飞机飞行操纵系统

合集下载

飞机飞行操纵系统

飞机飞行操纵系统

安全问题
安全标准
01
确保飞行操纵系统符合国际国内安全标准,系统进行严格质量
控制测试。
ቤተ መጻሕፍቲ ባይዱ
冗余设计
02
防止单一故障导致系统失效,采冗余设计,增加系统可靠性安
全性。
紧急备份系统
03
紧急情况提供备份操纵系统,确保飞行员能够控制飞机并采取
必紧急措施。
技术更新问题
持续研发
断投入研发资源,更新改进飞行操纵系统,满足航空工业发展需 求。
电动操纵系统
电动操纵系统通过电动机传动装置将飞行员操作指令传递 舵面,实现飞行姿态航向操纵。
电动操纵系统优点结构简单、可靠性高、维护成本低,且 易实现自动控制远程操控。现代飞机中,电动操纵系统已 经成主流飞行操纵系统之一。
气压操纵系统
气压操纵系统利气压差将飞行员操作指令传递舵面,实现飞行姿态航向操纵。
发展历程
飞机飞行操纵系统经历从简单机械式复杂电传式演变,技术 断升级换代,提高飞机安全性机动性能。
趋势
未飞行操纵系统发展将更加注重智能化、自主化、复合控制 等方面,提高飞机自主飞行能力适应复杂环境能力。随着无 驾驶技术断发展,无机飞行操纵系统也将成研究重方向。
02
飞行操纵系统种类
机械操纵系统
机械操纵系统最早飞行操纵系统,通过钢索、滑轮连杆等机 械部件将飞行员操作指令传递飞机各舵面,实现飞行姿态航 向操纵。
飞机飞行操纵系统
目 录
• 飞机飞行操纵系统概述 • 飞行操纵系统种类 • 飞行操纵系统关键技术 • 飞行操纵系统应 • 飞行操纵系统挑战与解决方案 • 未飞行操纵系统发展趋势
01
飞机飞行操纵系统概述
定与功能

飞机飞行操纵系统指控制飞机飞行姿 态轨迹操作系统,包括飞行控制系统 飞行操纵系统。

飞机机械与系统-第五章飞行操纵系统

飞机机械与系统-第五章飞行操纵系统

上海交通职业技术学院
5.3 传动机构
• 5.3.1 硬式传动机构的主要构件
(1)传动杆
传动杆又称为拉杆。它通常采用硬铝管制成,两端有接头,
其一端的接头通常是可以调整的。在调整拉杆长度时,为了防止接
头的螺杆长度调出过多,而使螺纹的结合圈数过少,在管件端部应
有检查小孔。把传动杆调长时,接头螺杆的末端不应超过小孔的位
上海交通职业技术学院
5.3 传动机构
5.3.4 非线性传动机构
• 操纵系统中,如果没有特殊的机构来改变传动比,在舵面偏转过程中,传 动系数基本上是不变的,舵偏角A随杆行程X 的变化近似地成正比例关系, 即线性关系。
• 线性传动的操纵系统对低速飞机比较合适,但往往不能满足高速飞机的操 纵性要求,在操纵系统中设置了专门的非线性传动机构,靠它来改变整个 操纵系统的传动系数,以满足高速飞机的操纵性要求。
行姿态很快地随操纵动作而改变。要操纵灵敏,操纵系统中的各构件在工 作时的变形和构件之的间隙必须尽可能小。 3. 飞行中,当飞机机体结构应力变形时,操纵系统不应发生卡阻现象。 4. 各舵面的操纵要求互不干扰。 5. 进行操纵时,既要轻便,也要有适当的感觉力,而且这种感觉力应随舵面 偏转角度、飞行速度、飞行高度的改变而改变。要操纵轻便,操纵系统的 摩擦力必须尽可能小,即应保持各相互连接处的清洁和润滑。
性 间隙。钢索的弹性间隙太大,就会使操纵的灵敏性变差。
为了减小弹性间隙,操纵系统中的钢索在装配时都是预先拉 紧的,预先拉紧的力称为预加张力。有预先张力的钢索能减小弹 性间隙。 第一、钢索被预先拉紧后,就把各股钢丝绞紧,传动时钢索就不
容易被拉长 第二、钢索在传动中张力增加得较少
上海交通职业技术学院
5.3 传动机构

飞机系统知识点总结

飞机系统知识点总结

飞机系统知识点总结飞机是由许多复杂的系统组成的,这些系统相互配合,确保飞机的安全和性能。

本文将对飞机系统的各个方面进行总结,包括飞行控制系统、动力系统、舱内系统和通信系统等。

通过本文的阅读,读者可以对飞机系统有一个全面的了解。

一、飞行控制系统飞行控制系统是飞机的关键系统之一,它包括飞行操纵系统、飞行辅助系统和自动驾驶系统。

1. 飞行操纵系统飞行操纵系统包括操纵杆、脚蹬、副翼、升降舵和方向舵等部件。

通过这些部件,飞行员可以控制飞机的姿态、航向和俯仰。

飞机的操纵系统通常由液压系统或者电动系统驱动,确保飞机操纵的精准和灵活。

2. 飞行辅助系统飞行辅助系统是为了提高飞机的操纵性能而设计的系统。

比如说,阻尼器系统可以减小飞机的振动,减少飞机受到外部环境的影响。

此外,气动弹性补偿系统可以改善飞机的飞行品质,使得飞行更为平稳。

3. 自动驾驶系统自动驾驶系统是现代飞机的一大特色,它可以帮助飞行员更轻松地控制飞机。

自动驾驶系统可以自动调整飞机的姿态、航向和速度,减轻飞行员的负担,提高飞行的安全性。

二、动力系统动力系统是飞机的心脏,负责提供飞机的动力和推进力。

飞机的动力系统通常由发动机和推进系统组成。

1. 发动机发动机是飞机的动力来源,它可以根据不同的原理分为涡轮喷气发动机和螺旋桨发动机。

涡轮喷气发动机是现代喷气式飞机最常用的发动机,它通过燃烧燃料产生高温高压的气流,驱动涡轮产生推进力。

螺旋桨发动机则是一种传统的发动机,通过旋转螺旋桨产生推进力。

2. 推进系统推进系统包括发动机的引擎控制系统、涡轮喷气发动机的涡轮增压系统和螺旋桨发动机的传动系统。

这些系统可以有效地将发动机产生的动力传递到飞机的推进装置上,保证飞机的动力输出。

三、舱内系统舱内系统是为了提供乘客舒适和飞行员工作环境而设计的系统,它包括气压控制系统、空调系统和供氧系统等。

1. 气压控制系统在飞行高度较高的情况下,大气压会急剧下降,可能导致乘客和机组人员出现高原反应。

第五章 飞行操纵系统

第五章 飞行操纵系统

第三节 助力机械操纵系统
助力机械操纵系统的提出
舵面铰链力矩是随舵面尺寸和飞行速压的增加而增加! 当舵面铰链力矩变得很大时,即使利用当时的空气动力补偿法,也不能使驾 驶杆(脚蹬)力保持在规定的范围之内:
1. 研究效率更高的空气动力补偿; 2. 研究液压助力器,以实现液压助力操纵!
助力机械操纵系统的分类
钢索承受拉力时,容易伸长。由于操纵系统的弹性变形而产 生的“间隙”称为弹性间隙; 钢索的弹性间隙太大,会降低操纵的灵敏性; 钢索预紧(施加予张力)是减小弹性间隙的措施! 常见故障:断丝与锈蚀,主要部位是滑轮或导索板处。
几个注意问题: 1、为了改善软式操纵系统的灵敏性,钢索在未安 装之前,必须用相当于设计强度50%~60%的力进 行予拉伸处理; 2、装在飞机上的钢索必须根据周围温度的高低而 保持一定的予张力; 3、在飞机主操纵系统中,可以使用的钢索最小直 径是1/8英寸; 4、钢索不可气割,不可焊接,只能用钢索剪剪断 或用錾子錾断; 5、在改变钢索方向不大于 3º的情况下,可以使用 导索板或导索环。
中央操纵机构—手操纵机构
驾驶杆式手操纵机构
推拉驾驶杆操纵升降舵; 左右压杆操纵副翼!
横纵向操纵的独立性
驾驶杆要操纵升降舵和副翼, 但两者不会互相干扰!
独 立 性 分 驾驶杆左右摆时,传动杆沿着以b-b线为中 析 心轴,以c点为顶点的锥面运动;
由于圆锥体的顶点c到底部周缘上任一点的 距离相等,所以当驾驶杆左右摆动时,摇 臂1不会绕其支点前后转动,因而升降舵不 会偏转!

操纵系统
主操纵系统
副翼
升降舵
辅助操纵系统
前缘襟翼缝翼
后缘襟翼 扰流板 水平安定面
警告系统

《飞行操纵系统》课件

《飞行操纵系统》课件

THANKS
感谢观看
飞行员通过Байду номын сангаас纵杆、脚蹬等输入装置 ,将控制指令传递给飞行操纵系统, 以改变飞机的飞行姿态和轨迹。
它包括主操纵系统和辅助操纵系统, 主操纵系统包括升降舵、方向舵和副 翼,辅助操纵系统包括襟翼、缝翼和 起落架收放机构等。
飞行操纵系统的动力学基础
飞行操纵系统的动力学基础包 括空气动力学和飞行力学。
空气动力学是研究气体流动和 物体在气体中运动的科学,它 为飞行操纵系统的设计和性能 提供了理论基础。
分类
根据飞行器类型和设计需求的不同,飞行操纵系统有多种分类方式。例如,按照传力介质的不同,可以分为机械 式操纵系统、液压式操纵系统和电气式操纵系统等;按照控制方式的不同,可以分为助力操纵系统和主动控制系 统等。
发展历程与趋势
发展历程
飞行操纵系统的发展经历了多个阶段,从早期的机械操纵系统到现代的电传操纵系统和 主动控制系统。随着科技的不断进步,飞行操纵系统的性能和安全性得到了极大的提升
权限管理与安全认证
限制飞行员对系统的操作权限,防止误操作或 恶意干扰。
自适应容错控制
在系统发生故障时,自动调整控制策略,降低故障对飞行安全的影响。
05
飞行操纵系统的应用与案例分析
飞行操纵系统在无人机中的应用
1 2 3
无人机飞行操纵系统概述
无人机飞行操纵系统是无人机控制的重要组成部 分,负责无人机的起飞、巡航、降落等操作。
飞行操纵系统的传感器
01
02
03
04
角位移传感器
检测飞行员的操纵角度,转换 为电信号。
力矩传感器
检测飞行员施加在操纵杆上的 力矩,转换为电信号。
侧杆传感器

飞行控制系统的组成

飞行控制系统的组成

飞行控制系统的组成飞行控制系统是指用于控制飞机飞行的一系列设备和程序。

它是飞机的重要组成部分,直接影响着飞机的操纵性、稳定性和安全性。

飞行控制系统的主要组成包括飞行操纵系统、飞行指示系统、飞行保护系统和自动飞行控制系统。

一、飞行操纵系统飞行操纵系统是飞行控制系统的核心部分,用于操纵飞机的姿态和航向。

它包括操纵杆、脚蹬和相关的机械传动装置。

操纵杆通过机械传动装置将飞行员的操作转化为飞机的姿态变化,从而实现对飞机的操纵。

脚蹬主要用于控制飞机的航向。

飞行操纵系统的设计需要考虑飞行员的操作感受和操作精度,以及飞机的动力特性和气动特性。

二、飞行指示系统飞行指示系统用于向飞行员提供飞机的状态和参数信息,以帮助飞行员准确地掌握飞机的飞行情况。

飞行指示系统包括人机界面设备和显示设备。

人机界面设备包括仪表板、显示器和按钮等,用于向飞行员显示飞机的状态和参数,并接收飞行员的操作指令。

显示设备一般采用液晶显示屏或投影显示技术,能够实时显示飞机的速度、高度、姿态、航向等信息。

飞行指示系统的设计需要考虑信息的清晰度和可读性,以及对飞行员的操作需求和反馈。

三、飞行保护系统飞行保护系统用于提供飞机的保护和安全功能,防止飞机发生失控或危险情况。

飞行保护系统包括防护装置、警告系统和应急措施。

防护装置主要包括防止飞机过载的装置、防止飞机超速的装置和防止飞机失速的装置等,能够保护飞机免受过载、超速和失速等不安全飞行状态的影响。

警告系统主要用于向飞行员提供飞机的警告和提示信息,以帮助飞行员及时发现和解决飞机的异常情况。

应急措施主要包括自动驾驶和自动下降等功能,能够在紧急情况下自动控制飞机的飞行。

四、自动飞行控制系统自动飞行控制系统是飞行控制系统的高级形式,能够实现自动驾驶和飞行管理功能。

自动飞行控制系统主要包括飞行管理计算机、自动驾驶仪和导航系统等。

飞行管理计算机负责计算飞机的飞行参数和航路信息,并根据飞行员的指令进行飞行计划和航线管理。

飞行操纵系统

飞行操纵系统


装有非线性传动机构的操纵系 统,杆行程与舵面偏角之间成 曲线关系。
4.电传操纵系统
(1)电传操纵系统的提出


机械操纵系统缺点:

存在摩擦、间隙和非线性因素导致无法实现精微操纵信 号传递; 机械操纵系统对飞机结构的变化非常敏感; 体积大,结构复杂,重量大!


电传操纵系统的可靠性问题
缺点:

单通道电传操纵系统的可靠性不够高 电传操纵系统的成本较高 系统易受雷击和电磁脉冲波干扰影响
2.2.3 舵面驱动装置

1. 简单机械式操纵系统 2. 助力液压操纵系统 3. 电力驱动系统
1.

简单机械式操纵系统
概念
只靠驾驶员的体力克服铰链力矩; 操纵信号和操纵力同时由机械传动机构直接传递到 舵面使其按要求偏转的操纵系统。 S杆
灵敏特性
稳定特性

载荷感觉器
1. 无回力的助力操纵系统中,使飞行员能从驾驶杆上感 受到力; 2. 有回力的助力操纵系统中,在舵面铰链力矩较小时, 使驾驶杆不致过“轻”。

所谓差动,就是当驾驶杆前后(或左右)偏转的同一
角度时,升降舵(或副翼)上下(或左右)偏转的角 度不同。

实现差动操纵最简单的机构是差动摇臂。
(3)导向滑轮
导向滑轮由三个或四个小滑轮及其支架组成;

功用: 支持传动杆,提高传动杆的受压时的杆轴临界应力; 增大传动杆的固有频率,防止传动杆发生共振。
机械操纵系统可靠性较高! 单通道电传系统可靠性较低: 可接受的安全指标: 1107 / 飞行小时 解决措施:余度技术——多套系统/通道系统的各个部分具有故障监控、信号表决的能 力。 一旦系统或系统中某部分出现故障后,必须具有故障 隔离的能力。换句话说,在发生故障时,系统应具有 第一次故障能工作,第二次故障还能工作的能力。 当系统中出现一个或数个故障时,它具有重新组织余 下的完好部分,使系统具有故障安全或双故障安全的 能力,即在性能指标稍有降低情况下,系统仍能继续 承担任务。

《飞机结构与系统》课件——5-飞行操纵系统—辅助操纵系统

《飞机结构与系统》课件——5-飞行操纵系统—辅助操纵系统
17
扰流板操纵
扰流板分类
➢ 飞行扰流板:飞机飞行和着陆时都可以使用,用来增大迎风面积,增 大气动阻力,机翼上用来迅速增大阻力的板状操纵面称为“减速板” 。一般安装在机翼上表面靠近副翼的部位。
➢ 地面扰流板:飞机着陆后,机翼上用来迅速减少升力的板状操纵面称 为“减升板”或“卸升板”,它是一种只限于在地面使用的扰流板。 减升板一般安装在机翼上表面靠近翼根部位。当飞机降落时,只要机 轮一接触地面(空地感应开关),减升板就迅速打开,机翼升力迅速减 小,防止飞机弹跳,缩短滑跑距离。
12
襟翼操纵系统--指示
襟翼位置指示
➢后缘襟翼位置指示器
➢前缘位置指示器——前 缘襟翼和缝翼位置灯;
➢襟翼有收起和伸出两 个位置;
➢缝翼有收起、伸出、
完全伸出三个位置;
13
襟翼操纵系统--指示
14
襟翼操纵系统--指示
缝翼和襟翼指示
当缝翼或襟翼没有全部收上 时,“FLAP”字样出现。
当到达选择的位置 时为白色。
地面扰流板
➢功用 ➢只能在地面使用起减速作用。
➢位置 ➢立起、放下
➢控制 ➢受减速板手柄和空/地电门控 制,只有飞机在地面时,操纵 减速板手才能使地面扰流板放 出。一般是液压作动,并使用 双向单杆式作动筒。
20
扰流板操纵--操纵
✓飞行扰流板有两个作用:一 是减速;二是配合副翼进行横 侧操纵,即当驾驶盘旋转角度 超过一定值时,副翼上偏一侧 的飞行扰流板打开,配合副翼 进行横侧操纵,而另一侧的飞 行扰流板不作相应的偏转。飞 行扰流板在应急时也可以单独 进行应急横侧操纵。
11
襟翼操纵系统--操纵
襟翼保护措施
✓襟 翼 不 同 步 保 护 : 保 证 后 缘 襟 翼 不 同 步 时 快 速 切断襟翼操纵系统; ✓襟 翼 载 荷 限 制 器 : 保 护 襟 翼 结 构 , 避 免 在 大 的 气动载荷下损伤襟翼结构; ✓自 动 缝 翼 : 在 飞 机 接 近 失 速 时 , 自 动 驱 动 前 缘 缝翼从“部分放出”到“完全放出”位置;

飞机结构与系统(飞行操纵系统)课件

飞机结构与系统(飞行操纵系统)课件
理方案,提高飞行经济性安全性。
04
飞行操纵系统维护与检修
飞行操纵系统日常维护
01
02
03
每日检查
检查飞行操纵系统外观, 确保没明显损坏或异常情 况。
清洁润滑
飞行操纵系统进行清洁润 滑,保持其良好工作状态 。
校准
飞行操纵系统进行校准, 确保其准确性可靠性。
飞行操纵系统定期检修
定期检查
按照规定周期飞行操纵系 统进行检查,包括内部结 构元件。
飞行管理系统
飞行管理系统现代飞行操纵系统核心组 成部它集成导航、气象、通讯等多种功 能,能够飞行员提供全面飞行信息支持

飞行管理系统通过接收处理自各种传感 器数据,飞行员提供实时飞行计划、航 向、速度、高度等信息,帮助飞行员更
好掌握飞行状态决策。
飞行管理系统还可根据气象条件飞行计 划,飞行员提供最佳飞行轨迹发动机管
安全标准与规范
参考相关安全标准规范,如国际民航组织(ICAO)美国联邦航空局(FAA)等发布相关指南标准,飞行操纵系统进 行安全性评估。些标准规范评估提供指导参考框架。
安全改进措施
根据安全性评估结果,制定并实施相应安全改进措施,提高飞行操纵系统安全性可靠性。些措施可能包 括硬件升级、软件修复、操作程序改进等各方面。
飞行操纵系统历史与发展
历史
早期飞机采简单机械式操纵系统,通过钢索、连杆等机械部件实现飞行员翼面舵面直接控制。随着技术发展,液 压式操纵系统电传式操纵系统逐渐取代机械式操纵系统。电传式操纵系统目前最先进飞行操纵系统,具更高可靠 性灵活性。
发展
未飞行操纵系统将朝着更加智能化、自主化协同化方向发展。智能化能够提高系统自主决策能力容错能力;自主 化能够减轻飞行员工作负担提高飞行安全性;协同化则能够实现飞行员与无机之间效协作,提高整体作战效能。

飞机操纵系统

飞机操纵系统

第二节 简单机械操纵系统
➢ 简单机械操纵系统是一种人力操纵系 统,由于其构造简单,工作可靠,使 用了30余年,才出现助力操纵系统
➢ 简单机械操纵系统现在仍广泛应用于 低速飞机和一些运输机上
2-01
2.1 对飞行操纵系统的要求
➢ 一般要求
➢ 重量轻、制造简单、维护方便 ➢ 具有足够的强度和刚度
➢ 特殊要求
➢现代民航客机在操纵系统中设置了 专门的非线性传动机构,靠它来改 变整个操纵系统的传动系数,实现:
➢在舵面偏转角较小时,杆行程较 大,便于飞行员准确操纵飞机;
➢在舵面偏转角较大时,杆行程不 至于过大,即灵敏性增加。
第三节 舵面补偿装置
➢作用:减小铰链力矩和杆力 ➢形式:
➢轴式补偿 ➢角式补偿 ➢内封补偿 ➢调整片补偿
连杆及蜗轮螺杆机构
➢平衡调整片
第五节 主操纵系统
➢飞行操纵系统由三个部分组成:主操 纵系统、辅助操纵系统和警告系统。
➢主操纵系统包括 ➢副翼 ➢升降舵 ➢方向舵
5.1 副翼操纵系统
➢驾驶盘柔性互联机构
➢液压助力器
➢现代大中型飞机的重量较重,飞行速度较快, 舵面上的气动载荷较大,因此常采用液压助 力器进行助力操纵。
➢ 实现差动操纵最简单的机构是差动摇臂
2-17
➢弗利兹副翼--平衡两机翼诱导阻力差
3.导向滑轮
➢支持传动杆 ➢提高传动杆的受压时的杆轴临界应力 ➢增大传动杆的固有频率,防止传动杆发生
共振
三、主操纵系统的传动系数和传动比
➢传动系数
➢传动系数 驾驶杆(盘或脚蹬)移动一 个很小的行程ΔX时,舵面的偏转角相 应也会改变一定数值Δδ,操纵系统 的传动系数K就定义作Δδ与ΔX的比 值,即:

第3章 飞行操纵系统

第3章 飞行操纵系统

第三章 飞行操纵系统
扰流板的收放
第三章 飞行操纵系统
地面扰流板活门
地面扰流板内锁活门
外地面扰流板 作动筒
内地面扰流板作 动筒
外地面扰流板作 动筒
第三章 飞行操纵系统
(4)水平安定面配平
水平安定面配平系统——提供飞机纵向的俯仰配平。
被操纵的是可调水平安定面 偏转1度相当于升降舵偏转2.5-3.5度
襟翼
开裂式襟翼
后退式襟翼 后退式三开缝襟翼
第三章 飞行操纵系统
飞机襟翼操纵
第三章 飞行操纵系统
襟翼的保护
不同步保护
防止左、右两侧襟翼放出角度不对称
过载保护 用于保护襟翼结构,防止过大的气动载荷损伤襟翼。
襟翼的位置指示
左指针
第三章 飞行操纵系统
(3)扰流板操纵
扰流板是铰链在机翼上表面的一种可活动翼板。升 起扰流板可使飞机的升力减小,阻力增加。 扰流板的功能是: (1)飞行扰流板可以辅助副翼横滚操纵; (2)飞行扰流板对称升起,可使飞机空中减速; (3)飞机落地后,地面扰流板升起,可以增大飞机阻力 使飞机减速,提高刹车效能。
第三章 飞行操纵系统
软 式 传 动 系 统
硬 式 传 动 系 统
第三章 飞行操纵系统
(2)电传操纵系统(Fly-By-Wire) ①电传操纵系统的组成
电传操纵系统主要由驾驶杆或侧杆(含杆力传感器)、前 置放大器、传感器、机载计算机和执行机构组成。
第三章 飞行操纵系统
②工作原理
驾驶员发出操纵指令;经传感器转换为电信号,并与来自飞机 运动参数传感器测得的信号一起,传输给计算机;处理计算机 按预定的控制规律生成舵面操纵信号;控制操纵面作动器动作, 舵面偏转,从而实现对飞机进行操纵。

飞机结构--飞行操纵系统

飞机结构--飞行操纵系统

缺点
刚度较小 弹性间隙 操纵灵敏度差 钢索在滑轮处容易磨损 构造复杂 重量加大 难于“ 难于“绕”过机内设备 易与发动机发生共振
混合 兼有硬式和软式的优点和缺点
钢索
只承受拉力, 只承受拉力,不能承受压力 用两根钢索构成回路, 用两根钢索构成回路,以保证舵面能在两 个相反的方向偏转
钢索构造和规格
规格型号 7×7
特点: 特点:操纵信号由驾驶员发出 组成: 组成:
飞机的俯仰、滚转和偏航操纵系统(主操纵系统) 飞机的俯仰、滚转和偏航操纵系统(主操纵系统) 增升、增阻操纵系统,人工配平系统等(辅助操纵系统) 增升、增阻操纵系统,人工配平系统等(辅助操纵系统)
自动飞行控制系统
特点: 特点:
操纵信号由系统本身产生,对飞机实施自动和半自动控制, 操纵信号由系统本身产生,对飞机实施自动和半自动控制,协 助驾驶员工作或自动控制飞机对扰动的响应
股数
7×19
钢丝数
钢索构造和规格
类型
碳钢、不锈钢
尺寸
1/16到3/8英寸 名义直径相同的钢索,股数越多,它的柔性越好; 名义直径相同,股数相同,钢丝数越多,柔性就 越好。
钢索预紧
∆T M铰
+∆T’
T0
M铰
T0 -∆T’
固有缺陷——弹性间隙 弹性间隙 固有缺陷
弹性间隙
钢索承受拉力时,容易伸长; 钢索承受拉力时,容易伸长;由于操纵系统的弹性变形而产生的 间隙” “间隙”称为弹性间隙 危害:弹性间隙太大, 危害:弹性间隙太大,会降低操纵的灵敏性 解决措施: 解决措施:钢索预紧 常见故障——断丝(滑轮、导向器部位) 断丝( 常见故障 断丝 滑轮、导向器部位)
助力操纵系统
液压助力 电助力
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
预防尾翼颤振:对舵面采用重量平衡的方法,通 常采用集中配重。对后略式尾翼,还需在舵面尖端 安置端部配重,且是过度的静平衡。
飞机结构与系统
Page60
升降舵的过度重量平衡对飞机操纵性有不良 的影响。当飞机作法向过载飞行时,由于升降度 配重的质量力使驾驶杆自动向后倒向驾驶员,一 般在驾驶杆的前面加上反平衡配重
2、补偿配平调整片:又称助力配平调整片。 驾驶员直接操纵舵面: 调整片按补偿调整片原 理工作,起助力作用 驾驶员操纵调整片操纵 机构(转盘或手柄), 起配平作用
飞机结构与系统
Page45
安装角可变的水平安定面
通过改变水平安定面的安装角,达到纵向 配平的目的 现代大型高速飞机,尤其是大型客机上普 遍使用 水平安定面的安装角变化范围一般为 -12°~3°
Page63
② 用差动平尾以代替正常形式的副翼,同时采用机 翼上的扰流片,以辅助差动平尾在低速时效能不 足。 ③ 在大型飞机的机翼上有两个副翼。一个位于机 翼内侧称为内侧副翼,又称高速副翼;另一个位 于机翼外侧,称为外侧副翼,又称低速副翼。
飞机结构与系统
Page64
五、简单机械操纵系统的维护特点 ㈠ 防止系统摩擦力过大
飞机结构与系统
Page7
本章内容
5.1 5.2 5.3 5.4 5.5 5.6 简单机械操纵系统 有助力器的飞机操纵系统 调节飞机操纵性的装置 辅助操纵装置 电传操纵装置 飞行操纵警告系统
飞机结构与系统
Page8
5.1 简单机械操纵系统
一、对飞机操纵系统的要求 二、飞机操纵系统的工作原理
助力机械操纵系统的提出
– 舵面铰链力矩随舵面尺寸和飞行速压的增加而增加 – 当铰链力矩变得很大时,即使利用气动补偿法,也 不能使驾驶杆(脚蹬)力保持在规定的范围之内 – 现代高速和重型飞机广泛采用助力器
助力机械操纵系统的分类
–有回力的助力操纵系统 –无回力的助力操纵系统
助力机械操纵系统的主要元件:液压助力器
系统,杆行程与舵面偏角之间 成曲线关系
飞机结构与系统
Page36
六、气动力补偿及气动力平衡
㈠ 气动补偿的目的:降低铰链力矩,减小驾驶员
操纵飞机的疲劳程度 气动补偿方法:移轴补偿、角式补偿、随动补偿、 内补偿、操纵调整片
舵面铰链力矩
飞机结构与系统
Page37
⑴ 移轴补偿
将铰链轴后移,轴前面积即为补偿面积
股数
7×19
钢丝数
飞机结构与系统
Page29
有预加张力和无预加张力的钢索,在 传动中所受的张力。
飞机结构与系统
Page30
2、滑轮和扇形轮 滑轮用来支撑钢索和改变钢索的运动方向; 扇形轮(扇形摇臂)除了具有滑轮的作用外,还 可以改变力的大小
飞机结构与系统
Page31
3、松紧螺套 松紧螺套用来调整钢索的预紧力。调松钢索时, 螺杆末端不应超过小孔的位置
飞机结构与系统
Page46
飞机结构与系统
Page47
七、飞机颤振与副翼反效、结构承力与传力、操纵 系统的强度与刚度 (1)传动杆的振动和翼面颤振 1、振动的主要特性参数 ①振幅 ②振动周期
梁的自然振动
飞机结构与系统
Page48
2、传动杆的振动 传动杆会发生振动,振动的方向与传动杆的 长度垂直,因此叫做弯曲振动。
飞机结构与系统
Page14
三、中央操纵机构的机构和工作原理 飞机主操纵系统是由中央操纵机构和传动系 统两大部分组成。 ㈠ 手操纵机构 手操纵机构一般分为驾驶杆式和驾驶盘式两 种,图为驾驶杆式手操纵机构及其原理
飞机结构与系统
Page15
驾驶盘式手操纵机构
飞机结构与系统
Page16
• 侧杆操纵机构 输入力信号,输出电 信号;前后、左右摆 动时发出互不干扰的 电信号
飞机结构与系统
Page43
• 气动平衡与气动补偿的区别: 功能不同:气动平衡是将铰链力矩完全 抵消,驾驶员松杆,飞机仍保持飞行姿 态;气动补偿是驾驶员操纵舵面偏转时, 减小铰链力矩 操纵方式不同:气动平衡装置不是随操 纵面偏转来起作用的,而是通过独立的 配平手轮或配平电门操纵
飞机结构与系统
Page44
飞机结构与系统
Page27
3、导向滑轮 导向滑轮是由三个或四个小滑轮及其支架所 组成。它的功用是:支持传动杆,提高传动杆受 压时的杆轴临界应力,使传动杆不至于过早地失 去总稳定性。
飞机结构与系统
Page28
㈢ 软式传动机构的主要构件
1、钢索:钢索是由钢丝编成的。只能承受拉力, 不能承受压力。
• 规格型号 7× 7
飞机结构与系统
Page52
机翼的弯扭颤振
• 由于机翼垂直运动速度而产生减振力
飞机结构与系统
Page53
机翼的弯扭颤振
飞机结构与系统
Page54
• 产生弯扭颤振的结构原因
– 机翼为弹性体(刚度) – 重心和刚心不重合 (重心的位置) ⑴ 机翼刚度
增加机翼的蒙皮厚度以增大机翼扭转刚度。
为使蒙皮在弯曲强度中、桁条在扭转中有贡献, 因而发展了单块式机翼结构。
飞机结构与系统
Page61
㈢ 副翼反效
机翼的弹性变形对副翼效能有严重的影响,在飞 行速度很大时,能使副翼效能完全丧失,甚至出现反 效能,称为“副翼反效”或“副翼逆动”。
飞机结构与系统
Page62
提高副翼反效作用的 临界速度的措施: ① 把副翼向机翼内 侧移动,缺点是挤掉襟 翼面积。
飞机结构与系统
飞机结构与系统
Page38
⑵ 角式补偿
将一小部分舵面伸出于铰链轴的前面,形成一个角, 该角的面积约占操纵面面积的6-12%
飞机结构与系统
Page39
⑶ 随动补偿
随动补偿片也称随动调整片,在舵面后缘有自己转 轴的可旋转小翼面。随着舵面的偏转,补偿片向 与舵面转动方向相反的方向转动。
飞机结构与系统
Page40
飞机结构与系统
Page3
飞机的操纵面
左副翼 右副翼
左升降舵
右升降舵
飞机结构与系统
Page4
飞机的操纵面
左副翼 右副翼
俯仰配平 左安定面 右安定面
飞机结构与系统
Page5
飞机的操纵面
左副翼 右副翼
俯仰配平 左安定面 方向舵 右安定面
飞机结构与系统
Page6
飞机的操纵面
左副翼 扰流板 右副翼
俯仰配平 左安定面 方向舵 右安定面
飞机结构与系统 第五章:飞机飞行操纵系统
航空工程学院飞机系
2012.11

飞机飞行操纵系统是飞机上用来传递操纵指 令,驱动舵面运动的所有部件和装置的总合。 驾驶员通过操纵飞机的各舵面和调整片实现 飞机姿态的改变,以完成对飞机的飞行状态、气 动外形的控制
飞机结构与系统
Page2
飞机的操纵面
左副翼 右副翼
Page57
副翼重心到转轴的距离
飞机结构与系统
Page58
防止机翼弯曲——副翼偏转颤振的措施: 重量平衡法:在副翼前缘加上配重使其重心前移, 包括分布配重和集中配重。
飞机结构与系统
Page59
6、尾翼颤振 尾翼颤振是和机身的弯扭、振动联合产生的,有 机身弯曲—舵面偏转或机身扭转—舵面偏转。
飞机结构与系统
Page67一、助力操纵系统形式1、有回力的助力操纵系统 有回力的助力操纵系统,通常是利用回力连 杆把舵面传来的一部分载荷传给驾驶杆
助力操纵系统的回力比
飞机结构与系统
Page68
回力比:枢轴力矩相同的条件下,使用液压助力 器时平衡舵面载荷所需的杆力与不使用液压助力 器时平衡舵面载荷所需的杆力的比值 小回力比可在舵面枢轴力矩很大的情况下保证驾 驶杆力不致过大,但在舵面枢轴力矩阵较小的时 候,会使驾驶杆变得过“轻” 。 在有回力的助力操纵系统中,往往还装设载荷感 觉器适当增加驾驶杆力。 有回力的助力操纵系统通常用在亚音速飞机上。
飞机结构与系统
Page10
1、飞机的纵向操纵
飞机的纵向操纵是通过操纵驾驶杆或驾驶盘 控制升降舵来实现的。
飞机结构与系统
Page11
2、飞机的横向操纵 飞机的横向操纵系统是通过操纵驾驶杆或驾 驶盘控制副翼来实现的。
飞机结构与系统
Page12
飞机结构与系统
Page13
3、飞机的航向操纵 飞机的航向操纵是通过脚蹬控制方向舵来实 现的。
四、传动机构的构造和工作原理 四、传动机构的构造和工作原理
(一)传动机构的构造形式 软式传动机构: 主要由钢索、滑轮等构件所组成; 硬式传动机构: 主要由传动杆、摇臂等构件所组成; 混合式传动机构: 由软式、硬式传动机构混合组成。
飞机结构与系统
Page21
(二)硬式传动机构的主要构件 1、传动杆,传动杆又称为拉杆。传动杆的接头如 图所示。在传动过程中,传动杆不仅要作往复直 线运动,而且要相对于摇臂转动。
飞机结构与系统
Page32
4、钢索张力补偿器 飞机机体上的外载荷的变 化和周围气温变化,使机 体结构和操纵系统之间产 生相对变形,因而钢索可 能会变松或过紧。 变松将发生弹性间隙,过 紧将产生附加摩擦。 钢索张力补偿器的功用是 保持钢索的正确张力。
飞机结构与系统
Page33
五、飞机飞行操纵系统的传动系数、传动比及非线 性传动机构 ㈠ 操纵系统的传动系数 舵偏角△δ与杆位移△X的比值
飞机结构与系统
Page34

操纵系统的传动比
飞机结构与系统
Page35
㈢ 改变传动比和传动系数的机构 ——非线性传动机构
传动系数不变的操纵系统,
不能满足对飞机操纵性的要求:
相关文档
最新文档