自动控制原理总结报告

合集下载

自动控制原理总结归纳报告

自动控制原理总结归纳报告
定性控制面临的问题:发展定性数学理论,改进定性推理方法,注重定性和定量知识的结合;研究定性建模方法,定性控制方法;加强定性控制应用领域的研究。
9.预测控制(Predictive Control)
预测控制是在工业实践过程中独立发展起来的一种新型控制方法,它不仅适用于工业过程这种“慢过程”的控制,也能适用于快速跟踪的伺服系统这种“快过程”控制。目前实用的预测控制方法有动态矩阵控制(DMC),模型算法控制(MAC),广义预测控制(GPC),模型预测启发控制(MPHC)以及预测函数控制(PFC)等。这
系统分析方法是控制系统综合设计的基础这部分的内容主要包括时域分析法、根轨迹法、频域响应法是控制理论的重点。在控制系统中稳定性、快速性和准确性是对控制系统的基本要求也是衡量系统性能的重要指标控制系统不同的分析问题方法都是紧紧围绕这三个方面展开的。只要抓住这个特点就抓住了系统分析的关键有助于加深对不同方法的理解。例如以我军某军舰上的雷达定位系统为例假设给定目标信号要求设计控制器使系统在给定输入下跟踪指定目标最小且抗干扰性最好。这些生动的工程实例大大激发了我的兴趣使我感受到了控制理论的魅力深刻理解了
既打破了常规控制仪表功能的局限,又较好地解决了早期计算机系统对于信息、管理过于集中带来的危险,而且还有大规模数据采集、处理的功能以及较强的数据通信能力。
分布式控制系统既有计算机控制系统控制算法灵活,精度高的优点,又有仪表控制系统安全可靠,维护方便的优点。它的主要特点是:真正实现了分散控制;具有高度的灵活性和可扩展性;较强的数据通信能力;友好而丰富的人机联系以及极高的可靠性。
关键字:控制 方法 发展
正文:
一、自动控制理论的分析方法:(1)时域分析法;(2)频率法;(3)根轨迹法;(4)状态空间方法;(5)离散系统分析方法;(6)非线性分析方法

自动控制原理工作总结报告

自动控制原理工作总结报告

自动控制原理工作总结报告
自动控制原理是现代工程技术中的重要理论基础,它涉及到控制系统的设计、
分析和实现。

本报告旨在总结自动控制原理的工作,并探讨其在工程领域中的应用。

首先,自动控制原理的工作涉及到控制系统的建模和分析。

通过对控制系统的
动态特性进行建模,可以得到系统的数学描述,并通过分析系统的稳定性、性能和鲁棒性等指标,从而设计出合适的控制策略。

这些工作对于控制系统的稳定性和性能至关重要。

其次,自动控制原理的工作还涉及到控制器的设计和实现。

控制器是控制系统
中的核心部件,它根据系统的输入和输出信号,实时调节系统的状态,以实现系统的稳定性和性能要求。

通过自动控制原理的工作,可以设计出各种类型的控制器,如比例-积分-微分(PID)控制器、模糊控制器和模型预测控制器等,并将其实现
在实际工程系统中。

最后,自动控制原理的工作还涉及到控制系统的应用。

控制系统广泛应用于工
业生产、交通运输、航空航天、机器人技术等领域,为人类社会的发展做出了重要贡献。

通过自动控制原理的工作,可以实现工程系统的自动化控制,提高生产效率和质量,降低能耗和成本,从而推动工程技术的进步。

总而言之,自动控制原理的工作是现代工程技术中的重要组成部分,它为工程
系统的设计、分析和实现提供了理论基础和方法论。

通过不断地研究和应用自动控制原理,我们可以更好地理解和掌握工程系统的运行规律,实现工程技术的创新和发展。

(完整版)《自动控制原理》全书总结

(完整版)《自动控制原理》全书总结
熟练掌握误差传递函数和稳态误差的计算。
在求解稳态误差时,需把握以下要点:
(1) 首先要将系统的开环传递函数变成尾1型。
(2) 只要将系统的结构图变换成单回路,系统的误差传
递函数总是如下形式,即
Es
1
We (s)
Xr
s
1 WK
s
则由终值定理得 :
e limet lims E s
t
s0
lim s s0 1
自动控制系统的时域分析
对控制性能的要求
稳定性
稳态特性
三性
(1)系统应是稳定的; 暂态特性
(2)系统达到稳定时,应满足给定的稳态误差
的要求;
(3)系统在暂态过程中应满足暂态品质的要求。
1、系统的响应过程及稳定性
一阶系统的单位阶跃响应
WB
(
s)
1 Ts
1
1t
单位阶越响应: xc (t) 1 e T , (t 0)
参数根轨迹的绘制
定义:以非根轨迹增益(比如比例微分环节或惯性 环节的时间常数 )为可变参数绘制的根轨迹。
Wk
(s)
10( s
s(10s
1) 1)
Wk
(s)
s(Ts
5 1)(s
1)
绘制思路:
变形
闭环传函
与常规(常义)根轨迹的 开环传函具 有相同形式
等效开环系统
例4.9 给定控制系统的开环传递函数为
1、已知传函绘制乃氏曲线,绘制伯特图。 2、已知伯特图求对应系统传函。 3、正确理解相位裕量和增益裕量的物理意义,
并会计算。 4、求相位穿越频率ωj,求穿越频率ωc. 5、最小相位系统的概念。
(8) 开环对数频率特性与系统性能之间的关系 i.低频段决定了系统的稳态误差。 ii. 中频段决定系统的暂态特性。 iii. 高频段决定系统的抗干扰能力。

自动控制原理实训报告

自动控制原理实训报告

自动控制原理实训报告引言:自动控制原理是现代工程领域中的重要学科,它研究如何利用控制系统来实现对各种物理过程的自动化调节和控制。

本篇报告旨在总结和分析我在自动控制原理实训中所学到的知识和经验,并对实训过程中遇到的问题进行探讨和解决。

一、实训目的和背景自动控制原理实训的主要目的是通过实际操作和实验验证,加深对自动控制原理的理解和掌握。

通过实际操控控制系统,我们可以更好地理解控制系统的工作原理、参数调节和性能评估等方面的知识。

二、实训内容和步骤本次实训主要包括以下内容和步骤:1. 实验仪器和设备的介绍:我们首先了解了实验室中常用的控制系统实验仪器和设备,包括传感器、执行器、控制器等,并学习了它们的基本原理和使用方法。

2. 控制系统的建模与仿真:我们学习了如何将实际的物理过程建立数学模型,并利用仿真软件进行系统性能分析和优化设计。

3. PID控制器的调节:PID控制器是最常用的控制器之一,我们学习了PID控制器的原理和调节方法,并通过实验验证了不同参数对系统响应的影响。

4. 系统性能评估与优化:我们学习了如何评估控制系统的性能指标,如稳定性、快速性和抗干扰能力,并通过调节控制器参数来优化系统性能。

三、实训中遇到的问题及解决方法在实训过程中,我们遇到了一些问题,下面列举了其中的几个,并给出了解决方法:1. 问题一:系统响应不稳定。

解决方法:通过调节PID控制器的参数,如比例系数、积分时间和微分时间,来使系统响应稳定。

2. 问题二:系统响应过慢。

解决方法:增大比例系数和减小积分时间可以提高系统的响应速度。

3. 问题三:系统受到干扰时响应不稳定。

解决方法:通过增加微分时间和加入滤波器等方法,可以提高系统的抗干扰能力。

四、实训心得和体会通过这次自动控制原理实训,我深刻体会到了理论与实践的结合的重要性。

在实际操作中,我们不仅需要理解控制原理,还需要灵活运用所学知识解决实际问题。

此外,实训过程中的团队合作也是非常重要的,通过与同学们的合作,我们共同解决了许多实际问题,加深了对自动控制原理的理解。

自动原理实验报告总结

自动原理实验报告总结

一、实验背景自动控制原理是自动化技术领域的基础课程,旨在使学生掌握自动控制的基本理论、分析方法及实验技能。

本次实验通过对典型环节的模拟研究,加深了对自动控制原理的理解和应用。

二、实验目的1. 理解自动控制系统的基本组成和原理;2. 掌握典型环节的数学模型和传递函数;3. 学会运用MATLAB软件进行控制系统仿真;4. 分析典型环节的时域响应和频率响应。

三、实验内容1. 典型环节的数学模型和传递函数;2. 典型环节的时域响应和频率响应;3. MATLAB软件在控制系统仿真中的应用。

四、实验步骤1. 设计典型环节的数学模型和传递函数;2. 利用MATLAB软件进行控制系统仿真;3. 分析仿真结果,验证理论分析的正确性;4. 对仿真结果进行总结和讨论。

五、实验结果与分析1. 一阶环节的时域响应和频率响应(1)时域响应:一阶环节的时域响应为指数函数,其上升时间、稳态误差等性能指标可通过传递函数进行计算。

(2)频率响应:一阶环节的频率响应为斜率为-20dB/dec的直线,相位滞后角为-90°。

2. 二阶环节的时域响应和频率响应(1)时域响应:二阶环节的时域响应为正弦函数,其上升时间、超调量、稳态误差等性能指标可通过传递函数进行计算。

(2)频率响应:二阶环节的频率响应为斜率为-40dB/dec的直线,相位滞后角为-90°。

3. MATLAB软件在控制系统仿真中的应用利用MATLAB软件进行控制系统仿真,可以方便地观察和分析系统的时域响应和频率响应。

通过改变系统参数,可以研究不同参数对系统性能的影响。

六、实验结论1. 通过本次实验,加深了对自动控制原理的理解,掌握了典型环节的数学模型和传递函数;2. 学会了利用MATLAB软件进行控制系统仿真,能够方便地观察和分析系统的性能;3. 了解了系统参数对系统性能的影响,为实际工程应用提供了理论依据。

七、实验体会1. 自动控制原理是自动化技术领域的基础课程,掌握自动控制原理对于从事自动化领域的研究和工程应用具有重要意义;2. 实验是学习自动控制原理的重要手段,通过实验可以加深对理论知识的理解,提高实践能力;3. MATLAB软件在控制系统仿真中具有强大的功能,能够方便地观察和分析系统的性能,为工程应用提供了有力支持。

自动控制原理及其应用总结

自动控制原理及其应用总结

自动控制原理及其应用总结引言自动控制是现代科学技术的一项重要研究领域,广泛应用于工业生产、交通运输、航空航天等领域。

本文将对自动控制原理及其应用进行总结,并探讨其在实际应用中的重要性和未来发展趋势。

自动控制原理自动控制原理是指通过设计和实施一定的控制策略,使系统在给定的条件下实现所期望的状态或性能。

自动控制原理主要包括控制系统的建模与分析、控制系统的设计与优化、控制器的选择与实现等内容。

控制系统的建模与分析控制系统的建模是指将实际的物理系统抽象为数学模型,以便进行分析和设计。

常用的建模方法有传递函数、状态空间方法等。

通过对控制系统进行建模,可以对系统的动态特性进行分析,包括稳定性、响应速度、抗干扰性等。

控制系统的设计与优化控制系统的设计是指根据系统的需求和性能指标,选择合适的控制方法和参数,以实现所需的控制效果。

常见的控制方法包括比例积分控制(PID控制)、模糊控制、自适应控制等。

控制系统的优化是指通过调整控制策略和参数,使系统的性能指标达到最佳。

控制器的选择与实现控制器是实现控制策略的具体执行单元。

根据不同的控制方法,控制器可以是传统的模拟电路、数字控制器、可编程逻辑控制器(PLC)等。

控制器的选择和实现与控制系统的设计密切相关,需要考虑到成本、性能以及系统的可扩展性等因素。

自动控制的应用自动控制在现代社会的各个领域都有广泛的应用,下面将介绍几个常见的应用领域。

工业生产工业生产是自动控制的主要应用领域之一。

通过自动控制系统,可以实现对生产过程的监测和控制,提高生产效率和产品质量。

常见的应用包括自动化生产线、智能仓储系统、机器人等。

交通运输交通运输领域也是自动控制的重要应用领域之一。

自动驾驶技术在汽车、船舶、飞机等交通工具上的应用,可以提高交通安全性、减少交通事故发生率,并提高能源利用效率。

此外,智能交通信号控制系统和智能公交调度系统等也是自动控制在交通运输领域的应用。

航空航天在航空航天领域,自动控制技术是航空器和航天器不可或缺的一部分。

自动控制原理实验总结

自动控制原理实验总结

自动控制原理实验总结嘿,朋友们!咱今天来聊聊自动控制原理实验总结哈。

你说这自动控制原理实验啊,就像一场奇妙的冒险!在这个过程中,我们就像是勇敢的探险家,在充满未知和挑战的领域里摸索前行。

还记得第一次走进实验室的时候,看着那些仪器设备,心里那叫一个忐忑啊!这都是啥呀?该咋摆弄它们呀?就好像突然被扔到了一个陌生的森林里,有点不知所措呢。

但是,咱可不能退缩呀!慢慢地,和那些仪器混熟了,开始了解它们的脾气性格。

就像和朋友相处一样,知道啥时候该温柔对待,啥时候得给点“压力”。

做实验的时候啊,有时候就像是在走迷宫。

一个参数没调好,可能就走进死胡同啦,得重新回头找路。

有时候一个小小的改动,嘿,居然就柳暗花明又一村了!这感觉,真的太奇妙啦!咱就说那个反馈环节吧,这多像我们生活中的反思呀!根据结果来调整自己的行为,让事情往更好的方向发展。

要是没有这个反馈,那可不得乱套啦?还有啊,实验中的那些曲线,就像是人生的起起落落。

有时候很平稳,有时候又会突然来个大波动。

这就告诉我们,生活中不可能总是一帆风顺的呀,得随时做好应对变化的准备呢。

每一次实验的成功,那感觉,简直比吃了蜜还甜!就好像自己征服了一座高山,那种成就感,没法形容!可要是失败了呢?也别气馁呀,这就是积累经验的时候嘛,下次肯定能做得更好!自动控制原理实验可不只是玩玩仪器那么简单哦,它让我们学会了细心、耐心和思考。

就像盖房子一样,一砖一瓦都得用心搭建。

总之呢,自动控制原理实验是一次超级有趣又超级有收获的旅程。

它让我们看到了科学的神奇,也让我们更加了解这个世界的运转规律。

大家可千万别错过这样的体验呀,快来一起加入这场冒险吧!。

自动控制原理工作总结报告

自动控制原理工作总结报告

一、前言随着科学技术的不断发展,自动控制技术在各个领域的应用越来越广泛。

本人在过去的一段时间里,通过学习和实践,对自动控制原理有了更深入的了解。

现将自动控制原理工作总结如下:二、工作内容1. 自动控制原理基础知识学习在本次工作中,我首先系统地学习了自动控制原理的基本概念、基本原理、基本方法等。

通过学习,我对自动控制系统的组成、工作原理、控制规律等有了全面的认识。

2. 自动控制系统分析通过对自动控制系统的分析,我了解了系统的稳定性、快速性、准确性等性能指标,以及如何通过调整系统参数来优化这些性能。

同时,我还学习了系统数学模型、传递函数、频率响应等方面的知识。

3. 自动控制系统的设计在自动控制系统设计方面,我学习了控制器设计、执行机构设计、传感器设计等。

通过对实际案例的分析,我掌握了控制器参数整定、执行机构选型、传感器选型等关键环节。

4. 自动控制系统的应用实践为了更好地掌握自动控制原理,我参与了实际项目的实践。

在项目中,我负责对自动控制系统进行调试、优化,确保系统稳定运行。

通过实践,我对自动控制原理有了更深刻的认识。

三、工作成果1. 理论知识方面通过对自动控制原理的学习,我对自动控制系统的基本概念、基本原理、基本方法等有了全面、系统的掌握。

这为我今后的学习和工作打下了坚实的基础。

2. 实践能力方面在项目实践中,我锻炼了自己的动手能力和解决问题的能力。

通过调试、优化自动控制系统,我学会了如何根据实际需求选择合适的控制器、执行机构、传感器等,确保系统稳定运行。

3. 团队协作能力方面在项目实践中,我学会了与团队成员有效沟通、协作,共同解决问题。

这为我今后在团队中发挥重要作用奠定了基础。

四、不足与改进1. 理论知识方面:虽然我对自动控制原理有了全面、系统的掌握,但在某些方面仍存在不足,如控制器设计、执行机构设计等。

今后,我将加强这方面的学习,提高自己的理论水平。

2. 实践能力方面:在项目实践中,我遇到了一些实际问题,如系统调试、优化等。

自动控制原理总结

自动控制原理总结

⾃动控制原理总结⾃动控制原理1. ⾃动控制的⼀般概念反馈系统的基本组成测量元件给定元件⽐较元件放⼤元件执⾏元件校正元件⾃动控制系统的基本控制⽅式反馈控制⽅式⽆论什么原因使被控量偏离期望值⽽出现偏差时,必定会产⽣⼀个相应的控制作⽤去降低或消除这个偏差。

开环控制⽅式特点是控制装置与被控对象之间只有顺向作⽤⽽没有反向联系,系统的输出量不会对系统的控制作⽤产⽣影响。

⾃动控制系统的分类线性连续控制系统线性定常离散控制系统⾮线性控制系统系统只要有⼀个元部件的输⼊-输出特性是⾮线性的,这类系统就称之为⾮线性控制系统。

对⾃动控制系统的基本要求稳定性我们先讨论为什么控制系统会不稳定。

由于⼀般的控制系统都含有⼀个储能元件或者惯性元件,这类元件的能量不可能发⽣突变。

因此从被控量偏离期望值,到控制量做出反应,需要⼀定的延缓时间,这个过程称为过渡过程。

当控制量已经回到期望值⽽使偏差为零时,执⾏机构本应⽴刻停⽌,但是由于过渡过程的存在,使得控制量反⽽向反向变化,如此反复进⾏,使得被控量在期望值附近来回摆动,这个过程呈现振荡形式。

如果这个振荡是逐渐减弱的,即控制量最终会回到期望值,我们称这个系统是稳定的;如果振荡逐渐增强,我们称这个系统是不稳定的。

快速性前⾯提到,虽然稳定系统最终会回到稳定状态,但是这个回到稳定状态的快慢对于⼀些系统来说是⾮常关键的。

⼀般从控制开始,到系统的输出量在期望值的⼀定误差范围内来回摆动的时间,我们称之为调节时间。

这个时间⼀般可以⽤来反映系统调节的快慢。

⽽在调节过程,⼀般振荡都会有个最⼤振幅,最⼤振幅⼀般也对于⼀些系统来说也⾮常重要,我们⽤来这个最⼤振幅与期望值的差与期望值的⽐值来反映系统的这个性质,称之为超调量。

准确性尽管前⾯我们提到稳定系统最终会趋于稳定,但是是在期望值的允许误差范围内,即使在很⼤的时间长度上,最终输出量也难以与期望值完全⼀致。

我们将⽆穷的时间尺度下,最终输出量与期望值之差成为稳态误差,稳态误差为⽆穷⼤的系统说明不稳定。

自动控制原理实训课程学习总结

自动控制原理实训课程学习总结

自动控制原理实训课程学习总结自动控制原理是现代工程与科学中一门重要的学科,它涵盖了控制理论和实践应用的多个方面。

在本学期的自动控制原理实训课程中,我通过理论学习和实践操作,深入了解了控制系统的基本原理和应用。

首先,课程开始时,我们通过学习基础的控制理论,如PID控制器、系统的传递函数等,打下了理论知识的基础。

理论学习时,老师以生动的示意图和具体实例,帮助我们理解和掌握了控制系统的基本原理。

在此过程中,老师还强调了理论与实践的结合,引导我们将所学的知识应用到实际操作中。

接着,在实验室环节,我们有机会亲自动手进行实际的控制系统设计和调试。

通过一系列实际案例,如温度控制、速度控制等,我们掌握了控制系统的实际应用。

在实验中,我们学会了如何选择适当的传感器、执行器以及控制策略,如何进行参数调节,以及如何分析系统的稳定性和性能。

在本学期的实训中,我遇到的最大挑战之一是系统的建模与辨识。

通过实验数据的采集与处理,我们需要建立数学模型来描述实际系统的动态特性。

然而,由于现实系统的复杂性和不确定性,建模过程并不是一件容易的事情。

我在与同学们的合作中,逐渐掌握了基本的辨识方法,并在实际案例中应用了这些方法来提取系统参数,从而更好地适应系统的控制需求。

在实验结束后,老师还组织了小组讨论和总结会议,以便我们能够分享经验和思考控制系统设计的改进方向。

这种交流与合作的机会让我受益匪浅,不仅加深了对控制原理的理解,还提高了解决问题和团队协作的能力。

总结来说,通过自动控制原理实训课程的学习,我不仅掌握了控制系统的基本原理和应用,还提升了实际操作和团队合作的能力。

这门课程为我今后从事相关领域的学习和研究打下了坚实的基础。

未来,我将继续深入学习自动控制原理,并努力将所学的知识应用到实际工程项目中,为社会的发展与进步做出贡献。

自动控制原理知识点总结(通用4篇)

自动控制原理知识点总结(通用4篇)

自动控制原理知识点总结第1篇频率特性分为两种,分别是A(ω) 幅频特性和 φ(ω) 相频特性。

对于一个一阶线性定常系统对正弦输入信号 Asinωt 的稳态输出 Ysin(ωt +ψ) ,仍是一个正弦信号,其特点:①频率与输入信号相同;②振幅 Y为输入振幅A的 |G(jω)| 倍;③相移为 ψ = ∠G(jω)。

振幅 Y 和相移 ψ都是输入信号频率 ω 的函数,对于确定的 ω 值来说,振幅Y和相移 ψ 都将是常量。

|G(jω)| = Y / A 正弦输出对正弦输入的幅值比—幅频特性∠G(jω) = ψ正弦输出对正弦输入的相移—相频特性理论上可将频率特性的概念推广的不稳定系统,但是,系统不稳定时,瞬态分量不可能消失,它和稳态分量始终同时存在,所以,不稳定系统的频率特性是观察不到的。

(1)幅相曲线:对于一个确定的频率,必有一个幅频特性的幅值和一个幅频特性的相角与之对应,幅值与相角在复平面上代表一个向量。

当频率ω从零变化到无穷时,相应向量的矢端就描绘出一条曲线。

这条曲线就是幅相频率特性曲线,简称幅相曲线。

(2)幅频特性曲线:对数幅频特性曲线又称为伯德图(曲线)。

对数频率特性曲线的横坐标是频率 ω ,并按对数分度,单位是[rad/s] .对数幅频曲线的纵坐标表示对数幅频特性的函数值,线性分度,单位是[dB],此坐标系称为半对数坐标系。

对数相频特性曲线的纵坐标表示相频特性的函数值,线性分度 , 单位是 (0) 或(弧度),频率特性G(jω) 的对数幅频特性定义如下 L(ω) = 20lg |G(jω)| 对数分度优点:扩大频带、化幅值乘除为加减、易作近似幅频特性曲线图。

(3)对数幅相曲线(又称尼柯尔斯曲线):其特点是纵、横坐标都线性分度,对数幅相图的横坐标表示对数相频特性的相角,纵坐标表示对数幅频特性的幅值的分贝数。

自动控制原理知识点总结第2篇一阶系统的数学模型(1)单位阶跃响应——输入 r(t) = 1(t),输出 h(t) = 1 - e-t/T, t >0 特点:●可以用时间常数去度量系统的输出量的数值。

自动控制原理《自动控制原理》学习心得(通用10篇)

自动控制原理《自动控制原理》学习心得(通用10篇)

自动控制原理《自动控制原理》学习心得自动控制原理《自动控制原理》学习心得(通用10篇)当我们经过反思,对生活有了新的看法时,常常可以将它们写成一篇心得体会,这样能够培养人思考的习惯。

那么问题来了,应该如何写心得体会呢?下面是小编帮大家整理的自动控制原理《自动控制原理》学习心得,欢迎大家借鉴与参考,希望对大家有所帮助。

自动控制原理《自动控制原理》学习心得篇1《自动控制原理》包括经典控制和现代控制两个部分,其主要研究的内容识时域分析、频域分析以及状态空间表达,涉及的内容很多,要想研究生入学考试取得一个很好的成绩,我认为在平常的自控学习中应该注意以下问题。

1、弄清自动控制理论课程的特点和难点自动控制理论的两门课程都是来源于控制实践的理论课程,具有以下三个特点:概念抽象;与数学联系紧密;实践性强。

不论是“自动控制原理”还是其后续课程“现代控制理论”,教材里面的许多概念和术语都定义得非常抽象,常常让我们感觉一头雾水,理解起来比较困难。

概念的抽象性成了学习道路上的第一个拦路虎。

此外,该课程在学习过程中涉及到对多门数学知识的运用,如“高等数学”、“积分变换”、“复变函数”、“线性代数”等等。

对数学知识的掌握和灵活运用是我们学习的第二道难关。

第三个难点是理论与实践容易脱节,很多学生往往注重理论学习而轻视实践结果往往只会“纸上谈兵”而短缺工程实践能力。

因此,我们要在教师引导和帮助下顺利入门,掌握课程的精髓和要点,并且能够“由厚及薄”,达到对课程整体的把握,具有一定的工程概念和实践能力。

2、弄清课程教学中应当注意的一些问题2.1以数学模型为基础,以系统分析为主线自动控制理论的主要内容是系统分析。

按照一般高校的教学大纲,不论是“自动控制原理”还是“现代控制理论”课程,数学模型和系统分析的内容都占到整个课程内容的80%左右,其中系统分析大约占60%。

可见,我们应当遵循系统分析这条主线,通过一定的实例分析和各种各样的系统训练,重点培养我们的系统分析能力。

自动控制原理总结报告

自动控制原理总结报告

自动控制原理总结报告自动控制原理是一门应用数学和物理学知识研究控制系统工作原理和设计方法的科学。

控制系统是一种能够测量被控对象的状态,并根据设定的目标对其进行调节和控制的系统。

控制系统的设计和运行对于现代工业及社会的发展起着至关重要的作用。

自动控制原理主要研究的内容包括系统建模、系统的稳定性分析和控制器设计三个方面。

系统建模是指将被控对象抽象为数学模型,以方程的形式描述系统的输入、输出和各种参数之间的关系。

系统的稳定性分析是指研究系统在不同的输入条件下是否稳定,即当系统受到外部扰动时,能否快速恢复到稳定状态。

控制器设计是指根据系统的数学模型和稳定性要求,设计出合适的控制器来实现对系统的控制。

在系统建模的过程中,常用的方法有经验法和物理定律法。

经验法是指通过试验和实验,利用专业知识和经验来确定系统的数学模型,常用于复杂系统和无法给出精确数学模型的系统。

而物理定律法则是利用系统的物理规律和数学方法来建立系统的数学模型,适用于物理规律和数学模型已经明确的系统。

在系统的稳定性分析中,常用的方法有传递函数法和状态空间法。

传递函数法是一种理论方法,通过将系统的输入与输出之间的关系转化为复变函数表示,来分析系统的稳定性。

状态空间法是一种数学方法,通过对系统的状态进行建模和描述,来分析系统的稳定性。

在控制器设计的过程中,常用的方法有比例控制、积分控制和微分控制等。

比例控制是根据系统的误差大小来调整控制器的输出,一般用于系统的快速响应;积分控制是根据系统的误差的积分值来调整控制器的输出,一般用于减小系统的稳态误差;微分控制是根据系统的误差的变化率来调整控制器的输出,一般用于减小系统的动态误差。

除了上述的基本方法外,自动控制原理还涉及到系统的优化和鲁棒性等问题。

系统优化是指通过合适的控制策略,使系统的性能指标达到最优,如最小化能耗或最大化生产效率等。

鲁棒性是指系统对参数变化和扰动具有一定的容忍性和稳定性,在系统工程中至关重要。

自动控制原理总结

自动控制原理总结

自动控制原理总结
自动控制原理是工程学科中的重要分支,主要研究如何通过控制系统对输入变量进行调节和控制,使输出变量达到预定的目标。

本文将对自动控制原理进行总结,并深入探讨其重要性和应用价值。

一、自动控制原理的概述
自动控制原理是指一种理论,用于描述和设计控制系统,以实现对输入变量的控制。

它的核心思想是将输入变量转换为输出变量,通过对输出变量的控制来实现对输入变量的控制。

自动控制原理包括系统模型、控制器设计、控制器测量、控制器调整和控制器性能评价等方面。

自动控制原理的主要任务包括:确定系统模型,设计控制器,测量控制器输出,调整控制器参数,获得最佳控制器性能。

自动控制原理是控制工程的基础,是实现自动化控制的重要理论依据。

二、自动控制原理的重要性和应用价值
自动控制原理的重要性在于它能够提供一种有效的方法来设计控制系统,以实现对输入变量的控制。

自动控制原理实验报告

自动控制原理实验报告

一、实验目的1. 理解自动控制原理的基本概念,掌握自动控制系统的组成和基本工作原理。

2. 熟悉自动控制实验设备,学会使用相关仪器进行实验操作。

3. 通过实验验证自动控制理论在实际系统中的应用,加深对理论知识的理解。

二、实验原理自动控制原理是研究自动控制系统动态过程及其控制规律的科学。

实验主要验证以下原理:1. 线性时不变系统:系统在任意时刻的输入与输出之间关系可用线性方程表示,且系统参数不随时间变化。

2. 稳定性:系统在受到扰动后,能够逐渐恢复到稳定状态。

3. 控制器设计:通过控制器的设计,使系统满足预定的性能指标。

三、实验设备1. 自动控制实验台2. 计算机及控制软件3. 测量仪器(如示波器、信号发生器、数据采集器等)四、实验内容1. 线性时不变系统阶跃响应实验2. 线性时不变系统频率响应实验3. 控制器设计实验五、实验步骤1. 线性时不变系统阶跃响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为阶跃信号,观察并记录输出信号;(3)分析阶跃响应曲线,计算系统动态性能指标。

2. 线性时不变系统频率响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为正弦信号,改变频率,观察并记录输出信号;(3)分析频率响应曲线,计算系统频率特性指标。

3. 控制器设计实验(1)根据系统性能指标,选择合适的控制器类型;(2)搭建实验电路,连接好相关仪器;(3)调整控制器参数,观察并记录输出信号;(4)分析控制器效果,验证系统性能指标。

六、实验结果与分析1. 线性时不变系统阶跃响应实验(1)实验结果:绘制阶跃响应曲线,计算系统动态性能指标;(2)分析:与理论值进行对比,验证系统动态性能。

2. 线性时不变系统频率响应实验(1)实验结果:绘制频率响应曲线,计算系统频率特性指标;(2)分析:与理论值进行对比,验证系统频率特性。

3. 控制器设计实验(1)实验结果:调整控制器参数,观察并记录输出信号;(2)分析:验证系统性能指标,评估控制器效果。

自动控制原理实验报告分析

自动控制原理实验报告分析

自动控制原理实验报告分析1. 引言自动控制原理是现代工程中非常重要的一门学科。

它研究如何设计和分析能够实现自动化控制的系统,以满足特定的性能要求。

通过实验,我们可以验证控制系统的性能,并深入理解自动控制原理的基本概念和工作原理。

本文将对自动控制原理实验进行详细分析和总结。

2. 实验目的本次实验的目的是研究PID(比例-积分-微分)控制器在温度控制系统中的应用。

通过调节PID控制器的参数,我们可以观察到不同控制参数对系统稳定性、响应速度和超调量等性能指标的影响。

3. 实验步骤本次实验使用了一个温度控制系统。

我们需要调节PID控制器的三个参数(比例增益、积分时间和微分时间)来实现温度的稳定控制。

具体的实验步骤如下:3.1 准备工作在进行实验之前,我们需要确保实验所需的设备和软件已经准备就绪。

这包括温度传感器、温度控制器、计算机等。

3.2 连接系统将温度传感器连接到温度控制器,并将温度控制器连接到计算机。

确保连接正确并稳定。

3.3 设置初始参数在实验开始前,我们需要设置PID控制器的初始参数。

一般情况下,我们可以先将比例增益和积分时间设置为较小的值,微分时间设置为0。

3.4 开始实验启动温度控制系统,并记录温度的变化。

观察温度的稳定性、响应速度和超调量等指标,并记录下来。

3.5 调节参数根据实验结果,我们可以调节PID控制器的参数来改善系统的性能。

通过增大比例增益可以提高系统的响应速度,但可能会导致较大的超调量。

增大积分时间可以减小超调量,但可能会降低系统的稳定性。

调节微分时间可以改善系统的稳定性和响应速度。

3.6 重复实验根据实验结果,我们可以不断调节PID控制器的参数,并进行多次实验,以得到更好的控制效果。

4. 实验结果分析根据实验的记录数据,我们可以对实验结果进行分析。

通过观察温度的变化曲线以及性能指标的大小,我们可以得出如下结论:•较大的比例增益可以提高系统的响应速度,但会导致较大的超调量。

•较大的积分时间可以减小超调量,但会降低系统的稳定性。

自动控制原理课程总结

自动控制原理课程总结
1.只要绘制的根轨迹全部位于 S 平面左侧,就表示系统参数无论怎么改变,特征 根全部具有负实部,则系统就是稳定的。
2.若在虚轴上,表示临界稳定,也就是不断振荡
3.假如有根轨迹全部都在 S 右半平面,则Байду номын сангаас示无论选择什么参数,系统都是不稳 定的。
根轨迹法的基本任务在于:如何由已知的开环零、极点的分布及根轨迹增益,通 过图解的方法找出闭环极点。一旦闭环极点被确定,闭环传递函数的形式便不难 确定,因为闭环零点可由式直接得到。在已知闭环传递函数的情况下,闭环系统 的时间响应可利用拉氏反变换的方法求出,或利用计算机直接求解。开环系统的 根轨迹增益与开环系统的增益 K 之间仅相差一个比例常数,这个比例常数只与 开环传递函数中的零点和极点有关。根轨迹增益(或根轨迹放大系数)是系统的 开环传递函数的分子﹑分母的最高阶次项的系数为1的比例因子。利用根轨迹我 们可以求出系统的稳定性,系统的稳态性能,系统的动态性能等。绘制根轨迹的 相角条件与系统开环根轨迹增益 K 值的大小无关。即在 S 平面上,所有满足相 角条件的点的集合的构成系统的根轨迹图。即相角条件是绘制根轨迹的主要依 据。绘制根轨迹的幅值条件与系统开环根轨迹增益 K 值的大小有关。即 K 值的 变化会改变系统的闭环极点在 S 平面上的位置。在系数参数全部确定的情况下, 凡能满足相角条件和幅值条件的 S 值,就是对应给定参数的特征根,或系统的 闭环极点。由于相角条件和幅值条件只与系统的开环传递函数有关,因此,已知
系统的开环传递函数便可绘制出根轨迹图。绘制根轨迹的法则在总结里就不在列 写,主要是书上都有,此小结主要写自己的感悟。
第五章讲述了线性系统的频域分析法,由于控制中的信号可以表示为不同频 率正弦信号的合成,应用频率特性研究系统的经典方法就是所谓的频域分析法。 频域分析法是应用频率特性研究线性系统的一种图解方法。频率特性和传递函数 一样,可以用来表示线性系统或环节的动态特性。建立在频率特性基础上的分析 控制系统的频域法弥补了时域分析法中存在的不足,因而获得了广泛的应用。所 谓频率特性,是指在正弦输入信号的作用下,线性系统输出的稳态响应。接下讨 论的是频率特性的图像表示法方法主要有三种,即极坐标图、对数坐标图和对数 幅相图。频率特性 G(jw)是频率 w 的复变函数,其模|G(jw)|与相角∠G(jw)可以 在复平面上用一个矢量来表示。当频率 w 从零到正无穷变化时,变化时,矢量 端点的轨迹就表示频率特性的极坐标图。极坐标图又称幅相图或奈魁斯特 (Nyquist)图。在极坐标图上,规定矢量与实轴正方向的夹角为频率特性的相位角, 且按逆时针方向为正进行计算。接着讨论对数坐标图,通过半对数坐标分别表示 幅频特性和相频特性的图形,称为对数坐称图或波德(Bode)图。对数坐标图在频 率法中应用最为广泛。它的主要优点是:①利用对数运算可以将串联环节幅值的 乘除运算转化为加减运算;②可以扩大所表示的频率范围,而又不降低低频段的 准确度;③可以用渐近线特性绘制近似的对数频率特性,从而使频率特性的绘制 过程大大简化。绘制对数坐标图时先写出以时间常数表示、以典型环节频率特性 连乘积形式的开环频率特性;然后求出各环节的转角频率,并从小到大依次标注 在对数坐标图的横坐标上;计算20lgK 的分贝值,其中 K 是系统开环放大系数。 过 w =1、20lgK 这一点做斜率为-20vdB/dec 的直线,此即为低频段的渐近线, 其中 v 是开环传递函数中积分环节的个数;接着,绘制对数幅频特性的其它渐近 线;最后给出不同 w 值,计算对应的φi ,再进行代数相加,画出系统的开环相 频特性曲线。如果系统开环传递函数在复平面 s 的右半面既没有极点、也没有零 点,则称该传递函数为最小相位传递函数,具有最小相位传递函数的系统称为最 小相位系统。反之,则称为非最小相位系统。奈魁斯特稳定判据无需求取闭环特 征根,可根据系统的开环频率特性来判断闭环系统是否稳定,并能指出系统不稳 定特征根的个数,在实际中得到了广泛地应用。奈魁斯特稳定判据的数学基础是 复变函数理论中的映射定理,又称幅角定理。由于控制系统的闭环稳定性是系统 分析和设计时的重要问题,奈魁斯特稳定判据和对数频率稳定判据是常用的两种 频率稳定的依据。闭环系统稳定的充分必要条件是系统的特征根都具有负实部, 或均不在右半 s 平面。奈魁斯特通过映射定理把 s 平面上的这一稳定条件转换到 频率特性平面,从而形成了在频率域内判定系统稳定性的准则。应用奈氏判据判 断闭环系统的稳定性,需要画出全频段的 G(jw)H(jw)曲线,以便得到封闭的围线。 因为系统开环频率特性在 w= -∞→0与 w=0→+∞段的曲线是镜像对称的,所以 只需画出 w=0→+∞变化时的 G(jw)H(jw)曲线即可。为了说明这种方法的应用, 首先介绍极坐标图上频率特性曲线穿越的概念。P 为开环不稳定极点的个数,Z 为闭环不稳定特征根的个数。

自动控制原理课程总结

自动控制原理课程总结

自动控制原理课程总结《自动控制原理课程总结:一场有趣又烧脑的学习之旅》嘿,大家好呀!今天让我来给你们唠唠咱这自动控制原理课程,那可真是一场既有趣又烧脑的奇妙之旅啊!刚开始接触这门课的时候,我就感觉自己好像进入了一个神秘的科技世界,满脑子都是那些复杂的公式和稀奇古怪的概念。

什么反馈啦、系统稳定性啦,听着就感觉很高深莫测。

但咱是谁啊,咱可是勇于挑战的好学生啊!进入课堂,就像是开启了一场冒险。

老师在讲台上眉飞色舞地讲解着那些神奇的理论,我在下面努力跟上节奏,有时候感觉自己的脑袋就像一台疯狂运转的机器,努力消化着那些知识点。

还记得第一次做实验的时候,看着那些仪器设备,我心里既兴奋又紧张,就怕一个不小心给弄出啥乱子来。

但慢慢地,我发现这门课还挺有意思的。

就像解一道很难的谜题,每次解决一个难题都让我特有成就感。

而且咱这门课实用性还超强,感觉学会了就能掌握未来世界的秘密钥匙似的。

要说最有趣的还是和同学们一起讨论问题的时候。

大家你一言我一语,各种奇思妙想都冒出来了。

有时候我们会为了一个小细节争得面红耳赤,然后突然有人冒出一个好点子,一瞬间大家都恍然大悟,那种感觉简直太爽啦!自动控制原理课程啊,真的就像一个磨人的小妖精。

它时不时就会给我出个难题,让我抓耳挠腮,但又让我欲罢不能。

通过这门课的学习,我感觉自己的逻辑思维能力那是蹭蹭往上涨啊,以后遇到啥复杂问题都不怕了。

总之,这门自动控制原理课程虽然有点难啃,但却是我学习生涯中一段非常难忘且宝贵的经历。

就像爬山一样,过程很累,但当你登上山顶,看见那美丽的风景时,一切都值得啦!它让我明白,只有不断地挑战自己,才能在知识的海洋里畅游得更远、更深。

现在回想起来,还真是有点舍不得呢!哈哈哈,这就是我对自动控制原理课程的总结啦,怎么样,大家有没有同感呢?。

自动控制原理心得

自动控制原理心得

自动控制原理与系统电力2班刘丰2012324220自动控制原理学期总结自动控制原理是自动控制理论的基础,其主要内容包括:自动控制系统的基本组成和结构、自动控制系统的性能指标,自动控制系统的类型(连续、离散、线性、非线性等)及特点、自动控制系统的分析(时域法、频域法等)和设计方法等。

控制(Control):是指为了改善系统的性能或达到特定的目的,通过对系统有关信息的采集和加工而施加到系统的作用。

系统是指由相互关联、相互制约、相互影响的一些部分组成的具有某种功能的有机整体。

自动控制系统)由控制器、执行器、传感器和被控对象等相互关联、相互制约、相互影响的一些部分组成的能对被控对象的工作状态进行自动控制的系统。

反馈控制方式按偏差进行控制,具有抑制扰动对被控量产生影响的能力和较高的控制精度。

控制系统的数学模型是描述系统输入、输出变量,以及内部各变量之间关系的数学表达式。

传递函数线性定常系统在零初始条件下,输出量的拉普拉斯变换与输入量的拉普拉斯变换之比,用G(s)表示。

零初始条件是指在t=0时刻,系统的输入、输出及其它们的各阶导数均为零。

控制系统的动态结构图是系统数学模型的图解化,由信号线、分支点、相加点、方框四种符号组成。

控制系统的开环传递函数是指断开系统的主反馈通路,这时前向通路的传递函数与反馈通路的传递函数的乘积。

误差传递函数是指根据系统误差的定义,误差的拉普拉斯变换与作用信号拉普拉斯变换之比。

G(s)H (s )时域分析指根据控制系统在一定输入作用下的时间响应来分析系统的瞬态过程和稳态过程的性能的一种方法。

线性系统稳定的充要条件:系统特征方程的所有根都具有负的实部,或者说都位于根平面的左半平面。

可以依据代数判据、根轨迹、频率特性等来判定。

根轨迹:是指控制系统开环传递函数某一参数从零变化到无穷大时,闭环系统特征方程的根在S 平面上变化的轨迹。

根轨迹分析法:是在已知控制系统开环传递函数的零、极点分布的基础上,研究一个或某些参数的变化对特征方程的根影响,进而得到系统性能与参数的关系的一种图解方法。

自动控制原理总经典总结

自动控制原理总经典总结

自动控制原理总经典总结自动控制原理》总复控制系统控制系统是由受控对象和控制器组成的系统,用于控制和调节被控量。

根据不同的角度,控制系统可以分为恒值系统和随动系统、线性系统和非线性系统、连续系统和离散系统、定常系统和时变系统等。

线性系统线性系统是指系统的输出与输入之间存在线性关系的系统。

建模时可以采用求传函或脉冲传函的方法,分析时可使用根轨迹法、频率特性法等方法。

非线性系统非线性系统是指系统的输出与输入之间不存在线性关系的系统。

建模时可以采用描述函数法或相平面法,稳定性分析时可以求奇点和极限环,运动时间可以通过振幅和频率计算得出。

控制系统的基本概念控制系统的基本术语包括自动控制、系统、自动控制系统、被控量、输入量、干扰量、受控对象、控制器、反馈、负反馈控制原理等。

掌握这些基本概念可以帮助理解控制系统的基本组成和工作原理。

基本控制方式控制系统的基本方式包括开环控制系统、闭环控制系统和复合控制系统。

开环控制系统没有反馈,闭环控制系统则通过反馈控制来实现对被控量的调节,复合控制系统则是开环控制和闭环控制的组合。

数学模型数学模型是用数学表达式描述控制系统的工作原理和特性的模型。

建模时可以采用物理系统的微分方程描述、拉普拉斯变换及反变换、传递函数及典型环节的传递函数、脉冲响应函数等方法。

图形表示可以采用结构图、信号流图等方法。

基本要求研究自动控制原理需要掌握控制系统的基本概念、基本控制方式、数学模型等知识。

同时,需要了解控制系统的分类和典型输入信号,并能够正确理解数学模型的特点和概念。

掌握这些知识可以帮助理解控制系统的工作原理和实际应用。

2.了解动态微分方程建立的一般方法和小偏差线性化方法。

3.掌握使用拉普拉斯变换解微分方程的方法,并对解的结构、运动模态、特征根的关系、零输入响应、零状态响应等概念有清晰的理解。

4.正确理解传递函数的定义、性质和意义,并熟练掌握系统开环传递函数、闭环传递函数、误差传递函数、典型环节传递函数等概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动控制原理总结报告专业自动化班级09自动化<1>班姓名学号完成时间自动控制原理总结报告摘要:本学期我们学习了自动控制原理的前前8章,重点介绍了前6章,离散系统的分析与线性系统类似。

自动控制技术所取得的成就和起到的作用给各行各业的人们留下了深刻的印象。

从最初的机械转速、位移的控制到工业过程中对温度、压力、流量、物位的控制,从远洋巨轮到深水潜艇的控制,而今的数控机床,汽车工业,自动控制技术的应用几乎无处不在。

关键是自动控制理论和技术已经介入到了电气、机械、航空、化工、核反应等诸多的学科和领域。

所以越来越多的工程技术人员和科学工作者开始了解和关注自动控制的知识。

关键字:控制方法发展正文:一、自动控制理论的分析方法:(1)时域分析法;(2)频率法;(3)根轨迹法;(4)状态空间方法;(5)离散系统分析方法;(6)非线性分析方法系统的数学模型(1)解析表达:微分方程;差分方程;传递函数;脉冲传递函数;频率特性;脉冲响应函数;阶跃响应函数(2)图形表达:动态方框图(结构图);信号流图;零极点分布;频率响应曲线;单位阶跃响应曲线自动控制原理基础系列课程内容体系具有系统性、科学性、先进性、实用性,对课程体系进行了改革确立了以系统分析、系统建模、系统综合为自动控制原理课程的主线构建了由时域分析、复域分析、频域分析、系统校正4个模块构成的知识体系。

从课程的体系出发以系统建模→系统分析→综合设计作为课程主线。

数学模型是描述系统内部各物理量或变量之间关系的数学表达式建立一个合理的模型是系统分析和设计的前提。

从不同的角度对系统进行建模加深对这方面内容的理解。

例如可用船舶上的电机调速系统为例通过建立它的微分方程、传递函数、结构图、信号流图这些不同的数学模型来建立各模型的联系。

系统分析方法是控制系统综合设计的基础这部分的内容主要包括时域分析法、根轨迹法、频域响应法是控制理论的重点。

在控制系统中稳定性、快速性和准确性是对控制系统的基本要求也是衡量系统性能的重要指标控制系统不同的分析问题方法都是紧紧围绕这三个方面展开的。

只要抓住这个特点就抓住了系统分析的关键有助于加深对不同方法的理解。

例如以我军某军舰上的雷达定位系统为例假设给定目标信号要求设计控制器使系统在给定输入下跟踪指定目标最小且抗干扰性最好。

这些生动的工程实例大大激发了我的兴趣使我感受到了控制理论的魅力深刻理解了结合控制理论的发展更新教学内容近年来控制理论得到了蓬勃发展特别在非线性控制、分布参数控制、鲁棒控制、自适应控制、智能控制等方向上取得了重要进展。

例如每章结束后都开设一个专题介绍本学科的发展动态这种方法扩大了我们的知识面培养了我们探索科学技术的兴趣。

结合船舶电气的发展而言近几年来随着电力、电子、控制技术、通讯及信息技术等的不断发展及其在船舶上的广泛应用船舶电气自动化程度大大地提高。

新一代大功率半导体电力电子器件在材料、理论、机理、制造工艺和应用技术等方面的研究开发取得了突破性的进展船舶设备进一步向高可靠、节能型方向发展对船舶电力推进和辅机电力拖动技术带来重大变革可编程序控制器和单片机已逐渐发展成为船舶控制中的一种普遍控制方式。

自动控制原理课程虽然是电专业的基础专业课程但是一般学时安排也不十分充裕。

要想在有限的时间内把这门理论性和工程应用性都很强的课程学好必须认真的学习。

例如在课程绪论部分通过与专业相关的典型示例引出控制、开环控制、闭环控制以及反馈等基本概念使我们认识到学习本课程的重要性并对控制理论在专业发展的作用有了一定的了解。

二、控制未来发展1.智能控制(Intelligent Control)智能控制是人工智能和自动控制的结合物,是一类无需人的干预就能够独立地驱动智能机器,实现其目标的自动控制。

智能控制的注意力并不放在对数学公式的表达、计算和处理上,而放在对任务和模型的描述,符号和环境的识别以及知识库和推理机的设计开发上。

智能控制用于生产过程,让计算机系统模仿专家或熟练操作人员的经验,建立起以知识为基础的广义模型,采用符号信息处理、启发式程序设计、知识表示和自学习、推理与决策等智能化技术,对外界环境和系统过程进行理解、判断、预测和规划,使被控对象按一定要求达到预定的目的。

智能控制的理论基础是人工智能,控制论,运筹学和系统学等学科的交叉。

2.非线性控制(Nonlinear Control)非线性控制是复杂控制理论中一个重要的基本问题,也是一个难点课题,它的发展几乎与线性系统平行。

非线性系统的发展,数学工具是一个相当困难的问题,泰勒级数展开对有些情况是不能适用的。

古典理论中的“相平面”法只适用于二阶系统,适用于含有一个非线性元件的高阶系统的“描述函数”法也是一种近似方法。

由于非线性系统的研究缺乏系统的、一般性的理论及方法,于是综合方法得到较大的发展。

3.自适应控制(Adaptive Control)自适应控制系统通过不断地测量系统的输入、状态、输出或性能参数,逐渐了解和掌握对象,然后根据所得的信息按一定的设计方法,作出决策去更新控制器的结构和参数以适应环境的变化,达到所要求的控制性能指标。

4.鲁棒控制(Robust Control)过程控制中面临的一个重要问题就是模型不确定性,鲁棒控制主要解决模型的不确定性问题,但在处理方法上与自适应控制有所不同。

自适应控制的基本思想是进行模型参数的辩识,进而设计控制器。

控制器参数的调整依赖于模型参数的更新,不能预先把可能出现的不确定性考虑进去。

而鲁棒控制在设计控制器时尽量利用不确定性信息来设计一个控制器,使得不确定参数出现时仍能满足性能指标要求。

鲁棒控制认为系统的不确定性可用模型集来描述,系统的模型并不唯一,可以是模型集里的任一元素,但在所设计的控制器下,都能使模型集里的元素满足要求。

鲁棒控制的一个主要问题就是鲁棒稳定性。

5.模糊控制(Fuzzy Control)模糊控制借助模糊数学模拟人的思维方法,将工艺操作人员的经验加以总结,运用语言变量和模糊逻辑理论进行推理和决策,对复杂对象进行控制。

模糊控制既不是指被控过程是模糊的,也不意味控制器是不确定的,它是表示知识和概念上的模糊性,它完成的工作是完全确定的。

1974年英国工程师E.H.Mamdam首次把Fuzzy集合理论用于锅炉和蒸气机的控制以来,开辟了Fuzzy控制的新领域,特别是对于大时滞、非线性等难以建立精确数学模型的复杂系统,通过计算机实现模糊控制往往能取得很好的结果。

6.神经网络控制(Neural Network Control)神经网络是由所谓神经元的简单单元按并行结构经过可调的连接权构成的网络。

神经网络的种类很多,控制中常用的有多层前向BP网络,RBF网络,Hopfield 网络以及自适应共振理论模型(ART)等。

神经网络控制就是利用神经网络这种工具从机理上对人脑进行简单结构模拟的新型控制和辨识方法。

神经网络在控制系统中可充当对象的模型,还可充当控制器7.实时专家控制(Real Time Expert Control)专家系统是一个具有大量专门知识和经验的程序系统,它应用人工智能技术,根据某个领域一个或多个人类专家提供的知识和经验进行推理和判断,模拟人类专家的决策过程,以解决那些需要专家决定的复杂问题。

专家系统和传统的计算机程序最本质的区别在于:专家系统所要解决的问题一般没有算法解,并且往往要在不完全、不精确或不确定的信息基础上作出结论。

实时专家系统应用模糊逻辑控制和神经网络理论,融进专家系统自适应地管理一个客体或过程的全面行为,自动采集生产过程变量,解释控制系统的当前状况,预测过程的未来行为,诊断可能发生的问题,不断修正和执行控制计划。

实时专家系统具有启发性、透明性、灵活性等特点,目前已经在航天试验指挥、工业炉窑的控制、高炉炉热诊断中得到广泛应用。

目前需要进一步研究的问题是如何用简洁语言来描述人类长期积累的经验知识,提高联想化记忆和自学习能力。

8.定性控制(Qualitative Control)定性控制是指系统的状态变量为定性量时(其值不是某一精确值而只知其处于某一范围内),应用定性推理对系统施加控制变量使系统在某一期望范围。

定性控制与模糊控制的区别:模糊控制不需建模,其控制律凭经验或算法调整,而定性控制基于定性模型,控制规则基于对系统的定性分析;模糊控制是基于状态的精确测量值,而定性控制基于状态的定性测量值。

定性控制面临的问题:发展定性数学理论,改进定性推理方法,注重定性和定量知识的结合;研究定性建模方法,定性控制方法;加强定性控制应用领域的研究。

9.预测控制(Predictive Control)预测控制是在工业实践过程中独立发展起来的一种新型控制方法,它不仅适用于工业过程这种“慢过程”的控制,也能适用于快速跟踪的伺服系统这种“快过程”控制。

目前实用的预测控制方法有动态矩阵控制(DMC),模型算法控制(MAC),广义预测控制(GPC),模型预测启发控制(MPHC)以及预测函数控制(PFC)等。

这最近有人提出一种新的基于主导内模概念的预测控制方法:结构对外来激励的响应主要由其本身的模态所决定,即结构只对激励信息中与其起主导作用的几个主要自振频率相接近的频率成分有较大的响应。

目前利用神经网络对被控对象进行在线辨识,然后用广义预测控制规律进行控制得到较多重视。

预测控制目前存在的问题是预测精度不高;反馈校正方法单调;滚动优化策略少;对任意的一般系统,其稳定性和鲁棒性分析较难进行;参数调整的总体规则虽然比较明确,但对不同类型的系统的具体调整方法仍有待进一步总结。

10.分布式控制系统(Distributed Control System)分布式控制系统又称集散控制系统,是70年代中期发展起来的新型计算机控制系统,它融合了控制技术(Control),计算机技术(Computer),通信技术(Communication),图像显示技术(CRT)的“4C”技术,形成了以微处理器为核心的系统,实现对生产过程的监视、控制和管理。

既打破了常规控制仪表功能的局限,又较好地解决了早期计算机系统对于信息、管理过于集中带来的危险,而且还有大规模数据采集、处理的功能以及较强的数据通信能力。

分布式控制系统既有计算机控制系统控制算法灵活,精度高的优点,又有仪表控制系统安全可靠,维护方便的优点。

它的主要特点是:真正实现了分散控制;具有高度的灵活性和可扩展性;较强的数据通信能力;友好而丰富的人机联系以及极高的可靠性。

总结:通过这一学期的学习,我对自动控制原理这门课有了深刻的认识,现在能够简单的分析一些问题了,过程实验给我们很大的提高。

虽然现在还不知道未来要从事什么行业,但不管怎样要学好当前的每门课。

基础一定要打好。

相关文档
最新文档