看着好像这条路最近,结果走过去发现有个大堵车,或者路不通,这不就傻眼啦!所以啊,不能光看表面,得综合考虑各种因素。

再打个比方,就像你要去拿个东西,摆在面前有好几条路可以走。

你得想想,哪条路上不会有太多阻碍,哪条路能让你最快拿到。

这可不是随随便便就能决定的哦。

解决最短路径问题,有一种常见的方法叫迪杰斯特拉算法。

这名字听着挺拗口吧,但其实不难理解。

它就像是个聪明的导航,能帮你算出从一个点到其他所有点的最短路径。

想象一下,你站在一个路口,这个算法就像个小精灵在你耳边告诉你该往哪边走。

还有一种叫弗洛伊德算法,它能处理更复杂的情况。

就好像你要在一个超级大的网络里找路,这个算法就能帮你找到那些隐藏的最短路径。

咱平常生活里也经常会碰到类似的问题呀。

比如说你每天上班,怎么走路或者坐车能最快到公司,这就是你的最短路径问题。

你得考虑路上的交通情况、换乘次数等等。

再比如你去超市买东西,怎么在货架之间穿梭能最快拿到你要买的东西,这也是个小小的最短路径问题呢。

那怎么才能更好地解决这些最短路径问题呢?首先你得有耐心,不能着急,得仔细分析各种情况。

然后呢,要多积累经验,就像你知道哪条路经常堵车,下次就避开它。

而且啊,有时候最短路径不一定是最好的路径哦。

就像有时候走一条稍微远点但是风景好的路,心情也会变得超好,这不是也很值嘛!总之呢,最短路径问题可大可小,遍布在我们生活的方方面面。

我们要学会用各种方法去找到最合适我们的那条路。

不管是在地图上找路,还是在生活中做选择,都要好好思考,找到属于自己的最短路径。

别总是盲目地走,要学会动脑子呀!大家说是不是这个理儿呢?。

最短路径问题归纳总结

最短路径问题归纳总结

最短路径问题归纳总结本文介绍了数学中的最短路径问题,该问题是图论研究中的一个经典算法问题,旨在寻找图中两结点之间的最短路径。

具体的算法形式包括确定起点的最短路径问题、确定终点的最短路径问题、确定起点终点的最短路径问题和全局最短路径问题。

其中,“将军饮马”、“造桥选址”和“费马点”是该问题的原型。

解决该问题需要涉及知识包括“两点之间线段最短”、“垂线段最短”、“三角形三边关系”、“轴对称”和“平移”等。

在解题思路方面,可以通过找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。

本文还列举了十二个基本问题,包括确定起点的最短路径问题、确定终点的最短路径问题、确定起点终点的最短路径问题、全局最短路径问题、将军饮马、造桥选址等。

对于每个问题,本文都给出了详细的作法和图形原理,以及需要用到的知识原理。

问题6】给定直线m和直线n,求在它们上面的两个点M和N,使得XXX的值最小。

根据垂线段最短的原理,将点A向右平移a个长度得到A',作A'关于直线m的对称点A'',连A''B,交直线MN于点M,直线NB于点N,使得MN⊥m且MN=a。

则AM+MN+BN的最小值为A''B+MN。

在直线l上求两点M、N(M在左),使MN=a,并使AM+MN+NB的值最小。

将N点向左平移a个单位得到M。

问题7】给定两条直线l1和l2,求在它们上面的两个点A和B,使得PA+AB的值最小。

根据垂线段最短的原理,作点P关于l1的对称点P',作P'B⊥l2于B,交l2于A。

则PA+AB的最小值为线段P'B的长。

在l1上求点A,在l2上求点B,使PA+AB值最小。

问题8】给定两条直线l1和l2,求在它们上面的两个点A和B,使得AM+MN+NB的值最小。

根据两点之间线段最短的原理,作点A关于l2的对称点A',作点B关于l1的对称点B',连A'B'交l2于M,交l1于N。

最短路径问题的求解

最短路径问题的求解

最短路径问题的求解
二、 启发式搜索 在宽度优先搜索算法的基础上,每次并不是把所有可展开的结点展开,
而是对所有没有展开的结点,利用一个自己确定的估价函数对所有没展开 的结点进行估价,从而找出最应该被展开的结点(也就是说我们要找的答 案最有可能是从该结点展开),而把该结点展开,直到找到目标结点为止。
这种算法最关键的问题就是如何确定估价函数,估价函数越准,则能 越快找到答案。这种算法实现起来并不难,只不过难在找准估价函数,大 家可以自已找相关资料学习和思考。
算法流程如下: 1、 初始化:
将起点start入队,h[start]:=0,h[k]:=maxlongint(1<=k<=n,且k≠start)。 2、repeat
取出队头结点赋给t; while t有相邻的结点没被扩展 begin
t扩展出新的结点newp; 如果 h[t]+w[t,newp] <h[newp],
begin D[j]:= D[k]+g[k,j]; c:=true; end;
Until not c;
这种算法是产生这样一个过程:不断地求一个数字最短距离矩阵中的数据的值,而当所有
数据都已经不能再变化时,就已经达到了目标的平衡状态,这时最短距离矩阵中的值就是对应
的两点间的最短距离。
最短路径问题的求解
则将newp入队,把h[newp]的值更新为h[t]+w[t,newp]; End until 队列空;
最短路径问题的求解
五、迭代法
该算法的中心思想是:任意两点i,j间的最短距离(记为Dij)会等于从i点出发到达j点的以任一点为 中转点的所有可能的方案中,距离最短的一个。即:
Dij = min { Dij , Dik+Dkj },1<=k<=n。 这样,我们就找到了一个类似动态规划的表达式,只不过这里我们不把它当作动态规划去处理,而是 做一个二维数组用以存放任意两点间的最短距离,利用上述公式不断地对数组中的数据进行处理,直到各 数据不再变化为止,这时即可得到A到E的最短路径。 算法流程如下:

人教版八年级下册数学专题复习及练习(含解析):最短路径问题

人教版八年级下册数学专题复习及练习(含解析):最短路径问题

专题13.4最短路径问题1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求. 如图所示,点川,万分别是直线2异侧的两个点,在2上找一个点G使CA^CB最短,这时点Q是直线』与初的交点.⑵求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条宜线的对称点, 连接对称点与另一个点,则与该直线的交点即为所求.如图所示,点月,万分别是直线2同侧的两个点,在』上找一个点G使CA+CB最短,这时先作点〃关为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C',连接EG、BC「、证明M -\-CB<AC f +C* 3 如下:证明:由作图可知,点万和万‘关于直线/对称,所以直线/是线段宓’的垂直平分线.因为点Q与C'在直线上,所以BC=B' G BC =B f r C f・在G 中,AB' <AC r +B f C ,所以AC+B' C<AC r +B f C ,所以AC+BC<AC f+C‘ B.2.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点「到直线上某点的距离和最小越个核心,所有作法都相同.利用轴对称解决最值问题应注意题目要球根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,「审题不淸导致答非所问.3.利用平移确左最短路径选址选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.解决连接河两岸「的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.4.生活中的距离最短问题由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想办法转化在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段通过类似于镜而反射的方式转化成一条线段,如图,AO+BO=AC的长.所以作已知点关于某直线的对称点是解决这类问题的基本方法.Cy __-7 B5.运用轴对称解决距离之差最大问题利用轴对称和三角形的三边关系是解决几何中的最大值问题的关键.先做出其中一点关于对称轴的对称点,然后连接对称点和另一个点,所得直线与对称轴的交点,即为所求.根据垂直平分线的性质和三角形中两边之差小于第三边易证明这就是最大值.破疑点解决距离的最值问题的关键运用轴对称变换及三角形三边关系是解决一些距离的最值问题的有效方法.对点例题解析【例题1】在图中直线/上找到一点M使它到儿万两点的距离和最小.A【例题2】如图,小河边有两个村庄出B.要在河边建一自来水厂向川村与万村供水.(1)若要使厂部到心万村的距离相等,则应选择在哪建厂?(2)若要使厂部到川,万两村的水管最短,应建在什么地方?【例题3】如图,从川地到万地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直的桥,应如何选择桥的位置才能使从A地到万地的路程最短?【例题4】如图所示,A, 3两点在直线2的两侧,在/上找一点G使点C到点月、万的距离之差最大.如JII练题1 •直线』左侧有两点只Q,试在直线上确左一点Q使得防%最短.2•如图,△月氏与△处关于某条直线对称,请画岀对称轴.A DC F3•如图,A.万为重庆市内两个较大的商圈,现需要在主要交通干道』上修建一个轻轨站只问如何修建,4•如图,四边形ABCD 中,ZBAD=120° , ZB=ZD=90°,在BC、CD ±分别找一点M、N,使Z\AMN 周长最小时,则ZAMN+ZANM的度数为()C. 110°D. 100°5•如图,两条公路0A. 0B相交,在两条公路的中间有一个汕库,设为点P,如在两条公路上各设置一个加油站,,请你设计一个方案,把两个加油站设在何处,可使运汕车从油库出发,经过一个加油站,再到另一个加汕站,最后回到汕库所走的路程最短.专题13.4最短路径问题1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求. 如图所示,点川,万分别是直线2异侧的两个点,在2上找一个点G使CA^CB最短,这时点Q是直线』与初的交点.⑵求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条宜线的对称点, 连接对称点与另一个点,则与该直线的交点即为所求.如图所示,点月,万分别是直线2同侧的两个点,在』上找一个点G使CA+CB最短,这时先作点〃关为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C',连接EG、BC「、证明M -\-CB<AC f +C* 3 如下:证明:由作图可知,点万和万‘关于直线/对称,所以直线/是线段宓’的垂直平分线.因为点Q与C'在直线上,所以BC=B' G BC =B f r C f・在G 中,AB' <AC r +B f C ,所以AC+B' C<AC r +B f C ,所以AC+BC<AC f+C‘ B.2.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点「到直线上某点的距离和最小越个核心,所有作法都相同.利用轴对称解决最值问题应注意题目要球根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,「审题不淸导致答非所问.3.利用平移确左最短路径选址选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.解决连接河两岸「的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.4.生活中的距离最短问题由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想办法转化在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段通过类似于镜而反射的方式转化成一条线段,如图,AO+BO=AC的长.所以作已知点关于某直线的对称点是解决这类问题的基本方法.Cy __-7 B5.运用轴对称解决距离之差最大问题利用轴对称和三角形的三边关系是解决几何中的最大值问题的关键.先做出其中一点关于对称轴的对称点,然后连接对称点和另一个点,所得直线与对称轴的交点,即为所求.根据垂直平分线的性质和三角形中两边之差小于第三边易证明这就是最大值.破疑点解决距离的最值问题的关键运用轴对称变换及三角形三边关系是解决一些距离的最值问题的有效方法.对点例题解析【例题1】在图中直线/上找到一点M使它到儿万两点的距离和最小.A【答案】见解析。

中考数学考点解读复习试题(求最短路径问题)

中考数学考点解读复习试题(求最短路径问题)

求最短路径问题最短路径问题在中考中出现的频率很高,这类问题一般与垂线段最短、两点之间线段最短关系密切.类型1 利用“垂线段最短”求最短路径问题如图所示,AB是一条河流,要铺设管道将河水引到C,D两个用水点,现有两种铺设管道的方案.方案一:分别过C,D作AB的垂线,垂足分别为E,F,沿CE,DF铺设管道;方案二:连接CD交AB于点P,沿PC、PD铺设管道.问:这两种铺设管道的方案中哪一种更节省材料,为什么?【思路点拨】方案一管道长为CE+DF,方案二管道长为PC+PD,利用垂线段最短即可比较出大小.【解答】按方案一铺设管道更节省材料.理由如下:∵CE⊥AB,DF⊥AB,而AB与CD不垂直,∴根据“垂线段最短”,可知DF<DP,CE<CP,∴CE+DF<CP+DP,∴沿CE、DF铺设管道更节省材料.本题易错误的利用两点之间线段最短解决,解答时需要准确识图,找到图形对应的知识点.1.(保定一模)如图,点A的坐标为(-1,0),点B(a,a),当线段AB最短时,点B的坐标为( )A.(0,0) B.(22,-22) C.(-22,-22) D.(-12,-12)2.(杭州模拟)在直角坐标系中,点P落在直线x-2y+6=0上,O为坐标原点,则|OP|的最小值为( )A.352B.3 5 C.655D.103.(内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx-3k+4与⊙O交于B、C两点,则弦BC的长的最小值为________.4.(碑林区期中)如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.类型2 利用“两点之间线段最短”求最短路径问题(乐陵模拟)(1)如图1,直线同侧有两点A,B,在直线MN上求一点C,使它到A、B之和最小;(保留作图痕迹不写作法)(2)知识拓展:如图2,点P在∠AOB内部,试在OA、OB上分别找出两点E、F,使△PEF周长最短;(保留作图痕迹不写作法)(3)解决问题:①如图3,在五边形ABCDE中,在BC,DE上分别找一点M,N,使得△AMN周长最小;(保留作图痕迹不写作法)②若∠BAE=125°,∠B=∠E=90°,AB=BC,AE=DE,∠AMN+∠ANM的度数为________.【思路点拨】(1)根据两点之间线段最短,作A关于直线MN的对称点E,连接BE交直线MN 于C,即可解决;(2)作P关于OA、OB的对称点C、D,连接CD交OA、OB于E、F,此时△PEF周长有最小值;(3)①取点A关于BC的对称点P,关于DE的对称点Q,连接PQ与BC相交于点M,与DE相交于点N,PQ的长度即为△AMN的周长最小值;②根据三角形的内角和等于180°求出∠P+∠Q,再根据三角形的外角以及三角形内角和知识运用整体思想解决.【解答】(1)作A关于直线MN的对称点E,连接BE交直线MN于C,连接AC,BC,则此时C 点符合要求.图1 图2 图3(2)作图如图.(3)①作图如图.②∵∠BAE=125°,∴∠P+∠Q=180°-125°=55°.∵∠AMN=∠P+∠PAM=2∠P,∠ANM=∠Q+∠QAN=2∠Q,∴∠AMN+∠ANM=2(∠P+∠Q)=2×55°=110°.“两点(直线同侧)一线型”在直线上求一点到两点的和最短时,利用轴对称的知识作一点关于直线的对称点,连接对称点与另一点与直线的交点就是所求的点;“一点两线型”求三角形周长最短问题,作点关于两直线的对称点,连接两个对称点与两直线分别有两个交点,顺次连接所给的点与两交点即可得三角形;“两点两线型”求四边形的周长最短类比“一点两线型”即可.1.(内江)如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为( )A. 3 B.2 3 C.2 6 D. 62.(遵义)如图,在四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为( )A.50°B.60° C.70° D.80°3.(攀枝花)如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE 的最小值为________.4.(鄂州)如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,当△PMN的周长取最小值时,四边形PMON的面积为________.5.(凉山)菱形ABCD 在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB =60°,点P 是对角线OC 上一个动点,E(0,-1),当EP +BP 最短时,点P 的坐标为____________.6.(广元改编)如图,已知抛物线y =-1m (x +2)(x -m)(m >0)与x 轴相交于点A ,B ,与y 轴相交于点C ,且点A 在点B 的左侧.(1)若抛物线过点G(2,2),求实数m 的值;(2)在(1)的条件下,在抛物线的对称轴上找一点H ,使AH +CH 最小,并求出点H 的坐标.7.(成都改编)如图,一次函数y =-x +4的图象与反比例y =3x (k 为常数,且k ≠0)的图象交于A ,B 两点.在x 轴上找一点P ,使PA +PB 的值最小,求满足条件的点P 的坐标.8.如图所示,已知点A 是半圆上的三等分点,B 是AN ︵的中点,P 是直径MN 上的一动点,⊙O 的半径为1,请问:P 在MN 上什么位置时,AP +BP 的值最小?并给出AP +BP 的最小值.9.(达州)如图,在平面直角坐标系中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,∠AOC 的平分线交AB 于点D ,E 为BC 的中点,已知A(0,4)、C(5,0),二次函数y =45x 2+bx +c 的图象抛物线经过A ,C 两点. (1)求该二次函数的表达式;(2)F 、G 分别为x 轴,y 轴上的动点,顺次连接D 、E 、F 、G 构成四边形DEFG ,求四边形DEFG 周长的最小值;(3)抛物线上是否在点P ,使△ODP 的面积为12?若存在,求出点P 的坐标;若不存在,请说明理由.参考答案类型1 利用“垂线段最短”求最短路径问题 1.D 2.C3.24 提示:∵直线y =kx -3k +4必过点D(3,4), ∴当BC 过点D 且BC ⊥OD 时最小.∵点D 的坐标是(3,4),∴OD =5.∵OB =OA =13, ∴根据勾股定理可得BD =12.∴BC 的长的最小值为24.4.(1)∵两点之间线段最短,∴连接AD ,BC 交于H ,则H 为蓄水池位置,它到四个村庄距离之和最小.(2)过H 作HG ⊥EF ,垂足为G.则沿HG 开渠最短,根据垂线段最短.类型2 利用“两点之间线段最短”求最短路径问题1.B 2.D 3.7 提示:作B 关于AC 的对称点B ′,连接AD 、AB ′、BB ′、B ′D ,交AC 于E ,此时BE +ED =B ′E +ED =B ′D ,根据两点之间线段最短可知B ′D 就是BE +ED 的最小值,∵B 、B ′关于AC 对称,∴AC 、BB ′互相垂直平分.∴四边形ABCB ′是平行四边形.∵三角形ABC 是边长为2,∵D 为BC 的中点,∴AD ⊥BC.∴AD =3,BD =CD =1,BB ′=2AD =23,作B ′G ⊥BC 的延长线于G ,∴B ′G =AD =3,在Rt △B ′BG 中,BG =BB ′2-B ′G 2=(23)2-(3)2=3.∴DG =BG -BD =3-1=2.在Rt △B ′DG 中,B ′D =DG 2-B ′G 2=22+(3)2=7.故BE +ED 的最小值为7.4.363-545.(23-3,2-3)6.(1)抛物线过点G(2,2)时,-1m(2+2)(2-m)=2,即m =4.(2)∵m =4,∴y =-14(x +2)(x -4).令y =0,则-14(x +2)(x -4)=0,解得x 1=-2,x 2=4.∴A(-2,0),B(4,0).∴抛物线对称轴为直线x =-2+42=1.令x =0,则y =2,∴C(0,2).∵B 点与A 点关于对称轴对称,∴连接BC ,BC 与对称轴的交点便为所求点H.∵B(4,0),C(0,2),∴求得线段BC 所在直线为y =-12x +2.当x =1时,y =32,∴H(1,32).7.联立⎩⎨⎧y =-x +4,y =3x ,解得⎩⎨⎧x =1,y =3,或⎩⎨⎧x =3,y =1.∴A(1,3),B(3,1).B 点关于x 轴的对称点B ′坐标为(3,-1), 连接AB ′交x 轴于点P ′,连接BP ′.设直线AB ′为y =kx +b ,联立得⎩⎨⎧k +b =3,3k +b =-1.解得⎩⎨⎧k =-2,b =5.∴y =-2x +5.令y =0,得x =52.∴P ′(52,0).即满足条件的P 的坐标为(52,0).8.作A 关于MN 的对称点A ′,根据圆的对称性,则A ′必在圆上,连接BA ′交MN 于P ,连接PA ,则PA +PB 最小,此时PA +PB =PA ′+PB =A ′B.连接OA 、OA ′、OB ,∵AN ︵=13MN ︵,∴∠AON =∠A ′ON =60°.∵AB ︵=BN ︵, ∴∠BON =12∠AON =30°.∴∠A ′OB =90°.∴A ′B =OA ′2+OB 2=12+12=2,即AP +BP 的最小值是 2.9.(1)将A(0,4)、C(5,0)代入二次函数y =45x 2+bx +c ,得⎩⎨⎧20+5b +c =0,c =4,解得⎩⎨⎧b =-245,c =4. ∴二次函数的表达式y =45x 2-245x +4.(2)延长EC 至E ′,使E ′C =EC ,延长DA 至D ′,使D ′A =DA ,连接D ′E ′,交x 轴于F 点,交y 轴于G 点,连接DG ,EF ,DE ,GD =GD ′,EF =E ′F ,(DG +GF +EF +ED)最小=D ′E ′+DE , 由E 点坐标为(5,2),D(4,4),得D ′(-4,4),E ′(5,-2).由勾股定理, 得DE =22+12=5,D ′E ′=(5+4)2+(4+2)2=313,∴(DG +GF +EF +ED)最小=D ′E ′+DE =313+5,即四边形DEFG 周长的最小值为313+ 5. (3)如下图:OD =AO 2+AD 2=4 2. ∵S △ODP =12.∴点P 到OD 的距离=2S △OPDOD =2×1242=3 2.过点O 作OF ⊥OD ,取OF =32,过点F 作直线FG ∥OD ,交y 轴于G 点,交抛物线于点P 1,P 2,在Rt △OGF 中,OG =OF 2+FG 2=(32)2+(32)2=6.∴直线GF 的解析式为y =x -6.将y =x -6代入y =45x 2-245x +4得:x -6=45x 2-245x +4.解得x 1=29+418,x 2=29-418.将x 1,x 2的值代入y =x -6得:y 1=-19+418,y 2=-19-418. ∴点P 1(29-418,-19-418),P 2(29+418,-19+418). 如下图所示:过点O 作OF ⊥OD ,取OF =32,过点F 作直线FG ,交y 轴于G 点,交抛物线于P 3,P 4,在Rt △GFO 中,OG =OF 2+GF 2=6. ∴直线FG 的解析式为y =x +6.将y =x +6代入y =45x 2-245x +4得:x +6=45x 2-245x +4.解得x 1=29+ 1 0018,x 2=29- 1 0018.y 1=x 1+6=77+ 1 0018,y 2=x 2+6=77- 1 0018, ∴P 3(29- 1 0018,77- 1 0018),P 4(29+ 1 0018,77+ 1 0018).综上所述:点P 的坐标为(29-418,-19-418)或(29+418,-19+418)或(29- 1 0018,77- 1 0018) 或(29+ 1 0018,77+ 1 0018).。

初中数学中考复习专题 最短路径问题 24张

初中数学中考复习专题 最短路径问题 24张
A●

A' ●
P
B ● l
最短路径问题是初中阶段图论研究中的经典算 法问题,旨在寻找图(有结点和路径组成的)中两 结点之间的最短路径算法形式包括:
一、确定起点的最短路径问题
二、确定终点的最短路径问题
三、确定起点、终点的最短路径问题
四、全局最短路径问题
问题原型 “将军饮马”,“造桥选址”,“费马点”
作B关于l 的对称点B ',作直线 A B'与l 交点即为P

图形
原理
三角形任意两边 之差小于第三边 ︱PA-PB︱≤AB'. ︱PA-PB︱最大值 =AB'
问题12 “费马点”
作法
图形
原理
所求点为“费马点”,
既满足
△ABC中每一 内角都小于
∠APB=∠BPC=∠ APC=1200.以AB、
1200,在 △ABC内求一
AM+MN+NB的 值最小.
作点A关于l2的 对称点A',作 点B关于l1的对 称点B',连A 'B'交l2于M
,交l1于N.
图形
原理
两点之间线段 最短.
AM+MN+NB 的最小值为线 段A'B'的

问题9
作法
A
B l
在直线l上求一 点P,使︱PAPB︱的值最小
连AB, 作AB的 中垂线与 直线l的交 点即为P
AC为边向外作等边 △ABD、△ACE,连
点P,使

CD、BE相交于P,
PA+PB+PC最 点P即为所求点.
小.
两点之间 线段最
短.PA+PB+ PC最小值
=CD.
随堂练习一
如图,已知正方形ABCD,点M为BC边的中点,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题三、求最短路径问题
最短路径问题在中考中出现的频率很高,这类问题一般与垂线段最短、两点之间线段最短关系密切.
类型1 利用“垂线段最短”求最短路径问题
如图所示,AB是一条河流,要铺设管道将河水引到C,D两个用水点,现有两种铺设
管道的方案.方案一:分别过C,D作AB的垂线,垂足分别为E,F,沿CE,DF铺设管道;方案二:连接CD交AB于点P,沿PC、PD铺设管道.问:这两种铺设管道的方案中哪一种更节省材料,为什么?
【思路点拨】方案一管道长为CE+DF,方案二管道长为PC+PD,利用垂线段最短即可比较出大小.
本题易错误的利用两点之间线段最短解决,解答时需要准确识图,找到图形对应的知识点.1.(2015·保定一模)如图,点A的坐标为(-1,0),点B(a,a),当线段AB最短时,点B 的坐标为( )
A.(0,0) B.(
2
2
,-
2
2
)
C.(-
2
2
,-
2
2
) D.(-
1
2
,-
1
2
)
2.(2015·杭州模拟)在直角坐标系中,点P落在直线x-2y+6=0上,O为坐标原点,则|OP|的最小值为( )
A.35
2
B.3 5 C.
65
5
D.10
3.(2013·内江)在平面直角坐标系xOy中,以原点O为圆心的圆
过点A(13,0),直线y=kx-3k+4与⊙O交于B、C两点,则弦
BC的长的最小值为________.
4.(2015·碑林区期中)如图,平原上有A,B,C,D四个村庄,为
解决当地缺水问题,政府准备投资修建一个蓄水池.
(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;
(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.
类型2 利用“两点之间线段最短”求最短路径问题
(2015·乐陵模拟)(1)如图1,直线同侧有两点A,B,在直线MN上求
一点C,使它到A、B之和最小;(保留作图痕迹不写作法)
(2)知识拓展:如图2,点P在∠AOB内部,试在OA、OB上分别找出两点E、F,使
△PEF周长最短;(保留作图痕迹不写作法)
(3)解决问题:①如图3,在五边形ABCDE中,在BC,DE上分别找一点M,N,使
得△AMN周长最小;(保留作图痕迹不写作法)
②若∠BAE=125°,∠B=∠E=90°,AB=BC,AE=DE,∠AMN+∠ANM的度数为
________.
【思路点拨】(1)根据两点之间线段最短,作A关于直线MN的对称点E,
连接BE交直线MN于C,即可解决;
(2)作P关于OA、OB的对称点C、D,连接CD交OA、OB于E、F,此时△PEF
周长有最小值;
(3)①取点A关于BC的对称点P,关于DE的对称点Q,连接PQ与BC相交于点M,
与DE相交于点N,PQ的长度即为△AMN的周长最小值;
②根据三角形的内角和等于180°求出∠P+∠Q,再根据三角形的外角以及三角
形内角和知识运用整体思想解决.
“两点(直线同侧)一线型”在直线上求一点到两点的和最短时,利用轴对称的知
识作一点关于直线的对称点,连接对称点与另一点与直线的交点就是所求的点;“一点两线型”求三角形周长最短问题,作点关于两直线的对称点,连接两个对称点与两直线分别有两个交点,顺次连接所给的点与两交点即可得三角形;“两点两线型”求四边形的周长最短类比“一点两线型”即可.
1.(2015·内江)如图,正方形ABCD的面积为12,△ABE是等边三角形,
点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这
个最小值为( )
A. 3 B.2 3 C.2 6 D. 6
2.(2015·遵义)如图,在四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为( )
A.50°B.60° C.70° D.80°
3.(2015·攀枝花)如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为________.
4.(2015·鄂州)如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,当△PMN的周长取最小值时,四边形PMON的面积为________.
5.(2015·凉山)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,-1),当EP+BP最短时,点P的坐标为____________.
6.(2015·广元改编)如图,已知抛物线y=-1
m
(x+2)(x-m)(m>0)与x轴相交于点A,B,
与y轴相交于点C,且点A在点B的左侧.
(1)若抛物线过点G(2,2),求实数m的值;
(2)在(1)的条件下,在抛物线的对称轴上找一点H,使AH+CH最小,并求出点H的坐标.
7.(2015·成都改编)如图,一次函数y =-x +4的图象与反比例y =3x
(k 为常数,且k≠0)的图象交于A ,B 两点.在x 轴上找一点P ,使PA +PB 的值最小,求满足条件的点P 的坐标.
8.如图所示,已知点A 是半圆上的三等分点,B 是AN ︵的中点,P 是直径MN 上的一动点,⊙O
的半径为1,请问:P 在MN 上什么位置时,AP +BP 的值最小?并给出AP +BP 的最小值.
9.(2015·达州)如图,在平面直角坐标系中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,∠AOC 的平分线交AB 于点D ,E 为BC 的中点,已知A(0,4)、C(5,0),二次
函数y =45
x 2+bx +c 的图象抛物线经过A ,C 两点. (1)求该二次函数的表达式;
(2)F 、G 分别为x 轴,y 轴上的动点,顺次连接D 、E 、F 、G 构成四边形DEFG ,求四边形DEFG 周长的最小值;
(3)抛物线上是否在点P ,使△ODP 的面积为12?若存在,求出点P 的坐标;
若不存在,请说明理由.。

相关文档
最新文档