管壳式换热器谁走管程谁走壳程是如何定的
管壳式换热器的工作原理及结构
管壳式换热器的工作原理及结构一、管壳式换热器的基本概念管壳式换热器是一种常见的换热设备,其主要由管束和外壳两部分组成。
其中,管束是由许多平行排列的管子组成,而外壳则是将这些管子包裹在一起的结构。
通过这种结构,管壳式换热器可以实现两种介质之间的热量传递。
二、工作原理1. 热媒流动原理在管壳式换热器中,介质A和介质B分别通过内部的管子和外部的壳体进行流动。
其中,介质A通常为高温流体,而介质B则为低温流体。
当两种介质在内外两侧经过时,由于存在温度差异,会发生热量传递。
2. 热媒传递原理在介质A和介质B之间进行热量传递时,主要有三个过程:对流传热、传导传热和辐射传热。
其中,对流传热是最主要的一种方式。
3. 工作过程在工作过程中,高温流体通过内部的管子进入到换热器中,并沿着管子表面流动。
同时,低温流体从外部的壳体进入到换热器中,并沿着管子外表面流动。
在这个过程中,高温流体和低温流体之间进行了热量传递,使得高温流体的温度降低,而低温流体的温度升高。
三、结构特点1. 管束结构管束是管壳式换热器的主要组成部分之一。
在管束中,许多平行排列的管子被固定在两个端盖板上,并通过密封垫圈与外壳连接。
由于管子间距离较小,因此可以有效地增加热量传递面积。
2. 壳体结构外壳是管壳式换热器的另一个重要组成部分。
它通常由两个半球形或长方形壳体组成,并通过法兰连接。
在使用过程中,外壳起到保护内部管束不受损坏的作用。
3. 密封结构为了保证介质A和介质B之间不发生混合,在管壳式换热器中需要设置密封结构。
这种密封结构通常采用密封垫圈或波纹垫片等材料制成,可以有效地防止介质泄漏。
4. 清洗结构由于管壳式换热器在使用过程中会产生一定的污垢和腐蚀物,因此需要定期进行清洗。
为了方便清洗,管壳式换热器通常设置有进出口和排污口等结构。
四、应用领域管壳式换热器广泛应用于化工、石油、制药、食品等领域中。
在这些领域中,管壳式换热器可以实现高效的热量传递,提高生产效率,并减少能源消耗。
换热器怎么分几壳程几管程
换热器怎么分几壳程几管程又称列管式换热器。
是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。
这种换热器结构较简单,操作可靠,可用各种结构材料(主要是金属材料)制造,能在高温、高压下使用,是目前应用最广的类型。
结构由壳体、传热管束、管板、折流板(挡板)和管箱等部件组成(见图)。
壳体多为圆筒形,内部装有管束,管束两端固定在管板上。
进行换热的冷热两种流体,一种在管内流动,称为管程流体;另一种在管外流动,称为壳程流体。
为提高管外流体的传热分系数,通常在壳体内安装若干挡板。
挡板可提高壳程流体速度,迫使流体按规定路程多次横向通过管束,增强流体湍流程度。
换热管在管板上可按等边三角形或正方形排列。
等边三角形排列较紧凑,管外流体湍动程度高,传热分系数大;正方形排列则管外清洗方便,适用于易结垢的流体。
流体每通过管束一次称为一个管程;每通过壳体一次称为一个壳程。
图示为最简单的单壳程单管程换热器,简称为1-1型换热器。
为提高管内流体速度,可在两端管箱内设置隔板,将全部管子均分成若干组。
这样流体每次只通过部分管子,因而在管束中往返多次,这称为多管程。
同样,为提高管外流速,也可在壳体内安装纵向挡板,迫使流体多次通过壳体空间,称为多壳程。
多管程与多壳程可配合应用。
类型由于管内外流体的温度不同,因之换热器的壳体与管束的温度也不同。
如果两温度相差很大,换热器内将产生很大热应力,导致管子弯曲、断裂,或从管板上拉脱。
因此,当管束与壳体温度差超过50℃时,需采取适当补偿措施,以消除或减少热应力。
根据所采用的补偿措施,管壳式换热器可分为以下几种主要类型:①固定管板式换热器管束两端的管板与壳体联成一体,结构简单,但只适用于冷热流体温度差不大,且壳程不需机械清洗时的换热操作。
当温度差稍大而壳程压力又不太高时,可在壳体上安装有弹性的补偿圈,以减小热应力。
②浮头式换热器管束一端的管板可自由浮动,完全消除了热应力;且整个管束可从壳体中抽出,便于机械清洗和检修。
换热器的壳程和管程
在热交换器(换热器)中,壳程(Shell Side)和管程(Tube Side)是指热交换器中两侧的流体流动路径。
1.壳程:壳程是热交换器的一个侧面(也称为壳侧),其中一个流体(通常是
冷却剂或工作流体)在一个外部壳体内流动。
壳程内通常安装了一组固定的管子,用于传递另一个流体(通常是被加热或冷却的流体)。
在壳程内,流体在管子外侧进行流动,通过管子和壳体之间的传热表面进行热量交换。
2.管程:管程是热交换器的另一个侧面(也称为管侧),其中另一个流体(通
常是热源或冷源)在一组管子内流动。
管程内的流体通过管子内部的传热表面与壳程中的流体进行热量交换。
通常,管程内的管子是固定的,而壳程内的流体在管程外部流动。
壳程和管程在热交换器中扮演不同的角色,根据具体的应用需求和设计要求,选择合适的壳程和管程配置可以实现最佳的热传输效果。
壳程和管程的选择与流体性质、压降、热传输要求以及维护便利性等因素密切相关。
在实际应用中,需要根据具体的工程需求进行选择和设计。
管壳式换热器工作原理
管壳式换热器工作原理
管壳式换热器是一种常见的热交换设备,主要用于传递热量。
它由一个外壳和一束内在连通的管束组成。
管壳式换热器的工作原理如下:首先,热流体进入换热器的外壳,沿着外壳的一侧流动。
同时,冷流体通过内部的管束流动。
热流体和冷流体在管壳之间进行热交换。
在热交换的过程中,热流体释放热量,使得其温度降低。
冷流体则吸收这部分释放的热量,温度升高。
这样,热流体的温度降低并流出换热器的外壳,而冷流体则温度升高并流入管束。
管壳式换热器的基本原理是通过管壳之间的热传导,使热量从热流体传递到冷流体。
外壳和管束的设计可以最大限度地增加热交换的效率。
此外,还可以通过改变流体的流动方式,如逆流和顺流,来优化热交换过程。
总之,管壳式换热器的工作原理是利用热传导将热量从热流体传递到冷流体,实现热交换的目的。
它在各个领域都有广泛的应用,例如发电厂、化工厂和空调系统等。
管壳式换热器谁走管程谁走壳程是怎么定的?
混和气体在℃下地有关物性数据如下(来自生产中地实测值):
密度
定压比热容℃
热导率
粘度
循环水在℃下地物性数据:
密度㎏
定压比热容℃
热导率℃
粘度
二.确定设计方案
.选择换热器地类型
两流体温地变化情况:热流体进口温度℃出口温度℃;冷流体进口温度℃,出口温度为℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器地管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器.文档来自于网络搜索
管子在管板上排列地间距(指相邻两根管子地中心距),随管子与管板地连接方法不同而异.通常,胀管法取(~),且相邻两管外壁间距不应小于,即≥().焊接法取.文档来自于网络搜索
.管程和壳程数地确定当流体地流量较小或传热面积较大而需管数很多时,有时会使管内流速较低,因而对流传热系数较小.为了提高管内流速,可采用多管程.但是程数过多,导致管程流体阻力加大,增加动力费用;同时多程会使平均温度差下降;此外多程隔板使管板上可利用地面积减少,设计时应考虑这些问题.列管式换热器地系列标准中管程数有、、和程等四种.采用多程时,通常应使每程地管子数大致相等.文档来自于网络搜索
.计算管、壳程压强降根据初定地设备规格,计算管、壳程流体地流速和压强降.检查计算结果是否合理或满足工艺要求.若压强降不符合要求,要调整流速,再确定管程数或折流板间距,或选择另一规格地设备,重新计算压强降直至满足要求为止.文档来自于网络搜索
.核算总传热系数计算管、壳程对流传热系数α和α,确定污垢热阻和,再计算总传热系数',比较得初始值和计算值,若'=~,则初选地设备合适.否则需另设选值,重复以上计算步骤.文档来自于网络搜索
.流体流动阻力(压强降)地计算
列管式换热器流体通过管程和壳程依据什么来选择
列管式换热器流体通过管程和壳程依据什么来选择?
流体应走管程还是壳程,需要考虑多方面因素,不能提出一定规则,但总的原则是有利于传热,防止腐蚀,减少阻力,不易结垢,便于清扫。
由于管子容易清扫,强度较高,就抗腐蚀性来说,管子比壳体相对地要廉价些。
若易腐蚀的介质走壳程,那么壳程和管子一起被腐蚀。
因此,适宜走管程的流体有:①冷却水②易结垢或夹带有固体颗粒不清洁的流体(如油浆)③压力及温度较高和腐蚀性较强的流体④流量较小的流体(走管程可选择理想的流速,可以提高管程给热系数,缩小换热器尺寸)⑤粘度较大的流体(走管程可以减少压力降)⑥热流体或冷冻介质(走管程可以减少能量损失)。
由于壳程流过面积较大,因此走壳程的流体有:①要求经换热后压力损失小的流体②与适宜走管程的流体情况相反的流体。
管壳式换热器走管程和壳程如何定
不是这么简单,需要考虑很多因素:宜走管内的流体:1)不洁净和易结垢的流体,因为管内清洗方便;2)腐蚀性的流体,因为可避免管子、壳体同时受腐蚀,且管子便于清洗和检修;3)压强高的流体,因为可以节省壳体材料;4)有毒的流体,因为可减少泄漏的机会。
宜走壳程的介质:1)饱和蒸汽,因为可便于及时排除冷凝液,且蒸汽比较干净,清洗比较方便;2)被冷却的流体,因为可利用壳体散热,增强冷却效果;3)粘度大的流体或流量小的流体,因为流体在折流板的作用下,可提高流动对流传热系数;4)对于刚性结构的换热器,若两流体的温差大,对流传热系数较大的介质走壳程,可减少热应力。
换热器中管壳程介质的确定原则如下:1、不清洁的流体走管内,以便于清洗。
例如冷却水一般通入管内,因为冷却水常常用江河水或井水,比较脏,硬度较高、受热后容易结垢,在管内便于机械清洗。
此外管内流体易于维持高速,可避免悬浮颗粒的沉积。
2、流量小的流体,或传热系数小的流体走管内。
因管内截面一般比管间截面小,流速可高些,有利于提高传热系数。
3、有腐蚀性的流体走管内,这样只要管子、管板用耐腐蚀材料即可。
此外,管子便于检修。
4、压强高的流体走管内,因管子较宜承受高压。
5、高温或低温流体走管内,这样可以减少热量或冷量向周围大气散失而造成的热损失。
6、饱和蒸汽走管内,便于排除冷凝液。
冷热流体哪一个走管程,哪一个走壳程,需要考虑的因素很多,难以有统一的定则;但总的要求是首先要有利于传热和防腐,其次是要减少流体流动阻力和结垢,便于清洗等。
一般可参考如下原则并结合具体工艺要求确定。
(1)腐蚀性介质走管程,以免使管程和壳程材质都遭到腐蚀。
(2)有毒介质走管程,这样泄漏的机会少一些。
(3)流量小的流体走管程,以便选择理想的流速,流量大的流体宜走壳程。
(4)高温、高压流体走管程,因管子直径较小可承受较高的压力。
(5)容易结垢的流体在固定管板式和浮头式换热器中走管程、在u形管式换热器中走壳程,这样便于清洗和除垢;若是在冷却器中,一般是冷却水走管程、被冷却流体走壳程。
换热器的壳程和管程 -回复
换热器的壳程和管程-回复换热器是一种重要的热交换设备,用于在两种不同介质之间传递热量。
换热器由一个壳程和一个管程组成,每个部分都有不同的功能和特点。
壳程是换热器的外壳,主要用于容纳管束和支撑管束的内部结构。
壳程通常是一个圆柱形或方形的容器,由金属材料制成,具有优良的强度和耐压性能。
壳程的设计和结构可以根据具体的应用要求进行调整。
例如,可通过改变壳程的直径和长度来调整换热器的换热面积,以满足不同的换热需求。
壳程通常有进口和出口口,用于引入和排出热介质。
壳程内部常常还有流道,用于引导热介质在壳程内流动。
这些流道的形状和布局可以根据具体的换热需求进行设计,以确保热介质在壳程内能够均匀流动,并尽可能地接触到管束表面,以实现最大的热传递效率。
管束是壳程内的换热核心部分,用于与热介质进行热交换。
管束通常由一根或多根金属管子组成,这些管子通常是圆形的,具有较小的直径。
管束的数量和布局可以根据具体的换热需求进行调整,以实现最大的热传递效果。
管束中的管子通常是平行排列的,彼此之间的间距较小。
这种排列方式有助于增加管束的密度,提高换热器的换热效率。
此外,管束的管子通常是直通的,两端开口,这样可以方便热介质在管子内流动,从而实现热量的传递。
为了增加管束和壳程之间的热交换效果,壳程内常常还会装置一些附件,如折流板、挡板等。
这些附件的作用是改变壳程内的流动方向和速度,以增加热介质与管束之间的接触面积,从而提高热传递效率。
换热器的运行过程通常是这样的:首先,热介质通过壳程的进口流入壳程内部,然后在壳程内的流道中流动,并接触到管束表面,从而与管束中的管子进行热交换。
在热交换过程中,热量从热介质传递给管子内的冷介质,使冷介质的温度升高。
最后,热介质流出壳程的出口,完成整个换热过程。
总结起来,换热器的壳程和管程是实现热传递的关键部分。
壳程主要用于容纳和支撑管束,提供流道和附件以实现热介质的流动和接触。
管程则用于与热介质进行直接的热交换,通过管束中的管子将热量传递给冷介质。
管壳式换热器谁走管程谁走壳程是怎么定的?
请问:管壳式换热器谁走管程谁走壳程是怎么定的?宜走管内的流体1)不洁净和易结垢的流体,因为管内清洗方便2) 腐蚀性的流体,因为可避免管子、壳体同时受腐蚀,且管子便于清洗和检修3)压强高的流体,因为可以节省壳体材料4)有毒的流体,因为可减少泄漏的机会宜走壳程的介质:1)饱和蒸汽,因为可便于及时排除冷凝液,且蒸汽比较干净,清洗比较方便2)被冷却的流体,因为可利用壳体散热,增强冷却效果3) 粘度大的流体或流量小的流体,因为流体在折流板的作用下,可提高流动对流传热系数4)对于刚性结构的换热器,若两流体的温差大,对流传热系数较大的介质走壳程,可减少热应力。
求列管换热器的计算列管式换热器的设计计算1.流体流径的选择哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例)(1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。
(2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。
(3) 压强高的流体宜走管内,以免壳体受压。
(4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。
(5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。
(6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。
(7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。
在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾,例如首先考虑流体的压强、防腐蚀及清洗等要求,然后再校核对流传热系数和压强降,以便作出较恰当的选择。
2. 流体流速的选择增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。
管壳式换热器的工作原理及结构
管壳式换热器的工作原理及结构(山东华昱压力容器有限公司,济南250305)随着今天快速发展的科技,换热器已广泛运用于我国各个生产区域,换热器跟人们生活一脉相连。
用来热交换的机械设备就是所谓的换热器。
本文综述了管壳式换热器的工作原理及结构。
标签:管壳式换热器;工作原理;结构1 管壳式换热器的工作原理属于间壁式换热器的就是管壳式换热器,其换热管内组成的流体通道称为管程,换热管外组成的流体通道称为壳程。
管程以及壳程分别经过2个不一样温度的流体时,温度相对高的流体经过换热管壁把热量传递给温度相对低的流体,温度相对高的流体被冷却,温度相对低的流体被加热,进而完成两流体换热工艺的目标。
(工作原理和结构见图1)管壳式换热器关键由管箱、管板、管子、壳体以及折流板等组成。
一般圆筒形为壳体;直管或U形管为管子。
为把换热器的传热效能提高,也能使用螺纹管、翅片管等。
管子的安排有等边三角形、正方形、正方形斜转45°以及同心圆形等几种方式,最为常见的是前面三种。
依照三角形部署时,在一样直径的壳体内能排列相对多的管子,以把传热面积增加,但管间很难用机械办法清洗,也相对大的流体阻力。
在管束中横向部署一些折流板,引导壳程流体几次改变流动目标,管子有效地冲刷,以把传热效能提高,同时对管子起支承作用。
弓形、圆形以及矩形等是折流板的形状。
为把壳程以及管程流体的流通截面减小、流速加快,以把传热效能提高,能在管箱以及壳体内纵向安排分程隔板,把壳程分为二程以及把管程分为二程、四程、六程以及八程等。
管壳式换热器的传热系数,水换热在水时为1400~2850瓦每平方米每摄氏度〔W/(m(℃)〕;气体用水冷却时,为10~280W/(m(℃);水蒸汽用水冷凝时,为570~4000W/(m(℃)。
2 管壳式换热器依据结构特征能分为下面2类2.1 刚性构造的管壳式换热器:固定管板式是这种换热器的另一个名称,一般能可分为单管程以及多管程2种。
在两块管板上换热器的管端以焊接、胀接、胀焊并用的办法固定,而管板则以焊接的办法以及壳体相连。
管壳式换热器原理与设计
管壳式换热器原理与设计管壳式换热器是一种常见的换热设备,广泛应用于化工、炼油、石油化工、动力、核能等多个工业领域。
其工作原理和设计要点如下:工作原理:基本构造:管壳式换热器主要由壳体、管束、管板、折流板、管箱等部件组成。
壳体通常为圆筒形,内部装有平行排列的管束,管束两端固定在管板上。
流体通过管内(管程)和管外(壳程)进行热交换。
热量传递:冷热两种流体分别在管程和壳程中流动,热量通过管壁从高温流体传递给低温流体。
一种流体在管内流动(管程流体),另一种流体在管外,即壳体内流动(壳程流体)。
热量传递遵循热力学第二定律,从高温区自发流向低温区。
强化传热:为了提高传热效率,壳程内常设置折流板,迫使壳程流体多次改变方向,增加流体湍流程度,从而提高传热系数。
管束的排列(如等边三角形或正方形)也会影响传热效率和清洁维护的便利性。
设计要点:流体选择:根据工艺要求决定哪种流体走管程,哪种走壳程。
一般而言,易结垢或腐蚀性的流体走管程便于清洗和更换管束。
材料选择:根据流体的性质(如温度、压力、腐蚀性)选择合适的材料,如不锈钢、碳钢、铜合金等,以确保换热器的耐用性和安全性。
热负荷计算:根据工艺条件计算所需的热负荷,确定换热面积,进而决定管束的数量、长度和直径。
压降考虑:设计时需考虑流体在管程和壳程中的压降,确保泵送能耗合理,避免因压降过大导致系统运行不稳定。
结构设计:包括管板的设计(固定管束的方式)、壳体厚度设计、支撑和悬挂结构设计等,以保证换热器的机械强度和稳定性。
清洗与维护:设计时应考虑换热器的可维护性,如管束的可拆卸性,以及便于清洗壳程内部的结构设计。
综上所述,管壳式换热器的设计是一个综合考虑热工性能、机械强度、材料选择、经济性和可维护性的复杂过程,需要精确的计算和细致的工程设计。
管壳式换热器的设计和选用的计算步骤
管壳式换热器的设计和选用的计算步骤设有流量为m h的热流体,需从温度T1冷却至T2,可用的冷却介质入口温度t1,出口温度选定为t2。
由此已知条件可算出换热器的热流量Q和逆流操作的平均推动力。
根据传热速率基本方程:当Q和已知时,要求取传热面积A必须知K和则是由传热面积A的大小和换热器结构决定的。
可见,在冷、热流体的流量及进、出口温度皆已知的条件下,选用或设计换热器必须通过试差计算,按以下步骤进行。
初选换热器的规格尺寸初步选定换热器的流动方式,保证温差修正系数大于0.8,否则应改变流动方式,重新计算。
计算热流量Q及平均传热温差△t m,根据经验估计总传热系数K估,初估传热面积A选取管程适宜流速,估算管程数,并根据A估的数值,确定换热管直径、长度及排列。
计算管、壳程阻力在选择管程流体与壳程流体以及初步确定了换热器主要尺寸的基础上,就可以计算管、壳程流速和阻力,看是否合理。
或者先选定流速以确定管程数N P和折流板间距B再计算压力降是否合理。
这时N P与B是可以调整的参数,如仍不能满足要求,可另选壳径再进行计算,直到合理为止。
核算总传热系数分别计算管、壳程表面传热系数,确定污垢热阻,求出总传系数K计,并与估算时所取用的传热系数K估进行比较。
如果相差较多,应重新估算。
计算传热面积并求裕度根据计算的K计值、热流量Q及平均温度差△t m,由总传热速率方程计算传热面积A0,一般应使所选用或设计的实际传热面积A P大于A020%左右为宜。
即裕度为20%左右,裕度的计算式为:某有机合成厂的乙醇车间在节能改造中,为回收系统内第一萃取塔釜液的热量,用其釜液将原料液从95℃预热至128℃,原料液及釜液均为乙醇,水溶液,其操作条件列表如下:表4-18设计条件数据物料流量kg/h 组成(含乙醇量)mol%温度℃操作压力MPa进口出口釜液109779 3.31450.9原料液102680795 1280.53试设计选择适宜的管壳式换热器。
管壳式换热器走管程和壳程如何定
不是这么简单,需要考虑很多因素:宜走管内的流体:1)不洁净和易结垢的流体,因为管内清洗方便;2)腐蚀性的流体,因为可避免管子、壳体同时受腐蚀,且管子便于清洗和检修;3)压强高的流体,因为可以节省壳体材料;4)有毒的流体,因为可减少泄漏的机会.宜走壳程的介质:1)饱和蒸汽,因为可便于及时排除冷凝液,且蒸汽比较干净,清洗比较方便; 2)被冷却的流体,因为可利用壳体散热,增强冷却效果;3)粘度大的流体或流量小的流体,因为流体在折流板的作用下,可提高流动对流传热系数;4)对于刚性结构的换热器,若两流体的温差大,对流传热系数较大的介质走壳程,可减少热应力。
换热器中管壳程介质的确定原则如下:1、不清洁的流体走管内,以便于清洗.例如冷却水一般通入管内,因为冷却水常常用江河水或井水,比较脏,硬度较高、受热后容易结垢,在管内便于机械清洗。
此外管内流体易于维持高速,可避免悬浮颗粒的沉积。
2、流量小的流体,或传热系数小的流体走管内。
因管内截面一般比管间截面小,流速可高些,有利于提高传热系数。
3、有腐蚀性的流体走管内,这样只要管子、管板用耐腐蚀材料即可。
此外,管子便于检修。
4、压强高的流体走管内,因管子较宜承受高压。
5、高温或低温流体走管内,这样可以减少热量或冷量向周围大气散失而造成的热损失。
6、饱和蒸汽走管内,便于排除冷凝液.冷热流体哪一个走管程,哪一个走壳程,需要考虑的因素很多,难以有统一的定则;但总的要求是首先要有利于传热和防腐,其次是要减少流体流动阻力和结垢,便于清洗等。
一般可参考如下原则并结合具体工艺要求确定。
(1)腐蚀性介质走管程,以免使管程和壳程材质都遭到腐蚀。
(2)有毒介质走管程,这样泄漏的机会少一些。
(3)流量小的流体走管程,以便选择理想的流速,流量大的流体宜走壳程。
(4)高温、高压流体走管程,因管子直径较小可承受较高的压力.(5)容易结垢的流体在固定管板式和浮头式换热器中走管程、在u形管式换热器中走壳程,这样便于清洗和除垢;若是在冷却器中,一般是冷却水走管程、被冷却流体走壳程。
管壳式换热器工作原理
管壳式换热器工作原理
管壳式换热器是一种常用的热交换设备,其工作原理如下:
1. 冷热介质流经换热器:冷介质(通常是待加热流体)从进口管道进入换热器的壳程,热介质(通常是用于加热的流体)从进口管道进入换热器的管程。
2. 介质的传热过程:在管壳式换热器内,冷、热介质通过管程和壳程之间的管板进行传热。
冷介质在管程的管道中流过,热量通过管壁传递给热介质。
热介质流经壳程的壳体,将热量传递给壳程的外壁,而冷介质则从壳程外侧带走吸收的热量。
3. 介质的流动操作:管壳式换热器内冷热介质的流动方式有多种,常见的有串流(串流换热器),并流(并流换热器)和逆流(逆流换热器)。
4. 热量交换完成后,介质流出换热器:经过传热过程后,冷介质和热介质的温度发生变化,冷介质在换热器的出口处流出,热介质也在换热器的出口处流出。
总结来说,管壳式换热器通过管程和壳程之间的传热,将热量从热介质传递给冷介质。
冷热介质在换热器内部流动,通过壳体和管道壁的传热,完成热量交换,最终达到热能转移的目的。
不同的流动方式和操作条件,会影响换热的效果和效率。
管壳式换热器讲解
管壳式换热器讲解管壳式换热器又称列管式换热器,是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。
这种换热器结构较简单,操作可靠,可用各种结构材料(主要是金属材料)制造,能在高温、高压下使用,是目前应用最广的类型。
构成:管壳式换热器由管箱、壳体、管束等主要元件构成。
管束是管壳式换热器的核心,其中换热管作为导热元件,决定换热器的热力性能。
另一个对换热器热力性能有较大影响的基本元件是折流板(或折流杆)。
管箱和壳体主要决定管壳式换热器的承压能力及操作运行的安全可靠性。
工作原理:管壳式换热器属于间壁式换热器,其换热管内构成的流体通道称为管程,换热管外构成的流体通道称为壳程。
管程和壳程分别通过两不同温度的流体时,温度较高的流体通过换热管壁将热量传递给温度较低的流体,温度较高的流体被冷却,温度较低的流体被加热,进而实现两流体换热工艺目的。
类型:管壳式换热器由于管内外流体的温度不同,因之换热器的壳体与管束的温度也不同。
如果两温度相差很大,换热器内将产生很大热应力,导致管子弯曲、断裂,或从管板上拉脱。
因此,当管束与壳体温度差超过50℃时,需采取适当补偿措施,以消除或减少热应力。
根据所采用的补偿措施,管壳式换热器可分为以下几种主要类型:1)固定管板换热器结构:管束连接在管板上,管板与壳体相焊。
优点:结构简单紧促,能承受较高压力,造价低,管程清洗方便,管子损坏时方便堵管或更换。
排管数比U形管换热器多。
缺点:管束与壳体的壁温或材料的线胀系数相差较大时,壳体和管束中将产生较大热应力,为此应需要设置柔性元件(如膨胀节)。
不能抽芯无法进行机械清洗。
不能更换管束,维修成本较高。
适用范围:壳程侧介质清洁不易结垢,不能进行清洗,管程与壳程两侧温差不大或温差较大但壳侧压力不高的场合。
2)浮头换热器结构:两端管板中只有一端与壳体固定,另一端可相对壳体自由移动,称为浮头。
浮头由浮头管板,钩圈和浮头盖组成,是可拆连接,管束可从壳体中抽出。
管壳式换热器工作原理和结构
管壳式换热器工作【2 】道理和构造来自收集 2010-3-2 15:17:39 admin管壳式换热器由一个壳体和包含很多管子的牵制所组成,冷.热流体之间经由过程管壁进行换热的换热器.管壳式换热器作为一种传统的标准换热装备,管壳式换热器在化工.炼油.石油化工.动力.核能和其他工业装配中得到广泛采用,特殊是在高温高压和大型换热器中的运用占领绝对优势.平日管壳式换热器的工作压力可达4兆帕,工作温度在200℃以下,在个体情形下还可达到更高的压力和温度.一般壳体直径在1800毫米以下,管子长度在9米以下,在个体情形下也有更大或更长的.工作道理和构造图1 [固定管板式换热器]为固定管板式换热器的构造.A流体从接收1流入壳体内,经由过程管间从接收2流出.B流体从接收3流入,经由过程管内从接收4流出.假如A流体的温度高于B流体,热量便经由过程管壁由A流体传递给B流体;反之,则经由过程管壁由B流体传递给A流体.壳体以内.管子和管箱以外的区域称为壳程,经由过程壳程的流体称为壳程流体 (A流体).管子和管箱以内的区域称为管程,经由过程管程的流体称为管程流体(B流体).管壳式换热器重要由管箱.管板.管子.壳体和折流板等组成.平日壳体为圆筒形;管子为直管或U形管.为进步换热器的传热效能,也可采用螺纹管.翅片管等.管子的布置有等边三角形.正方形.正方形斜转45°和齐心圆形等多种情势,前3 种最为常见.按三角形布置时,在雷同直径的壳体内可分列较多的管子,以增长传热面积,但管间难以用机械办法清洗,流体阻力也较大.管板和管子的总体称为牵制.管子端部与管板的衔接有焊接和胀接两种.在牵制中横向设置一些折流板,引诱壳程流体多次转变流淌偏向,有用地冲刷管子,以进步传热效能,同时对管子起支承感化.折流板的外形有弓形.圆形和矩形等.为减小壳程和管程流体的流畅截面.加速流速,以进步传热效能,可在管箱和壳体内纵向设置分程隔板,将壳程分为2程和将管程分为2程.4程.6程和8程等.管壳式换热器的传热系数,在水-水换热时为1400~2850瓦每平方米每摄氏度〔W/(m(℃)〕;用水冷却气体时,为10~280W/(m(℃);用水冷凝水蒸汽时,为570~4000W/(m(℃).管壳式换热器特色:管壳式换热器是换热器的根本类型之一,19世纪80年月开端就已运用在工业上.这种换热器构造牢固,处理才能大.选材规模广,顺应性强,易于制作,临盆成本较低,清洗较便利,在高温高压下也能实用.但在传热效能.紧凑性和金属消费量方面不及板式换热器.板翅式换热器和板壳式换热器等高效能换热器先辈.管壳式换热器分类:管壳式换热器按构造特色分为固定管板式换热器.浮头式换热器.U型管式换热器.双重管式换热器.填函式换热器和双管板换热器等.前 3种运用比较广泛.。
管程与壳程
管程指介质流经换热器内的通道及与其相贯通的部分。
壳程系指介质流经换热管外的通道及与其相贯通的部分。
这个涉及到管壳式换热器流体选择问题,主要依据有两流体的操作压力和温度、可以利用的压力降、结构和腐蚀性以及设备方面的考虑。
一般来说,水、水蒸气或强腐蚀性流体;有毒性的流体;容易结垢的流体以及高压操作的流体走管程;而塔顶冷凝蒸汽;烃类冷凝和再沸;关键压力降控制的流体,粘度大的流体走壳程。
除了上述条件外,另外还需要考虑到传热系数和最充分利用压力降,从压力降考虑,雷诺数低走壳程更合理。
一般塔顶冷却器多数物料走壳程冷却水走管程再沸器物料则走管程,蒸汽、凝液走壳程以上为大多数是这样,也有特例:一般主物料走壳程,辅助加热、冷却介质走管程。
现场判断的最佳方法是:管程介质从换热器一端进出,壳程介质靠中间一点进出,管程进出口一端要预留一定的抽换热器芯子的空间。
简单地说管程就是管内,壳程就是管外.就固定管板换热器而言,管壳程物料选择依据大致有:1)不洁净和易结垢的流体宜走管程,因管内清洗方便; 腐蚀性流体宜走管程,以免管束和壳体同时受腐蚀,且清洗,检修方便;压强高的流体宜走管程,以免壳体同时受压;有毒流体宜走管程,使泄漏机会减少;被冷却的流体宜走壳程,便于散热,增强冷却效果;饱和蒸汽宜走壳程,便于排出冷凝液和不凝气,且蒸汽洁净不污染;流量小或粘度大的流体宜走壳程,因折流档板的作用可使在低雷诺数下即可达到湍流,但也可在管内采用多管程; 若两流体温差较大,宜使α大的流体走壳程,使管壁和壳壁温差减小.在具体选择时,上述原则经常不能同时兼顾,会互相矛盾,这时要根据实际情况,抓住主要问题,作为选择的依据.而且不同换热器考虑的问题也不一样,比如:U型管的,管程就不能走洁净和易结垢的流体.管程是指列管内部,壳程是指列管外部和筒体之间的地方.管程和壳程是列管式换热器的两种介质流动区间,列管式换热器一般由外壳、花板、封头等组成,简单来说:管内称管程,管外则叫壳程一般来说,清洁流体走壳程,不清洁流体、易结垢,易结晶、易堵塞的介质走管程,这样便于清理污垢、结晶等堵塞物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
请问:管壳式换热器谁走管程谁走壳程是怎么定的?宜走管内的流体1)不洁净和易结垢的流体,因为管内清洗方便2) 腐蚀性的流体,因为可避免管子、壳体同时受腐蚀,且管子便于清洗和检修3)压强高的流体,因为可以节省壳体材料4)有毒的流体,因为可减少泄漏的机会宜走壳程的介质:1)饱和蒸汽,因为可便于及时排除冷凝液,且蒸汽比较干净,清洗比较方便2)被冷却的流体,因为可利用壳体散热,增强冷却效果3) 粘度大的流体或流量小的流体,因为流体在折流板的作用下,可提高流动对流传热系数4)对于刚性结构的换热器,若两流体的温差大,对流传热系数较大的介质走壳程,可减少热应力。
求列管换热器的计算列管式换热器的设计计算1.流体流径的选择哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例)(1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。
(2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。
(3) 压强高的流体宜走管内,以免壳体受压。
(4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。
(5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。
(6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。
(7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。
在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾,例如首先考虑流体的压强、防腐蚀及清洗等要求,然后再校核对流传热系数和压强降,以便作出较恰当的选择。
2. 流体流速的选择增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。
但是流速增加,又使流体阻力增大,动力消耗就增多。
所以适宜的流速要通过经济衡算才能定出。
此外,在选择流速时,还需考虑结构上的要求。
例如,选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。
管子太长不易清洗,且一般管长都有一定的标准;单程变为多程使平均温度差下降。
这些也是选择流速时应予考虑的问题。
3. 流体两端温度的确定若换热器中冷、热流体的温度都由工艺条件所规定,就不存在确定流体两端温度的问题。
若其中一个流体仅已知进口温度,则出口温度应由设计者来确定。
例如用冷水冷却某热流体,冷水的进口温度可以根据当地的气温条件作出估计,而换热器出口的冷水温度,便需要根据经济衡算来决定。
为了节省水量,可使水的出口温度提高些,但传热面积就需要加大;为了减小传热面积,则要增加水量。
两者是相互矛盾的。
一般来说,设计时可采取冷却水两端温差为5~10℃。
缺水地区选用较大的温度差,水源丰富地区选用较小的温度差。
4. 管子的规格和排列方法选择管径时,应尽可能使流速高些,但一般不应超过前面介绍的流速范围。
易结垢、粘度较大的液体宜采用较大的管径。
我国目前试用的列管式换热器系列标准中仅有φ25×2.5mm及φ19×mm两种规格的管子。
管长的选择是以清洗方便及合理使用管材为原则。
长管不便于清洗,且易弯曲。
一般出厂的标准钢管长为6m,则合理的换热器管长应为1.5、2、3或6m。
系列标准中也采用这四种管长。
此外,管长和壳径应相适应,一般取L/D为4~6(对直径小的换热器可大些)。
如前所述,管子在管板上的排列方法有等边三角形、正方形直列和正方形错列等,如第五节中图4-25所示。
等边三角形排列的优点有:管板的强度高;流体走短路的机会少,且管外流体扰动较大,因而对流传热系数较高;相同的壳径内可排列更多的管子。
正方形直列排列的优点是便于清洗列管的外壁,适用于壳程流体易产生污垢的场合;但其对流传热系数较正三角排列时为低。
正方形错列排列则介于上述两者之间,即对流传热系数(较直列排列的)可以适当地提高。
管子在管板上排列的间距 (指相邻两根管子的中心距),随管子与管板的连接方法不同而异。
通常,胀管法取t=(1.3~1.5)do,且相邻两管外壁间距不应小于6mm,即t≥(d+6)。
焊接法取t=1.25do。
5. 管程和壳程数的确定当流体的流量较小或传热面积较大而需管数很多时,有时会使管内流速较低,因而对流传热系数较小。
为了提高管内流速,可采用多管程。
但是程数过多,导致管程流体阻力加大,增加动力费用;同时多程会使平均温度差下降;此外多程隔板使管板上可利用的面积减少,设计时应考虑这些问题。
列管式换热器的系列标准中管程数有1、2、4和6程等四种。
采用多程时,通常应使每程的管子数大致相等。
管程数m可按下式计算,即:(4-121)式中u―――管程内流体的适宜速度, m/s;u′―――管程内流体的实际速度, m/s。
图4-49串联列管换热器当壳方流体流速太低时,也可以采用壳方多程。
如壳体内安装一块与管束平行的隔板,流体在壳体内流经两次,称为两壳程,如前述的图4-47和图4-48所示。
但由于纵向隔板在制造、安装和检修等方面都有困难,故一般不采用壳方多程的换热器,而是将几个换热器串联使用,以代替壳方多程。
例如当需二壳程时,则将总管数等分为两部分,分别安装在两个内径相等而直径较小的外壳中,然后把这两个换热器串联使用,如图4-49所示。
6. 折流挡板安装折流挡板的目的,是为了加大壳程流体的速度,使湍动程度加剧,以提高壳程对流传热系数。
第五节的图4-26已示出各种挡板的形式。
最常用的为圆缺形挡板,切去的弓形高度约为外壳内径的10~40%,一般取20~25%,过高或过低都不利于传热。
两相邻挡板的距离(板间距)h为外壳内径D的(0.2~1)倍。
系列标准中采用的h值为:固定管板式的有150、300和600mm三种;浮头式的有150、200、300、480和600mm五种。
板间距过小,不便于制造和检修,阻力也较大。
板间距过大,流体就难于垂直地流过管束,使对流传热系数下降。
挡板切去的弓形高度及板间距对流体流动的影响如图3-42所示。
7. 外壳直径的确定换热器壳体的内径应等于或稍大于(对浮头式换热器而言)管板的直径。
根据计算出的实际管数、管径、管中心距及管子的排列方法等,可用作图法确定壳体的内径。
但是,当管数较多又要反复计算时,作图法太麻烦费时,一般在初步设计时,可先分别选定两流体的流速,然后计算所需的管程和壳程的流通截面积,于系列标准中查出外壳的直径。
待全部设计完成后,仍应用作图法画出管子排列图。
为了使管子排列均匀,防止流体走"短路",可以适当增减一些管子。
另外,初步设计中也可用下式计算壳体的内径,即: (4-122)式中D――――壳体内径, m;t――――管中心距, m;nc―――-横过管束中心线的管数;b′―――管束中心线上最外层管的中心至壳体内壁的距离,一般取b′=(1~1.5)do。
nc值可由下面的公式计算。
管子按正三角形排列时: (4-123)管子按正方形排列时: (4-124)式中n为换热器的总管数。
按计算得到的壳径应圆整到标准尺寸,见表4-15。
8.主要构件封头封头有方形和圆形两种,方形用于直径小的壳体(一般小于400mm),圆形用于大直径的壳体。
缓冲挡板为防止壳程流体进入换热器时对管束的冲击,可在进料管口装设缓冲挡板。
导流筒壳程流体的进、出口和管板间必存在有一段流体不能流动的空间(死角),为了提高传热效果,常在管束外增设导流筒,使流体进、出壳程时必然经过这个空间。
放气孔、排液孔换热器的壳体上常安有放气孔和排液孔,以排除不凝性气体和冷凝液等。
接管尺寸换热器中流体进、出口的接管直径按下式计算,即:式中Vs--流体的体积流量, /s;u --接管中流体的流速, m/s。
流速u的经验值为:对液体 u=1.5~2 m/s对蒸汽 u=20~50 m/s对气体 u=(15~20)p/ρ (p为压强,单位为atm ;ρ为气体密度,单位为kg/)9.材料选用列管换热器的材料应根据操作压强、温度及流体的腐蚀性等来选用。
在高温下一般材料的机械性能及耐腐蚀性能要下降。
同时具有耐热性、高强度及耐腐蚀性的材料是很少的。
目前常用的金属材料有碳钢、不锈钢、低合金钢、铜和铝等;非金属材料有石墨、聚四氟乙烯和玻璃等。
不锈钢和有色金属虽然抗腐蚀性能好,但价格高且较稀缺,应尽量少用。
10.流体流动阻力(压强降)的计算(1) 管程流体阻力管程阻力可按一般摩擦阻力公式求得。
对于多程换热器,其总阻力Δpi 等于各程直管阻力、回弯阻力及进、出口阻力之和。
一般进、出口阻力可忽略不计,故管程总阻力的计算式为:(4-125)式中Δp1、Δp2------分别为直管及回弯管中因摩擦阻力引起的压强降,N/;Ft-----结垢校正因数,无因次,对于φ25×2.5mm的管子,取为1.4,对φ19×2mm的管子,取为1.5;Np-----管程数;Ns-----串联的壳程数。
上式中直管压强降Δp1可按第一章中介绍的公式计算;回弯管的压强降Δp2由下面的经验公式估算,即:(4-126)(2) 壳程流体阻力现已提出的壳程流体阻力的计算公式虽然较多,但是由于流体的流动状况比较复杂,使所得的结果相差很多。
下面介绍埃索法计算壳程压强Δpo的公式,即:(4-127)式中Δp1′-------流体横过管束的压强降,N/;Δp2′-------流体通过折流板缺口的压强降,N/;Fs --------壳程压强降的结垢校正因数,无因次,对液体可取 1.15,对气体或可凝蒸气可取1.0而 (4-128)(4-129)式中 F----管子排列方法对压强降的校正因数,对正三角形排列F=0.5,对正方形斜转45°为0.4,正方形排列为0.3;fo----壳程流体的摩擦系数,当Reo>500时,nC----横过管束中心线的管子数;NB----折流板数;h ----折流板间距,m;uo----按壳程流通截面积Ao计算的流速,而。
一般来说,液体流经换热器的压强降为 0.1~1atm,气体的为0.01~0.1atm。
设计时,换热器的工艺尺寸应在压强降与传热面积之间予以权衡,使既能满足工艺要求,又经济合理。
三、列管式换热器的选用和设计计算步骤1.试算并初选设备规格(1) 确定流体在换热器中的流动途径。
(2) 根据传热任务计算热负荷Q。
(3) 确定流体在换热器两端的温度,选择列管式换热器的型式;计算定性温度,并确定在定性温度下流体的性质。
(4) 计算平均温度差,并根据温度校正系数不应小于0.8的原则,决定壳程数。